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ABSTRACT
This paper explores probabilistic timed automata (PTA)
as an approach to fault tree analysis (FTA) by modelling
two synthetic dynamic fault trees (DFTs) using both PTA
and continuous timed Markov Chains (CTMC). Using UP-
PAAL, a simulation software, these models have been cre-
ated and analysed with statistical model checking, in or-
der to compare their availability, reliability and the time
needed for verifying these systems. The availability is the
percentage of time the system is operational within a given
time period. The reliability is the probability that the sys-
tem does not fail within a given time period. The results
show that the PTA models yield the same availability as
the CTMC models. However, the PTA models yield a
lower reliability than CTMC. Furthermore, the PTA mod-
els require more time for the verification of the DFTs in
this paper.

Keywords
System verification, fault tree (analysis), model checking,
RAMS, PTA, CTMC

1. INTRODUCTION
To ensure the correct and safe working of safety-critical
systems, they should satisfy the RAMS (Reliability, Avail-
ability, Maintainability, Security) requirement, which is
often imposed by law. Safety-critical systems often con-
cern important systems such as, air traffic control, nuclear
power control and railroad infrastructure and are there-
fore important to society. Fault tree analysis (FTA) is a
means to analyse the behaviour of systems and is a widely
applied standard for RAMS analysis. There are many ap-
proaches to FTA, such as Binary Decision Diagram [4, 9]
and Monte Carlo simulation [12]. The use of continuous
timed Markov chains is a popular approach to FTA and
uses exponential distributions to describe the system’s be-
haviour. Another approach to FTA is the use of proba-
bilistic timed automata (PTA), which can use a multitude
of probability distributions including, binominal, uniform
and exponential distributions and can therefore be used to
model a multitude of systems, including communication
protocols, aviation security systems, streaming download
protocols and service level agreements [7]. This paper only
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analyses PTA using uniform distributions in comparison
to CTMC by modelling two synthetic systems described
by fault trees using both formalisms. Two Key Perfor-
mance Indicators (KPI’s) are analysed with these models.
The first KPI is the availability, the second KPI is the re-
liability. According to definition 2, the availability is the
percentage of time the system is in an operational state
given a time interval. Definition 1 states that the reliabil-
ity is the probability that the system does not fail within
a given time period and is equal to 1−F (t), where F (t) is
the cumulative probability distribution of the probability
that the system fails within the given time period. Fur-
thermore, the time used for the verification of the DFTs
by the PTA and CTMC models are compared using UP-
PAAL. The goal of this paper is to investigate the usability
of PTA in comparison to CTMC as an approach to FTA.
To provide this comparison, the following questions will
be investigated:

1. How does the simulated availability of the DFTs in
figures 1 and 2 differ for the PTA and CTMC mod-
els?

2. How does the simulated reliability of the DFTs in
figures 1 and 2 differ for the PTA and CTMC mod-
els?

3. How long does each formalism take to perform its
verification of a system using UPPAAL?

Definition 1. The reliability at time t, R(t), for a given
time period T in IR > 0 can be retrieved from the probabil-
ity of failure at time t, F (t), of the system by the following
equation:

Pr(t ≤ T ) = F (t) = 1 −R(t)

Definition 2. The availability at time t in IR > 0, A(t),
is the total time the system has been operational within a
given time period and is described by the following equa-
tion:

A(t) =
Time operational

Total time

In order to answer these questions, models will be created
using UPPAAL for the dynamic fault trees (DFTs) [2] in
figures 1 and 2 using both formalisms. The first DFT
in Fig. 1 shows a system containing of two basic events
(BEs), A and B, and an AND-gate. A BE is a representa-
tion of a physical component with a certain failure prob-
ability [2]. In this paper, the BEs that are considered can

