
Generating Game Strategies using Graph
Transformations

Rick Hindriks
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

h.n.hindriks@student.utwente.nl

ABSTRACT
Given a completely observable game of which states are
modelled as graphs, which is changed using graph trans-
formation rules. We present a system which allows the
Minimax algorithm to be applied to the game. The sys-
tem supports a flexible approach for modelling the heuris-
tic function used by the Minimax algorithm. The usabil-
ity and effectiveness of the system is tested by generating
strategies for a defined range of games.

Keywords
Graph modelling, Graph transformation, GROOVE, Min-
imax, Games, Strategy, Heuristic

1. INTRODUCTION
Games are regularly subjected to research by computer
scientists and mathematicians. Chess is a famous exam-
ple. Many algorithms have been developed for this par-
ticular game, up to the point where nowadays computers
outperform human players [1].

The Minimax algorithm and its variants have been used
with success as means to construct a computer controlled
player [1]. Given a state of the game, the algorithm aims
to maximise the minimum gain of the player by minimizing
the maximum gain of the opponent.

The definition of gain and loss is abstract, and needs to
be defined for each game. In the Minimax algorithm, this
is defined by using a heuristic function. This heuristic
function determines a numerical value based on a given
arbitrary state of the game. This value serves as an indi-
cator for the expected chances of winning the game from
that state.

The algorithm assumes that the opponent will always play
the best possible move. The output of the algorithm pro-
vides a choice between possible moves for any state of the
game. As such, the output is effectively a strategy for the
game that the algorithm analysed.

The states which occur during a game, the state space,
can be represented by a graph. In this graph, the nodes of
the graph correspond to the states of the game, and edges
correspond to the moves from a certain state to a different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
21st Twente Student Conference on IT June 23, 2014, Enschede, The
Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Figure 1. Part of the state space of the Tic-Tac-
Toe game. The edge between s0 and s4 is a partic-
ular move, in which an ‘X’ is placed on the board.
From s4 the player with ‘O’ is able to choose be-
tween a number of possible moves.

Figure 2. A state of the game of Tic-Tac-Toe mod-
elled as a graph.

state (see Figure 1).

The game states themselves can also be modelled as graphs
(see Figure 2), and the moves as transformations of this
graph. The state space graph is used as the input of the
Minimax algorithm.

The tool GROOVE [6] has been developed since 2004 and
can be used to construct the aforementioned graphs and
graph transformations. In GROOVE, a state is repre-
sented by labelled nodes and edges (as shown in figure 2).
A graph transformation is defined using transformation
rules, which alter the state graph. GROOVE can sub-
sequently use a state exploration strategy to explore the
state space given a starting graph and the graph transfor-
mation rules.

This research presents a design of a system which com-
bines the flexibility of graph modelling in GROOVE with

1



the Minimax algorithm. This system should provide a con-
venient method for specifying the heuristic required by the
Minimax algorithm. The new system generates a strategy
for a game modelled as a graph transformation system
by using the Minimax algorithm in conjunction with the
specified heuristic function. The flexibility of this system
is verified by generating strategies for a selected range of
games.

2. BACKGROUND
2.1 Graph modelling with GROOVE
2.1.1 State graphs

As mentioned above, the tool GROOVE is used to create
a system of graphs and graph transformation rules. A
state graph models a logical structure, consequently the
visual position of the nodes is not of importance. The node
labels in GROOVE are also used for typing (see Figure 2).
GROOVE also supports special node types which contain
data such as integers and strings. The initial state of the
game is modelled as the starting graph.

2.1.2 Graph transformation rules
State graphs are transformed to different state graphs us-
ing graph transformations. In GROOVE graph transfor-
mations are defined by means of graph transformation
rules.

