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ABSTRACT 

In Software Product Line Engineering feature models are 
frequently used. These models are used to manage variability 
and commonality. In the past decades automatic analysis 
methods have been developed to facilitate information 

extraction of feature models. A popular technique is constraint 
programming. However this technique may fail in analyzing 
large models; in particular, optimization analysis will not be 
efficient, both in speed and memory usage. This problem is 
even worse for extended feature models, in which features 
could have attributes. Recently it was shown that optimization 
analysis could be performed with integer programming, which 
potentially can overcome the mentioned difficulty, but it is not 
used in any feature model analyzer. The goal of this paper is to 

address the potential of integer programming with respect to 
optimization analysis of extended feature models. This was 
investigated by comparing its performance with the 
performance of constraint programming on several extended 
feature models, with respect to speed. 
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1. INTRODUCTION 
Software Product Line Engineering is all about generating a 

family of software products efficiently. In order to survey the 
family of products, commonalities and variabilities of products 
need to be determined. Feature models are a popular tool to 
manage these commonalities and variabilities [3,7,10]. 

A feature model describes a family of products in terms of 
features. A feature is a characteristic component of a product. A 
feature model itself is a tree composed of features and relations 
between those features, which describes all possible products at 
a certain stage in a software product line. In practice features 
itself could contain some information. Therefore, extended 
feature models were developed, where features could have 

attributes [3]. Because of the size, manual analysis of feature 
models is time consuming. Moreover, this method may not 
cover all possibilities or introduce wrong possibilities when 
errors are made. Therefore, there was a need for automatic 
analysis of feature models. Since then a lot of analysis methods 
have been developed [3]. This paper focuses on the 

optimization analysis, namely 'What is the optimal product of a 
given feature model?'.  
 
A popular technique for automatic analysis is constraint 
programming [1,2,3]. The feature model is transformed into a 
constraint satisfaction problem (CSP). Then off the shelf tools 
could analyze the CSP. It is possible to find optimal products 
using constraint programming, but in the case of large feature 

models this technique is not sufficient. Research suggests that 
large feature models (i.e. hundreds or thousands of features) 
could not be analyzed [1,2,4]. In the case of extended feature 
models, the attributes add an extra level of complexity [11]. 
Therefore, constraint programming is not powerful enough to 
analyze all of the extended feature models used in practice.  
 
Another technique for automatic analysis is integer 
programming [5]. Integer programming is an optimization 

technique and used to solve so called integer problems (IP's). 
By definition it is not suitable to answer questions like 'What 
are the products of this feature model?', because there is 
nothing to optimize. Despite this drawback this technique may 
be very appropriate to find optimal products [6]. It has never 
been investigated whether or not integer programming is 
preferable in the case of optimization analysis. Therefore this 
paper aims at determining the possibilities and drawbacks of the 

two different techniques mentioned above with respect to 
optimization analysis. This was achieved by comparing the 
performance of a CSP solver and a IP solver on finding an 
optimal product of randomly generated extended feature 
models. This determined the potential of integer programming 
with respect to optimization analysis of extended feature 
models. 
 

First a brief overview of feature models and optimization 
analysis is given in chapter 2. Then in chapter 3 related work is 
discussed. These two chapters lead to a definition of the 

purpose of this study described in chapter 4, and a research 
method described in chapter 5. In chapter 6 and 7 the results of 
this study are discussed.  

2. BACKGROUND 

2.1 Basic Feature Models 
The first feature models were proposed by Kang et al. [10]. 
Although there are different notations of feature models, there 

is a common notion [3]. This notion states a feature model 
consists of hierarchically ordered features and relations among 
them, which describes a family of products, where a product is 
a non empty set of features. A formal definition is given below. 
To illustrate this notion, we use the example feature model of 
Benavides et al. [3]. Figure 1 contains an illustration of their 
feature model of a mobile phone.  
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Definition feature model: A feature model is a four-tuple 
          where: 

   is a nonempty set of features. 

   is a tree structure of  . Each feature   in   except 
one feature called the root feature, has a unique parent 
feature     in  .   is called a child feature of  . 

   is a function defined on  . For every feature   in   
this function assigns a set of all possible combinations 
of child features of  . For every leaf feature this 

function assigns    . 
   is a set of crosstree relations. 

As result of this definition one can conclude the following 
about the feature model in Figure 1: The set of features is 
{Mobile Phone, Calls, GPS, Screen, Basic, Colour, High 
resolution, Media, Camera, MP3}. The root feature is Mobile 
Phone, Screen is the parent of Colour and Camera is a child of 

Media. The children of Mobile Phone are Calls, GPS, Screen 
and Media. The features Mobile Phone, Screen and Media are 
the different parent features.  
 
In a feature model          , all the possible assignments of a 

function   are usually restricted to certain common 

assignments. These assignments are composed of four parent-
child relations are listed below: 

 Mandatory. In this relation if the parent feature is 

present in the product, the child feature is present too. 
In the given example, each product has the feature 
Calls. 

 Optional. In this relation if the parent feature is 

present in the product, the child feature could be in 
the product. In the given example, a product could 
have the feature GPS. However, not every product has 

the feature  GPS. 