1



also be repaired according to a certain repair probability.
The first system fails if both BEs fail, but is operational
as long as one BE is operational. The second DFT in
Fig. 2 is more complex. It consists of three BEs, P, Q
and S, two spare-gates, A and B, and an AND-gate. For
spare-gate A, its primary component is P and for spare-
gate B, its primary component is Q. Both A and B share a
spare component S. The spare-gates fail when both their
primary component has failed and its spare components
have failed or are in use by other spare-gates. If both
spare-gates fail, the system as a whole has failed. Using
UPPAAL, the availability and reliability can be simulated
over time. Furthermore, UPPAAL also provides the time
it took to perform these simulations, which is used to an-
swer question 3.
This paper is structured as follows. Section 2 provides
more detail on the simulation tools that were used. Sec-
tion 3 gives an introduction to DFTs and presents the
UPPAAL models created to represent the DFTs figures
1 and 2 using PTA and CTMC. Section 4 presents the
results of the availability, reliability and used verification
time for each PTA and CTMC model. Section 5 presents
an analysis of these results. Lastly, section 6 provides a
conclusion of the research by answering the research ques-
tions and discusses future research.
There are several papers related to this research. A paper
by Wu, Lemmon & Lin, 2017, explores PTA as an alterna-
tive modelling formalism to Monte Carlo simulation and
multi-state Markov chains [11]. For the research, a PTA
model was created for a network communication protocol.
This model was then analysed using probabilistic model
checking. With the main focus on the stability condition
of the protocol. Similar to this paper, it explores PTA as
an alternative to other modelling formalisms. However, it
does not provide a comparison between different modelling
formalisms, but focuses only on a PTA model. A paper
by Norman, Parker & Zou, 2017, proposes an extension of
PTA, namely, partially observable probabilistic systems
(POPTAs) [8]. These allow local states to be partially
visible to an observer or controller. Furthermore, auto-
mated techniques are presented for the verification of par-
tially observable probabilistic systems. Partially observ-
able Markov decision processes are (POMDPs) are used
as well. In this paper POMDPs are used for discrete-time
model and use POPTAs for dense time models. Exper-
imental results are provided of POPTAs and POMDPs,
which are analysed to compare aspects such as, the states
generated and time used for each experiment. In the paper
by Sproston, 2017, clock-dependent probabilistic timed
automata (cdPTA) are introduced [10]. This variant on
PTA uses clock bounds to determine when a transition
can be made. The paper shows that the reachability prob-
lem [1, 3, 6] is undecidable for cdPTA with at least three
clocks. The paper by Jurdziński, Laroussinie & Spros-
ton, 2007, [5] already showed that this was undecidable for
PTA using one or two clocks. The papers by Norma et al.,
Sproston and Jurdziński et al. are relevant to this research
as these papers involve the analysis of PTA with clocks,
which is also done in this paper. However, no comparisons
of CTMC and PTA regarding availability, reliability and
verification time have been found.

2. SIMULATION SOFTWARE
In order to simulate the availability and the reliability of
the DFTs, UPPAAL SMC version 4.1.19 was used. UP-
PAAL was chosen because of its ability to analyse the
behaviour of both CTMC and PTA models. Furthermore,
it provides an easy-to-use GUI for creating these models.

A B

Figure 1. DFT with an AND gate and two BE-
components; A and B.

A B

P QS

Figure 2. DFT with an AND gate, spare-gates; A
and B, and three BE-components; P, Q and S.

The hardware used for performing the simulations using
UPPAAL was a 6-core, 3.50-3.70GHz IntelR© CoreTM i7-
5930K, with 12GiB 2400MHz of available DDR4 RAM.
The importance of using the same program to simulate
the CTMC and PTA models comes from the intention
to compare the simulations of their availability, reliabil-
ity and verification time. Due to the empiric nature of
research question 3, it is important to use the same hard-
ware as well. By using the same environment for each
simulation, influences due to unwanted factors are lim-
ited. This means that each simulation is more consistent
and allows for a more accurate analysis of the results.

3. DFT MODELS
Fault trees (FT) are a means to model failures of a sys-
tem’s components using static logic gates and basic events
(BEs). This allows for analysis of the behaviour and in-
teractions between components of a system using Boolean
logic. DFTs extend fault trees by introducing dynamic
logic gates, such as the spare, PAND and FDEP gates
[2]. These additional gates allow DFTs to be used for the
analysis of complexer systems than is possible with regular
fault trees. At the leaves of fault trees, BEs are located.
To give an example of a BE, consider a light bulb. The
light bulb can fail due to its filament burning through.
it can also be repaired by replacing it with a new light
bulb. Regarding the dynamic gates introduced by DFTs:
This paper only explores an DFT which uses spare-gates,
whose behaviour is described in section 3.5. The DFTs
in this paper are not based on real systems and are not
built to be realistic, but rather to explore the results of
the PTA and CTMC models in comparison to each other.
The parameters of these DFTs are arbitrarily chosen.
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3.1 Modelling the BE-component
Using UPPAAL, the DFTs were translated into PTA and
CTMC models. The model in Fig. 3 represents a BE
component for the CTMC model. Fig. 4 shows the model
for the BE component for the PTA model. The BEs that
are considered in this paper can either fail or be repaired.
Therefore, they can be described using two states:

OP This component is operational.

FAIL This component is nonoperational.

The CTMC model of the BE has two parameters:

λCTMC The exponential failure rate of the BE.

µCTMC The exponential repair rate of the BE.

The exponential failure rate, λCTMC , determines the time
the system can spend in the OP state before the transition
from OP to FAIL will be made. Similarly, the exponential
repair rate determines the time the system can spend in
FAIL before it must take the transition from FAIL to OP.
For the PTA model of the BE, the same states are used as
for the CTMC model. However, the PTA model has four
parameters:

λPTA The mean time to failure (MTTF) of the BE.

µPTA The mean time till repair (MTTR) of the BE.

δf The variation in time around the MTTF. Used
to determine the lower and upper clock bounds
for the PTA.

δr The variation in time around the MTTR.
Used to determine the lower and upper clock
bounds for the PTA.