A graph transformation rule is also defined as a graph with
labelled nodes and edges. GROOVE defines special labels
which are added before the label of the node or edge to
alter a graph (see Table 1). A transformation rule can
be applied to the graph when it is matched. GROOVE
applies and tests whether a rule matches the current graph
using the following procedure:

1. Test whether all reader nodes and edges exist in the
graph

2. Test whether all eraser nodes and edges exist in the
graph

3. Test whether all embargo nodes and edges do not
exist in the graph

When all tests succeed, the rule is applicable; its applica-
tion results in the following steps:

4. Remove all eraser nodes and edges from the graph

5. Add all creator nodes and edges to the graph

When the rule is applied, a new state is generated and
added to the state space. For an example transformation
rule and its effects, see Figures 3 and 4. A more complex
transformation rule is shown in Figure 8.

2.1.3 State exploration
In any state, zero or more transformation rules can be ap-
plied. The application of a single rule alters the existing
state and creates a new state. The choice which rule to ap-
ply to which state is made according to a state exploration
strategy. Examples of such strategies are: breadth-first,
depth-first, or random exploration.

2.2 Minimax
The Minimax algorithm is an algorithm based on the Mini-
max theorem, “. . . which states that every finite, zero-sum,
two-person game has optimal mixed strategies. ” [9] This
was proven by John von Neumann [3]. A finite, zero-sum,

Table 1. Main label types in graph transformation
rules

Name Appearance Description
Reader Black Checks whether a node or

edge exists in the graph
Eraser Dashed blue Checks whether a node or

edge exists in the graph,
and removes it when the
rule is applied

Creator Bold green Creates a new node or edge
when the rule is applied

Embargo Striped red Checks whether a node or
edge does not exist in the
graph

Figure 3. The transformation rule used to move
Pacman to an adjacent cell, and eat (destroy) a
pellet residing there. Note that an application of
this rule is only valid when a pellet resides in the
target cell.

Figure 4. A situation in the game of Pacman. The
situation on the left reflects the game before ap-
plying the eat-pellet rule (see Figure 3), and the
situation on the right reflects the game after the
rule application.

2



5

2

2

-2 2

5

5

5 1 -3

11

11 4

Max

Min

Max

Evaluation

Figure 5. An example result of the Minimax al-
gorithm. The values of parent nodes are based on
the values of their child nodes.

two-person game is a game which is played by two play-
ers, which will eventually come to an end, such that the
sum of the resulting scores of both players always results
in the same value. An example of this is chess, in which
a single point is distributed among both players (one for
the winning player or half a point for both players).

We define the player, and the opponent. The Minimax
algorithm determines the maximum gain of the player. In
a zero-sum game, maximising the gains of a particular
player results, by definition, in the minimisation of the
gains of the opposing player. By assuming the opponent
will always play the best possible move, the algorithm is
able to predict the best or worst possible outcome of any
move from a given state.

Minimax uses a heuristic (or: evaluation) function which
calculates the quality of a given game state. An example
of a simple (zero-sum) heuristic, given a state s, would be:

h(s) =


1, Player won

−1, Player lost

0, Otherwise

When the state space is not fully explored, it may not
be possible to determine whether a move will eventually
win the game. A different heuristic function which does
not depend on the eventual outcome can be used in these
cases. An example for Reversi (see section 5.1) might be
the following heuristic function:

h(s) = (White pieces) − (Black pieces)

The algorithm operates by performing a depth-first search
(unlimited, or up to a given limit), to determine the heuris-
tic values of states which lie deeper in the game tree.
When the algorithm reaches a final state, or stops ex-
ploring from a certain state (because of configured con-
straints on the exploration, such as a limit as mentioned
above), the heuristic value of that state is evaluated us-
ing the heuristic function. We will refer to such states as
evaluation states.

Depending on which mode the algorithm is in (minimisa-
tion or maximisation) the value of a parent node is calcu-
lated by selecting the minimum or maximum value of its
child nodes (see Figure 5). The minimisation or maximi-
sation mode is switched if a different player can make a
move, and the process is repeated until the algorithm has
returned to the starting node.

The output is the evaluated tree with the calculated val-
ues. These values effectively form a strategy based on the
heuristic function, as the algorithm has calculated which
move is the best move in every situation.

3. RELATED WORK
This research uses the GROOVE program [6], which is also
used to model non-game systems. Different tools based on
model transformations exist, but no graph transformation
tools similar to GROOVE have been found.

