Concurrent Manipulation of Dynamic Data Structures in
OpenCL

Henk Mulder

University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

h.mulder-1@student.utwente.nl

ABSTRACT

With the emergence of general purpose GPU (GPGPU)
programming, concurrent data processing of large arrays
of data has gained a significant boost in performance.
However, due to the memory architecture between the host
and GPU device and other limitations in the instructions
available on GPUs, the implementation of dynamic data
structures, like linked list and trees, is not evident. In
GPU programming a high number of computing elements
(work items) all execute a single instruction on multiple
data (SIMD). With dynamically changing data structures,
and the absence of locks in GPU programming, one of the
biggest challenges is to ensure each work-item operates on
its own piece of data. In this paper we show that it is
possible to implement (shared) dynamic data structures
on GPUs. A kernel memory allocator is used to man-
age the memory on the GPU device. Lock-free algorithms
have been used to implement a linked list. A study to
the performance of this implementation showed that the
massive parallelism, as found on GPUs, does not improve
the performance for the basic functionality of the linked
list that was developed. However, dynamic data struc-
tures like linked lists, are often used to store intermediate
results. Being able to implement these data structures
on GPUs can aid developers in implementing other al-
gorithms, that could benefit from parallelisation but use
linked lists, on GPUs. By using a kernel memory allo-
cator, memory can be reused during the execution of the
program. Thereby offering the possibility to make more ef-
ficient use of the memory available on the device, limiting
the memory overhead.

Keywords
concurrent, dynamic data structures, GPGPU, OpenCL

1. INTRODUCTION

With the emergence of General Purpose Graphic Process-
ing Units (GPGPUs), a highly parallel processing resource
has become available for software developers. However,
making use of this computational power is not evident due
to the memory architecture between the host system and
the GPU, and other limitations of the platform.

Part of a solution to this problem is the OpenCL stan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

23”1 Twente Student Conference on IT June 22, 2015, Enschede, The
Netherlands.

Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

dard [3], which introduces an open, royalty-free, standard
for parallel programming on a wide variety of devices like
GPUs, CPUs and FPGAs. In OpenCL the host program
manages the execution of kernel programs on the comput-
ing devices. In the computing devices multiple work-items,
grouped in work-groups, execute the same kernel program.
All work-items can access the GPUs global memory. The
global memory is similar to what the main memory is for a
CPU: it is large, but slow compared to the cache. All work-
items in a work-group can also access the work-groups lo-
cal memory. This local memory is faster, like what the
level 2 cache is for a CPU, but only the work-items in the
work-group can access the data in that memory. Therefore
managing which work-items work on what data is very im-
portant. Each work-item also has its own piece of private
memory, similar to the level 1 cache on a CPU.

To make sure no two work-items try to alter the same
memory simultaneously, OpenCL manages reading and
writing to memory in load and store operations. These
load and store operations can be ordered with the mem_fence
method *. For completeness we mention the barrier-function
2. All work-items in a work-group executing a kernel pro-
gram must execute this function before they are allowed
to proceed. This allows for synchronisation within a work-
group.

Since the memory of the host system and the GPU are
separated, the data on which the GPU has to work needs
to be transferred to the GPU device. If the GPU needs to
work on predefined sized blocks of data this is not a prob-
lem, since the host can copy the data to the device, let the
GPU do its work and retrieve the same size block from
the same place. However, in many programs we would
like to make use of dynamic data structures, which are
often connected by pointing to the memory address of the
next data block. Creating and manipulating these struc-
tures requires a way to dynamically allocate and connect
these blocks. A possible solution to this problem has been
introduced by R. Spliet with the kernel memory allocator
(KMA) [5]. In this concept a heap is initialized in which
the kernel can allocate and free memory with the kernel
memory allocator.

Since the location of the nodes in a dynamic data struc-
ture are not predetermined, dynamic data structures must
be handled in global memory, in order for all work-items
to be able to access the data. Managing which work-item
can alter what data is very important. With the absence
of global locks in OpenCL this brings an extra challenge
in implementing dynamic data structures on GPUs. How-
ever OpenCL does support several atomic operations in-

"https://www.khronos.org/registry/cl/sdk/1.0
/docs/man/xhtml/mem fence.html | 2015-05-11
https://www.khronos.org/registry/cl/sdk/1.0
/docs/man/xhtml/barrier.html | 2015-05-11

cluding the atomic compare-and-swap (CAS) operation .
The CAS-operation compares the contents of a memory
location to a given value and, only if they are the same,
modifies the contents of that memory to a given new value.
Because the swap would fail if the contents of the memory
were changed in the meanwhile, this guarantees the oper-
ation is done on up-to-date information.

