
Potential of Integer Programming for Optimization
Analysis of Extended Feature Models

Richard Heijblom
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.r.heijblom@student.utwente.nl

ABSTRACT

In Software Product Line Engineering feature models are
frequently used. These models are used to manage variability
and commonality. In the past decades automatic analysis
methods have been developed to facilitate information

extraction of feature models. A popular technique is constraint
programming. However this technique may fail in analyzing
large models; in particular, optimization analysis will not be
efficient, both in speed and memory usage. This problem is
even worse for extended feature models, in which features
could have attributes. Recently it was shown that optimization
analysis could be performed with integer programming, which
potentially can overcome the mentioned difficulty, but it is not
used in any feature model analyzer. The goal of this paper is to

address the potential of integer programming with respect to
optimization analysis of extended feature models. This was
investigated by comparing its performance with the
performance of constraint programming on several extended
feature models, with respect to speed.

Keywords

Optimization analysis, speed, extended feature model,
constraint programming, integer programming.

1. INTRODUCTION
Software Product Line Engineering is all about generating a

family of software products efficiently. In order to survey the
family of products, commonalities and variabilities of products
need to be determined. Feature models are a popular tool to
manage these commonalities and variabilities [3,7,10].

A feature model describes a family of products in terms of
features. A feature is a characteristic component of a product. A
feature model itself is a tree composed of features and relations
between those features, which describes all possible products at
a certain stage in a software product line. In practice features
itself could contain some information. Therefore, extended
feature models were developed, where features could have

attributes [3]. Because of the size, manual analysis of feature
models is time consuming. Moreover, this method may not
cover all possibilities or introduce wrong possibilities when
errors are made. Therefore, there was a need for automatic
analysis of feature models. Since then a lot of analysis methods
have been developed [3]. This paper focuses on the

optimization analysis, namely 'What is the optimal product of a
given feature model?'.

A popular technique for automatic analysis is constraint
programming [1,2,3]. The feature model is transformed into a
constraint satisfaction problem (CSP). Then off the shelf tools
could analyze the CSP. It is possible to find optimal products
using constraint programming, but in the case of large feature

models this technique is not sufficient. Research suggests that
large feature models (i.e. hundreds or thousands of features)
could not be analyzed [1,2,4]. In the case of extended feature
models, the attributes add an extra level of complexity [11].
Therefore, constraint programming is not powerful enough to
analyze all of the extended feature models used in practice.

Another technique for automatic analysis is integer
programming [5]. Integer programming is an optimization

technique and used to solve so called integer problems (IP's).
By definition it is not suitable to answer questions like 'What
are the products of this feature model?', because there is
nothing to optimize. Despite this drawback this technique may
be very appropriate to find optimal products [6]. It has never
been investigated whether or not integer programming is
preferable in the case of optimization analysis. Therefore this
paper aims at determining the possibilities and drawbacks of the

two different techniques mentioned above with respect to
optimization analysis. This was achieved by comparing the
performance of a CSP solver and a IP solver on finding an
optimal product of randomly generated extended feature
models. This determined the potential of integer programming
with respect to optimization analysis of extended feature
models.

First a brief overview of feature models and optimization
analysis is given in chapter 2. Then in chapter 3 related work is
discussed. These two chapters lead to a definition of the

purpose of this study described in chapter 4, and a research
method described in chapter 5. In chapter 6 and 7 the results of
this study are discussed.

2. BACKGROUND

2.1 Basic Feature Models
The first feature models were proposed by Kang et al. [10].
Although there are different notations of feature models, there

is a common notion [3]. This notion states a feature model
consists of hierarchically ordered features and relations among
them, which describes a family of products, where a product is
a non empty set of features. A formal definition is given below.
To illustrate this notion, we use the example feature model of
Benavides et al. [3]. Figure 1 contains an illustration of their
feature model of a mobile phone.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

19thTwente Student Conference on IT, June 24
st
, 2013, Enschede, The

Netherlands.

Copyright 2013, University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science.

Definition feature model: A feature model is a four-tuple
 where:

 is a nonempty set of features.

 is a tree structure of . Each feature in except
one feature called the root feature, has a unique parent
feature in . is called a child feature of .

 is a function defined on . For every feature in
this function assigns a set of all possible combinations
of child features of . For every leaf feature this

function assigns .
 is a set of crosstree relations.

As result of this definition one can conclude the following
about the feature model in Figure 1: The set of features is
{Mobile Phone, Calls, GPS, Screen, Basic, Colour, High
resolution, Media, Camera, MP3}. The root feature is Mobile
Phone, Screen is the parent of Colour and Camera is a child of

Media. The children of Mobile Phone are Calls, GPS, Screen
and Media. The features Mobile Phone, Screen and Media are
the different parent features.

In a feature model , all the possible assignments of a

function are usually restricted to certain common

assignments. These assignments are composed of four parent-
child relations are listed below:

 Mandatory. In this relation if the parent feature is

present in the product, the child feature is present too.
In the given example, each product has the feature
Calls.

 Optional. In this relation if the parent feature is

present in the product, the child feature could be in
the product. In the given example, a product could
have the feature GPS. However, not every product has

the feature GPS.

 Alternative. In this relation if the parent feature is
present in the product, only one of the child features is

in the product. In the given example, every product
has a High resolution or a Basic or a Color Screen,
but not two of them.

