
Can a Tool Learn its Own Settings?
Dennis de Weerdt
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

d.deweerdt@student.utwente.nl

ABSTRACT
In the field of model checking, a number of tools has been
developed. LTSmin, created at the Formal Methods and
Tools group of the University of Twente, is a collection of
such tools. While these tools are very useful for verifying
the correctness of software and/or physical systems, they
have a large number of switches and settings to choose
from. The many settings have a significant impact on
performance, and the choice of settings to use for any par-
ticular problem can be difficult to make. This paper ex-
plores the possibility of statically analysing the structure
of model checking problems in order to predict whether or
not Partial Order Reduction would be an effective way of
limiting the time and memory required to solve queries.
Surprisingly little correlation was found between certain
structural properties and benchmark results, but never-
theless a tool has been developed which can offer reason-
able advice.

1. INTRODUCTION
Model checking is a technique used for verifying the cor-
rectness software or (cyber-)physical systems. Over time,
a number of different model checking languages have been
developed. The Formal Methods and Tools group at the
University of Twente has developed the LTSmin toolset,
which provides a common interface (the Partitioned Next-
State Interface, PINS) for a number of such languages [5].
LTSmin can be used to answer, for example, questions of
reachability : Will the system ever be in state X ? For ex-
ample, given a model of a car’s electrical system, we might
ask whether or not the airbags will always deploy in the
event of a crash. Another query which may be executed
on a model is deadlock : will the system ever be in a state
where it is stuck, and cannot proceed? In addition to sim-
ple yes/no answers to these questions, the modeling tools
also provide a specific counterexample which leads to the
queried state if such a sequence exists.
LTSmin offers a plethora of options and switches to cus-
tomise the verification of queries [15]. Choosing the right
options is essential to the execution speed and memory
requirements, as this research will demonstrate. To aid in
making this choice, the developed tool gathers structural
properties of models and then employs a neural network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
25th Twente Student Conference on IT July 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

to analyse these. This data is used to estimate whether or
not Partial Order Reduction (POR) will be effective. The
result (phrased as the answer to the question ”Should I
use POR on this model?”) is either NO or MAYBE, as no
strong positive correlations were discovered.

The research focuses on answering the following questions:

1. With what accuracy can the developed algorithm
predict whether or not applying POR would be a
sound investment?

a How well do experimental results generalise to
new models?

b What gain can be achieved in time and/or mem-
ory usage when analysing a model using the al-
gorithm prior to executing queries on it?

2. What structural properties of models exhibit corre-
lation with the effectiveness of POR, and to what
degree?

1.1 Background
This section will describe some of the background infor-
mation required for both executing and understanding the
proposed research.

1.1.1 Model Checking
The models used for model checking provide an abstract
description of the system they represent. In order to per-
form any meaningful queries on these, they are instanti-
ated to a simpler but far larger labeled transition system
(LTS). The amount of states in these systems can vary
from a few thousand for simple models to many millions
for more complex ones. Experimental results show (see
section 4) that choosing different options for running the
same query on the same model can have a drastic effect
on the execution time of the query. Picking the right ones,
therefore, is essential if one wishes to run many such ex-
periments. Doing so is very difficult, as the sheer number
of options results in a nearly insurmountable amount of
combinations to try.

1.1.2 LTSmin
LTSmin is a comprehensive set of tools developed by the
Formal Methods and Tools group at the University of
Twente [5]. Its central architecture consists of three lay-
ers: the frontend, PINS and the backend. The different
frontend modules take a model in one of various model-
ing languages like mCRL2, Promela or DVE, and process
these to match the PINS interface. PINS provides access
to a next-state function as well as a number of statically
calculated matrices. This information is then used by one
of the available backends, such as the symbolic analysis

1

and multi-core algorithms. It is these backends which per-
form the actual analysis. Before using them, however, it
is possible to employ one or more so-called PINS2PINS
wrappers, which perform some transformation on a PINS
model. Partial Order Reduction, discussed below, is im-
plemented as one such PINS2PINS wrapper.

