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ABSTRACT

The output of concurrent specification and verification
tools is difficult to understand for the average programmer.
In this paper we discuss the development of a visualiza-
tion tool that visualizes the permission flow of concurrent
programs. This tool might help programmers to better un-
derstand the output given by their verification tools and
the flow of permissions in their concurrent programs. We
implemented a prototype of this visualization tool using
VerCors and Prefuse. The prototype uses delta calcula-
tions to visualize permission changes over the execution.
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1. INTRODUCTION

It is not uncommon for bugs to be accidentally introduced
during software development. Because of this it is impor-
tant to verify the behavior of the program. Many meth-
ods of program verification have been developed e.g. unit
tests, acceptance tests, etc. Alternatively, analyzing pro-
grams can be done using static verification or runtime ver-
ification. Program verification is a formal method that can
prove whether the program satisfies a formal specification
of its behavior. Assuming the specification is correct and
complete, a correct program should not contain any bugs.

//Simple counter with 2 threads
2 class{
int ¢ =0;
4 void run(){
parallel (tid= 0..2){

6 for (int i=0;i<5;i++){
c=c+1;
s }
}
10 }
}

12

Figure 1. Example program in PVL.

Concurrent programs can have hard-to-find bugs such as
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bugs that could crash the entire program by creating data
races or deadlocks. Because of this, various static ver-
ification tools have been developed for concurrent pro-
grams such as VerCors [2] and Chalice [5]. Stijn Gijsen
has extended VerCors with a runtime permission checker
[4]. VerCors uses a native programming and annotation
language (PVL).

The example program in figure 1 is an example of an in-
correct concurrent program. This program contains a data
race on the integer c. The program in Figure 2 avoids this
data race by specifying the permissions on the integer c
using an invariant and an atomic statement. The invari-
ant proves the correctness of the program and specifies
the scope of the atomic, whereas the atomic prevents the
actual data race from happening.

//Simple counter with 2 threads
2 class{
int c =0;

requires perm(c,1)

6 void run(){
invariant inv(perm(c,1)){
8 parallel (tid= 0..2){
for (int i=0;i<5;i++){
10 atomic(inv){
c=c+1;
12 }
}
14 }
}
16 }
}

18
Figure 2. Example program without data race.

The output of a verification results in either a “pass” or a
“fail” with an error message, which specifies which asser-
tion on which line of the program failed the verification.
The VerCors verifier outputs its results on the command-
line.

VerCors specifications are relatively complex because they
have to account for memory accesses and keep track of
the various read and write permissions of all threads. Be-
cause of this high complexity it is common to introduce
bugs or inconsistencies in the specification of the program.
Just looking at the simple example in Figures 1 and 2 the
correct program added 6 additional lines to the original,
which is half the original program. If a program is proven
correct using a faulty specification it does not contain any
dataraces but the program might still contain deadlocks or
other unwanted behaviour. For this reason it is important
that programmers understand the proof or, when a proof
could not be generated, why the verification failed. And



when necessary they should have the possibilty of checking
the permission flow manually.

Since the proofs and results of the VerCors verification
are complex and rather difficult to understand without
additional knowledge about the verification method used,
a visualization tool could be very helpful for programmers
that would like to understand this verification. To help
the programmer understand the verification and the proof
generated by VerCors we will develop a visualization tool
that can visualize the permission flows in a concurrent
program.

1.1 Problem Statement

Even though VerCors can use static or runtime verification
to prove a program correct or incorrect according to its
specification, it is often difficult to understand this proof
without deeper knowledge of the inner workings and model
of VerCors. This makes it difficult for the programmer to
understand whether his specification is correct or not.

In order to make it easier for the average programmer to
understand the VerCors verification some kind of visual-
ization tool is needed. This tool should visualize all per-
missions of the threads in the program and how they are
exchanged between threads during execution of the pro-
gram, also known as the permission flow. An important
part of this visualization tool is visualizing the permissions
in a clear way.

However, there is also a challenge in visualizing more com-
plex programs with more data, larger arrays and/or larger
amounts of threads. Since methods for visualizing smaller
amounts of permissions might not be clear enough when
the amount of permissions grows we will have to find a
way to effectively visualize both large and small amounts
of permissions.

1.2 Research Questions
Based on the problem statement there is one main research
question which should be addressed.

How can the permission flow of a concurrent program be
visualized?

This research question can be split into three sub ques-
tions.

How can the permissions of a thread at a given point in
the execution be visualized?

How can the changes in permissions of a thread be visual-
ized when stepping to the next point in the execution?

How can large amounts of threads and/or more moving
data be visualized?