 Or. In this relation if the parent feature is present in

the product, at least one of the child features is in the
product. In the given example, every product with
Media has a Camera or MP3 or both of them.

The feature model in Figure 1 contains all four of these parent-
child relations. For example (Media) = {{MP3}, {Camera},

{MP3,Camera}} which is a or-relation. The graphical notation
of these relations will be used in the rest of the paper.

Informally, the function of a feature model

restricts the space of all possible products. Other restrictions on
the space of products are called crosstree relations. It could be

any relation between two or more features that is not a parent-
child relation:

Definition crosstree relation: Given a feature model
 . A crosstree relation is a logical formula defined on

a subset of . This subset contains at least two elements.

A example of a crosstree relation in Figure 1 is Camera
requires High resolution. The following two relations are
typically used:

 Requires. If a feature A require feature B, then every

product with feature A also has feature B. In the given
example, every product with a Camera has a High
resolution Screen. The logical formula for this
relation is .

 Excludes. If two feature excludes each other, then

both features could not be in the same product. In the
given example, no product exists with a GPS and a
Basic Screen. The logical formula for this relation is
 .

As stated above a feature model describes a family of products.
Each product obeys the relations and restrictions described in

that model. This leads to the definition of product:

Definition product: Given a feature model . A

product is a non empty subset of in which:

 For each element of , if is not the root feature,
then the parent feature of is an element of too.

 If is an element of , then the intersection of the set
of all child features of and is an element of .

 Each statement in is true, where each feature in
each statement is true if and only if is element of .

To illustrate this definition one can state the following about the
feature model in Figure 1: {Mobile Phone, Calls, Screen,
Basic} is a product. Another product is {Mobile Phone, Calls,
Screen, High resolution, Media, Camera}. {Mobile Phone,
Calls, Screen, Basic, MP3} and {Mobile Phone, Screen, Basic}
are not products, because in the first set the child-feature MP3

has no parent feature and in the second set the mandatory
feature Calls is missing. The set {Mobile Phone, Calls, Screen,
Basic, Colour} is not a product either, because in a product
Screen can only have one child, but the set contains both Basic
and Colour. For the reader who is interested in all the different
products of the given model, should consult [3].

Definition void: A feature model is void if and only if the

feature model does not represent any products.

In this paper we will use the term variability to indicate the
number of different products of a given feature model. The
higher the variability, the more different products a feature
model represents. A void feature model is considered of the
lowest variability.

2.2 Extended Feature Models
In some cases the basic feature model is too abstract. It could be
necessary to include information about the features in the

model. This piece of information is called an attribute of a
feature. A feature model with attributes is called an extended
feature model. Benavides et al. [3] concluded in their literature
review that there is no consensus of how to use feature
attributes. We adopt the idea of attributes of [11]: An attribute
has a name and a domain, where the domain consists of the

Figure 1. A feature model of a mobile phone

possible values the attribute could take. Thus an extended
feature model is:

Definition extended feature model: An extended feature model
is a five-tuple where:

 is a feature model.

 A is the set of attributes. An attribute is a three tuple

 where is an element of (the feature

which the attribute belongs to), is the name and

is the domain of the attribute.

A product of an extended feature model almost equals the

definition of a product of a basic feature model. The difference
is that each feature in a product of an extended feature model
has an instantiation for each attribute of that feature. That
means every attribute in a product takes its value on its
corresponding domain.

Definition product: Given an extended feature model
 . A tuple where is a nonempty subset of

and is a set of attributes, is product if:

 is a product of the feature model .

 For each element in , if is an element of
 then there is a unique in , where is a

subdomain of with a single value.

 For each element in , is an element of
and is an element of for some which

includes .

This definition suggests that the space of products of an

extended feature model is larger than the space of products of
the corresponding basic feature model. This is generally true,
because a product of a basic feature model can have one or
more instantiations of attributes in an extended feature model.

In this paper, we classify the domains in three categories:

 Real interval. In this case the value of an attribute is

an element of a certain bounded subinterval of the
real numbers. For example, a possible attribute for
Calls is Frequency with a value on the real domain

 .
 Discrete interval. In this case the value of an attribute

is an element of a certain bounded subinterval of the
natural numbers. We use the notation for a

interval with the minimum value and the maximum

value . So = . For example, a
possible attribute for GPS is Version with a value on
the integer domain .

 Enumeration. In this case the value of an attribute is a

element of an enumeration. For example, a possible
attribute for Camera is Megapixels with a value on

the set .

2.3 Optimization Analysis
One of the key questions that can be stated about feature models
is: 'What is the optimal product of a given feature model?'. The

meaning of the word 'optimal' depends on the user of the
product. Generally speaking, a product is better when that
product is valued more. Then the optimal product is the
product which the user assigns the highest value. This idea
leads to the following definitions:

Definition Objective function: Let be a feature model and let

 be the set of all products described by . Then a

function is an objective function.

In other words, an objective function is a function which
assigns a real value to a every product of a certain feature
model.

Definition Optimal product: Let be a feature model and let

 be the set of all products described by . Let be an

objective function defined on . Then is an optimal product

with respect to .

Thus an optimal product maximizes a given objective function

of a certain feature model. For example consider the feature
model in Figure 1. If the objective function equals the number
of features of the given product, then the optimal product is
{Mobile Phone, Calls, GPS, Screen, High resolution, Media,
Camera, MP3}.

