
A Reconnaissance Project by:

Put Dutch GPU research on the
(road)map!

What’s in a name?

¨ GPUs (Graphical Processing Unit)
¤ The most popular accelerators
¤ Performance reports of 1-2 orders of

magnitude larger than CPU
¤ Mix-and-match in large-scale systems
¤ Challenging to program with traditional

programming models
¤ Difficult to reason about correctness
¤ Impossible to reason about

performance bounds

Who are we?

¨ Marieke Huisman (UT, FMT)
¨ Gerard Smit, Jan Kuper,

Marco Bekooij (UT, CAES)
¨ Hajo Broersma, Ruud van

Damme (UT, FMT/MMS)

¨ Henk Sips, Dick Epema,
Alexandru Iosup (TUD,
PDS)

¨ Kees Vuik (TUD, NA)

¨ Ana-Lucia Varbanescu
(UVA, SNE)

¨ Henk Corporaal (TU/e,
ESA)

¨ Andrei Jalba (TU/e, A&V)
¨ Anton Wijs, Dragan

Bosnacki (TU/e, SET, BME)

The goal of our collaboration

¨ To understand the landscape of GPU computing
¨ To map existing efforts in academia on this

landscape
¨ To collect and map the efforts from industry
¨ To position ourselves as a strong participant in GPU

research internationally

The Landscape of GPU research

¨ Applications
¤ Most success stories come from numeric simulation, gaming,

and scientific applications.
¤ New-comers like graph processing are interesting targets,

too.
¤ Graphics and vizualisation remain a big consumer

¨ Analysis
¤ Techniques to reason about correctness of applications

¨ Systems
¤ First steps in performance analysis, modeling, and prediction
¤ Building better GPUs and better systems with GPUs

emerges as a necessity for GPU computing
¤ Highly-programmable models for programming GPU-

systems

Our Mission Statement

Analysis
• Correctness

Systems
• Better GPU systems
• Programmability

Applications
• High(er)

performance
Image processing

Bioinformatics
Big data analytics

Program analysis
Model checking

Performance analysis
and prediction

Programming models

Outline

Analysis
• Correctness

Systems
• Better GPU systems
• Programmability

Applications
• High(er)

performance

What next?

Andrei Jalba
Kees Vuik
Hajo Broersma, Ruud van Damme

Applications (1/2)

SpMV, linear
system solvers

10 X
Level sets
200 X

Wavelets
25 X

HD video
decoding

15 X

Elastic objects
with contact

50 X
Biomedical

applications

100 X

Geodesic
fiber tracking

40 X

Sound
Ray-tracing

10-12 X

Applications (2/2)

Graph
processing

2-50 X
Stereo vision

80 X
Numerical

methods: ship
simulator

20-40 X

Nano-particle
networks

Biomedical:
Modeling MR-guided HIFU treatments for bone cancer

¨ Magnetic Resonance Guided High-Intensity Focused
Ultrasound Treatments
¤ Impossible to measure temperature with HIFU methods
¤ Prediction of temperatures with mathematical models

instead

GPU algorithms can speed up the methods by factor 1000
crucial since it makes the methods applicable in practice

Numerical methods:
SpMVs

¨ Sparse matrices have relatively few non-zero
entries

¨ Frequently rather than
¨ Only store & compute non-zero entries
¨ Difficult to parallelize efficiently: low-arithmetic

intensity
¤ Bottleneck is memory throughput
¤ Solution: block-compressed layout

(BCSR)

Elasticity with contact

¨ One order of magnitude faster than CPU version

Numerical simulation:
Sound ray tracing

Numerical simulation:
Sound ray tracing

0"
20"
40"
60"
80"
100"
120"
140"
160"
180"

W9(1.3GB)"

Only"GPU"

Only"CPU"

CPU+GPU"

Dataset

Ex
ec
ut
io
n	
tim

e	
(s
)

62%	performance	improvement	
compared	to	“Only-GPU”

More	than	2x	performance	
improvement	compared	to	CPU

Outline

Analysis
• Correctness

Systems
• Better GPU systems
• Programmability

Applications
• High(er)

performance

What next?