One parameter that is used by both the CTMC and PTA
models is id. This parameter is a unique number assigned
to each instance of the PTA or CTMC models and can
be used to establish channels between models. The chan-
nels F and R are the last parameters found in both the
PTA and CTMC models. However, these will be discussed
in section 3.2. The last variable, c, is not a parameter,
but represents the clock attached to each instance of the
PTA model. This clock starts running when the simula-
tion of the model starts. The PTA model uses the clock
in conjunction with guards and invariants. Guards deter-
mine the prerequisite for taking a transition. In Fig. 4
the guards are located above the transitions. The guard
above the transition from OP to FAIL determines that the
transition can only be taken when the clock, c, is greater
or equal to λPTA − δf . Invariants, on the other hand, de-
termine how long the system is allowed to reside in a state
before it must take a transition. The invariants can be
seen in Fig. 4, next to the states. The invariant next to
OP determines that the system can reside in OP as long
as clock c is smaller or equal to λPTA +δf . The statement
c = 0 means that clock c is reset to zero when the tran-
sition is taken. The probability that a transition is taken
within the bounds imposed by the invariants and guards is
determined by a uniform distribution with these bounds.
Therefore, the clock can be used together with the guards
and invariants, to determine the repair and failure rates
according to an uniform distribution with a lower and up-
per bound. In the PTA model of the BE, the failure rate
is determined by a uniform distribution with lower bound

F[id]!

R[id]!
CTMC

μ
CTMC

Figure 3. UPPAAL CTMC model template of the
BE component

c<= PTA+ f c<= PTA+ r

c=0

F[id]!
c>= PTA- f

c=0

R[id]!
c>= PTA- r

Figure 4. UPPAAL PTA model template of the
BE component

λPTA − δf and upper bound λPTA + δf . This means that
on average, the transition from OP to FAIL will be taken
when c equals λPTA. Using the same technique, the repair
rate is set to be on average µPTA.

3.2 Modelling the AND-gate
The next DFT component that was modelled is the AND-
gate. The AND-gate fails when all components attached
to it have failed. For the DFTs that are considered in
this paper, the AND-gate has two components attached
to it. To describe the AND-gate, the model in Fig. 5 was
created. In addition to the states OP and FAIL, it also
has the following states:

FAIL A The component defined by id, A, has failed.

FAIL B The component defined by id, B, has failed.

Furthermore the model of the AND-gate also uses the fol-
lowing parameters:

F The channels, each defined by an id, which
are used to communicate the failure of the
component A, to another model template.

R The channels, each defined by an id, which
are used to communicate the repair of the
component B, to another model template.

Figure 5. UPPAAL model template of the AND-
gate component
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Figure 6. UPPAAL model template of the spare-
gate component

As mentioned in the previous section, each instance of a
model is provided with a unique integer to identify it. This
is mainly used to create channels between different models.
Channels are communication lines between models which
can be used to send signals from one model to another.
A signal is sent when a transition is taken and the syn-
chronization statement is followed by a exclamation mark.
The question mark denotes that the transition can only be
taken when a signal is sent over that channel. This allows
models to take a transition when a transition by another
model is taken. For example, assume the model of the
AND-gate is initialized with the id’s of BEs A and B. Then
when BE A fails, it sends a signal over channel F [A]. This
signal will be received by the AND-gate as it is initially
in the OP state. As a result of the signal over channel
F [A], the AND-gate moves from OP to FAIL A. In order
to analyse the models, UPPAAL required all channels to
be broadcast. Therefore, all channels used in this paper
are broadcast channels. This means that when a signal is
sent over such a channel, every model that is listening for
it will take the transition. That is, if the invariants and
guards are satisfied.

3.3 Modelling the spare-gate
The last component which is modelled in UPPAAL is the
spare-gate. The spare-gate has a primary component and
spare components attached to it. The spare-gate is op-
erational as long as the primary component or a spare
component is operational and available. If the primary
component fails, the spare-gate will switch to its spare-
component, if there is one available. If the spare compo-
nent is shared, it might be operational but unavailable as
it is in use by another spare-gate. When both the primary
and secondary components have failed, then the spare-gate
has failed as well. The model of the spare-gate in Fig. 6
only considers one primary component for each spare-gate
and one spare component which is shared with a second
spare-gate. In this case, the spare component is a hot-
spare. Meaning that it is subject to failure and repair,
regardless of whether it is being used by a spare-gate. As
opposed to a cold-spare, which can only fail when it is be-
ing used. As a result, the spare-component fails with the
same probability as the primary component. The model
of the spare-gate has the following states in addition to
the OP and FAIL state:

SPARE This spare-gate has taken control of the
spare component and its primary compo-
nent has failed.

S FAIL The spare component has failed or is in
use by the other spare-gate.

P FAIL The primary component has failed, but
the spare component is available.

P REPAIR The primary component has been re-
paired after both the primary and spare
component had failed.

S REPAIR The spare component has been repaired
after both the primary and spare compo-
nent had failed.

S RELEASE The primary component has been re-
paired, but the spare-gate still has control
of the spare component.

SEND F Both the primary and spare component
have failed, but the spare-gate has not
sent the signal that it is non-operational.

SEND R The spare-gate has taken control of the
spare component, but has not sent the sig-
nal that it is operational.

Furthermore, the following parameters are introduced:

P The id of the primary component of this
spare-gate

S The id of the spare component of this
spare-gate

TAKE The channel that is used to communi-
cate which spare-gate takes control of the
spare component.

REL The channel which is used to communi-
cate which spare-gate releases control of
the spare component.