 Alternative. In this relation if the parent feature is 
present in the product, only one of the child features is 

in the product. In the given example, every product 
has a High resolution or a Basic or a Color Screen, 
but not two of them. 

 Or. In this relation if the parent feature is present in 

the product, at least one of the child features is in the 
product. In the given example, every product with 
Media has a Camera or MP3 or both of them. 

The feature model in Figure 1 contains all four of these parent-
child relations. For example  (Media) = {{MP3}, {Camera}, 

{MP3,Camera}} which is a or-relation. The graphical notation 
of these relations will be used in the rest of the paper.  
 

Informally, the function   of a feature model           

restricts the space of all possible products. Other restrictions on 
the space of products are called crosstree relations. It could be 

any relation between two or more features that is not a parent-
child relation: 
 
Definition crosstree relation: Given a feature model 
         . A crosstree relation is a logical formula defined on 

a subset of  . This subset contains at least two elements. 

 

A example of a crosstree relation in Figure 1 is Camera 
requires High resolution. The following two relations are 
typically used: 

 Requires. If a feature A require feature B, then every 

product with feature A also has feature B. In the given 
example, every product with a Camera has a High 
resolution Screen. The logical formula for this 
relation is    . 

 Excludes. If two feature excludes each other, then 

both features could not be in the same product.  In the 
given example, no product exists with a GPS and a 
Basic Screen. The logical formula for this relation is 
      . 

 
As stated above a feature model describes a family of products. 
Each product obeys the relations and restrictions described in 

that model.  This leads to the definition of product:  
 
Definition product: Given a feature model          . A 

product   is a non empty subset of   in which: 

 For each element   of  , if   is not the root feature, 
then the parent feature of   is an element of   too. 

 If   is an element of  , then the intersection of the set 
of all child features of   and   is an element of     . 

 Each statement in   is true, where each feature   in 
each statement is true if and only if   is element of  . 

 
To illustrate this definition one can state the following about the 
feature model in Figure 1: {Mobile Phone, Calls, Screen, 
Basic} is a product. Another product is {Mobile Phone, Calls, 
Screen, High resolution, Media, Camera}. {Mobile Phone, 
Calls, Screen, Basic, MP3} and {Mobile Phone, Screen, Basic} 
are not products, because in the first set the child-feature MP3 

has no parent feature and in the second set the mandatory 
feature Calls is missing. The set {Mobile Phone, Calls, Screen, 
Basic, Colour} is not a product either, because in a product 
Screen can only have one child, but the set contains both Basic 
and Colour. For the reader who is interested in all the different 
products of the given model, should consult [3].  
 
Definition void: A feature model is void if and only if the 

feature model does not represent any products. 
 
In this paper we will use the term variability to indicate the 
number of different products of a given feature model. The 
higher the variability, the more different products a feature 
model represents. A void feature model is considered of the 
lowest variability.  
 

2.2 Extended Feature Models 
In some cases the basic feature model is too abstract. It could be 
necessary to include information about the features in the 

model. This piece of information is called an attribute of a 
feature.  A feature model with attributes is called an extended 
feature model. Benavides et al. [3] concluded in their literature 
review that there is no consensus of how to use feature 
attributes. We adopt the idea of attributes of [11]: An attribute 
has a name and a domain, where the domain consists of the 

Figure 1. A feature model of a mobile phone 



possible values the attribute could take. Thus an extended 
feature model is: 
 
Definition extended feature model: An extended feature model 
is a five-tuple             where: 

           is a feature model. 

 A is the set of attributes. An attribute is a three tuple 

        where   is an element of   (the feature 

which the attribute belongs to),   is the name and   

is the domain of the attribute. 
 

A product of an extended feature model almost equals the 

definition of a product of a basic feature model. The difference 
is that each feature in a product of an extended feature model 
has an instantiation for each attribute of that feature. That 
means every attribute in a product takes its value on its 
corresponding domain. 
 
Definition product: Given an extended feature model 
           . A tuple       where   is a nonempty subset of   

and   is a set of attributes, is product if: 

   is a product of the feature model          . 

 For each element         in  , if   is an element of 
  then there is a unique          in  , where   is a 

subdomain of   with a single value. 

 For each element         in  ,   is an element of   
and         is an element of   for some   which 

includes  .  

 
This definition suggests that the space of products of an 

extended feature model is larger than the space of products of 
the corresponding basic feature model. This is generally true, 
because a product of a basic feature model can have one or 
more instantiations of attributes in an extended feature model.  
 
In this paper, we classify the domains in three categories: 

 Real interval. In this case the value of an attribute is 

an element of a certain bounded subinterval of the 
real numbers. For example, a possible attribute for 
Calls is Frequency with a value on the real domain 

        .  
 Discrete interval. In this case the value of an attribute 

is an element of a certain bounded subinterval of the 
natural numbers. We use the notation        for a 

interval with the minimum value   and the maximum 

value  . So        =            . For example, a 
possible attribute for GPS is Version with a value on 
the integer domain       .  

 Enumeration. In this case the value of an attribute is a 

element of an enumeration. For example, a possible 
attribute for Camera is Megapixels with a value on 

the set             . 