The Minimax algorithm is known to be used in practice
as a means to construct computer controlled players, Deep
Blue used a variant of the Minimax algorithm [1]. How-
ever, no specific scientific implementations of the Mini-
max algorithm for specific games were found by searching
with combinations of the keywords Minimax, Player, Im-
plementation and Game(s).

Specific implementations of the Minimax algorithm have
been designed for areas other than games. Jiang et al.
have constructed a speech recognition algorithm by using
the Minimax algorithm [2].

4. EXPLORATION STRATEGY DESIGN
4.1 Overview
To implement the Minimax algorithm, the exploration strat-
egy performs a depth-first search on the state space graph
while generating the Minimax value for each encountered
evaluation state. When the exploration of the state space
is finished, or has reached the specified maximum depth,
the Minimax value of all states in the state space graph
has been calculated.

The following parameters of the exploration strategy can
be configured:

• A list of transformation rules which carry the values
from the evaluation states.

• The (optional) maximum search depth, this limits
how deep the state space graph is explored.

• A turn evaluation rule, which is used to determine
which player is the active player in the explored
state. This rule must be applicable in every state.

• Whether the algorithm should attempt to maximise
or to minimise the maximum gains.

4.2 Implementation
The Minimax algorithm is implemented as an exploration
strategy for GROOVE. This enables the algorithm to con-
trol the order in which states are explored and evaluated.
The algorithm explores the state space by performing a
depth-first search, as this minimises memory usage.

The interface provided by GROOVE disallows adding in-
formation to the state space graph. As a consequence, the
exploration strategy has to maintain its own datastructure
to keep track of intermediate data such as intermediate
values and dependencies of nodes (see Figure 5 for a visu-
alisation of example data). The algorithm uses a tree (see
section A.1) structure to maintain this intermediate data,
and evaluates values stored in this tree to determine the
final node values. The designed implementation calculates
this value after the exploration is finished.

Graph transformation rules in GROOVE are able to ex-
port values when they are applied. This feature is used by
a heuristic evaluation rule to calculate the heurstic value
and store it in the exploration strategy. The feature is also
used to determine which player is allowed to make a move
in a given state. This information is used to determine
whether the algorithm has to maximise or minimise the
gains for that state.

3



Figure 6. The starting state of the game of 21.

The exploration strategy is able to limit the search depth
as a configurable setting. The algorithm updates when-
ever a transformation rule (a transition between states) is
evaluated:

1. Allocate a tree node for the destination state of the
transition

2. Whenever a rule should be evaluated, evaluate it and
update the tree:

• A heuristic evaluation rule is examined, and its
value is stored in the corresponding tree node.

• A turn evalution rule which determines which
player is allowed to make a move is evaluated,
and its value is stored in the corresponding tree
node.

5. VALIDATION
5.1 Validation Games
The flexibility and correctness of the new system is vali-
dated by generating strategies for a range of games (see
Table 2). The selected games vary in game tree depth and
branching factor.

To verify whether the system supports the development of
heuristics for small games, the games of Tic-Tac-Toe and
21 have been selected. To verify whether the system sup-
ports heuristics which function with a limited exploration
depth, the games of Sim(6), 4x4 Reversi, and Wolf and
Sheep have been selected.

• The game of Tic-Tac-Toe has a relatively small state
space, which is useful for testing purposes. An ex-
ample state of Tic-Tac-Toe is shown in Figure 1.

• The game of 21 is a variant of the Nim game, in
which two players draw one, two, or three sticks from
a stack of 21 sticks after each other. The player who
draws the last stick loses the game. The game can
also be played with less sticks, which decreases the
state space complexity.

• The game of Sim(6) [7] consists of six vertices in
which two players draw edges between vertices one
after another. The first player who creates a cycle
of length 3 (a triangle if drawn on paper) loses the
game. This game has a limited amount of options
each turn, but has a moderately large state space.
An example state of Sim(6) is displayed in Figure 7.