Since using POR is central to this research, it is vital that
the chosen backend supports it. Due to the fact that POR
is incompatible with the symbolic tools and only limited
support exists for the distributed ones [5], our only choice
is between the multi-core and sequential backends. The
sequential version is likely to be considerably slower, as
the multi-core backend can more fully utilize available re-
sources. As is further discussed in Section 3.2, we will use
models written in the DVE language. The obvious choice
of LTSmin tool, then, is dve2lts-mc.

1.1.3 Partial Order Reduction
Partial Order Reduction is an optimisation technique used
in model checking for reducing the size of state spaces [1].
It is based in the observation that, when modeling con-
current systems, there are often many ways to order cer-
tain actions. This ordering, however, does not necessarily
affect the eventual outcome. If two transitions can be ex-
ecuted in any order, resulting in the same outcome, these
transitions are independent [3]. Such transitions can nei-
ther enable nor disable one another. This notion can be
expanded to that of stubborn sets, which are sets of tran-
sitions which are independent of transitions not in the set.
The goal of using stubborn sets in POR is to use only those
transitions which are part of stubborn sets, thereby reduc-
ing the total amount of transitions[17]. Stubborn sets are
not the only technique POR may use [14, 4], but it is the
one used by LTSmin [5] and therefore deemed the most
relevant to this research.

One particularly useful structure which may be encoun-
tered in state spaces is the d iamond. This is a group of
transition which always lead from one state to another,
along a potentially large amount of paths. An example of
such a structure may be found in Figure 1. One observa-
tion is vital here: no matter what path one takes along the
diamond, one always ends up in the right-most state. In-
tuitively, it would seem that such diamonds are very useful
for POR, since the transitions within it are independent
of each other. Pelánek, whose research will be explored
more in Section 2, also notes this in [11], Section 6.2.1. So
how are these diamonds formed? Consider the following
pair of parallel processes:

i = 1 , sum1 = 0 ;
whi l e (i <= 10) {

sum1 = sum1 + i ;
i = i + 1 ;

}
re turn sum1 ;

j = 1 , sum2 = 0 ;
whi l e (j <= 10) {

sum2 = sum2 + j ;
j = j + 1 ;

}
re turn sum2 ;

These two processes are completely independent of each
other. After all, they operate on different pairs of vari-
ables. When executing them, therefore, it does not mat-
ter how the system chooses to interleave them; they will
always return the same values. This would give rise to a
diamond structure in which each ’branching’ represents a
choice between executing a line from the left or right pro-
cess. When one of the processes is done, we have reached
the right side of the diamond and have only a single path
left until we reach the end node: executing the process

Figure 1: A diamond structure

which has not yet finished. Now, consider an alternative:

i = 1 , sum1 = 0 ;
whi l e (i <= 10) {

sum1 = sum1 + i ;
i = i + 1 ;

}
re turn sum1 ;

i = 1 , sum2 = 0 ;
whi l e (i <= 10) {

sum2 = sum2 + i ;
i = i + 1 ;

}
re turn sum2 ;

In this scenario, both processes use the variable i. As they
both increment and check i, they are no longer indepen-
dent: the steps that the left process takes influence the
steps the right one can take, and vice versa. Crucially, the
processes are not guaranteed to always produce the same
answer; it depends on the interleaving. Because of this,
there is no single end node. Rather, there is one for each
possible outcome. The internal structure differs as well.
This second pair of processes, therefore, does not result in
a diamond.
The intuition here, then, is that parallelism causes dia-
monds, and diamonds are good for POR. Section 4.1 will
provide data disputing this intuition.

1.1.4 Machine Learning - General
In order to transform the benchmark data into recommen-
dations as to whether or not to employ POR, an algorithm
is used to discover relations between the model parameters
and the eventual outcome. This algorithm is one of the
many found in the field of machine learning. Mitchell de-
fined machine learning as follows: ”A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience
E”[7]. Less formally, a machine learning algorithm adapts
its parameters based on new data, in such a way that it is
more effective after the adaptation than before. By doing
so, these algorithms can ’learn’ patterns which occur in
data.