2.3 Optimization Analysis 
One of the key questions that can be stated about feature models 
is: 'What is the optimal product of a given feature model?'. The 

meaning of the word 'optimal' depends on the user of the 
product. Generally speaking, a product is better when that 
product is valued more.  Then the optimal product is the 
product which the user assigns the highest value. This idea 
leads to the following definitions: 
 
Definition Objective function: Let   be a feature model and let 

      be the set of all products described by  . Then a 

function         is an objective function. 

 

In other words, an objective function is a function which 
assigns a real value to a every product of a certain feature 
model.  
 
Definition Optimal product: Let   be a feature model and let 

     be the set of all products described by  . Let   be an 

objective function defined on  . Then   is an optimal product 

with respect to                       . 
 
Thus an optimal product maximizes a given objective function 

of a certain feature model. For example consider the feature 
model in Figure 1. If the objective function equals the number 
of features of the given product, then the optimal product is 
{Mobile Phone, Calls, GPS, Screen, High resolution, Media, 
Camera, MP3}. 
 
Currently, optimization analysis could be performed with 
constraint programming or integer programming. 

2.3.1 Constraint programming 
Constraint programming (CP) is a set of techniques to solve 
constraint satisfaction problems (CSP's). A CSP consists of a 
set of variables and a set of constraints [1]. Each variable is 
defined on a certain domain. A constraint is a Boolean 
expression defined on some variables. If specific values for the 
variables evaluate a constraint true, then the constraint is 
satisfied, else the constraint is violated. The goal of solving a 
CSP is to find one or more solutions in which each variable has 

a value, such that this value is in the corresponding domain and 
all constraints are satisfied.  

2.3.2 Integer programming 
Integer programming [6] is a set of techniques to solve integer 
problems (IPs). An IP is a linear problem, except all variables 
are subjected to be integers. A linear problem is an optimization 

problem and consists of a set of numeric variables, a set of 
constraints and a linear goal function. These constraints are in 

the form of            , where    en   are values and    are 

variables.   stands for         or  . The goal of linear 

programming is to find a value for each variable, such that the 
goal function is maximized and all constraints are satisfied. 

3. RELATED WORK 
Benavides et al. [2] were the first who used constraint 
programming to reason on feature models. They provided a set 
of mapping rules to transform a feature model into a CSP. 

Although they did not provide mapping rules for attributes, they 
were able to transform an extended feature model into a CSP. 
Karates et al. [11] did provide these mapping rules. Moreover, 
they were able to map every relation into a part of a CSP. Both 
limited their feature models to have attributes with finite 
domains. As result a large number of feature models can be 
analyzed. Because of the mature field of constraint 
programming a wide variety of tools is available [11].  

There were different performance analysis of the use of 
constraint programming to reason on feature models. The first 
analysis suggested an exponential growth in time when the 

features grow linearly [1,2]. Another analysis concluded 
roughly the same about memory usage and also stated that 
bigger feature models are a problem [4]. They also stated that 
constraint programming did not solve most problems in a 
reasonable amount of time. These analyses were based on 
determining all different products of a feature model. 

Performance of optimization using constraint programming is 
not validated. The definition of the optimization operator [1] 
suggests that all products need to be checked to determine the 
optimal product. As stated above this suggests that optimization 



can be inefficient for large models, because a CSP solver has to 
cycle through all products. 

Osman et al [12,13] also proposed a technique for optimization. 
However, their technique was developed for validating feature 
models. As side effect it is possible to do some optimization. 
This technique suffers the same problem as constraint 
programming: all product have to be checked in order to 

determine the optimal product. This problem was also pointed 
out by White et al. [16]. They addressed the optimization 
problem with an approximation [15,16]. Although they were 
able to analyze large feature models, the optimal products itself 
were usually not found. 

Optimization analysis could also be done with integer 
programming. When given an linear problem, an optimal 
solution could be determined by the simplex algorithm. 
Although this algorithm performs very bad on certain classes of 
problems, this algorithm is generally fast. Van den Broek [5] 
showed that it is possible to transform a basic feature model 

into a IP. Therefore, the optimization can be done relatively 
easy [6]. However, the objective function and all relations in an 
extended feature model need to be linear in order to be 
transformable into a integer problem. This limits the set of 
feature models to which this technique can be applied on.  

4. RESEARCH GOAL 
The potential of integer programming is unknown. Also the 
performance of optimization using constraint programming is 
not clear.  

Therefore, this paper aims at answering the following main 
question: What is the performance of integer programming and 
constraint programming with respect to finding an optimal 
product of extended feature models?  

In order to answer that question, the main question is divided in 
five subquestions for each technique: 

1. Which extended feature models can be solved in a 
reasonable amount of time? 

2. How fast are extended feature models solved? 
3. How  is the solving time affected by the size of an 

extended model ?  
4. How  is the solving time affected by the composition 

of an extended model ?  

5. How  is the solving time affected by the type of the 
objective function? In other words, if another 
objective functions is chosen, how does it impact the 
solving time? 

The meaning of 'solving' should be clear: finding an optimal 
product of a given extended feature model and a linear 
objective function defined on that model. This notion will be 
used in the rest of the paper. 