For the implementation of the semi-linked list, the atomic
compare-and-swap is used together with the mem_fence to
synchronize the changes to the list. In Section 6 we elabo-
rate on the implementation of the semi-linked list, and we
take a look at its performance.

2. PROBLEM STATEMENT

Dynamic data structures come in many forms, from linked
list to multi-dimensional graphs. To investigate the chal-
lenges in implementing dynamic data structures on GPUs,
we start by dividing this challenge in smaller problems.
We limit our study to implementing the data structures in
OpenCL [3]. We make a distinction between semi-linked
data structures, in which a node is only referenced once,
and double-linked data structures, in which a node can
be referenced in two places. As basis we looked at linked
lists. For the semi-linked list, we investigated the following
research questions:

e How can the basic add, get and delete operations on
linked lists be implemented in OpenCL?

e What is the performance of this implementation in
time and space?

e How does the performance of this implementation
compare to a similar implementation for CPUs?

3. BACKGROUND

3.1 OpenCL

The open computing language (OpenCL) [3], is an open,
royalty-free standard that provides a platform-independent
standard for parallel programming *. With a wide range
of compatible devices this enables developers to focus their
work on functionality without having to worry about how
to comply with different hardware. OpenCL is based on a
subset of the C99 programming language. The most no-
ticeable limitations are the absence of recursion and the
limitations in using pointers.

In OpenCL the host program controls the available com-
puting devices (for instance the CPU or GPU). These de-
vices consist of computing units, which can have multiple
computing items, depending on the architecture. OpenCL
abstracts and manages these resources as work groups and
work items. The work items in a work group execute ker-
nel code in parallel.

Since GPUs do not have direct access to the memory of
the host system, OpenCL also provides methods for trans-
ferring data between the host system and the computing
devices.

For more details about the programming model and mem-
ory architecture we refer to the introduction to the OpenCL
programming model [6] by Tompson et al.

https://www.khronos.org/registry/cl/sdk/1.2
/docs/man/xhtml/atomicFunctions.html | 2015-03-27

*https://www.khronos.org/opencl/ | 2015-03-27

3.2 Kernel memory allocator

The kernel memory allocator (KMA) [5] is a proof of con-
cept for a heap memory allocator that provides the basic
malloc and free operations for OpenCL kernels. The host
instantiates a heap, whose size is set by the user specify-
ing the number of, and the size of the superblocks, in the
heap. Because the compute device cannot asynchronously
communicate with the host it is not possible to increase
the heap size after initialisation.

KMA also provides means for managing an array list on
the GPU. Our research will involve extending functional-
ity to support dynamic data structures like linked lists and
trees.

For more details about the design and underlying design
choices in KMA we refer to the thesis [4] by Spliet.

4. RELATED WORK

Research in the performance of concurrent lock-free data
structures on GPUs has been done by P. Misra and M.
Chaudhuri[2]. They used NVIDIA’s platform CUDA, and
achieved a significant speedup in manipulating the data
structures compared to multi-threaded CPU implemen-
tations. In their research memory on the GPU is pre-
allocated by the host system and pointers to these blocks
are stored in an array. Also deleted nodes are not reused,
causing considerable memory overhead for frequently chang-
ing structures.

By using KMA, our implementation is able to reuse mem-
ory that was no longer needed. Also the size of the blocks
of memory to allocate does not have to be fixed, and the
size of the data structure is not limited by the size of an
array in which pointers are stored. By implementing our
data structures in OpenCL, we also bring it to a more
general platform.

5. APPROACH

To show how dynamic data structures can be implemented
in OpenCL, we developed a kernel for a semi-linked list.
To build the structure, we need to allocate memory in
order to store the connections between the items in the
list. Since OpenCL does not offer functionality to allocate
memory on the GPU, we choose to use the Kernel Memory
Allocator (KMA) [5]. KMA makes it possible for work-
items to allocate, and free memory from a predefined heap
of memory. To manage the blocks in the heap, KMA uses
a lock-free queue. The implementation of this queue was
inspiration for the implementation of the linked list.