2. BACKGROUND

Permissions in the VerCors verification model are defined
as rational numbers in the range 0 to 1. Within this range
a permission value of 1 equals a writing permission and
0 means there is no permission at all. However to allow
for easy exchange of read permissions 0" has been added
to this range of numbers. 1~ has also been added as a
counterpart to 0F. Important to note is the fact that both
0" and 1™ are read permissions. In this context 0T means
a negligible amount more than 0, similarily 17 is slightly
less than 1.

3. RELATED WORK

There exists related work on visualization methods and
standards.

Shneideman discusses a visualization mantra, GUI design
and how to visualize data [7]. “A useful starting point for
designing graphical user interfaces is the Visual Information-
Seeking Mantra: overview first, zoom and filter, then de-
tails on demand.” We used this mantra for the GUI design
of the tool and of course for the tool itself.

Carpendale discusses visualization and how to distinguish
data and/or information using visual variables [3]. The
discussion in this report centers on how the visual variables
can be used in the creation of visual representations for the
purpose of information visualization. We use the visual
variables for distinguishing between outgoing and incom-
ming permissions. Additionally, visual variables were used
to differentiate between read, readwrite and no permission
at all.

4. APPROACH

The VerCors model is already capable of parsing programs
and verifying them. To get access to the verification data
Stefan Blom has implemented a dynamic interpreter for
this verification. This interpreter is initialised with a textfile
that contains the program. Once initialiased it can be
queried for possible steps, this allows the visualization tool
more control in the interleaving of various threads. The
tool could for example give the user control over the in-
terleaving using this functionality. If there are no possible
next steps the program is either deadlocked or finished.
An example of the interaction with the interpreter can be
found in figure 3.
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Figure 3. Communication between the visualiza-
tion and the interpreter.

However, to make communication about the state of the
program possible between the interpreter and the visual-
ization tool we had to develop a datastructure called the
ProgramState. The ProgramState contains an abstraction
of the heap, an abstraction of the threads, an abstraction
of all locals of those threads and most importantly it con-
tains the resources those threads possess.

Using a PossibleStep object it is possible to query the
interpreter for the ProgramState that corresponds to the



next step. The visualization tool uses the ProgramState
to create a simplified model of the permissions that are
present in the program. A single permission within this
model is the permission a single thread has on a single
object on the heap in a rational representation. The per-
mission model uses the resources a thread possesses to de-
rive the rational value for a given permission. For effiency
purposes permissions that equal zero are left undefined to
keep the size of the model as small as possible.

4.1 Delta Datastructures

To keep track of changes in permissions a Delta datastruc-
ture is used. A Delta object keeps track of the changes
in permissions that happen within a thread. Every Delta
keeps track of only a single heap object or a single element
of an array. These characteristics allow the basic Delta ob-
ject to be as small and simple to calculate as possible. It
is possible to aggregate multiple deltas together to create
an overview of a heap object, an array or even an entire
thread. An overview of the Delta and its aggregators can
be found in figure 4. For generating delta objects and
their aggregators a DeltaFactory has been implemented,
this makes it possible to generate all deltas from a central
point in the visualization tool.

In order to visualize the flow of the permission over the
exection of the program the visualization tool calculates
delta’s using two PermissionModel instances: the model
that represents the current programstate and the model
that represents the programstate of the previous position
in the execution. This previous position can actually be
multiple interpreter steps ago, this allows for more flex-
ibility in implementing and extending the interpreter as
having multiple changes in a single step does not break the
DeltaFactory. Delta calculations are done on demand.

4.2 Challenges

During the implementation of the prototype we stumbled
upon two problems that turned out to be major compli-
cations.

4.2.1 Rational Numbers

Because permissions in VerCors are defined as rational
numbers or fractions we have implemented a Rational
datatype. This datatype stores the integer value of the
numerator and the denominator. The difficult part of im-
plementing the Rational is that it also had to support 0T
and 17, as those values are also used for permissions. The
complication occured when a bug caused the 07 value to
be equal to the 0 value. This caused big problems since
a permission of 0 means the thread has no access at all
while a permission of 07 means a thread has read access.

4.2.2 Aliases

Threads can have several different objects which all refer-
ence the same object on the heap. Those different objects
that reference the same heap object are called aliases. The
existence of aliases complicates the generation of the per-
mission model as you have to link multiple fields to the
same permisssion. Initial implementations of the permis-
sion model did not take the existence of aliases into ac-
count. Therefore aliases had to be added later on which
caused a very inconvenient loss of time.

4.3 Limitations

Because of the limited amount of time available for this
research the choice was made to limit the initial prototype
in scope. The prototype supports only simple heap ob-
jects: Integers, Booleans, Chars and arrays of those types.
More complex structures such as objects and lists are not
supported.

At the same time the prototype does not support the entire
PVL language and only works for simple fork-foin and
parallel structures.