 
Because of the currently known mapping rules, only extended 
feature models with mandatory-, optional-, or-, alternative-, 
requires- and excludes-relations were analyzed. Moreover, all 
attributes had a finite integer domain. In the case of extended 
feature models with real attributes, CSP solvers could not find 
an optimal product. Because of the infinite number of values an 
attribute could take, it is not possible to cycle through all 

products to find the optimal product. This suggests that linear 
programming is preferred. Therefore,  extended feature models 
with real attributes were not investigated.  
 
Extended feature models with enumeration attributes could be 
replaced by equivalent extended feature models without 
enumeration attributes. This is achieved by replacing each 
enumeration attribute by new child features, where each feature 

contains one single valued attribute of the enumeration. The 
relation between the new features equals the alternative-
relation. Figure 2 illustrates the replacement of enumeration 
attributes. So every extended feature model with enumeration 
attributes could be replaced by an equivalent extended feature 

model without enumeration attributes. Therefore, this study was 
restricted to extended feature models where all attributes have a 
finite integer domain. 

 
 
 

5. RESEARCH METHOD 
To answer the five sub questions stated in the last chapter, a set 
of test feature models was generated. Each feature model in this 
set was analyzed by a CSP solver and an IP solver. Each solver 
had to find one optimal product of a given extended feature 
model. The time needed for the solvers were compared in order 
to classify groups of extended feature models and to analyze the 
two different techniques.  

5.1 Components 
An overview of the used components can be found in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Firstly, a generator was developed to generate the test feature 
models. The generation of the models itself was performed by 
BeTTy [14].  The generator managed the different feature 
models and saved the models in .afm files. The generated .afm 
files needed to be analyzed by the CSP solver and the IP solver. 
Because of the amount of feature models which have to be 

translated, a translator for both solvers were developed in Java. 
To avoid writing duplicate file readers, a single file reader was 
developed. This reader read the .afm files and translated it into 
another representation, denoted by R in Figure 3. The 
representation is basically a list of the parent-child and crosstree 
relations and a list of values of the different attributes. The 
developed translators could easily iterate through the lists in 

Figure 2: Replacement of an enumeration attribute 

Figure 3: Overview components 
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order to translate the extended feature model into a CSP or a IP. 
Both developed translators used the translation rules mentioned 
in [6]. Because the lack of mapping rules for objective functions 
and attributes, the objective function and the attributes were 
handled different in both translators.  

The translator for constraint programming translated the 
objective function by adding a new variable called    . A 

constraint           was also added, which restricted the 

variable     to equal the used objective function (see next 

section). The translator for integer programming simply set the 
objective function as goal function. 

The translator for constraint programming introduced a new 
variable for each attribute, restricted on the given domain. In 
order to prevent the attributes of features which are not part of 

the product to alter the value of the objective function, a 
constraint                 was added for each feature   

and its attribute  . The translator for integer programming 

addressed both issues by adding a constraint            

for each feature   and its attribute   on the domain       . 

Each solver took as input the representation of a extended 
feature model as discussed. The CSP Solver used JaCoP [9] for 
solving the CSP's and the IP Solver used GLPK [8] for solving 

the IP's. JaCoP and GLPK are both Java libraries. The solvers 
registered the solution and the time needed for solving, denoted 
by I in Figure 3. The first was used for validation of the 
developed programs and the latter was used for answering the 
main research question. 

5.2 Test Models 
The test models were the extended feature models generated by 
BeTTy. BeTTy automatically gave around 80% of all features 

in a model an attribute. Due to restrictions of the random 
feature model generator of BeTTy, each attribute ranged on the 
same domain. This domain was set to         . The generator 

also assigned a random number in this interval to each attribute. 
In order to assign different values to features, these randomly 
generated values were used as weight for an attribute in the 
objective function. How they were used depended on the test 
case. The objective function was a weighted sum of the 
attributes. 

The test models will differ in three dimensions: 

 Size. The size of a feature model equals the number 

of features the model contains. 

 Composition. This means how the features in a 

feature model are related to each other in terms of 
parent-child relations. 

 Constraint percentage. This percentage indicates the 

number of crosstree constraints compared to the size 
of a feature model. So a feature model with 80 
features and 32 crosstree constraints has a constraint 
percentage of 40.  

 
In order to generate test models with a certain composition, 
BeTTy requires percentages of all relations as input. In order to 

manage the size of the set of test feature models, the constraint 
percentages were restricted to be either 0, 30 or 60. We 
restricted all compositions to be in one of the five following 
categories. 

 Balanced. In a feature model with a balanced 

composition around 30% of the parent child relations 
are mandatory and around 30% of the parent child 
relations are optional. The remaining 40% of the 
parent child relations are either alternative or or. 

 Low variability. In a feature model with this 

composition around 80% of the parent child relations 

are mandatory and around 10% of the parent child 
relations are optional. The remaining 10% of the 
parent child relations are either alternative or or. 

 High variability. In a feature model  with this 

composition around 10% of the parent child relations 
are mandatory and around 80% of the parent child 
relations are optional. The remaining 10% of the 

parent child relations are either alternative or or. 

 Low set participation. In a feature model with this 
composition around 45% of the parent child relations 

are mandatory and around 45% of the parent child 
relations are optional. The remaining 10% of the 
parent child relations are either alternative or or. 