1.1.5 Machine Learning - Neural Networks
Artificial neural networks (ANNs) are mathematical ab-
stractions of the structures that make up brains. They
consist of a number of neurons organised into a number of
layers, which may or may not be connected to other neu-
rons. Data is presented to a network as a list of numbers,
which are passed on along weighted connections to other
neurons. Each neuron applies a certain function to the
sum of its inputs, and passes the result of that function
to all of its outputs. An example of an ANN is given in
Figure 2.

2. RELATED WORK

2

Figure 2: ANN example. Source: Stanford University.
Here x1 to x3 are input values, the ’+1’ nodes are so-
called bias, and h is the function representing the network
as a whole (taking the input vector x as its parameter).

The proposed method of finding settings for models does
not seem to have been attempted before. At least, the
results of any such undertaking do not seem to have been
published. Much of the techniques which have been used
in this research are based on papers written (jointly) by
Radek Pelánek [13, 12, 11]. In particular, Pelánek has
devised and evaluated techniques to estimate structural
parameters of state spaces [12]. Pelánek proposes several
different techniques for estimating the size of state spaces,
something which is normally only known after processing
the model. An estimate for the state space size might
very well be used to estimate the time required to execute
a query, which would, as Pelánek points out by referring
to Maister [6], make users more amenable to waiting for
it to complete.
Initially, however, the parameters we are most interested
in - for the purpose of predicting POR’s efficiency - are
related to the notion of according transition groups as out-
lined in [5]. These are structures where - very simply put -
there are multiple paths leading from one state to another.
Specifically, Pelánek suggests that POR will be more ef-
fective on models with more such transition groups [11].
Applying this knowledge will be the primary focus of this
research, certainly early on. If more parameters are found
to be useful and feasible to extract, they can be added at
a later date.

3. METHOD
3.1 Data Gathering
No machine learning algorithm can work without data, so
extracting useful information about the models is key. To
conduct preliminary research, a program which extracts
data related to POR has been developed. This program
outputs, for a pre-compiled model in the DiVinE language
[2], information on four matrices as specified by LTSmin.
These are:

• Do-Not-Accord
Two transition groups are according if - essentially -
they create a diamond-shaped structure in the state
space. A formal definition may be found in [5], sec-
tion 4.3.

• Necessary Enabling
A transition group is necessary-enabling for a guard
if it writes to a variable that the guard depends on.
This matrix gives the transition group/guard pairs
for which this is the case.

• Necessary Disabling
This matrix is similar to the previous one, but it in-
stead details transition groups which lead to a guard
being disabled. This matrix and the previous one are
often very similar.

• May-Be-Coenabled
Two guards may be coenabled (that is, enabled at
the same time) if that does not cause a contradiction.
For example, two guards {i > 5} and {i < 3} can
never be true at the same time and thus must be
indicated as false in this matrix.

In addition, it gives the number of global variables in the
model. This is related to the previously mentioned intu-
ition that parallelism causes POR to be effective: If there
are no global variables, then it is impossible for two pro-
cesses to influence one another. The presence of many
global variables does not automatically mean that they
cause dependencies between processes, however.

3.2 Machine Learning
The question of whether or not to apply POR presents
a classification problem. All models can be divided into
two disjoint classes: NO or MAYBE. One central problem
in the application of machine learning for classification
is a dichotomy expressed in different terms depending on
where it is encountered, among which are exploration vs.
exploitation and bias vs. variance. These all indicate the
same things: a high bias means that the algorithm is us-
ing little data, and may be unable to clearly distinguish
different inputs. A high variance, on the other hand, in-
dicates that the algorithm is trained very precisely on the
training data, but may very well fail when presented with
new data. An ideal situation is one where there is neither
high bias nor high variance.