S. VISUALIZATION

As said before, the permission flow of a program consists
of permissions flowing from one thread to another. Such
a system of permissions flowing from thread to thread can
be modeled in the form of a directed graph where the
nodes are threads and the edges are the permissions that
change ownership. Using the delta factory it is possible to
generate this graph for the entire program.

Using the Prefuse visualization library for Java [1] and its
included graph datastructures it was possible to visual-
ize some initial graphs. As can be seen in Figure 5 the
vanilla library was not adequate for our purpose. Thread
names are not rendered for the nodes, nor are the costs
of the edges. At the same time multiple edges between
two nodes, as is the case when threads exchange permis-
sions on multiple fields are rendered on top of each other.
For this reason we had to extend the Prefuse library with
more advanced rendering methods, such as custom node
and edge renderes which are capable of printing the re-
quired information and labels.

5.1 Overview

In accordance with the visualization mantra described by
Shneiderman [7] we start by creating a proper overview of
the permission flow. Such a overview should not contain
too many details as it is only there to allow the user to
identify nodes (which represent threads) of interest. To
allow the user to do this, the user will have to know which
threads have changes in permissions happening to them
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Figure 4. The Delta class and its aggregators.



Figure 5. The permission graph with the default
Prefuse renderers.

and which do not have that happen. It is also very impor-
tant that the user gets an overview of the entire collection,
this means the overview has to contain all threads, includ-
ing those which have already finished running or those
which are not yet running (but are initialised). Every
node has a label with the thread identifier, this makes it
easier for the user to identify special threads such as the
“main” thread.

Because this overview contains a node for every thread
that exists within the program we have decided to limit the
amount of edges between two particular nodes to two; one
edge in either direction. This greatly limits the amount of
clutter in programs with a higher amount of threads. How-
ever with just the edges between the nodes the user does
not have enough information to identify nodes of interest,
because the user is not able to tell which permissions were

var0Q, varl, var2, var3

var0, varl, var2, var3

t4

exchanged. To solve this problem labels are added to the
edges, those labels contain a list of all heap objects on
which permissions flow in the direction of the edge. The
names used in the list are dependent on the alias the giv-
ing thread knows them by. If the thread knows the heap
object by multiple aliases all names are added to the list.
An example of the overview from the prototype can be
seen in Figure 6, which is the same graph as Figure 5 but
now with custom rendering. In the overview field labels
are not rendered to prevent clutter and to keep to overview
as simple and clear as possible.

5.2 Zoom

Double clicking a thread in the overview zooms in on that
particular thread. In this “Thread Display” the selected
thread is used as a point of view. An example of such
a display can be found in Figure 7. Since we use the
central node as a viewpoint only the flow of permissions
relevant to this node is visible. Every edge is connected to
the correct object on the central node. Every edge has a
label that corresponds to the value of the permission that
flows from or to the central node. The current value of all
permissions of the central node is rendered on top of the
central node. Double clicking on a different node switches
the viewpoint to that node. The visual variable color has
been used to differentiate between incoming and outgoing
permissions. At the same time the visual variable of size is
used to differentiate between the amount that is transfered
by different edges.

There is some future work left in the zoom functionality.
The initial goal was to extend this zoom functionality to
the heap objects. Double clicking on var0 in Figure 7
sopen a different display which should show the locations
of all permissions on that heap object at that moment
in time. The double click on the various heap objects is
already detected by the event handling, all that is left to
do is actually implement the display that should open.

5.3 Details On Demand

Even though assertion-based debugging is easier and more
efficient than looking at source debugging information [6],
some users of the tool might appreciate quick access to
the actual values of various locals on the thread stack or

t2

var0, varl, var2, var3

varl, varl, var2, var3

b t3

Figure 6. An example program overview.



objects on the heap. We looked into two different ways of
giving the user access to these details.

The first possibility is showing the actual value of various
fields on mouseover. The advantages of this method are its
quick accessibilty and intuitiveness. The disadvantages are
unwanted information and popups when the user moves
the cursor.

The second possibility is allowing the user to open a table,
either in a different view, or by adding it to the existing
visualization, which contains the requested information.
The biggest advantage of this method is the fact that it
is truly on demand. The biggest disadvantage is that it
either takes up some sizeable screen real estate when vi-
sualized next to the visualization in a different window or
the more complex and time consuming implementation in
the case of adding a table to the visualization as this table
would need a different custom renderer.

A test conducted amongst a small amount computer sci-
ence students resulted in a small preference for the tooltip
solution, see table 1. Further investigation might prove
useful before a solution is implemented.

Table 1. Details on demand results
Tooltip Table
8 6

6. PROTOTYPE AND VALIDATION

A prototype visualization tool has been implemented as a
result of this research. The prototype has been tested and
validated using a paralel implementation of the Fibonacci
algorithm (see Figure 8).