We first focussed on the add and get operations of the list.
When inserting a node in the list, care must be taken no
two work-items try to insert a node at the same place, at
the same time. This would result in one node overriding
the reference to the other node, and then the other node
would drop out of the list. After having developed a way to
build a list we focussed on how to remove, or delete items
from this list. When a node is being removed it essentially
means tying the tail of list, after the to-be-deleted node,
to the point where the to-be-deleted node was attached to
the list. However, when two work-items simultaneous try
to delete two adjacent nodes, care must be taken that the
tail of the latter node is not attached to the node being
deleted in front of him. This would mean the entire tail
of the list would be lost.

To test if the kernels behave as expected, test-cases were
developed to simulate the situations described above. Ker-
nels were written to test for concurrent insertion of items
in a list, and concurrent deletion of (adjacent) items in a
list. After the insertion, or deletion, the number of items in

the list are counted to check if the actual number of items
in the list matches with the expected number of items.

The next step was to look at the performance of the im-
plementation, to see if the parallelisation can effectively
increase the performance. For this purpose a semi-linked
list was implemented in C, with the same functionality
as the OpenCL implementation. For a clear view of the
effect of the parallelisation, we choose to implement the
functionality in the same way as the OpenCL implemen-
tation works. This mean that to add a node in the C
implementation, also the entire list is being traversed to
add the node at the end of the list. Even though this is
not the most efficient way to implement this operation,
the similarities will give us better insight in what the ef-
fect of the parallelisation is on the execution time of the
operation. The performance of future improvements can
then be compared to these results.

We also looked at memory usage. In OpenCL, data needs
to be transferred from the host to the compute device,
and back. When memory is required to dynamically cre-
ate data structures in, this could result in a large mem-
ory overhead. In Section 6, we discuss the considerations
when implementing dynamic data structures in OpenCL
with the use of KMA.

6. RESULTS
6.1 Semi-linked data structures

6.1.1 Implementation

This section presents the design of the semi-linked list.
The list consists of the lists entry point, which has a
pointer to the first node in the list. The nodes in the
list contain a key and a pointer to the next node, with
NULL marking the end of the list.

Three operations are defined on the linked list: add, get
and delete. The add operation will add a node to the end
of the list. The get operation will retrieve the first occur-
rence of a node with the specified key value. The delete
operation will delete the specified node from the list.

In listing 1 is the code used to add a node to a list. When
a node is added to the list, a compare-and-swap(CAS)
is performed on the pointer to the next node, to replace
NULL (marker of the end of the list) with the address
of the to-be-inserted node (line 8). After the CAS is a
mem_fence (line 9). This mem fence ensures the store of
the new value is committed, before checking if the CAS
succeeded. If this CAS succeeds the node is added to
the list. If the CAS fails the next node is visited and
the process is repeated until it succeeds. Since the next-
pointer of the to-be-inserted node is set to NULL, this
node is marked as the last node in the list. Thereby the
list always has an end, and therefore the add operation will
terminate. In listing 2 is the code for a kernel program,
to concurrently insert keys in a list. On line 4, memory is
allocated for a list node. The key field is set to the correct
values, and the add method is used to insert the node in
the list. This method is also used to measure the kernel
execution time, for performance comparison.

Retrieving a node with the get method means traversing
the list until a node with the specified key is found, or the
end of the list is reached. If a node is found the address
of this node is returned, else the method returns NULL.

To delete a node, the reference to the to-be-deleted node
must be replaced with the reference to the list after the
node. However, when concurrently removing nodes, care

must be taken that the tail of the list is not attached to
a node that is also being deleted. Since the memory in
OpenCL is 4-byte aligned, the least significant bit in the
next-field of a node can be used to mark the node as being
in deletion. In listing 3 is the code to delete a node from
the list. On line 6 a check is done if the node is already
marked to be deleted by another thread. If not, on line
8 the node is being marked to be deleted. Next the list
is traversed while trying to swap a reference to the to-be-
deleted node with the pointer to the tail of the list. If the
swap succeeds, the memory for the node is freed, and 1 is
returned to indicate success. If the swap did not succeed,
we need to evaluate the next node in the list. On line 16 a
check is done if the next pointer is marked for deletion. If
that is the case, the node with the focus might currently
be deleted by another thread. Therefore, we need to start
over again from the start of the list, since we cannot be
sure this part of the list is still valid. If the next-field was
not marked for deletion, we can continue to the next node.