Currently, optimization analysis could be performed with
constraint programming or integer programming.

2.3.1 Constraint programming
Constraint programming (CP) is a set of techniques to solve
constraint satisfaction problems (CSP's). A CSP consists of a
set of variables and a set of constraints [1]. Each variable is
defined on a certain domain. A constraint is a Boolean
expression defined on some variables. If specific values for the
variables evaluate a constraint true, then the constraint is
satisfied, else the constraint is violated. The goal of solving a
CSP is to find one or more solutions in which each variable has

a value, such that this value is in the corresponding domain and
all constraints are satisfied.

2.3.2 Integer programming
Integer programming [6] is a set of techniques to solve integer
problems (IPs). An IP is a linear problem, except all variables
are subjected to be integers. A linear problem is an optimization

problem and consists of a set of numeric variables, a set of
constraints and a linear goal function. These constraints are in

the form of , where en are values and are

variables. stands for or . The goal of linear

programming is to find a value for each variable, such that the
goal function is maximized and all constraints are satisfied.

3. RELATED WORK
Benavides et al. [2] were the first who used constraint
programming to reason on feature models. They provided a set
of mapping rules to transform a feature model into a CSP.

Although they did not provide mapping rules for attributes, they
were able to transform an extended feature model into a CSP.
Karates et al. [11] did provide these mapping rules. Moreover,
they were able to map every relation into a part of a CSP. Both
limited their feature models to have attributes with finite
domains. As result a large number of feature models can be
analyzed. Because of the mature field of constraint
programming a wide variety of tools is available [11].

There were different performance analysis of the use of
constraint programming to reason on feature models. The first
analysis suggested an exponential growth in time when the

features grow linearly [1,2]. Another analysis concluded
roughly the same about memory usage and also stated that
bigger feature models are a problem [4]. They also stated that
constraint programming did not solve most problems in a
reasonable amount of time. These analyses were based on
determining all different products of a feature model.

Performance of optimization using constraint programming is
not validated. The definition of the optimization operator [1]
suggests that all products need to be checked to determine the
optimal product. As stated above this suggests that optimization

can be inefficient for large models, because a CSP solver has to
cycle through all products.

Osman et al [12,13] also proposed a technique for optimization.
However, their technique was developed for validating feature
models. As side effect it is possible to do some optimization.
This technique suffers the same problem as constraint
programming: all product have to be checked in order to

determine the optimal product. This problem was also pointed
out by White et al. [16]. They addressed the optimization
problem with an approximation [15,16]. Although they were
able to analyze large feature models, the optimal products itself
were usually not found.

Optimization analysis could also be done with integer
programming. When given an linear problem, an optimal
solution could be determined by the simplex algorithm.
Although this algorithm performs very bad on certain classes of
problems, this algorithm is generally fast. Van den Broek [5]
showed that it is possible to transform a basic feature model

into a IP. Therefore, the optimization can be done relatively
easy [6]. However, the objective function and all relations in an
extended feature model need to be linear in order to be
transformable into a integer problem. This limits the set of
feature models to which this technique can be applied on.

4. RESEARCH GOAL
The potential of integer programming is unknown. Also the
performance of optimization using constraint programming is
not clear.

Therefore, this paper aims at answering the following main
question: What is the performance of integer programming and
constraint programming with respect to finding an optimal
product of extended feature models?

In order to answer that question, the main question is divided in
five subquestions for each technique:

1. Which extended feature models can be solved in a
reasonable amount of time?

2. How fast are extended feature models solved?
3. How is the solving time affected by the size of an

extended model ?
4. How is the solving time affected by the composition

of an extended model ?

5. How is the solving time affected by the type of the
objective function? In other words, if another
objective functions is chosen, how does it impact the
solving time?

The meaning of 'solving' should be clear: finding an optimal
product of a given extended feature model and a linear
objective function defined on that model. This notion will be
used in the rest of the paper.

Because of the currently known mapping rules, only extended
feature models with mandatory-, optional-, or-, alternative-,
requires- and excludes-relations were analyzed. Moreover, all
attributes had a finite integer domain. In the case of extended
feature models with real attributes, CSP solvers could not find
an optimal product. Because of the infinite number of values an
attribute could take, it is not possible to cycle through all

products to find the optimal product. This suggests that linear
programming is preferred. Therefore, extended feature models
with real attributes were not investigated.

Extended feature models with enumeration attributes could be
replaced by equivalent extended feature models without
enumeration attributes. This is achieved by replacing each
enumeration attribute by new child features, where each feature

contains one single valued attribute of the enumeration. The
relation between the new features equals the alternative-
relation. Figure 2 illustrates the replacement of enumeration
attributes. So every extended feature model with enumeration
attributes could be replaced by an equivalent extended feature

model without enumeration attributes. Therefore, this study was
restricted to extended feature models where all attributes have a
finite integer domain.

5. RESEARCH METHOD
To answer the five sub questions stated in the last chapter, a set
of test feature models was generated. Each feature model in this
set was analyzed by a CSP solver and an IP solver. Each solver
had to find one optimal product of a given extended feature
model. The time needed for the solvers were compared in order
to classify groups of extended feature models and to analyze the
two different techniques.