Marieke Huisman
Anton Wijs, Dragan Bosnacki

VerCors: Verification of
Concurrent Programs

¨ Basis for reasoning: Permission-based Separation Logic
¨ Java-like programs: thread creation, thread joining,

reentrant locks
¨ OpenCL-like programs
¨ Permissions:

¤ Write permission: exclusive access
¤ Read permission: shared access
¤ Read and write permissions can be exchanged
¤ Permission specifications combined with functional

properties

A logic for OpenCL kernels

Plus:
functional specifications
(pre- and
postconditions)

¨ Kernel specification
¤ All permissions that a kernel

needs for its execution
¨ Group specification

¤ Permissions needed by single group
¤ Should be a subset of kernel permissions

¨ Thread specification
¤ Permissions needed by single thread
¤ Should be a subset of group permissions

¨ Barrier specification
¤ Each barrier allows redistribution of permissions

Challenges

¨ High-level sequential programs compiled with
parallelising compiler
¤ Ongoing work: verification of compiler directives

¨ Correctness of compiler optimisations and other
program transformations

¨ Scaling of the approach
¨ Annotation generation

Efficient Multi-core model checking

¨ Technique to exhaustively check (parallel) software
specifications by exploring state space: Model
Checking

¨ Push-button approach, but scales badly
¨ A GPU-accelerated model checker: GPUexplore

(10-100x speedup)

Y

R

G

stop cross

τ

delay

delay

delay

0

1

2

3

approach

goleft
goright

approach

waitcross

R,0

R,0

delay

R,1

approach

R,1

delay

R,0

goleft

R,2

gorightR,3

wait

R,3

delay

G,1

cross

G,1

delay

Y,1

τ

G,0

goleft

G,2

goright

G,3

wait

1

Efficient Multi-core model checking

¨ Other model checking operations
performed on a GPU

¨ State space minimisation:
reducing a state space to allow
faster inspection (10x speedup)

¨ Component detection: relevant for
property checking (80x speedup)

¨ Probabilistic verification: check
quantitative properties (35x
speedup)

Model-driven code engineering

¨ Approach: first design the application through modelling, using a
Domain Specific Language

¨ Model transformations are used to prepare the model for the
(parallel) platform

¨ Verifying property preservation of model-to-model transformations
(are functional properties of the system preserved?)

¨ Then, generate parallel code implementing the specified behaviour
¨ Verify the relation between code and model using separation logic

(VeriFast tool)

• Verifying property preservation of model-to-model transformations
(are functional properties of the system preserved?)
• Sander de Putter (Anton Wijs, [Luc Engelen])

• Formalise model transformations (how do they affect the behaviour of
input systems

• Determine whether they guarantee that properties are preserved,
independent of the input

21

3.5. Model Transformations 35

being merged communicate over synchronous channels, then this form of communication
is replaced by communication using shared variables. Transformation Tmerge is only
applicable to objects that satisfy the following condition: each pair of state machines that
are part of two communicating objects must communicate over a unique unidirectional,
synchronous channel.

Figure 3.13: Two state machines before and after merging objects

Figure 3.13 shows how communication over a synchronous channel is replaced by
communication using shared variables. The two partial state machines on the left of the
figure are part of two separate objects and communicate with each other by sending and
receiving signals over a synchronous channel that connects ports In and Out . After merging
these two objects, the state machines are adapted as shown on the right of the figure
and communicate using the shared variables C_name and C_abl . Variable C_name
is used to store and retrieve the names of the signals that are being exchanged, and
variable C_abl encodes the states of the employed communication protocol. The sending
state machine sets the value of C_abl to 1 to indicate that it wants to communicate.
The receiving state machine indicates that it is also able to communicate by setting the
value of C_abl to 2. If both state machines are able to communicate, the sending state
machine can complete the communication process by setting C_abl to 3. It may also
choose to cancel the communication by setting C_abl to 0. The receiving state machine
acknowledges successful completion of the communication process by setting C_abl to 0.

3.5.1.7 Making all Signal Names Equal

To keep the transformation that adds the CABP as simple as possible, our implementation
of the CABP takes signals with a fixed name as input, transfers them over a lossy channel,
and delivers them at the receiving end. Before this instance of the CABP can be used
to substitute an asynchronous, lossless, unidirectional channel, the signal names that
are sent over this channel have to be changed into this fixed name. Transformation Targ

adapts signals such that their name is changed into this fixed name and the name of
the original signal is sent as an argument of the resulting signal. For example, the
statement send Block() to O is replaced by the statement send Signal(“Block”) to O .

3.5. Model Transformations 35

being merged communicate over synchronous channels, then this form of communication
is replaced by communication using shared variables. Transformation Tmerge is only
applicable to objects that satisfy the following condition: each pair of state machines that
are part of two communicating objects must communicate over a unique unidirectional,
synchronous channel.