6.1.2 Testing

To test the implementation of the semi-linked list several
tests have been developed. A count method has been
implemented to traverse the list and count the number
of nodes in the list. This method is used to count the
elements in the list after concurrent insertion of multi-
ple nodes and concurrent removal of (adjacent) nodes. If
the actual number of nodes in the list matches with the
expected number of nodes (size of the old list plus the
number of items inserted, or minus the number of items
deleted), then the list is still connected, and no nodes
dropped out of the list.

6.1.3 Performance

To evaluate the performance, in execution time, a similar
implementation of a linked list was developed in C. This
implementation has the same computational complexity
for inserting nodes. In this implementation, the list needs
to be traversed till the end, to insert a node at the end
of the list. In measuring the execution time we looked at
two different devices:

e Intel(R) Core(TM) i3 CPU M 370. This is a
CPU with 4 cores, with a clock frequency of 2.40GHz.
It has access to a global memory of 4.0 Gb and allows
for a maximum workgroup size of 1024 work-items.
This CPU is the host system for the OpenCL plat-
form. The CPU is used with the OpenCL platform,
and is also the CPU used for comparison with the
CPU implementation in C.

e NVDIA GeForce 310M. This is a 2 core GPU
with a clock frequency of 1468 MHz. The GPU has
access to a global memory of 512 Mb, and allows for
a maximum workgroup size of 512 work-items.

OpenCL provides means to accurately measure kernel ex-
ecution time by so-called event profiling. Since the sys-
tem time of the PC is not updated frequently enough to
allow for accurate measurement of building small linked
lists with the CPU implementation, we measured the time
it took to build multiple of these small lists. The number
of lists to build was determined by the size of the list to
build. For small lists this number was higher, to gain an
execution time that is long enough to provide for accuracy.
For building the lists in OpenCL, KMA needs memory to
allocate the structures in. In our measurements we used a
heap with 64 super blocks, each with a default size of 4096
bytes. This way, the memory to be transferred only differs

1

o Ot

Listing 1. Semi-linked list, add node.
int clSemiLinkedList_add(clSemiLinkedList __global *list , clSemiLinkedListNode __global
xnode) {
volatile uintptr_t __global xcursor = (volatile uintptr_t __global x) &(list—>
head) ;
volatile clSemilLinkedListNode __global xcNow;
uintptr_t cNode;
unsigned int ret=0;
node—>next = 0;
while (1) {
cNode = atom_cmpxchg(cursor, NULL, (uintptr_t) node);
mem_fence (CLK. GLOBAL MEM FENCE) ;
if (cNode==NULL) {
return 1;
} else {
cNow = (clSemiLinkedListNode __global %) cNode;
cursor = (volatile uintptr_t __global x)&(cNow—>next);
}
}

return ret;

Listing 2. Semi-linked list, concurrently add keys.
__kernel
void clSemiLinkedList_addKey (struct clheap __global xheap, clSemiLinkedList __global =x
list , int __global xkeys) {
int global_x =get_global_id (0);
clSemiLinkedListNode __global %node = (clSemiLinkedListNode __global #)malloc(
heap, sizeof(clSemiLinkedListNode));
node—>key = keys|[global_x];
clSemiLinkedList_add (list , node);

23

24
25
26
27
28
29
30
31

Listing 3. Semi-linked list, delete a node.

int clSemiLinkedList_delete(struct clheap __global xheap,
list , clSemiLinkedListNode __global *node) {

clSemilLinkedList __global =

volatile uintptr_t __global xcursor = (volatile uintptr_t __global x) &(list—

head) ;

volatile clSemiLinkedListNode __global #cNow = (volatile clSemiLinkedListNode

__global x)(list —head);
uintptr_t cNode;
uintptr_t tail = node—>next;
unsigned int ret=0;
if ((tail &1) = 0) {
/* mark node as in deletion x/
node—>next = (node—>next)+1;

while (cNow != (clSemiLinkedListNode __global x)0) {
cNode = atom_cmpxchg(cursor, (uintptr_t)node, (tail));

mem_fence (CLK. GLOBAL MEM FENCE) ;
if (cNode = (uintptr_t)node) {

free (heap, (uintptr_t)node);

return 1;