5.1 Components
An overview of the used components can be found in Figure 3.

Firstly, a generator was developed to generate the test feature
models. The generation of the models itself was performed by
BeTTy [14]. The generator managed the different feature
models and saved the models in .afm files. The generated .afm
files needed to be analyzed by the CSP solver and the IP solver.
Because of the amount of feature models which have to be

translated, a translator for both solvers were developed in Java.
To avoid writing duplicate file readers, a single file reader was
developed. This reader read the .afm files and translated it into
another representation, denoted by R in Figure 3. The
representation is basically a list of the parent-child and crosstree
relations and a list of values of the different attributes. The
developed translators could easily iterate through the lists in

Figure 2: Replacement of an enumeration attribute

Figure 3: Overview components

.afm

Reader

CSP
Solver

IP
Solver

JaCoP GLPK

R

I
^
S
m

ee
,

m

I
^
S
m

ee
,

m

Generator

BeTTy

Translator Translator

order to translate the extended feature model into a CSP or a IP.
Both developed translators used the translation rules mentioned
in [6]. Because the lack of mapping rules for objective functions
and attributes, the objective function and the attributes were
handled different in both translators.

The translator for constraint programming translated the
objective function by adding a new variable called . A

constraint was also added, which restricted the

variable to equal the used objective function (see next

section). The translator for integer programming simply set the
objective function as goal function.

The translator for constraint programming introduced a new
variable for each attribute, restricted on the given domain. In
order to prevent the attributes of features which are not part of

the product to alter the value of the objective function, a
constraint was added for each feature

and its attribute . The translator for integer programming

addressed both issues by adding a constraint

for each feature and its attribute on the domain .

Each solver took as input the representation of a extended
feature model as discussed. The CSP Solver used JaCoP [9] for
solving the CSP's and the IP Solver used GLPK [8] for solving

the IP's. JaCoP and GLPK are both Java libraries. The solvers
registered the solution and the time needed for solving, denoted
by I in Figure 3. The first was used for validation of the
developed programs and the latter was used for answering the
main research question.

5.2 Test Models
The test models were the extended feature models generated by
BeTTy. BeTTy automatically gave around 80% of all features

in a model an attribute. Due to restrictions of the random
feature model generator of BeTTy, each attribute ranged on the
same domain. This domain was set to . The generator

also assigned a random number in this interval to each attribute.
In order to assign different values to features, these randomly
generated values were used as weight for an attribute in the
objective function. How they were used depended on the test
case. The objective function was a weighted sum of the
attributes.

The test models will differ in three dimensions:

 Size. The size of a feature model equals the number

of features the model contains.

 Composition. This means how the features in a

feature model are related to each other in terms of
parent-child relations.

 Constraint percentage. This percentage indicates the

number of crosstree constraints compared to the size
of a feature model. So a feature model with 80
features and 32 crosstree constraints has a constraint
percentage of 40.

In order to generate test models with a certain composition,
BeTTy requires percentages of all relations as input. In order to

manage the size of the set of test feature models, the constraint
percentages were restricted to be either 0, 30 or 60. We
restricted all compositions to be in one of the five following
categories.

 Balanced. In a feature model with a balanced

composition around 30% of the parent child relations
are mandatory and around 30% of the parent child
relations are optional. The remaining 40% of the
parent child relations are either alternative or or.

 Low variability. In a feature model with this

composition around 80% of the parent child relations

are mandatory and around 10% of the parent child
relations are optional. The remaining 10% of the
parent child relations are either alternative or or.

 High variability. In a feature model with this

composition around 10% of the parent child relations
are mandatory and around 80% of the parent child
relations are optional. The remaining 10% of the

parent child relations are either alternative or or.

 Low set participation. In a feature model with this
composition around 45% of the parent child relations

are mandatory and around 45% of the parent child
relations are optional. The remaining 10% of the
parent child relations are either alternative or or.

 High set participation. In a feature model with this

composition around 10% of the parent child relations
are mandatory or optional. The major 90% of the
parent child relations are either alternative or or.

These restrictions brought the number of test feature models to
fifteen different types for a fixed size. For each type ten random
feature models were tested in order to achieve a better result.
Therefore, for a fixed size, 150 different models were checked.

5.3 Execution and Measurement
All the models were solved on a Window 7 computer with an
i7-3610QM Intel core at 2.3 GHz and 8 GB DDR3 RAM. The
Java programs itself were executed in Eclipse Juno limited with
a heap size of 2 GB.

Each solver automatically analyzed the test models. If a solver
fails to find an optimal product in one minute, a 'fail' will be
noted. Else the solving time was noted by using
System.nanoTime(). This time limit was merely practical.
Moreover, the solver needed to solve the models in a reasonable

amount of time. Besides the solving time, the voidness of a test
model was also noted.

5.4 Test Cases
The generator generated 1500 test models with a size of 100
until 1000, with steps of 100.

5.4.1 Case 0: Constraint programming strategies
JaCoP imposes the user to specify a search strategy. The Java
library for JaCoP already contains several strategies. In this test
case three strategies were chosen and their performance
compared in order to find the best suitable strategy for the next
two test cases. This performance was determined by the solving
time of all the generated test models with a size lower than 600.