 High set participation. In a feature model  with this 

composition around 10% of the parent child relations 
are mandatory or optional. The major 90% of the 
parent child relations are either alternative or or. 

These restrictions brought the number of test feature models to 
fifteen different types for a fixed size. For each type ten random 
feature models were tested in order to achieve a better result. 
Therefore, for a fixed size, 150 different models were checked. 

5.3 Execution and Measurement 
All the models were solved on a Window 7 computer with an 
i7-3610QM Intel core at 2.3 GHz and 8 GB DDR3 RAM. The 
Java programs itself were executed in Eclipse Juno limited with 
a heap size of 2 GB.  

Each solver automatically analyzed the test models. If a solver 
fails to find an optimal product in one minute, a 'fail' will be 
noted. Else the solving time was noted by using 
System.nanoTime(). This time limit was merely practical. 
Moreover, the solver needed to solve the models in a reasonable 

amount of time. Besides the solving time, the voidness of a test 
model was also noted.  

5.4 Test Cases 
The generator generated 1500 test models with a size of 100 
until 1000, with steps of 100. 

5.4.1 Case 0: Constraint programming strategies 
JaCoP imposes the user to specify a search strategy. The Java 
library for JaCoP already contains several strategies. In this test 
case three strategies were chosen and their performance 
compared in order to find the best suitable strategy for the next 
two test cases. This performance was determined by the solving 
time of all the generated test models with a size lower than 600. 

5.4.2 Case 1: All positive objective function 
The objective function in this test case only consisted of 
positive terms. The generated attribute values were directly as 
weight in the objective function, because all of these values 
were positive. Both solvers analyzed the 1500 generated models 
separately. Because these solvers could easily solve the test 
models, another 1200 test models were generated and analyzed. 
These models ranged from 1500 until 5000 in size, with steps of 

500. By performing this case the first four subquestions could 
be answered.    

5.4.3 Case 2: Alternating objective function 
In order to answer the last subquestion, another objective 
function was constructed. The values found in the .afm files 
were mapped into another weight. The mapping was as follows: 
if the weight is smaller than 51 the weight is unchanged, else 

the new weight equals 100 minus the old weight. This mapping 
introduces negative weights, and thus another objective 
function. Then the same test models were analyzed by the 
different solvers. 



6. RESULTS 
In the rest of the paper we use type numbers to indicate groups 
of test models with the same composition as follows: 

0. Balanced and constraint percentage of 0. 

1. Low variability and constraint percentage of 0. 
2. High variability and constraint percentage of 0. 
3. Low set participation and constraint percentage of 0. 
4. High set participation and constraint percentage of 0. 
5. Balanced and constraint percentage of 30. 
6. Low variability and constraint percentage of 30. 
7. High variability and constraint percentage of 30. 
8. Low set participation and constraint percentage of 30. 
9. High set participation and constraint percentage of 30. 

10. Balanced and constraint percentage of 60. 
11. Low variability and constraint percentage of 60. 
12. High variability and constraint percentage of 60. 
13. Low set participation and constraint percentage of 60. 
14. High set participation and constraint percentage of 60. 

All the solving times are average times shown in milliseconds, 
with a margin of a half millisecond. Only the most important 
results are listed below. The other results are listed in Appendix 
A. 

6.1 Case 0 
Figure 4 and 5 shows the solving times of the test models of 
type 0 using the CSP solver and three different strategies named 
IndomainMax (Max), IndomainMin (Min) and IndomainMiddle 
(Mid) with respect to the size of the models. 

 

 

 

6.2 Case 1 
Figure 6 shows the solving times of the test models of type 0 
using the different solvers with respect to the size of the 
models. 

 

Figure 7 and 8 shows the solving times of the test models of the 
first five types using the different solvers with respect to the 
size of the models. Each curve in the graph is a type. 

 

 

 

6.3 Case 2 
Figure 9 shows again the solving times of the test models of 
type 0 using the different solvers with respect to the size of the 
models. This time the alternative objective function was used.  

 

 

Table 1 shows the number of test models which could not be 
solved for each solver and test case. CP 1 stands for constraint 
programming case 1. Likewise IP 2 stands for integer 
programming case 2. The first column lists the different solvers 

and cases. The second column denotes the number of test 
models which could not be solved. The third column lists how 
many test models were analyzed. The last column denotes 
which percentage of all test models could not be analyzed 
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Figure 4: Solving times plotted against size (Case 1) 

Figure 7: Solving times using constraint programming 

Figure 8: Solving times using integer programming 

Figure 9: Solving times of both techniques 

Figure 6: Solving times of both techniques 

Figure 5: Solving times plotted against size (Case 2) 



. 

setting number total percentage 

CP 1 138 2700 5,11 

IP 1 0 2700 0 

CP 2 80 1200 6,67 

IP 2 0 1200 0 

 

7. DISCUSSION 

7.1 Case 0 
The IndomainMax strategy starts with picking the highest value 
in a domain. After that the second highest value is chosen. The 