The channels F [P ] and F [S] are used to communicate the
failure of the primary and spare component respectively.
Channels R[P ] and R[S] serve the same purpose, but com-
municate the repair of the primary and spare component.
The failure and repair of the spare-gate are communicated
through channels F [id] and R[id], where id is the unique
identifier for the spare-gate. The model also introduces
a new type of state, denoted with a c. These states are
referred to as committed states. When the spare-gate is
in such a state no time passes, and a transition must be
taken before all other possible transitions in the system.
In the model of the spare-gate, these states are used to
immediately send signals in response to received signals.
For example, when the spare-gate is in the FAIL state
and its primary component is repaired, it receives a sig-
nal over channel R[P ] and moves to P REPAIR accord-
ingly. P REPAIR is chosen to be a committed state, such
that the transition to S FAIL is immediately made. This
means that the repair of the spare-gate over channel R[id]
is immediately communicated to other components. Com-
mitted states allow other components that depend on the
spare-gate to be immediately notified when the spare-gate
is repaired or has failed. Lastly, the model of the spare-
gate has two new channels; TAKE and REL. TAKE allows
two spare-gates to communicate which spare-gate is using
the spare component. REL is used to communicate the
release of the spare component by a spare-gate.
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3.4 Basic DFT: AND-gate with repairs
The first DFT can be found in Fig. 1. It consists of two
BEs and an AND-gate. BEs A and B can fail indepen-
dently, but because of the AND-gate, the complete system
fails when both A and B fail.

Two instances of the BE model in Fig. 3 or Fig. 4 will
be made, depending on whether a CTMC or PTA model
is created. Both instances have an own unique id which
will be called A and B for convenience. To complete the
system, one instance of the AND-gate model in Fig. 5 is
created with the id’s of the BE models as its arguments.
When, BE A fails, it takes a transition from OP to FAIL
and will send a signal over channel F [A]. In response, the
AND-gate model makes a transition from OP to FAIL A.
If BE B fails afterwards, a signal is sent over channel F [B]
and both BEs will be in the FAIL state. This causes the
AND-gate to move from the FAIL A state to the FAIL
state, meaning that the whole system has failed. If BE
A is repaired, the BE moves from the FAIL state to the
OP state and sends a signal over the repair channel, R[A].
This will have as result that the AND-gate moves from
the FAIL state to FAIL B. The failure and repair rate de-
termine the time the system remains within a state before
jumping from that state to another. For the CTMC mod-
els this is determined by the exponential distributions with
rates λCTMC and µCTMC for the failure and repair rate
respectively. In case of the PTA models, the failure and
repair rate are each determined by a uniform distribution
with lower bounds λPTA − δf and µPTA − δr and upper
bounds λPTA + δf and µPTA + δr respectively.

3.5 DFT with spare-gates
The second DFT that has been analysed can be found
in Fig. 2. It consists of an AND-gate, with two spare-
gates, A and B, attached to it. Spare-gate A uses BE P
as its primary component. Spare-gate B has BE Q as its
primary component. Both spare-gates share BE S as their
spare component. This system fails when both spare-gates
fail due to the behaviour of the AND-gate. A spare-gate
fails when both its primary and spare component fails. A
detected failure of the spare component by a spare-gate
can have one of two causes. Either the spare component
has become non-operational, or it is operational, but in
use by the other spare-gate.

Depending on the CTMC and PTA model, three instances
of the model in Fig. 3 or 4 are created to represent BEs
P, Q and S. Furthermore, two instances of the model in
Fig. 6 are created to represent spare-gates A and B. To
complete the system, one instance of the model in Fig. 5 is
created to represent the AND-gate. To better explain the
working of these models, consider the following scenario:
When the spare BE, S, fails, a signal is sent over channel
F [S]. In response, both spare-gates will move from OP to
S FAIL. If then BE Q fails, a signal is sent over channel
F [Q] and spare-gate B moves from S FAIL to SEND F as
its primary component has failed. SEND F is a commit-
ted state, meaning that in this state no time passes, and
that it must take a transition to another state before every
other possible transition. This means that upon arriving
in SEND F, immediately the transition is taken to FAIL
and a signal is sent to the AND-gate over channel F [B].
In response the AND-gate moves from OP to FAIL B as
spare-gate B has failed. If then the spare component is
repaired, a signal is sent over channel R[S]. As a result,
spare-gate A will move from S FAIL to OP and spare-gate
B will move from FAIL to S REPAIR, another committed
state. The next transition made by spare-gate B will be

Algorithm 1 for measuring the availability

1: clock c
2: double Tf = 0.0
3: double To = 0.0
4: double a = 1.0
5:
6: procedure addFailureTime
7: Tf = Tf + c
8: c = 0
9: calculateAvailability

10: end procedure
11:
12: procedure addOperationalTime
13: To = To + c
14: c = 0
15: calculateAvailability
16: end procedure
17:
18: procedure calculateAvailability
19: if Tf + To > 0 then
20: a = To/(To + Tf )
21: end if
22: end procedure

from S REPAIR to SEND R and a signal is sent over chan-
nel TAKE. This will cause spare-gate A to move from OP
back to S FAIL. SEND R is also a committed state and
therefore the next transition is again made by spare-gate
B. The spare-gate moves from SEND R to SPARE, which
denotes that it is using the spare component. The sig-
nal that is send over R[B] by taking this transition will
cause the AND-gate to return from FAIL B to OP. If BE
Q is repaired, a signal is sent over R[Q] and spare-gate
B will move from SPARE to S RELEASE. Meaning that
the spare-gate will switch from using the spare component
to its primary component. The next transition is imme-
diately taken from S RELEASE to OP, causing a signal
to be sent over channel REL. In response, spare-gate A
moves from S FAIL to OP and both spare-gates are fully
operational again.