5.4.2 Case 1: All positive objective function
The objective function in this test case only consisted of
positive terms. The generated attribute values were directly as
weight in the objective function, because all of these values
were positive. Both solvers analyzed the 1500 generated models
separately. Because these solvers could easily solve the test
models, another 1200 test models were generated and analyzed.
These models ranged from 1500 until 5000 in size, with steps of

500. By performing this case the first four subquestions could
be answered.

5.4.3 Case 2: Alternating objective function
In order to answer the last subquestion, another objective
function was constructed. The values found in the .afm files
were mapped into another weight. The mapping was as follows:
if the weight is smaller than 51 the weight is unchanged, else

the new weight equals 100 minus the old weight. This mapping
introduces negative weights, and thus another objective
function. Then the same test models were analyzed by the
different solvers.

6. RESULTS
In the rest of the paper we use type numbers to indicate groups
of test models with the same composition as follows:

0. Balanced and constraint percentage of 0.

1. Low variability and constraint percentage of 0.
2. High variability and constraint percentage of 0.
3. Low set participation and constraint percentage of 0.
4. High set participation and constraint percentage of 0.
5. Balanced and constraint percentage of 30.
6. Low variability and constraint percentage of 30.
7. High variability and constraint percentage of 30.
8. Low set participation and constraint percentage of 30.
9. High set participation and constraint percentage of 30.

10. Balanced and constraint percentage of 60.
11. Low variability and constraint percentage of 60.
12. High variability and constraint percentage of 60.
13. Low set participation and constraint percentage of 60.
14. High set participation and constraint percentage of 60.

All the solving times are average times shown in milliseconds,
with a margin of a half millisecond. Only the most important
results are listed below. The other results are listed in Appendix
A.

6.1 Case 0
Figure 4 and 5 shows the solving times of the test models of
type 0 using the CSP solver and three different strategies named
IndomainMax (Max), IndomainMin (Min) and IndomainMiddle
(Mid) with respect to the size of the models.

6.2 Case 1
Figure 6 shows the solving times of the test models of type 0
using the different solvers with respect to the size of the
models.

Figure 7 and 8 shows the solving times of the test models of the
first five types using the different solvers with respect to the
size of the models. Each curve in the graph is a type.

6.3 Case 2
Figure 9 shows again the solving times of the test models of
type 0 using the different solvers with respect to the size of the
models. This time the alternative objective function was used.

Table 1 shows the number of test models which could not be
solved for each solver and test case. CP 1 stands for constraint
programming case 1. Likewise IP 2 stands for integer
programming case 2. The first column lists the different solvers

and cases. The second column denotes the number of test
models which could not be solved. The third column lists how
many test models were analyzed. The last column denotes
which percentage of all test models could not be analyzed

0

20000

40000

60000

100 200 300 400 500

Max

Min

Mid

0

10000

20000

30000

100 200 300 400 500

Max

Min

Mid

0

500

1000

1500

2000

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

CP

IP

0

200

400

600

800

1000

1200

1400

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0

1

2

3

4

0

500

1000

1500

2000

2500

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0

1

2

3

4

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500 600 700 800

CP

IP

Figure 4: Solving times plotted against size (Case 1)

Figure 7: Solving times using constraint programming

Figure 8: Solving times using integer programming

Figure 9: Solving times of both techniques

Figure 6: Solving times of both techniques

Figure 5: Solving times plotted against size (Case 2)

.

setting number total percentage

CP 1 138 2700 5,11

IP 1 0 2700 0

CP 2 80 1200 6,67

IP 2 0 1200 0

7. DISCUSSION

7.1 Case 0
The IndomainMax strategy starts with picking the highest value
in a domain. After that the second highest value is chosen. The

IndomainMin strategy is the counterpart of IndomainMax,
which chooses the lowest value in a domain. The
IndomainMiddle strategy combines the other two by first
picking the middle value, then the highest value, then the lowest
value in a domain. Figure 4 shows the speed compared to the
size of the test models. Clearly, IndomainMax is the best
strategy in for test case 1, which is not unlikely. In order to
achieve a high objective function, as many features and as high

as possible attributes values should be picked. This is exactly
how IndomainMax works. The IndomainMiddle strategy firstly
considered the middle values in domains. As result it took this
strategy a factor 100 - 2000 more time to solve the test models.
The IndomainMin strategy is even worse. Probably this strategy
considered almost all lower valued products before trying to
add a feature. Moreover, Figure 4 suggests that the
IndomainMiddle and the IndomainMin strategy's solving time

grows exponentially when the size grows linearly. Without
considering test models of type 7, The IndomainMin strategy
already fails to solve some test models with a size of 500.
Therefore, for test case 1 the IndomainMax strategy was
chosen.

By setting the objective function to the one mentioned in
section 5.4.3, all three strategies took around the same solving
time according to Figure 5. The IndomainMiddle strategy was
overall slightly faster, so this strategy was chosen for test case
2.

7.2 Case 1

7.2.1 Analysis of solvability
By analyzing the results in Table 1, we conclude that there is a
difference between constraint programming and integer
programming. With integer programming all test models were
solved in the one minute time limit. With constraint
programming however 138 models could not be solved in the
time limit. 127 of those model were of type 7 and the remaining
11 of those models were of type 12. Although this failure is
only around 5%, some failures were early encountered. 5 test

models with a size of 200 already caused failures for the CSP
solver, while the IP solver did not experienced any problems.
By judging the solvability, integer programming seems to be
preferred over constraint programming

7.2.2 Analysis of speed
Figure 6, 7 and 8 show the average solving time per test model

composition. By basically comparing each average time,
constraint programming is superior compared to integer
programming. Considering only the test models with a
constraint percentage of 0, the CSP solver is about a factor 2
faster than the IP solver. Only 7% of the test model could be
faster solved with integer programming. All of these models are
of type 7 or type 12. Most of those models are the same which
were considered to failure to solve for the CSP solver. On the

other hand, all test models could be solved in less than 4.500
seconds by using integer programming. Both solvers suggest to
grow exponentially when the size grows linear. In most cases,
constraint programming seems to be preferred over integer
programming.