IndomainMin strategy is the counterpart of IndomainMax, 
which chooses the lowest value in a domain. The 
IndomainMiddle strategy combines the other two by first 
picking the middle value, then the highest value, then the lowest 
value in a domain. Figure 4 shows the speed compared to the 
size of the test models. Clearly, IndomainMax is the best 
strategy in for test case 1, which is not unlikely. In order to 
achieve a high objective function, as many features and as high 

as possible attributes values should be picked. This is exactly 
how IndomainMax works. The IndomainMiddle strategy firstly 
considered the middle values in domains. As result it took this 
strategy a factor 100 - 2000 more time to solve the test models. 
The IndomainMin strategy is even worse. Probably this strategy 
considered almost all lower valued products before trying to 
add a feature. Moreover, Figure 4 suggests that the 
IndomainMiddle and the IndomainMin strategy's solving time 

grows exponentially when the size grows linearly. Without 
considering test models of type 7, The IndomainMin strategy 
already fails to solve some test models with a size of 500. 
Therefore, for test case 1 the IndomainMax strategy was 
chosen. 

By setting the objective function to the one mentioned in 
section 5.4.3, all three strategies took around the same solving 
time according to Figure 5. The IndomainMiddle strategy was 
overall slightly faster, so this strategy was chosen for test case 
2. 

7.2 Case 1 

7.2.1 Analysis of solvability 
By analyzing the results in Table 1, we conclude that there is a 
difference between constraint programming and integer 
programming. With integer programming all test models were 
solved in the one minute time limit. With constraint 
programming however 138 models could not be solved in the 
time limit. 127 of those model were of type 7 and the remaining 
11 of those models were of type 12. Although this failure is 
only around 5%, some failures were early encountered. 5 test 

models with a size of 200 already caused failures for the CSP 
solver, while the IP solver did not experienced any problems. 
By judging the solvability, integer programming seems to be 
preferred over constraint programming 

7.2.2 Analysis of speed 
Figure 6, 7 and 8 show the average solving time per test model 

composition. By basically comparing each average time, 
constraint programming is superior compared to integer 
programming. Considering only the test models with a 
constraint percentage of 0, the CSP solver is about a factor 2 
faster than the IP solver. Only 7% of the test model could be 
faster solved with integer programming. All of these models are 
of type 7 or type 12. Most of those models are the same which 
were considered to failure to solve for the CSP solver. On the 

other hand, all test models could be solved in less than 4.500 
seconds by using integer programming.  Both solvers suggest to 
grow exponentially when the size grows linear. In most cases, 
constraint programming seems to be preferred over integer 
programming.  

7.2.3 Influence of voidness 
While generating extended feature models, BeTTy does not 
make any guarantees about feature models which represents 
some products. Therefore, BeTTy can generate void feature 
models. Considering the test models of type 5 until 14, al lot of 
these models are actually void. Moreover, all the generated test 

models of type 6 and 11 are void. This could be clarified by the 
composition. While trying to make a product, if someone 
encounters two mandatory features which exclude each other, 
then the model is void if those two feature should be in the 
product. Models of type 6 and 11 contain a large number of 
mandatory relations and exclude relations. Most test models 
with a constraint percentage of 60, are void probably due the 
large number of exclude relations. The test models of type 12 

did not suffer voidness.  Probably due the large number of 
optional features it is possible to circumvent the exclude 
relations and makes it easier to create products.  

By comparing the solving times, Appendix A clearly shows a 
speed gain for void models by using constraint programming. 
The voidness of most test models was discovered in less than a 
half millisecond. It took the CSP solver at most 2 milliseconds 
to discover voidness. The results show that the IP solver also 
solved void test models faster than other test models. This gain 
is not as extreme as the gain by constraint programming, but it 
suggests that the IP solver is a factor two faster when analyzing 

a void test model. By judging this aspect, constraint 
programming seems to be preferred over integer programming 
by analyzing void feature models. 

7.2.4 Influence of constraint percentage 
By considering the influence of the constraint percentage, the 
results show that constraint programming benefits from an 

increasing constraint percentage. The comparisons of the 
nonvoid test models 8, 9, 10, 12, 13 and 14 with the respective 
test models 3,4 and 5 suggest that extended feature models with 
a high constraint percentage are faster solvable than other with 
a low constraint percentage. Crosstree relations restrict the 
space of possible products and therefore they help to speed up 
the CSP solver. Test models of type 12 and 7 confirm this 
notion, but test models of type 2 suggest otherwise. Probably 

the lack of any crosstree constraint allows the CSP solver to 
find the optimal product quickly, because a selection of a 
feature never has to be revoked. Generally, an increase in 
constraint percentage seems to reduce the solving time while 
using constraint programming.  

The same test models mentioned in the last paragraph give a 
consistent view for integer programming. The IP solver suffers 
from an increase in constraint percentage in terms of solving 
speed. The solving time may be a factor 3 slower due the 
crosstree constraints. Each crosstree relation introduces more 
space in the matrix solved by the simplex algorithm. This fact 

may clarify the penalty in the speed.  So an increase in 
constraint percentage seems to increase the solving time while 
using integer programming.  