} else {
if ((cNode & 1) ==0) {

/* Pointer is clean; Proceed to next x/
cNow = (clSemiLinkedListNode __global) cNode;

cursor = (volatile
next) ;

} else {

uintptr_t __global x)&(cNow—>

/* Pointer is dirty; Start from beginning of

list. x/
cursor = (volatile
—>head) ;

}

/* failed. Restore next field for node %/
node—>next = tail;

}

return ret;

uintptr_t __global *) &(list

in the size of the array with the keys to insert. In table
1 are the results for building list with the given number
of nodes. Building the list was done five times. The aver-
ages of those times are in the results. For lists above 2300
nodes the memory on the GPU was not sufficient enough
to cope with the transfer of the heap and the array with
keys to insert, in combination with other processes using
the GPU. Therefore, building larger lists failed.

We can see that the CPU implementation is, by far, the
fastest. This could be explained by the amount of mem-
ory that needs to be transferred between the host and the
computing device in the OpenCL implementations. This
memory transfer is not needed in the CPU implementa-
tion.

Because the list needs to be traversed to insert a node
in the list, we expect a quadratic time complexity for se-
quential insertion of nodes. As we can see in table 1 this
is the case. For parallel insertion we would like to see a
better performance. However, we can see that, for paral-
lel insertion, even for larger lists, the time it takes is still
quadratic to the number of nodes in the list. This can
be explained by the amount of conditional statements in
the OpenCL code. Parallel hardware can benefit the most
when each work-item can execute the same instruction.
If work-items diverge because they branch differently on
a conditional statement, hardware might require that one
branch is evaluated before the other. Thereby reducing
the effect of parallelisation on the performance.

OpenCL manages the transfer of data between the mem-
ory of the host system and the GPU. The Kernel Memory
Allocator, in its turn, manages the memory on the GPU
for the kernels using KMA. However therefore, if a ker-
nel wants to use KMA, all the data in the memory that
KMA uses needs to be transferred between the host and
the GPU. Since there is no way to asynchronously com-
municate, from the kernel to the host, it is not possible
for KMA to increase the available memory during kernel
execution. Therefore the initial heap size must be large
enough to meet the memory demands for all work-items.
This brings a considerable memory overhead. However,
because the memory can be used by al work-items, there
is no need for each work-item to reserve the maximum
possible amount of memory required. When, for instance,
a data set needs to be partitioned into multiple lists, each
item will only be in one list at a time. Therefore the
amount of memory required is the memory to store all
items, and the memory to connect them as a semi linked
list. The extra memory required by KMA to do its book-
keeping does need to be taken into account. By default
KMA uses superblocks of 4096 bytes. The first superblock
is used for bookkeeping. Also each superblock contains a
header and a footer with information about the blocks
within that superblock.

Using KMA to implement dynamic data structures on
GPUs can thus come with a considerable performance
penalty in execution time. However it is unlikely that
parallelisation will be the choice for optimizing the pure
functionality of linked lists. nevertheless linked lists are
a common choice for storing intermediate results, or im-
plementing scheduling policies. In algorithms that could
benefit from parallelisation, but also need the flexibility of
these dynamic data structures, the parallelisation on the
entire algorithm could outweigh the loss of speed of using
linked list on GPUs. Furthermore, being able to use extra
memory when required, and also being able to give this
memory back for other work-items to use, can be bene-

ficial for cases where the amount of memory needed per
work-item differs a lot.

There is also room for improving the implementation of
the linked list. Among the basis of GPGPU programming
in OpenCL, The OpenCL Programming Book [7] also con-
tains various subjects for optimizing OpenCL code. Since
this study was primarily to explore the caveats in imple-
menting dynamic data structures on GPUs, and to look at
the performance issues involved, there has not been a lot
of effort in optimization. The implementation is available
at http://fmt.ewi.utwente.nl/education/bachelor/208/.