7.2.3 Influence of voidness
While generating extended feature models, BeTTy does not
make any guarantees about feature models which represents
some products. Therefore, BeTTy can generate void feature
models. Considering the test models of type 5 until 14, al lot of
these models are actually void. Moreover, all the generated test

models of type 6 and 11 are void. This could be clarified by the
composition. While trying to make a product, if someone
encounters two mandatory features which exclude each other,
then the model is void if those two feature should be in the
product. Models of type 6 and 11 contain a large number of
mandatory relations and exclude relations. Most test models
with a constraint percentage of 60, are void probably due the
large number of exclude relations. The test models of type 12

did not suffer voidness. Probably due the large number of
optional features it is possible to circumvent the exclude
relations and makes it easier to create products.

By comparing the solving times, Appendix A clearly shows a
speed gain for void models by using constraint programming.
The voidness of most test models was discovered in less than a
half millisecond. It took the CSP solver at most 2 milliseconds
to discover voidness. The results show that the IP solver also
solved void test models faster than other test models. This gain
is not as extreme as the gain by constraint programming, but it
suggests that the IP solver is a factor two faster when analyzing

a void test model. By judging this aspect, constraint
programming seems to be preferred over integer programming
by analyzing void feature models.

7.2.4 Influence of constraint percentage
By considering the influence of the constraint percentage, the
results show that constraint programming benefits from an

increasing constraint percentage. The comparisons of the
nonvoid test models 8, 9, 10, 12, 13 and 14 with the respective
test models 3,4 and 5 suggest that extended feature models with
a high constraint percentage are faster solvable than other with
a low constraint percentage. Crosstree relations restrict the
space of possible products and therefore they help to speed up
the CSP solver. Test models of type 12 and 7 confirm this
notion, but test models of type 2 suggest otherwise. Probably

the lack of any crosstree constraint allows the CSP solver to
find the optimal product quickly, because a selection of a
feature never has to be revoked. Generally, an increase in
constraint percentage seems to reduce the solving time while
using constraint programming.

The same test models mentioned in the last paragraph give a
consistent view for integer programming. The IP solver suffers
from an increase in constraint percentage in terms of solving
speed. The solving time may be a factor 3 slower due the
crosstree constraints. Each crosstree relation introduces more
space in the matrix solved by the simplex algorithm. This fact

may clarify the penalty in the speed. So an increase in
constraint percentage seems to increase the solving time while
using integer programming.

7.2.5 Influence of variability
The test models of type 0, 1 and 2 and Figure 7 and 8 confirm
the notions of 7.2.4. An increase in mandatory relations seems
to benefit the CSP solver, but an increase in optional relations

seems to slow the solving time. Feature models with many
mandatory relations have generally a low variability and

Table 1: Numbers and percentages of failures

therefore a small possible product space. On the other hand,
feature models with many optional relations increases the
variability and therefore a larger possible product space. The
larger this space, the longer the CSP solver is takes to find an
optimal product. The increase in variability seems to benefit the

IP solver. The test models with a lot of optional relations were
fasted solved than the balanced test models, which were faster
solved than the test models with a lot of mandatory relations.

7.2.6 Influence of set participation
Considering Figure 7 and 8, the occurrence of alternative and or
relations influences both solvers in the same way. Considering

models of type 0, 3 and 4, both solvers solved the test model
with a few alternative and or relations faster than the balanced
test models. The speed gain is about 8%. The solving time of
the test models with a lot of alternative and or relations was
about 20% longer than the ones of the balanced test models.
The IP solver seems to be slightly more stable than the CSP
solver.

7.3 Case 2
Figure 9 contains the solving times of test case 2. By alternating
the objective function, the IP solver seems to be quite stable.
For the most test models, the solving time needed is even
slightly lower than the test models with the objective function
of case 1. This suggests that the IP solver can easily handle
objective function with positive and negative terms.

The CSP solver cannot handle both positive and negative terms
in the objective function. Because of this test models with a size
larger than 800 were not even analyzed. The time needed to
solve the test models with a constraint percentage of 0
resembles the solving times of the IndomainMiddle strategy of

case 0. The IP solver is over a 1000 times faster than the CSP
solver. Twice as many test models could not be solved by using
constraint programming as result of the alternated objective
function. These failures also occurred in the models of type 0,
1, 2, 3 and 4, while the CSP solver did not experience any
trouble with these test models five times larger in test case 1.
The CSP solver still recognized the void test models extremely
fast, but also test models with a high constraint percentage took
more time than using integer programming.

8. CONCLUSION AND FURTHER WORK
Constraint programming can be a very powerful technique
when tackling optimization analysis, when the right information
is known. A specific search strategy needs to be determined in
order to use the speed of a CSP solver. Overall, integer
programming is preferred, because an IP solver does not need
this information. Besides a small penalty for speed, integer

programming looks like a reliable technique when solving
extended feature models.