The models used in the research were taken from the
BEEM set [10]. These are models in the DiVinE language.
The set contains a number of categories of models, essen-
tially types of problems. Each category contains a number
of variations upon the problem, with the differences mostly
being in the scale of the model. To construct and use the
neural network, the FANN library (Fast Artificial Neural
Networks) is used [9]. This is a high-performance library
written in C which is easy to use and very fast to execute.
As hinted at in research subquestion 1A, it is expected
that some difficulty may be found in generalising the re-
sults of experiments on this dataset to other, new mod-
els. It is hoped that such problems (i.e. bias, variance)
can be alleviated to a large degree by employing K-fold
cross-validation, a technique for the verification of a ma-
chine learning algorithm’s output in which the algorithm
is trained on K-1 slices of equal size, and then validated
on the K’th slice. The intent is that by varying the ’ver-
ification slice’ over different runs, most problems of bias
and variance can be eliminated.

The process of gathering and analysing the data and train-
ing the network is comprised of these steps:

1 Use dve2lts-mc (part of LTSmin) to benchmark the
models

2 Collect the structural data using a utility built for
this paper

3 Combine these two datasets into the format expected
by FANN

3

4 Train the network using FANN’s SARPROP imple-
mentation[16]

After this process has been completed, new models can
be assessed by computing the structural parameters and
entering these into the network.

3.3 Evaluation
To evaluate the predictions made by the tool, the results
will be scored as follows: First, we run the model both
with and without POR enabled. Next, we invoke the tool,
which calculates the required parameters and runs the
neural network. For each process (POR, no POR, tool)
we measure the time required to complete it. Finally, we
calculate a score. This score is based on the measured
times, and is defined in Equation 1. If the advice was NO,
then the score is negated, because the worse POR per-
forms, the better the advice was. Regardless of (the sign
of) the score, if the advice was MAYBE, then the score is
halved because it is not a strong advice either way. In the
absence of strong positive advice, this is deemed accept-
able. Should the tool be improved at a later point and
positive advice made possible, then the scores for models
with that advice would not be negated. The table below
lists some (fictional) example models.

Model POR No POR Alg. Time Score
A 10 17 2 50
B 30 38 3 17
C 20 14 4 -50

The POR and No POR columns reflect the execution time
in seconds. Alg. Time is the time required for the devel-
oped algorithm to give its recommendation. The score is
calculated by the following formula:

Score = 100 ∗ NoPOR− POR−AlgT ime

POR
(1)

The final score is calculated by summing the scores for
individual models. If this final score is positive, this in-
dicates that on average the tool yields a good result.

4. RESULTS
4.1 Lack of Correlation
In Section 1.1.3, we outlined an intuition pertaining to
correlation between the effectiveness of POR and paral-
lel execution. In the figures at the end of this paper, we
present data gathered in experiments which seem to con-
tradict this intuition. In the first four graphs in Figures 3
and 4, we plot the ratios of true vs. false values in the four
matrices against (Figure 3) the fraction of time required
for the query using POR vs. without POR (that is, a value
of 2 indicates that the process took twice as long when us-
ing POR), or (Figure 4) the size of the POR-reduced state
space as a fraction of the original. In the fifth graphs of
both figures, we plot the amount of global variables on the
horizontal axis.
From these plots, it appears that there is little correlation
between the explored factors and the effectiveness of the
reduction. In most cases, the more effective cases (which
are low on the vertical axes) are not clearly grouped on
the horizontal axes. This is discouraging, as obviously the
machine learning algorithm can only find patterns if they
actually exist. That said, there are at least some obser-
vations to be made. Primarily, The ’good’ values usually
appear limited to certain x-values. Though too many ’bad’
values exist in the same ranges, at first glance it should at

least be possible to give a negative advice if a new value
lies outside of these ranges. Even this seems a bit haphaz-
ard, however. The most surprising result is perhaps the
apparent randomness of the global variable plots. Given
the fact that only the presence of global variables can force
processes to wait for one another, we would have expected
a greater correlation.

Unfortunately, at this time we can see no proper expla-
nation for this discrepancy. The most likely scenario is
that the specific metrics chosen to analyse the different
inputs are incorrect. The intuition given in Section 1.1.3
still seems sound, even if the experiments show different
results.