• Reversi (also known as Othello) is a game in which
players take turns to place colored marbles on a square

Figure 7. An intermediate state of the Sim(6)
game.

Figure 8. In this transformation rule, a sheep
moves between cells connected by a road edge.
Note the embargo rules which specify that the
destination cell should not harbour any wolves or
sheep.

board. Marbles of the opponent can be converted by
bounding them in a straight line with two marbles
of the player. The version which is played on a 4x4
board is used to limit the size of state space.

• The game of Wolf and Sheep is a game which is
played on a Draughts board (50 diagonally aligned
board positions). Five sheep (white discs) start fac-
ing one wolf (black disc) at the opposite sides of the
board. The sheep can only move forward, the wolf
can move in all diagonal directions. The sheep win
when the wolf cannot make a move, the wolf wins
when it reaches the opposite side of the board. This
game has a limited amount of moves each turn, but
may need many moves to complete. An example
transformation rule for moving sheep in this game is
shown in Figure ??

5.2 Evaluation
5.2.1 Usability

Given an existing graph transformation system for a game,
a certain amount of effort is required to prepare the graph

Table 2. An overview of the testing games
Name # moves each

turn
State space size

Tic-Tac-Toe Small (max 9) Small
21 Small (max 3) Small
4x4 Reversi Medium Medium
Sim(6) Medium (max 30) Large
Wolf and Sheep Small (max 10) Large

4



Table 3. An overview of the graph transformation
systems of the games

Game # States #
Transitions

Finished

Tic-Tac-Toe 6436 21645 Yes
21 44 89505 Yes
Sim(6) 3668k+ 8241k+ No
4x4 Reversi 1144k+ 3735k+ No
Wolf and Sheep 2485k+ 6294k+ No

transformation system for use with the Minimax explo-
ration strategy. The following steps are needed to perform
a conversion:

• The turn evaluation rule must be created, and the
grammar must be altered to enable this rule to read
the turn information from a state.

• The heuristic evaluation function must be constructed:
for each possible evaluation state, a rule needs to ex-
ist to enable the exploration strategy to determine
the value of the heuristic function in such a state.

5.2.2 Effectiveness
We constructed graph transformation systems for every
game mentioned in section 5.1. For an overview of the
results for each game, see Table 3. This section describes
the process of constructing and testing each game. The
tests were run with GROOVE with a memory limit of
3GB (Java Maximum Heap limit). The exploration was
halted as soon as the duration of the exploration exceeded
15 minutes, this is indicated in the table in the ‘Finished ’
column, the values in the table correspond with the mea-
sured values at this point.

• For the game of Tic-Tac-Toe, using the first evalua-
tion function described in section 2.2, the algorithm
generated a tree with correct values for a regular
game with the maximizing player making the first
move. The algorithm was able to explore the en-
tire game tree. The result of the exploration strat-
egy showed that when all players play with a perfect
strategy, the game can only end in a draw.

• The game of 21 does not allow games which end in
a draw. This was reflected in the used evaluation
function by removing the corresponding alternative.
This resulted in the following evaluation function:

h(s) =

{
1, Player won

−1, Player lost

The results of the exploration strategy showed that
the starting player can always win. The algorithm
was able to explore the entire game tree.

• No problems were encountered during the construc-
tion of Sim(6). The size of the state space of the
game limits the amount of states which can be eval-
uated in a short time with simple heuristic functions,
similar to the function of 21. Not all states could be
explored with the used memory limit.

• No significant problems were encountered while con-
structing 4x4 Reversi in GROOVE. The heuristic
function used to evaluate the states of this game did
not depend on the eventual outcome of the game, but

rather estimated the winning chances with the dif-
ference in piece counts of both players. Not all states
could be explored with the used memory limit.

h(s) = (White pieces) − (Black pieces)

• The implementation of the game of Wolf and Sheep
did not cause any notable errors. The evaluation
function used was similar to the function used for
the game of 21. Not all states could be explored
with the used memory limit.