The used CSP solver fails in some cases to solve an extended

feature model in a reasonable amount of time. None of the test
models was a problem for the IP solver.

The speed of CSP solver was overall higher than the speed of
the IP solver. Only in a few specific cases the IP solver was
faster. Both techniques offer the same time complexity
regarding to the size of an extended feature model. The time
needed grows exponentially when the size grows linearly.

The variability of an extended feature affects the solving time.
The CSP solver seems to benefit from a low variability, while
the IP solver seems to benefit from a high variability. The
solving time of a void feature model is extremely low while
using constraint programming.

The solving time while using integer programming is stable
under changes of the objective function, while the CSP solver

suffers extremely in speed while solving models with both
positive and negative terms in the objective function.

However, the mapping from an extended feature model to an
integer problem is not complete. The mapping mentioned in [5]
and in this paper is sufficient to map the six most used relations
and attributes, but the mapping of all relations mentioned in
[11] are not yet defined. Furthermore, existing software could

be upgraded to use integer programming for optimization
analysis.

9. REFERENCES
[1] D. Benavides, A. Ruiz-Cortés and P. Trinidad. Automatic

reasoning on feature models. In 17th Conference on
Advanced Information Systems Engineering, 2005.

[2] D. Benavides, A. Ruiz-Cortés and P. Trinidad. Using
constraint programming to reason on feature models. In
17th International Conference on Software Engineering
and Knowledge Engineering, 2005.

[3] D. Benavides, S. Segura and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: a literature
review. In Information Systems 35, 2010.

[4] D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés.

A first step towards a framework for the automated
analysis of feature models. In Managing Variability for
Software Product Lines: Working With Variability
Mechanisms, 2006.

[5] P. van den Broek. Optimization of product instantiation
using integer programming. In Proceedings of the 14th
International Software Product Line Conference, 2010.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. In

Introduction to algorithms, 2009.
[7] K. Czarnecki and U. Eisenecker, Generative programming:

methods tools and applications. Addison-Wesley, 2000.

[8] GLPK, http:// www.gnu.org/software/glpk/, accessed April
2013.

[9] JaCoP, http:// www.jacop.osolpro.com, accessed March
2013.

[10] K. Kang, S. Cohen, J. Hess, W. Novak and S. Peterson.

Feature–Oriented Domain Analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-21, 1990.

[11] A. Karatas, H.Oguztüzün and A. Dogru. Mapping
extended feature models to constraint logic programming
over finite domains. In Proceedings of the 14th
International Software Product Line Conference, 2010.

[12] A. Osman, S. Phon-Amnuaisuk and C.K. Ho. Knowledge
based method to validate feature models. In 1st

International Workshop on Analyses of Software Product
Lines, 2008.

[13] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first
order logic to validate feature model. In 3rd International
Workshop on Variability Modeling of Software-intensive
Systems, 2009.

[14] S. Segura, J.A. Galindo, D. Benavides, J.A. Perejo and A.
Ruiz-Cortés. BeTTy: Benchmarking and Testing on the
automated analysis of feature models. In 6th International

Workshop on Variability Modeling on Software-intensive
Systems, 2012.

[15] J. White, B. Doughtery and D. Schmidt. Selecting highly
optimal architectural feature sets with filtered cartesian
flattening. In Journal of Systems and Software, 2009.

[16] J. White and D. Schmidt. Filtered cartesian flattening: An
approximation technique for optimally selecting features
while adhering to resource constraints. In 1st International

Workshop on Analyses of Software Product Lines, 2008.

http://www.isa.us.es/featuremodelanalysis/repository/author/195
http://www.isa.us.es/featuremodelanalysis/repository/author/16
http://www.isa.us.es/featuremodelanalysis/repository/author/13
http://www.isa.us.es/featuremodelanalysis/automated-analysis-feature-models-20-years-later-literature-review
http://www.isa.us.es/featuremodelanalysis/automated-analysis-feature-models-20-years-later-literature-review
http://www.isa.us.es/featuremodelanalysis/automated-analysis-feature-models-20-years-later-literature-review
http://www.isa.us.es/featuremodelanalysis/repository/author/209

APPENDIX

A. RESULTS

This section contains most of the results of this study. The
information is ordered in tables. In each table the first row
denotes the different sizes of test models. The first column
denotes the different types of test models. The other cells
contain a average runtime in milliseconds. Each grey cell
denotes that all test models of that size and type were void.
The absence of any number means that the solver could not
solve any of the test models of that size and type.

A.1 Case 0
Table 2 contains the average runtimes of the three different
strategies using constraint programming for determining the
strategy for test case 1. Table 2 contains one extra dimension.

The second row denotes which strategy was used. Max
denotes IndomainMax, Min denotes IndomainMin and Mid
denotes IndomainMiddle. The runtimes in this tables only

includes the first case. The different runtimes for the second
case resembles each other and are therefore not recorded in
this paper. Only the runtimes with IndomainMiddle strategy is
recorded in section A.3

A.2 Case 1
Table 3 and 4 contains the average runtimes of the solvers in
test case 1.

A.3 Case 2
Table 5 and 6 contains the average runtimes of the solvers in
test case 2.