7.2.5 Influence of variability 
The test models of type 0, 1 and 2 and Figure 7 and 8 confirm 
the notions of 7.2.4. An increase in mandatory relations seems 
to benefit the CSP solver, but an increase in optional relations 

seems to slow the solving time. Feature models with many 
mandatory relations have generally a low variability and 

Table 1: Numbers and percentages of failures 



therefore a small possible product space. On the other hand, 
feature models with many optional relations increases the 
variability and therefore a larger possible product space. The 
larger this space, the longer the CSP solver is takes to find an 
optimal product. The increase in variability seems to benefit the 

IP solver. The test models with a lot of optional relations were 
fasted solved than the balanced test models, which were faster 
solved than the test models with a lot of mandatory relations.  

7.2.6 Influence of set participation    
Considering Figure 7 and 8, the occurrence of alternative and or 
relations influences both solvers in the same way. Considering 

models of type 0, 3 and 4, both solvers solved the test model 
with a few alternative and or relations faster than the balanced 
test models. The speed gain is about 8%. The solving time of 
the test models with a lot of alternative and or relations was 
about 20% longer than the ones of the balanced test models. 
The IP solver seems to be slightly more stable than the CSP 
solver. 

7.3 Case 2  
Figure 9 contains the solving times of test case 2. By alternating 
the objective function, the IP solver seems to be quite stable. 
For the most test models, the solving time needed is even 
slightly lower than the test models with the objective function 
of case 1. This suggests that the IP solver can easily handle 
objective function with positive and negative terms.  

The CSP solver cannot handle both positive and negative terms 
in the objective function. Because of this test models with a size 
larger than 800 were not even analyzed. The time needed to 
solve the test models with a constraint percentage of 0 
resembles the solving times of the IndomainMiddle strategy of 

case 0. The IP solver is over a 1000 times faster than the CSP 
solver. Twice as many test models could not be solved by using 
constraint programming as result of the alternated objective 
function. These failures also occurred in the models of type 0, 
1, 2, 3 and 4, while the CSP solver did not experience any 
trouble with these test models five times larger in test case 1. 
The CSP solver still recognized the void test models extremely 
fast, but also test models with a high constraint percentage took 
more time than using integer programming.  

8. CONCLUSION AND FURTHER WORK 
Constraint programming can be a very powerful technique 
when tackling optimization analysis, when the right information 
is known. A specific search strategy needs to be determined in 
order to use the speed of a CSP solver. Overall, integer 
programming is preferred, because an IP solver does not need 
this information. Besides a small penalty for speed, integer 

programming looks like a reliable technique when solving 
extended feature models. 

The used CSP solver fails in some cases to solve an extended 

feature model in a reasonable amount of time. None of the test 
models was a problem for the IP solver. 

The speed of CSP solver was overall higher than the speed of 
the IP solver. Only in a few specific cases the IP solver was 
faster. Both techniques offer the same time complexity 
regarding to the size of an extended feature model. The time 
needed grows exponentially when the size grows linearly. 

The variability of an extended feature affects the solving time. 
The CSP solver seems to benefit from a low variability, while 
the IP solver seems to benefit from a high variability. The 
solving time of a void feature model is extremely low while 
using constraint programming.  

The solving time while using integer programming is stable 
under changes of the objective function, while the CSP solver 

suffers extremely in speed while solving models with both 
positive and negative terms in the objective function. 

However, the mapping from an extended feature model to an 
integer problem is not complete. The mapping mentioned in [5] 
and in this paper is sufficient to map the six most used relations 
and attributes, but the mapping of all relations mentioned in 
[11] are not yet defined. Furthermore, existing software could 

be upgraded to use integer programming for optimization 
analysis. 
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APPENDIX

A. RESULTS 

This section contains most of the results of this study. The 
information is ordered in tables. In each table the first row 
denotes the different sizes of test models. The first column 
denotes the different types of test models. The other cells 
contain a average runtime in milliseconds. Each grey cell 
denotes that all test models of that size and type were void. 
The absence of any number means that the solver could not 
solve any of the test models of that size and type. 

A.1 Case 0 
Table 2 contains the average runtimes of the three different 
strategies using constraint programming for determining the 
strategy for test case 1. Table 2 contains one extra dimension. 

The second row denotes which strategy was used. Max 
denotes IndomainMax, Min denotes IndomainMin and Mid 
denotes IndomainMiddle. The runtimes in this tables only 

includes the first case. The different runtimes for the second 
case resembles each other and are therefore not recorded in 
this paper. Only the runtimes with IndomainMiddle strategy is 
recorded in section A.3 

A.2 Case 1 
Table 3 and 4 contains the average runtimes of the solvers in 
test case 1. 

A.3 Case 2 
Table 5 and 6 contains the average runtimes of the solvers in 
test case 2. 