An example of the prototype GUI can be found in Figure
10. On the right a simple navigation panel can be found,
the user can swap between views by changing their selec-
tion in this panel. The main visualization takes up the
majority of the screen, this window can be resized to fit
the user’s preference. The green field has been reserved for
a future code highlighting add-on. For more information
about the prototype see Appendix A which walks through
the execution of the fibonacci example.

7. CONCLUSION

The main research question of this paper was how to create
a visualization method for the permission flow in concur-
rent programs. This goal has been achieved with the pro-
totype visualization tool for the VerCors verification tool.
To create this we first created an interpreter to gain access

var0 : 0

// begin( all )

2 class Fib {
static void main(){
4 Fib f;
f=new Fib(4);
6 f.run();
int res=f.output;

s}
10 int input, output;
12 requires Perm(input,1/10) s Perm(output,1);

ensures Perm(input,1/10) ** Perm(output,1);
14 void run() {
if (input<2) {

16 output = 1;
} else {
18 Fib f1;
fl = new Fib(input—1);
20 Fib f2;
f2 = new Fib(input—2);
22 fork f1; fork f2;
join f1; join f2;
24 output = fl.output + f2.output;
}
26
ensures Perm(input,1) *x //linebreak
28 Perm(output,1) ** input==n;
Fib(int n){
30 input = n;
}
32}
// end(all)

34

Figure 8. Paralel implementation of the Fibonacci
algorithm in PVL.

Figure 7. Thread tO giving its permission on var0 to t1 and t2 (left) and receiving it back (right).
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Figure 9. Many changes in a single step

to the required data. Using this data we were able to vi-
sualize the permissions of the threads within the program.
Using delta calculations on the information retrieved form
the interpreter we are able to calculate the changes of those
permissions when compared with a previous point in the
execution. We used the calculated delta’s to visualize the
changes in permissions as the edges of a directed graph of
which the nodes represent the threads.

Because the prototype is very limited in its current state
there is a lot of room for future work. The tool sup-
ports larger and/or more complex programs as long as
the amounts of nodes and edges that have to be drawn
are somewhat limited. Large amounts of data cause the
visualization to stutter and, even worse, cause the visual-
ization to become extremely unclear as edges and labels
are overlapping eachother. This makes the entire graph
almost unreadable as can be seen in figure 9. Luckily it

is possible to control the amount of edges that are shown
every step by making sure that every step is only a single
interpreter step. This solution is not perfect, if an user
wants to jump to a breakpoint or wants to make bigger
steps in general it is no longer possible to assure that we
only make a single interpreter step per visualization step.

7.1 Future Work

7.1.1 General Improvements

The prototype is a far from complete visualization tool.
Not only does it support a limited subset of the PVL lan-
guage it’s also missing a lot of “ease of use” functionality
such as, a resizeable window, a tidier layout, better tran-
sitions between different display mode and the camera not
resetting to the start position when pressing the next step
button.

7.1.2  Breakpoints

Since the visualization was meant to help programmers see
the permission flow of their program, understand it and if
necessary debug it, the addition of breakpoints could be
very valuable. In order to achieve working breakpoints
we would have to add breakpoint recognition to the in-
terpreter. Once the interpreter recognizes breakpoints it
should be possible to implement a “step till breakpoint”
method. Bigger programs with either many threads or a
lot of heap object will pose additional challenge.

7.1.3  More Complex Programs, Data And Struc-
tures

The current tool is compatible with integers, booleans,

chars and arrays over those types. Extending this to in-

clude more complex structures such as lists and trees will

eventually be necessary.

7.1.4 Code Highlighter

A code highlighter would highlight the lines of code in
the source code that are currently active. This kind of
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Figure 10. The prototype GUI



functionality is very common in source code debuggers. A
code highlighter would be a valuable addition if we were
to turn the visualization tool into a proper debugging tool.

8.
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[5]
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APPENDIX

A. FIBONACCI EXAMPLE

This Appendix shows snapshots of the prototype during
execution of the fibonacci code in Figure 8. Only the forks
and joins on the main (first) thread are shown.

Main
[1].output : 1 Fib@2
[1].input : 1 @
[2].output : O

[3].output : 1 10

[3].input : 1

Figure 11. The main thread forking the first re-
cursive step (input — 1).

Main
Joutput : 1
].input : 1
]
]

[1
[1
[2].output : O
[

3].output : 0

Figure 12. The main thread forking the second
recursive step (input — 2).

Main Fib@2

[1].output : 1
[1].input : 1

[3].output : O

Figure 13. Main thread joining the first recursive
thread. Regaining read access to its output, which
has now been calculated.

Main Fib@3

4

[1].output : 1
[1].input : 1

Figure 14. Main thread joining the second recur-
sive thread. Regaining read access to its output,
which has now been calculated. Both input —1 and
input — 2 are accessible now and the final answer
can be calculated.