 100 200 300 400 500

 Max Min Mid Max Min Mid Max Min Mid Max Min Mid Max Min Mid

0 4 1112 459 4 5983 2301 5 12661 6813 7 30520 13354 12 53129 25839

1 2 1122 410 2 6975 2920 4 17904 7344 6 31870 13884 9 50835 23410

2 2 736 399 2 4160 2348 4 12067 6479 7 28600 14125 10 42510 24768

3 1 1075 430 2 6675 2571 3 14432 6947 5 23645 13196 8 42926 21372

4 1 1368 478 3 6541 2952 7 18083 9117 6 32176 16344 11 54229 27857

5 1 1 1 0 0 0 1 22 6 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 13 495 364 59999 1 160 71 0 0 0

8 0 11 3 0 0 0 3 640 184 0 0 0 0 0 0

9 0 37 10 0 0 0 1 483 166 0 0 0 1 56 5

10 0 0 0 0 0 0 0 0 0 2 18 6 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 405 624 536 1 4 1 1467 4184 3449 1 159 64 45 724 360

13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 4 4 5 7 12 14 20 23 27 35 81 154 238 348 485 654 854 1073

1 2 2 4 6 9 10 12 16 21 27 61 119 178 257 367 479 608 771

2 2 2 4 7 10 12 17 22 29 37 91 176 257 374 548 716 898 1153

3 1 2 3 5 8 10 14 26 26 33 72 147 219 317 456 611 787 959

4 1 3 7 6 11 14 19 22 34 43 96 184 283 423 587 807 1031 1247

5 1 0 1 0 0 1 0 2 5 4 1 0 1 1 1 1 2 2

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

7 13 59999 1 0 5675 3

8 0 0 3 0 0 2 0 1 0 0 3 1 1 1 1 1 1 10

9 0 0 1 0 1 1 0 0 1 3 1 1 1 6 1 1 1 2

10 0 0 0 2 0 0 0 1 2 0 2 6 1 1 1 1 1 1

11 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 2

12 405 1 1467 1 45 7 5 30080 50 1 18 45 15 17 6 57 90

13 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 8 1 2

14 0 0 0 0 0 0 0 0 2 1 0 4 1 1 1 1 2 1

Table 2: Average solving times using different strategies (Case 1)

Table 3: Average solving times using constraint programming

 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 3 6 10 15 21 32 36 46 56 68 151 266 422 611 824 1103 1399 1730

1 4 6 10 20 24 32 41 55 67 86 182 291 469 661 920 1168 1490 1873

2 3 4 7 14 15 21 30 36 44 55 124 215 340 485 669 880 1102 1387

3 3 5 8 17 21 24 33 41 51 63 135 241 391 565 757 1012 1296 1596

4 3 5 10 20 23 31 41 54 68 80 177 312 498 720 968 1284 1636 2042

5 4 2 21 9 13 61 20 108 127 169 100 166 236 366 492 681 820 1034

6 2 5 8 14 21 28 35 49 59 74 161 289 455 654 862 1110 1432 1757

7 2 4 17 4 25 34 79 163 65 210 281 1106 833 662 1980 4159 3524 3785

8 2 3 16 7 10 56 19 97 25 31 316 158 208 298 415 600 694 3696

9 3 5 26 8 50 67 32 28 98 186 106 178 339 1702 617 727 1043 1262

10 1 8 5 36 18 25 33 122 160 68 432 757 417 570 772 1010 1327 1619

11 2 5 9 16 23 33 43 56 74 91 192 351 549 783 1049 1393 1742 2192

12 4 12 70 36 47 60 84 214 156 178 355 843 1014 1531 2107 2617 3312 4098

13 4 12 6 10 13 21 29 36 50 48 128 219 360 529 678 2896 1157 1408

14 1 4 9 14 20 27 38 52 188 151 179 897 531 698 942 1266 1601 1903

 100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800

0 341 1787 4971 9781 17578 30219 38983 0 3 6 8 12 16 22 26 35

1 317 2110 5244 9649 15901 23998 35319 49160 1 2 6 9 14 18 27 34 45

2 339 1694 4657 10005 17011 25847 36763 52685 2 1 3 5 7 10 15 20 24

3 355 2022 4915 9292 15890 24033 34576 47800 3 2 4 6 9 14 18 24 30

4 390 2114 6743 11687 19713 32091 48274 53089 4 2 4 8 12 17 24 31 41

5 1 0 6 0 0 2 1 5 5 2 2 14 9 11 44 20 76

6 0 0 0 0 0 0 0 0 6 2 4 8 13 20 28 35 49

7 223 57 0 3701 7 2 3 11 4 16 21 52 121

8 2 0 140 0 0 29 0 49 8 2 2 11 7 10 40 19 64

9 8 0 115 0 5 2 0 0 9 2 3 18 8 35 48 32 28

10 0 0 0 4 0 0 0 2 10 1 6 5 27 17 25 33 86

11 0 0 0 0 0 0 0 0 11 2 5 9 15 22 33 43 56

12 505 1 19316 57 242 723 1213 7005 12 3 8 44 23 29 39 55 194

13 0 0 0 0 0 0 0 0 13 3 8 6 10 13 21 29 36

14 0 0 0 0 0 0 0 0 14 1 3 8 12 19 27 38 51

Table 4: Average solving times using integer programming

Table 5: Average solving times using constraint

programming

Table 6: Average solving times using integer

programming