6. FUTURE RESEARCH
The Minimax algorithm has been used in the wild to con-
struct computer controlled players. As a result, many op-
timisations of the algorithm exist. These variants of the
Minimax algorithm avoid exploring the entire state space
graph. Probably the best known optimisation of the Min-
imax algorithm is α− β pruning. Other optimisations are
the NegaScout [5], SSS* [8] and MTD(f) [4] algorithms.
The current implementation of Minimax has not been op-
timized. Future research could aim to improve the perfor-
mance of the current implementation by using one of the
aforementioned optimisations.

Graph transformation tools such as GROOVE currently
lack interactivity during the exploration. This limits the
feasibility of assessing the quality of the generated strate-
gies. For example, playing a game of chess against a com-
puter controlled player which uses a strategy generated by
a graph transformation system using GROOVE is cumber-
some at the very least. Future research could attempt to
improve the interactiveness of graph transformation tools.

We are able to apply algorithms which use heuristic func-
tions to games represented as graph transformations, dif-
ferent search algorithms (A∗ for example) might be suit-
able for searching the game state space. Future research
could employ the designed framework for heuristic func-
tions to test whether different algorithms are suited for
use with graph transformation systems.

Existing game models must currently be transformed for
use by the exploration strategy by hand. It might be pos-
sible to automate (parts of) this process. Future research
could aim to construct a system which achieves this.

7. CONCLUSION
The designed system shows that the Minimax algorithm
is compatible with graph transformation systems such as
GROOVE. The system requires only small adjustments of
existing graph transformation systems before use, and can
consequently be used for a wide variety of problems.

The new system can be used as an effective means to gen-
erate strategies for a wide variety of zero-sum games (those
which can be modelled as a graph transformation system)
with little effort. The system accomplishes this by combin-
ing the flexibility of graph transformation system design
of GROOVE with the power of the Minimax algorithm.

For less complex games (Tic-Tac-Toe and 21 ), correct
strategies have been generated using the designed system.
The correctness of generated strategies could not be eval-
uated for more complex games (Reversi and Sim(6))) as
this proof requires the analysis of the complete state space.

8. REFERENCES
[1] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep

blue. Artificial intelligence, 134(1):57–83, 2002.

5



[2] H. Jiang, K. Hirose, and Q. Hue. A minimax search
algorithm for robust continuous speech recognition.
Speech and Audio Processing, IEEE Transactions on,
8(6):688–694, 2000.

[3] J. Neumann. Zur theorie der gesellschaftsspiele.
Mathematische Annalen, 100(1):295–320, 1928.

[4] A. Plaat, J. Schaeffer, W. Pijls, and A. d. Bruin. A
new paradigm for minimax search. Technical report,
Erasmus School of Economics (ESE), 1995.

[5] A. Reinefeld. An improvement of the scout
tree-search algorithm. ICCA Journal, 6(4):4–14, 1983.

[6] A. Rensink. The GROOVE simulator: A tool for
state space generation. In J. L. Pfaltz, M. Nagl, and

B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance
(AGTIVE), volume 3062 of Lecture Notes in
Computer Science, pages 479–485, Berlin, 2004.
Springer Verlag.

[7] W. Slany. Graph ramsey games. CoRR,
cs.CC/9911004, 1999.

[8] G. Stockman. A minimax algorithm better than
alpha-beta? Artificial Intelligence, 12(2):179 – 196,
1979.

[9] E. W. Weisstein. Minimax theorem.
http://mathworld.wolfram.com/MinimaxTheorem.html.

6



APPENDIX
A. IMPLEMENTATION DETAILS
A.1 Internal Tree datastructure
The used internal tree datastructure is implemented as
a Java class. The class functions either as a leaf node,
containing a value, or as a parent node. The class contains
both behaviours and can be transformed to either type
of node. Each node maintains a boolean variable (which

is set by the exploration strategy) to determine whether
the heuristic value of its children should be maximised or
minimised.

The heuristic value of a node is recursively calculated.
Whenever the heuristic value is requested from a parent
node, the node calculates a minimum or maximum value
from the values of its children. When the heuristic value is
requested from a leaf node, the heuristic value contained
in that node is returned.

7