6.2 Double-linked data structures

In our study we also looked at double-linked structures. In
such structures a node can be referenced from two places.
For example, consider a linked list in which each node
points to the next node, and points to its predecessor.
This means we can traverse the list forward and back-
ward. However, this also means, when inserting or delet-
ing a node, two pointers must be updated. It is not possi-
ble to update two pointers simultaneous, with one atomic
CAS. Therefore the synchronisation method as used for
the semi-linked list is not applicable. However, there are
other techniques to implement lock-free data structures,
as described by Sederman et all [1]. In this study, we did
not get around on implementing any of these techniques.
Tt should however, be clear that, by using KMA, it is also
possible to develop implementations for double-linked data
structures, using (known) lock-free algorithms.

7. CONCLUSION

With this study we showed that it is possible to implement
dynamic data structures on GPUs using a dynamic kernel
memory allocator. The implementation as developed for
this study shows that the massive parallelisation on GPUs
does not effectively improve the performance of a linked
list. A straightforward CPU implementation is faster and
brings less memory overhead. However the fact that it is
possible to implement dynamic data structures on GPUs,
means they can be used for processes where the paralelli-
sation could offer performance benefits. In case of linked
lists, this means they could, for instance, be used to store
intermediate results, either per work-item, per workgroup
or globally shared between all work-items. The effect of
the parallelisation on the performance of (lock-free) im-
plementations of other dynamic data structures is left for
future research.

8. FUTURE WORK

To improve the current implementation of the semi-linked
list in OpenCL, it could be investigated how to reduce the
number of conditional statements in the code. Reducing
the number of conditional statements should result in less
branch diverging, thereby better adhering to the single in-
struction, multiple data (SIMD) model. It could also be
investigated if the computational complexity can be re-
duced for the add method. By introducing a pointer to
the end of the list, the list would not have to be traversed
to add a node to the list. However, policies need to be
developed for cases in which the last node in a list is re-
moved. The pointer to the end of the list then points to a
non-existing node. The list needs to be traversed to find
the new last node of the list, but in the meanwhile the
end-of-list pointer cannot be used.

In this study we only looked at linked lists. Future re-

Table 1. Inserting nodes in empty list. CPU: Intel(R) Core(TM) i3 CPU M 370. GPU: GeForce 310M.

Nodes | OpenCL CPU (usec) | OpenCL GPU (usec) | CPU C implementation (usec)
128 2144 14198 99
256 9547 40396 375
384 21792 105686 800
512 37940 167632 1325
640 56706 244790 2033
768 80483 362636 2840
896 103054 424999 4000

1024 120602 550810 5250
1152 146733 633239 6466
1280 175352 860757 7333
1408 208957 1042040 9000
1536 242173 1010622 10600
1664 285065 1439403 12100
1792 333750 1642655 14300
1920 369299 1449156 16301
2048 432494 1687129 17301
2176 484262 1883452 18801
2304 545609 2059861 21001
2432 612020 0 23601
2560 669474 0 26601
2688 744410 0 29001
2816 818043 0 31201
2944 901208 0 33002
3072 972537 0 34001
3200 1054012 0 36602
3328 1139842 0 40002
3456 1238072 0 39602
3584 1324289 0 42002
3712 1419699 0 44802
3840 1529863 0 49202
3968 1643151 0 52203
4096 1799220 0 54203

search could focus on more complex structures like trees
or graphs. For these, more complex, structures the paral-
lelism found on GPUs could possibly improve the perfor-
mance of manipulating these structures.

9. REFERENCES

[1] D. Cederman, A. Gidenstam, P. Ha, H. Sundell,
M. Papatriantafilou, and P. Tsigas. Lock-free
concurrent data structures. arXiv preprint
arXiv:1302.2757, 2013.

[2] P. Misra and M. Chaudhuri. Performance evaluation

of concurrent lock-free data structures on GPUs.
2012.

[3] A. Munshi et al. The OpenCL specification. Khronos
OpenCL Working Group, 1, 2009.

[4] R. Spliet. A comprehensive study of dynamic memory
management in OpenCL kernels. PhD thesis,
Master’s thesis, Delft University of Technology, 2013.

[5] R. Spliet, L. Howes, B. Gaster, and A. Varbanescu.
Kma: A dynamic memory manager for OpenCL.
2014.

[6] J. Tompson and K. Schlachter. An introduction to
the opencl programming model. Digital version, 2012.

[7] R. Tsuchiyama, T. Nakamura, T. lizuka, A. Asahara,

and S. Miki. The OpenCL programming book. 2011.