3.6 Script
In order to create a graph of the availability of each sys-
tem, a script was created. The pseudocode of this script
can be found in algorithm 1, and is used in conjunction
with the AND-gate model. The script consists of three
functions and contains 4 variables. The first variable, c, is
the clock unique to the instance of the AND-gate model.
This is used to measure the time the model spends in each
state during a simulation. The variables Tf and To con-
tain the sums of time that the model has spent in a failure
state or an operational state. The final variable a is used
to store the availability of the model. Whenever a transi-
tion is made from a failure state to an operational state,
the procedure addFailureT ime is executed. The other
procedure, addOperationalT ime, is executed whenever a
transition is taken from an operational state to another op-
erational state and whenever a transition is taken from an
operational state to a failure state. The execution of the
procedures, whenever a transition is made, is necessary to
make sure the availability, a, gets updated regularly dur-
ing the simulation. This yields less erratic transient plots
of the availability when running simulations and increases
the accuracy of the simulated availability. To prevent a
division by zero in line 20 of the algorithm, a check is
made to ensure the denominator, To + Tf , is greater than
zero. For this scenario to take place, the clock, c, has to
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be zero when the first transition is made. This will cause
both To and Tf to be zero when calculateAvailability is
called. The possibility of this scenario is very slim, as the
chance that a transition will be made from one state to
another, immediately when the simulation starts, is very
small. By plotting the availability, a, during a simulation,
figures, such as Fig. 7, can be created and analysed.

4. RESULTS
This section presents the results of the simulations of the
availability and reliability and the verification time of two
systems described by the DFTs from figures 1 and 2. From
the models from section 3, the PTA and CTMC models
were created for these DFTs. To simulate these systems,
values had to be chosen for the failure rates and repair
rates of their BEs. In order to determine these rates, val-
ues for the MTTF and MTTR were chosen. The MTTF
is the average time a system or component takes to move
from its operational state, to its failure state. For the BE
models in figures 3 and 4 of this paper, this means the av-
erage time the BE spends in the OP state before moving
from OP to FAIL. The MTTR is the average time it takes
to repair a component or system. For the BE models this
is the average time a BE spends in the FAIL state before
moving to the OP state. Using definitions 3 and 4, the
MTTF and MTTR can be used to calculate the exponen-
tial repair and failure rate needed for the CTMC models.
Furthermore, these values are used to determine the clock
bounds for the PTA models.

4.1 Parameters
For all simulations, the BEs were given a MTTF and
MTTR of 14 days and 2 days respectively. Using defi-
nitions 3 and 4 it can be determined that the BEs of the
CTMC models have an exponential failure rate, λCTMC ,
of 1/14 and an exponential repair rate, µCTMC , of 1/2.
For the BEs of the PTA models, λPTA and µPTA are 14
and 2 days respectively and δf and δr are 7 days and 1
day respectively. The simulations of the reliability and
availability were done using a probability uncertainty of
0.0001.

Definition 3. The relation between the exponential fail-
ure rate, λ, and the MTTF , the mean time with which
the system or component moves from its operational state
to its failure state, can be described by the following equa-
tion:

1/MTTF = λ

Definition 4. The relation between the exponential re-
pair rate, µ, and the MTTR, the mean time it takes to
repair a component or system, can be described by the
following equation:

1/MTTR = µ

4.2 Availability
The script from section 3.6 was used to create the sim-
ulations of the availability. During the simulation of the
system, the availability is updated whenever a transition is
made by the AND-gate. Figures 7 and 9 show the moving
average of the availability of both the PTA and CTMC
models of the basic DFT in Fig. 1. For the DFT with
spare-gates in Fig. 2, the moving average of the availabil-
ity for the PTA and CTMC models is shown in figures

0.9816

0.9818

0.9820

0.9822

0.9824

0.9826

0.9828

0.9830

0.9832

0.9834

0.9836

0.9838

0.9840

0.9842

0.9844

0.9846

0.9848

0.9850

0.9852

0.9854

0.9856

0.9858

0.9860

0 20000 40000 60000 80000 100000

A
(t

) 
(%

)

simulated time (days)

Moving Average of Simulated Availability

Average Availability PTA

Average Availability CTMC

CTMC BEs:

λCTMC = 1/14

�CTMC = 1/2

Parameters

PTA BEs:

λPTA = 14 days

�PTA = 2 days

δF = 7 days
δR = 1 days

Probability uncertainty:

ε = 0.0001

Figure 7. The average availability of the CTMC
and PTA model of the DFT in Fig. 1.
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Figure 8. The average availability of the CTMC
and PTA model of the DFT in Fig. 2.
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Figure 9. The steady-state behaviour of the avail-
ability of the CTMC and PTA model of the DFT
in Fig. 1.