4.2 Prediction
Despite the lack of clear correlation detailed in the pre-
vious section, we continued work on the neural network
in the hope that it could combine inputs in such a way
that useful patterns could be discovered. Several network
structures were attempted. The most successful one was
generated using the Cascade algorithm as implemented by
FANN. This algorithm builds the network itself by itera-
tively trying new neurons and seeing whether or not they
improve the network [8]. This results in a very peculiar
network; one in which the thirteen inputs (three for each
of the four tables, plus the global variable count) connect
to a single neuron, which then starts a chain of single neu-
rons up to the two outputs. Because neural networks are
in essence black boxes in the sense that, even though we
might design them with specific relations in mind, once
trained it is next to impossible to understand the reason-
ing behind the weights it ends up with. The two outputs
in the training examples are the relative runtime and state
space size plotted in Figures 3, 4 and 5, but there is not
necessarily any connection to this in the trained network.

Figure 5 shows how the outputs of the neural network
relate to changes in execution time and state space caused
by applying POR. As before, low values on the vertical
axes indicate that the model could be solved faster or
with fewer states with POR than without. The models for
which this is the case are clearly grouped in small ranges of
network output values. Unfortunately, these same ranges
also contain many models for which POR was counter-
productive. We can see, however, that there are only a
few cases in which POR worked well on models outside
of these ranges. This suggests that it is possible to pro-
vide a negative advice: If, for a new model, its parameters
result in the neural network returning values outside of
these small ranges, then POR is unlikely to work well. If
the outputs do fall within the ranges, then the result is
inconclusive: In most cases, the performance with POR is
marginally worse than the unreduced model, in others it
does yield an improvement, and in a few applying POR
leads to the time required more than doubling. It should
be noted that there are exceptions to all of these cases, so
the tool’s output can never be fully relied on.

Comparing the advice values against the measured effec-
tiveness of POR, we found that the tool outputs MAYBE
approximately 52% of the time. If we define hard misses
as cases where POR reduced runtime by at least 20%, but
the tool advised NO, then we find that these hard misses
occur in about 8% of cases. Further, we define soft misses
as the less severe case where the tool advised MAYBE
when POR increased the total runtime. Such soft misses
occur in approximately 23% of cases. Combining these

4

Figure 3: Time Ratio Benchmark The horizontal axis represents the fraction of values in the relevant table which is
true. The vertical axis is the time required to explore the POR-reduced model, expressed as a fraction of the time required
without POR. That is, a value of 1 indicates no change, 0.2 means an 80% reduction and a value of 3 indicates that the
query took three times as long when using POR. The ”Globals” graph displays the amount of global variables instead.
Note the logarithmic scales.

5

Figure 4: State Space Ratio Benchmark Again, the horizontal axis indicates the fraction of true values in the matrix
(except in the case of the ”Globals” plot). On the vertical axis, we see the amount of states in the reduced state space as
a fraction of the original amount. A value of 0.5, then, indicates that POR reduced the size of the state space by half.
Note the logarithmic scales.

6

Figure 5: POR Effectiveness vs. ANN Output Like in the previous figures, the vertical axes in these plots represent
the state space/time requirements of the reduced model relative to the original. The outputs of the ANN are given on the
horizontal axes. ”Time 1” plots the execution time against the first output, and so on. A color-coded version is available on
this project’s GitHub page (https://github.com/DennisdeW/PredictPor), which more clearly shows the relation between
the advice and the actual effectiveness of POR. Note the logarithmic scales.

7

values, we find that our tool gives good advice in 69% of
the test cases, which we believe to be an acceptable result.

4.3 Cross Validation
In order to test the accuracy of the neural network, the
goal was to employ K-fold cross validation. As explained
in Section 3.2, this means that we first split our dataset
into ten (approximately) equal slices. Then, for each slice,
we retrain the neural network for all other slices. We then
use that network to evaluate the elements in the current
slice, and examine the results. Once this process has been
completed for every slice, we collect the results and score
them according to Equation 1. The time required to train
the network is not taken into consideration when calculat-
ing AlgTime, since this is not a part of the tool’s normal
operation.