 

 

 100   200   300   400   500   

 Max Min Mid Max Min Mid Max Min Mid Max Min Mid Max Min Mid 

0 4 1112 459 4 5983 2301 5 12661 6813 7 30520 13354 12 53129 25839 

1 2 1122 410 2 6975 2920 4 17904 7344 6 31870 13884 9 50835 23410 

2 2 736 399 2 4160 2348 4 12067 6479 7 28600 14125 10 42510 24768 

3 1 1075 430 2 6675 2571 3 14432 6947 5 23645 13196 8 42926 21372 

4 1 1368 478 3 6541 2952 7 18083 9117 6 32176 16344 11 54229 27857 

5 1 1 1 0 0 0 1 22 6 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 13 495 364 59999     1 160 71 0 0 0     

8 0 11 3 0 0 0 3 640 184 0 0 0 0 0 0 

9 0 37 10 0 0 0 1 483 166 0 0 0 1 56 5 

10 0 0 0 0 0 0 0 0 0 2 18 6 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 405 624 536 1 4 1 1467 4184 3449 1 159 64 45 724 360 

13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000 

0 4 4 5 7 12 14 20 23 27 35 81 154 238 348 485 654 854 1073 

1 2 2 4 6 9 10 12 16 21 27 61 119 178 257 367 479 608 771 

2 2 2 4 7 10 12 17 22 29 37 91 176 257 374 548 716 898 1153 

3 1 2 3 5 8 10 14 26 26 33 72 147 219 317 456 611 787 959 

4 1 3 7 6 11 14 19 22 34 43 96 184 283 423 587 807 1031 1247 

5 1 0 1 0 0 1 0 2 5 4 1 0 1 1 1 1 2 2 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

7 13 59999 1 0   5675     3       

8 0 0 3 0 0 2 0 1 0 0 3 1 1 1 1 1 1 10 

9 0 0 1 0 1 1 0 0 1 3 1 1 1 6 1 1 1 2 

10 0 0 0 2 0 0 0 1 2 0 2 6 1 1 1 1 1 1 

11 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 2 

12 405 1 1467 1 45 7 5 30080 50 1 18 45 15 17 6 57  90 

13 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 8 1 2 

14 0 0 0 0 0 0 0 0 2 1 0 4 1 1 1 1 2 1 

 

 

 

Table 2: Average solving times using different strategies (Case 1) 

Table 3: Average solving times using constraint programming 



 

 

 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000 

0 3 6 10 15 21 32 36 46 56 68 151 266 422 611 824 1103 1399 1730 

1 4 6 10 20 24 32 41 55 67 86 182 291 469 661 920 1168 1490 1873 

2 3 4 7 14 15 21 30 36 44 55 124 215 340 485 669 880 1102 1387 

3 3 5 8 17 21 24 33 41 51 63 135 241 391 565 757 1012 1296 1596 

4 3 5 10 20 23 31 41 54 68 80 177 312 498 720 968 1284 1636 2042 

5 4 2 21 9 13 61 20 108 127 169 100 166 236 366 492 681 820 1034 

6 2 5 8 14 21 28 35 49 59 74 161 289 455 654 862 1110 1432 1757 

7 2 4 17 4 25 34 79 163 65 210 281 1106 833 662 1980 4159 3524 3785 

8 2 3 16 7 10 56 19 97 25 31 316 158 208 298 415 600 694 3696 

9 3 5 26 8 50 67 32 28 98 186 106 178 339 1702 617 727 1043 1262 

10 1 8 5 36 18 25 33 122 160 68 432 757 417 570 772 1010 1327 1619 

11 2 5 9 16 23 33 43 56 74 91 192 351 549 783 1049 1393 1742 2192 

12 4 12 70 36 47 60 84 214 156 178 355 843 1014 1531 2107 2617 3312 4098 

13 4 12 6 10 13 21 29 36 50 48 128 219 360 529 678 2896 1157 1408 

14 1 4 9 14 20 27 38 52 188 151 179 897 531 698 942 1266 1601 1903 

 
 

 

 100 200 300 400 500 600 700 800  
 

100 200 300 400 500 600 700 800 

0 341 1787 4971 9781 17578 30219 38983   0 3 6 8 12 16 22 26 35 

1 317 2110 5244 9649 15901 23998 35319 49160  1 2 6 9 14 18 27 34 45 

2 339 1694 4657 10005 17011 25847 36763 52685  2 1 3 5 7 10 15 20 24 

3 355 2022 4915 9292 15890 24033 34576 47800  3 2 4 6 9 14 18 24 30 

4 390 2114 6743 11687 19713 32091 48274 53089  4 2 4 8 12 17 24 31 41 

5 1 0 6 0 0 2 1 5  5 2 2 14 9 11 44 20 76 

6 0 0 0 0 0 0 0 0  6 2 4 8 13 20 28 35 49 

7 223  57 0   3701   7 2 3 11 4 16 21 52 121 

8 2 0 140 0 0 29 0 49  8 2 2 11 7 10 40 19 64 

9 8 0 115 0 5 2 0 0  9 2 3 18 8 35 48 32 28 

10 0 0 0 4 0 0 0 2  10 1 6 5 27 17 25 33 86 

11 0 0 0 0 0 0 0 0  11 2 5 9 15 22 33 43 56 

12 505 1 19316 57 242 723 1213 7005  12 3 8 44 23 29 39 55 194 

13 0 0 0 0 0 0 0 0  13 3 8 6 10 13 21 29 36 

14 0 0 0 0 0 0 0 0  14 1 3 8 12 19 27 38 51 

 

Table 4: Average solving times using integer programming 

Table 5: Average solving times using constraint 

programming 

Table 6: Average solving times using integer 

programming 