6



8 and 10. The moving averages were calculated by per-
forming 50 simulations of 100,000 days of the availability,
with a probability uncertainty of 0.0001. Using UPPAAL,
50 sets of coordinates of the simulated availability are re-
trieved for each model. Not all of these sets have the same
dimensions. Therefore, in order to calculate the mean of
these coordinates, each set had to be interpolated along a
common time-axis. By using linear interpolation, the coor-
dinates were calculated such that all sets had the same di-
mensions. From the interpolated coordinates the average
simulated availability was calculated. For the basic DFT,
the minimum and maximum availability retrieved from the
50 simulations are approximately 98,31% and 98,57% for
the CTMC model and 98,34% and 98,53% for the PTA
model. For the DFT with the spare-gates, the maximum
and minimum availability are approximately 99,75% and
99,84% for the CTMC model and 99,76% and 99,84% for
the PTA model. Figures 7 and 8 show that it takes about
50,000 days for the availability to reach a steady-state.
Differences between the sum of the operational time and
the sum of the non-operational time becomes more con-
sistent as more time passes. Using definition 2, it can be
concluded that the availability will also become more con-
sistent over time. Figures 9 and 10 provide a more detailed
view of the steady-state behaviour of the average availabil-
ity of the DFTs. The graphs clearly show that both the
CTMC and PTA models yield approximately the same
availability for both DFTs. The availability of the PTA
model in Fig. 9 is lower than the CTMC model. However,
this difference of is so small it is considered negligible.

4.3 Reliability
In order to determine the reliability of each DFT, the
probability of failure, F (t), has to be known. According
to definition 1, F (t) is a cumulative probability distribu-
tion. To be more exact, F (t) is the cumulative probability
that the system moves from its initial operational state
to a non-operational state within a given time interval.
Using UPPAAL’s verifier, the queries Pr [<=1000] (<>
ANDGATE.FAIL)] and Pr [<=10000] (<> ANDGATE.
FAIL)] were created. These queries check the probability
that within, either a 1000 or 10,000 days, the AND-gate
model template moves to the FAIL state. In other words,
it checks the probability of failure of a system within a
given time period, F (t). The first query of 1000 days was
used for simulating F (t) for the basic DFT. The second
query of 10,000 days was used for the DFT with spare-
gates. For the DFT with spare-gates it was necessary to
increase the time-period, because F (t) increased slower
than for the first DFT. Using definition 1, these results
were used to calculate the reliability of each PTA and
CTMC model. For the CTMC and PTA models, the re-
liability has been plotted in figures 11 and 12. For all
simulations of the reliability, the probability uncertainty
was set to 0.0001.

4.4 Simulation time
To measure differences in the required time for the simu-
lations, the query Pr[<=200](<> ANDGATE.FAIL) was
created in UPPAAL. This query calculates the probabil-
ity that the AND-gate model moves from its initial oper-
ational state to its non-operational state within 200 days.
The time period of 200 days was chosen, because UPPAAL
required more computation time to perform this query as
opposed to the same query, but with a time period of 1000
days. Furthermore, it can be seen in figures 11 and 12 that
the PTA models are simulated for a shorter time. To pre-
vent this causing a difference in the time used to verify
the query, the time period was set to be 200 days. The
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Figure 10. The steady-state behaviour of the avail-
ability of the CTMC and PTA model of the DFT
in Fig. 2.
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query was run with a probability uncertainty, ε, of 0.001
for the basic DFT in Fig. 1 and the DFT with spare-gates
in Fig. 2. The number of runs of the query, the total time
used by each model to perform these runs and the average
time used per run are presented in tables 1 and 2. From
these results it can be deduced that the verification of the
PTA model was on average 0.006 milliseconds slower per
run for the basic DFT, and 0.067 milliseconds slower per
run when considering the DFT with spare-gates.

Table 1. Time used for verifying Pr[<=200](<>
ANDGATE.FAIL) for the DFT from Fig. 1 in sec-
onds. ε = 0.001
Model Runs Tot. time (s) time/run (ms)
CTMC 1009867 59.510 0.059
PTA 644760 41.983 0.065

Table 2. Time used for verifying Pr[<=200](<>
ANDGATE.FAIL) for the DFT from Fig. 2 in sec-
onds. ε = 0.001
Model Runs Tot. time (s) time/run (ms)
CTMC 4675385 1027.50 0.219
PTA 4750630 1360.893 0.286

To further investigate the time used for simulations by
each model, another query was created. Namely, simulate
100 [<=1000000](ANDGATE.availability), which performs
100 simulations of the availability of the system. For each
PTA and CTMC model, this query was performed 5 times
with a probability uncertainty of 0.0001, bringing the num-
ber of simulations performed by each model to 500. The
total time required to perform these 500 simulations and
the average time used per simulation for the PTA and
CTMC models are presented in table 3 for the basic DFT
and table 4 for the DFT with spare-gates. For the ba-
sic DFT, the PTA model is approximately 0.239s slower
per simulation than the CTMC model. For the DFT with
spare-gates, the PTA model is approximately 0.675s slower
per simulation than the CTMC model.