Figure 3.13: Two state machines before and after merging objects

Figure 3.13 shows how communication over a synchronous channel is replaced by
communication using shared variables. The two partial state machines on the left of the
figure are part of two separate objects and communicate with each other by sending and
receiving signals over a synchronous channel that connects ports In and Out . After merging
these two objects, the state machines are adapted as shown on the right of the figure
and communicate using the shared variables C_name and C_abl . Variable C_name
is used to store and retrieve the names of the signals that are being exchanged, and
variable C_abl encodes the states of the employed communication protocol. The sending
state machine sets the value of C_abl to 1 to indicate that it wants to communicate.
The receiving state machine indicates that it is also able to communicate by setting the
value of C_abl to 2. If both state machines are able to communicate, the sending state
machine can complete the communication process by setting C_abl to 3. It may also
choose to cancel the communication by setting C_abl to 0. The receiving state machine
acknowledges successful completion of the communication process by setting C_abl to 0.

3.5.1.7 Making all Signal Names Equal

To keep the transformation that adds the CABP as simple as possible, our implementation
of the CABP takes signals with a fixed name as input, transfers them over a lossy channel,
and delivers them at the receiving end. Before this instance of the CABP can be used
to substitute an asynchronous, lossless, unidirectional channel, the signal names that
are sent over this channel have to be changed into this fixed name. Transformation Targ

adapts signals such that their name is changed into this fixed name and the name of
the original signal is sent as an argument of the resulting signal. For example, the
statement send Block() to O is replaced by the statement send Signal(“Block”) to O .

Challenges

¨ Support for GPUexplore of more expressive
modelling language

¨ Model transformations: express code optimisations
¨ Code generation: support for platform model

specifying the specifics of the targeted hardware

Outline

Analysis
• Correctness

Systems
• Better GPU systems
• Programmability

Applications
• High(er)

performance

What next?

Henk Sips, Dick Epema, Alexandru Iosup
Ana Lucia Varbanescu
Gerard Smit, Marco Bekooij, Jan Kuper
Henk Corporaal

Understanding GPUs

¨ Modeling of GPU L1 cache

¨ Cache bypassing

¨ Transit model

Understanding GPUs:
L1 cache modeling

¨ GPU Cache model:
¤ Execution model (threads, thread blocks)
¤ Memory latencies
¤ MSHRs (pending memory requests)
¤ Cache associativity

[5] A Detailed GPU Cache Model Based
on Reuse Distance Theory

How to generate efficient code for
all these devices?

Code generation:
ASET & Bones sequential

C code

Algorithmic Species
Extraction Tool

species-annotated
C code

skeleton-based
compiler

CPU-OpenMP
GPU-OpenCL-AMD
CPU-OpenCL-AMD
CPU-OpenCL-Intel
XeonPhi-OpenCL

GPU-CUDA

‘ASET’

‘Bones’

Multi-GPU
(CUDA / OpenCL) FPGA

PET
(llvm)

[10] Automatic Skeleton-Based Compilation through
Integration with an Algorithm Classification

Performance modeling:
the BlackForest framework

¨ Build a model based on statistical analysis using
performance counters.
¤ Compilation: optional, scope limitation by instrumentation
¤ Measurements: performance data collection via hardware

performance counters
¤ Data: repository, file system, database
¤ Analyses: reveal correlation between counter behavior and

performance

Performance modeling:
Colored Petri nets

Heterogeneous computing:
the Glinda framework

¨ A framework for running applications on heterogeneous
CPU+GPUs hardware
¤ Static workload partitioning and heterogeneous execution.

Outline

Analysis
• Correctness

Systems
• Better GPU systems
• Programmability

Applications
• High(er)

performance

What next?

Next steps

¨ Inventory of existing and near-future GPU-related
research
¤ Academia AND industry

¨ Focus on mapping the existing research on these
three topics
¤ … and add more topics!

¨ Understand collaboration potential between
academia and industry
¤ National and international level

¨ Go international !

First …

¨ We will organize 3+1 call for presentations
¤ Systems and performance – June/July
¤ Analysis – September/October
¤ Applications – November/December
¤ Education !!!

¨ All interested partners are invited to give a talk about
their GPU-research and submit a 1-page description of
the research.
¤ Focus on potential collaborations
¤ Focus on both *offer* and *demand*

¨ We will summarize the findings in a 3-volume report:
“The Landscape of GPU computing in NL”.

… and then…

¨ We will analyze correlations between topics
¤ For potential collaboration
¤ For potential partnerships

¨ We will compare with existing work internationally
¨ We will draft a “GPU Computing Research

Roadmap” for the near future.

How can YOU contribute?

¨ Are you doing GPU research?
¤ Let us know! Respond to our call for presentations!

¨ You need GPU-like performance?
¤ Let us know! Come and talk about your application and

challenges!
¨ Are you active in GPU-related education:

¤ Let us know! E-mail and let us know if you want to meet
other educators like you!

¨ You want to do GPU research?
¤ Join our meetings! See our website:

http://fmt.ewi.utwente.nl/Workshops/NIRICT_GPGPU/index.html