Unfortunately, due to the fact that we had to train a
new network for each slice and that these networks are
black boxes, the scale of the outputs changed in every
network. The ’main’ network, the outputs of which are
plotted in Figure 5, has relatively low values on the sec-
ond output, for example, but a new network might have
all values above 20. Again, these numbers do not actually
represent anything concrete; they only have meaning in
relation to themselves. This does mean, however, that the
range in which to advice MAYBE instead of NO has to
be specified manually each time. Automated verification
is made very difficult because of this, and unfortunately
it was impossible during this research due to time con-
straints. Manual inspection of these models in the same
way as the main network did show similar results: almost
all ’good’ models’ outputs lie in a rather narrow range
of values, but there are also many ’poor’ models in those
same ranges. In summary, automated verification was in-
feasible given the time constraint, but manual verification
showed results similar to the initial results.

The full table of scores as defined in Section 3.3 is too large
to show here, so instead we will summarise the results. All
numbers in this paragraph are rounded to the nearest inte-
ger. Scores range between -2557 and 2585, with an average
of 40. The minimum and maximum values indicate that
there are models for which the tool performs very well, and
others for which it does very poorly. The positive average
score shows that, in general, the tool gives sound advice.
In Section 3.3, we defined the final score as being the sum
of all individual scores. This sum was found to be 5513,
indicating that the positive values strongly outweigh the
negative ones.

4.4 New Models
Testing the network on new models, the generated advice
is very similar to that for the models used in training. The
results were slightly worse than those reported in Section
4.2, but due to the small amount of new models evaluated
no conclusions can be drawn from this measurement.

4.5 Gain
The reduction in time and space requirements for models
depend largely on the specific model. The scores presented
in Section 4.2 use relative numbers, but the absolute val-
ues are also highly relevant. For example, some models
take under a second to instantiate, with or without POR.
These might reduce strongly using POR, but the differ-
ence would be hardly noticeable. Conversely, in a model
which takes over an hour to instantiate, a slight relative
reduction might cause a significant difference.

Assuming that researchers would normally choose to use
POR or not at random, which is probably not the case,
they would benefit from using this tool. This is because
the total score reported in Section 4.3 is positive. The av-
erage score of around 40 points indicates that the relative
gain may not be very large, so the absolute gain depends
very much on the models. On complex ones, the correct
choice of whether or not to apply POR could save hours
of calculations.

5. CONCLUSIONS
We have seen that despite a clear intuitive connection, lit-
tle actual correlation appears to exist between the various
explored factors and the effectiveness of POR. Neverthe-
less, the developed tool often produces reasonable advice
and may be found useful by researchers working with large
models. The absence of a possibility for strong positive ad-
vice, however, is somewhat disappointing, as Figures 3 and
5 especially show that for some models POR results in a
much shorter run time. To explicitly answer the research
questions posed in the introduction:

1. Taking the stricter definition given at the end of Sec-
tion 4.2, we find a prediction accuracy of 77%. Fur-
thermore, the tool achieves an average score of 40 as
defined by Equation 1.

a Results on new models appear similar to the
original results, but there were too few new
models to base any hard claims on.

b The gains depend very much on the models in
question. For large models, an accurate predic-
tion may save hours. For very small models, the
difference may hardly be noticeable.

2. Very little correlation has been found among the ex-
plored properties. These were the Do-Not-Accord,
Necessary Enabling, Necessary Disabling and May-
Be-Coenabled matrices, as well as the global variable
count. It is still possible that other properties are
more effective, but these could not be investigated
due to time constraints.

Future research may include trying to find additional met-
rics to evaluate the models on, and fine-tuning the neural
network structure and training parameters. Specifically,
researchers may be interested to find out why the Cascade
algorithm described in Section 4.2 is so effective and then
use that information to design a better network. A more
comprehensive analysis of global variables (for example us-
ing dependency graphs) in the models may also help, as
we maintain that these should be a helpful clue.