Table 3. Time used for verifying simulate
100 [<=1000000](ANDGATE.availability) for the
DFT from Fig. 1 in seconds. ε = 0.0001
Model Number of

Simulations
Total
time (s)

time
/simulation (s)

CTMC 500 279.656 0.559
PTA 500 399.126 0.798

5. DISCUSSION
In this section the process of creating the models is dis-
cussed. Furthermore, the results are analysed and future
work is discussed.

5.1 Creating the models
Creating the models for the BEs and AND-gate was quite
simple. The BE models were not subject to a lot of changes
throughout the research process. Creating the model for
the spare-gates proved to be more difficult. The model
found in Fig. 6 was created after several revisions and
has been simplified several times. However, there were
no significant differences in creating the models for the
CTMC and PTA. The PTA model of the BE used two

Table 4. Time used for verifying simulate 100
[<=1000000](ANDGATE.availability) for Fig. 2
in seconds. ε = 0.0001
Model Number of

Simulations
Total
time (s)

time
/simulation (s)

CTMC 500 793.393 1.587
PTA 500 1130.969 2.262

additional parameters and a clock, but this did not affect
the difficulty to work with PTA.

5.2 Key Performance Indicators
When analysing the availability of both DFTs, the erratic
transient behaviour at the start of the simulation shown
in figures 7 and 8 is disregarded. This behaviour is due
to the script from section 3.6, used to measure the avail-
ability. Instead the steady-state values shown in figures 9
and 10 are analysed. From these figures it is clear that
both formalisms give approximately the same result. To
calculate the average availability, 50 simulations for each
model were performed. In the case of the first DFT, these
50 simulations yielded an availability between 98.31% and
98.57% for the CTMC model, and between 98.34% and
98.53% for the PTA model. For the second DFT, the sim-
ulations showed that the CTMC model had an availability
between 99,84% and 99,75%. For the PTA model this lies
between 99,84% and 99,76%. Figures 9 and 10 show that
the average availability is approximately the same for both
the PTA and CTMC models. The differences between the
models can be considered negligible, due to the slight dif-
ference between each simulation that was performed. Two
simulations of the same system will never be exactly the
same due to the use of probability distributions by both
the CTMC and PTA. From these simulations it is clear
that both modelling formalisms can be used to approx-
imate the availability of the systems considered in this
paper. However, for more complex systems it has not yet
been proven that both formalisms can be used and could
be an interesting extension of this research.
The reliability of both DFTs in figures 11 and 12 show
some differences between the PTA models and CTMC
models. The first difference is that the simulation of the
PTA models lasted shorter than those of the CTMC mod-
els. This can be explained due to the fact that PTA mod-
els use uniform distributions which have a lower and upper
bound. Outside these bounds, the probability is always 0.
A transition in a model will have to be taken within these
bounds. On the other hand, the CTMC models use ex-
ponential distributions, which have only a lower bound of
0, but no upper bound. The probability approximates 0
as time passes, but it never reaches it. This means that
in a CTMC model, a transition could take infinitely long,
though the chance of this happening is very small. This
explains why simulations of CTMC models can run longer
than those of PTA models.
The second difference is that the simulations of the PTA
models start later than those of the CTMC. This is also
due to the uniform distributions. For both simulations the
parameters that were chosen gave each BE a lower clock
bound of 7 days and an upper clock bound of 21 days.
Meaning that the BE components could fail no later than
7 days. Because of the uniform distribution, the probabil-
ity of failing before the lower bound and after the upper
bound, is 0. This explains why in the simulations of the
PTA start later. In fact, they start 7 simulated days later
than the CTMC model. In this research, the effect of
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changing the width of the uniform intervals is not inves-
tigated extensively and is a direction for future research.
However, it has been observed that for small intervals,
the simulations of the reliability become erratic as there
is a large interval in which no transitions can take place.
Furthermore, when the lower bound is reached, the proba-
bility of taking a transition in this interval is much higher,
as opposed to a large interval.
The third difference is that the simulations of the PTA
models gave a consistently higher chance of failure than
the CTMC models. The maximum difference between the
reliability of the PTA and the CTMC models for the first
DFT is approximately 5%. For the second DFT this was
approximately 2%. This could be due to the difference in
the used probability functions. The CTMC models take
the transition from the operational states to the failure
states according to exponential distributions. The PTA
models use uniform distributions for its transitions, whose
bounds is determined by guards and invariants. It could
be that the bounded uniform distribution causes the PTA
models to take the transition from the operational states
to the failure states earlier on average than the CTMC
models, as it must take the transition before the upper
clock bound has passed. The exponential probability dis-
tribution used by the CTMC models are not bounded and
therefore can make the transition at any point in time.
This might cause the CTMC models to take the transi-
tion to the non-operational state later in time than the
PTA models on average. This would explain the lower
reliability of the PTA models, but further research is re-
quired to confirm this.
A final observation that can be made, is that the reliability
of the PTA models clearly shows the behaviour of an ex-
ponential distribution. However, the PTA models in this
paper use uniform distributions to determine its failure
and repair rates. Investigation of the mathematics behind
this phenomenon is beyond the scope of this research, but
could be interesting for future research.

5.3 Simulation Time
The results of the probability query and the simulation
query for the basic DFT and those of the DFT with the
spare-gates are shown in tables 1 and 3 and tables 2 and 4
respectively. The results show that the PTA models take
more time to perform the queries than the CTMC model.
The PTA models are approximately 0.006ms and 0.239s
slower than the CTMC model for the probability and sim-
ulation query respectively. For the second DFT, the PTA
models are respectively, 0.067ms and 0.675s slower. A
reason for the PTA model being slower in verification for
the DFT with the spares, could be the additional clocks,
guards and invariants. It might be possible that these
require more computation time than the exponential dis-
tributions of the CTMC models. PTA might be faster if a
certain threshold of clocks, guards and invariants is met.
When there are many clocks, the PTA model might be
slower than the CTMC model.

6. CONCLUSION
The first research question that was asked in the introduc-
tion is: How does the simulated availability of each DFT
differ for the PTA and CTMC models? According to the
results of the simulations, no significant difference can be
found between the PTA and CTMC models. Both for-
malisms yield approximately the same result of the avail-
ability of each DFT. The slight differences between both
simulations are most likely from the use of probability
functions, which cause two simulations of the same model

to never be the same.
As to how the simulated reliability of each DFT differ
for the PTA and CTMC models, there seems to be a dif-
ference. Simulations using PTA models generally lasted
shorter than those of the CTMC models due to PTA mod-
els using bounded uniform distributions for the failure and
repair rates. The second difference is that reliability of
PTA models can only be simulated after the lowest lower
bound of the uniform distributions has been reached in
the simulation. Thirdly, the PTA models show a lower
reliability than the equivalent CTMC models. This could
be due to the difference in the used probability functions.
Exponential distributions, used by the CTMC models, al-
low transitions to be taken at any point in time greater
than 0. However, the uniform distributions, used by the
PTA models, have a lower and upper bound determined
by guards and invariants. The upper bound could cause
PTA models to take the transition from the operational
state to the failure state earlier in time on average than
the CTMC models and thus yield a lower reliability. How-
ever, further research is required to confirm this.
The time each formalism takes to verify a system seems to
depend on the formalism used. For the basic DFT and the
DFT with the spare-gates, PTA models were slower. The
reason that the PTA models were slower, could be due to
the number of clocks, guards and invariants that are used.
When there are many clocks to be considered in the PTA
model, together with invariants and guards, PTA might be
proven to be slower than CTMC. However, in this paper
only two synthetic DFTs are considered. Analysing a real
system and using PTA and CTMC with the additional dy-
namic gates in [2], might give more insight into the time
PTA uses for verification of these systems in comparison
to CTMC.
As mentioned in section 3, DFT extend fault trees by in-
troducing dynamic gates such as the spare, PAND and
FDEP gates. In this paper, however, only the spare-gate
has been modelled with PTA and CTMC. This paper does
not provide enough material to fully determine the usabil-
ity of PTA as an approach to fault tree analysis. A pos-
sible direction for future research could be to investigate
the usability of PTA regarding the other dynamic gates in-
troduced by DFT. Furthermore, this paper analyses PTA
for two synthetic DFTs. To fully determine the usabil-
ity of PTA, they should also be analysed when used to
model more complex, real systems. Other research direc-
tions include the investigation of the effects of changing
the widths of the uniform intervals for the PTA models
and an investigation of the reason behind the difference in
reliability of the PTA and CTMC models. For now, it can
be stated that a system whose upper and lower bounds
for its failure and repair rates are known, can be modelled
easily with the non-Markovian PTA with an uniform dis-
tribution, whereas CTMC can be used when only mean
times of the failure and repair rates are available.
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[5] M. Jurdziński, F. Laroussinie, and J. Sproston.
Model Checking Probabilistic Timed Automata with
One or Two Clocks, pages 170–184. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[6] S. Krishna, L. Manasa, and A. Trivedi. What’s
decidable about recursive hybrid automata? pages
31–40, 2015.

[7] G. Norman, D. Parker, and J. Sproston. Model
checking for probabilistic timed automata. Formal
Methods in System Design, 43(2):164–190, 2013.

[8] G. Norman, D. Parker, and X. Zou. Verification and
control of partially observable probabilistic systems.
Real-Time Systems, 53(3):354–402, 2017. cited By 0.

[9] R. M. Sinnamon and J. Andrews. New approaches
to evaluating fault trees. Reliability Engineering &
System Safety, 58(2):89–96, 1997.

[10] J. Sproston. Probabilistic timed automata with
clock-dependent probabilities. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10506 LNCS:144–159, 2017. cited
By 0.

[11] B. Wu, M. Lemmon, and H. Lin. Formal methods
for stability analysis of networked control systems
with ieee 802.15.4 protocol. IEEE Transactions on
Control Systems Technology, 2017. cited By 0;
Article in Press.

[12] S. A. Zonouz and S. G. Miremadi. A fuzzy-monte
carlo simulation approach for fault tree analysis. In
RAMS ’06. Annual Reliability and Maintainability
Symposium, 2006, pages 428–433, Jan 2006.

10