In conclusion, the tool which has been developed over the
course of this research gives decent results, even though
surprisingly little correlation was found in the analysis of
the models. It is our hope that this work will provide
direction for future efforts, as improving the process for
POR and adapting it for other settings may prove greatly
beneficial to people involved in model checking.

6. REFERENCES

[1] R Alur et al. “Partial-order reduction in symbolic
state space exploration”. In: Computer Aided Verifi-
cation, Lecture Notes in Computer Science 1254/1997
(1997), pp. 340–351. issn: 16113349. doi: 10.1007/
3-540-63166-6_34.

8

[2] J Barnat et al.“DiVinE 3.0 – An Explicit-State Model
Checker for Multithreaded C & C++ Programs”. In:
Computer Aided Verification (CAV 2013). Vol. 8044.
LNCS. Springer, 2013, pp. 863–868.

[3] C Flanagan and P Godefroid.“Dynamic partial-order
reduction for model checking software”. In: ACM
SIGPLAN Notices 40.1 (2005), pp. 110–121. issn:
03621340. doi: 10.1145/1047659.1040315.

[4] P Godefroid et al. Partial-order methods for the ver-
ification of concurrent systems: an approach to the
state-explosion problem. Vol. 1032. Springer Heidel-
berg, 1996.

[5] G Kant et al. “Ltsmin: High-performance language-
independent model checking”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 692–707.

[6] DH Maister. The psychology of waiting lines. Ed. by
Suprenant C. Czepiel J.A. Solomon M.R. Vol. 27.
The Service Encounter. Lexington Books, 1985.

[7] TM Mitchell. Machine Learning. McGraw-Hill inter-
national editions - computer science series. McGraw-
Hill Education, 1997. isbn: 9780070428072.

[8] S Nissen. FANN Cascade Training. Accessed 11-06-
2016. url: http://libfann.github.io/fann/docs/
files/fann_cascade-h.html.

[9] S Nissen. “Implementation of a fast artificial neural
network library (fann)”. In: (2003).

[10] R Pelánek. “BEEM: Benchmarks for explicit model
checkers”. In: Model Checking Software. Springer, 2007,
pp. 263–267.

[11] R Pelánek. “Properties of state spaces and their ap-
plications”. In: International Journal on Software Tools
for Technology Transfer 10.5 (2008), pp. 443–454.
issn: 14332779. doi: 10.1007/s10009-008-0070-5.
url: http://link.springer.com/article/10.

1007/s10009-008-0070-5.

[12] R Pelánek and P Šimecek. “Estimating state space
parameters”. In: Proceedings of the 7th international
Workshop on Parallel and Distributed Methods in
Verification. 2008. url: http://www.fi.muni.cz/
reports/files/2008/FIMU-RS-2008-01.pdf.

[13] R Pelánek et al.“Enhancing random walk state space
exploration”. In: Proceedings of the 10th international
workshop on Formal methods for industrial critical
systems - FMICS ’05 (2005), pp. 98–105. doi: 10.
1145/1081180.1081193. url: http://dl.acm.org/
citation.cfm?id=1081180.1081193.

[14] D Peled.“All from one, one for all: on model checking
using representatives”. In: Computer Aided Verifica-
tion - 5th International Conference. Vol. 697. 1993,
pp. 409–423. isbn: 978-3-540-56922-0. doi: 10.1007/
3-540-56922-7_34.

[15] LTSmin Team. LTSmin Documentation. Accessed
13-05-2016. url: http : / / fmt . cs . utwente . nl /

tools/ltsmin/doc/.

[16] NK Treadgold and TD Gedeon. “The Sarprop Al-
gorithm, A Simulated Annealing Enhancement To
Resilient Back Propagation”. In: Proceedings Inter-
national Panel Conference on Soft and Intelligent
Computing. 1996, pp. 293–298.

[17] A Valmari. “Stubborn sets for reduced state space
generation”. In: Advances in Petri Nets 1990. Springer,
1989, pp. 491–515.

9

