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ABSTRACT
Quiescence is the absence of outputs in a labelled tran-
sition system. Quiescent Transition Systems (QTSs) are
labelled transition systems that can model quiescence ex-
plicitly. Time outs in combination with QTSs are of-
ten used to determine quiescence in model-based testing.
This is not yet done in a systematic and standardized
way. This paper proposes a way to add quiescence to
Timed Automata (TAs), the Quiescent Timed Automaton
(QTA). TAs are transition systems extended with real-
valued clocks. It is possible to determine quiescence in
model-based testing via QTAs, because of the extra clock
x that can be added to a TA to determine if quiescence is
the case. The paper ensures that QTAs can be used for
determining quiescence in testing, since it provides proof
that it is an valid alternative for QTSs which does not
alter the behavior of QTSs. Furthermore, a way is pro-
posed to create a QTA from a labelled transition system
and to directly create a QTA from a QTS and vice versa.
QTAs as alternative for QTSs provide a foundation for a
practical and systematic way of testing, which is now only
done intuitively. The contribution of the QTA is therefore
relevant for model-based testing with quiescence.
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1. INTRODUCTION
Model-based testing is a common way of verifying the cor-
rectness of software. A lot of different forms or extensions
of a Labelled Transition System (LTS) are used in model-
based testing. An LTS is a model consisting of states and
transitions which represent the different steps taken when
executing a software program. In practical testing of LTSs
it is currently hard to detect whether there really is an ab-
sence of outputs, or if the output is just delayed. Because
of this issue, four different extensions for LTSs are pre-
sented in this paper: Input-Output Transitions Systems
(IOTSs), Quiescent Transitions Systems (QTSs), Timed
Automata (TAs) and Quiescent Timed Automata (QTAs).
The first three extensions are already presented in earlier
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papers. The QTA is a new model first presented in this
paper.

First IOTSs are presented. An IOTS is an extension of
a LTS, which distinguishes between actions that are initi-
ated by the environment (input actions) and actions initi-
ated by the system itself (output actions) [3]. This distinc-
tion is relevant for testing. Therefore in almost all relevant
cases an IOTS is used for model-based testing instead of
a regular LTS. In Figure 1 you can find an example of
an IOTS, where a? is an input action and b! an output
action.

b!

a?

Figure 1: An example of an IOTS

QTSs are the next extension of LTSs introduced. When
there is an absence of outputs in a transition system (for
example an IOTS) this is called quiescence. Standard
IOTSs do not contain an explicit way to represent qui-
escence. QTSs as introduced by Stokkink et al. [3] can
represent quiescence explicitly with the quiescence label
δ. In Figure 2 you can find an example of a QTS. Because
the tool that created these models, Uppaal, does not con-
tain the possibility to add the δ-symbol to a transition,
this is represented by the text delta.

delta

b!

a?

Figure 2: An example of a QTS

The third already known extension of a LTS is the TA. If
quiescence is the case in a certain state when performing a
test case and this is not foreseen in the specification, that
particular test case should fail. In practice it is however
hard to detect if an output is never given, i.e. if quiescence
is the case. Time outs are often used in modern testing.
Because time outs are used, an alternative for QTSs may
be Timed Automata (TAs). TAs are finite automata, LTSs
with a finite number of states, extended with a finite set of
real valued clocks [1]. In Figure 3 you can find an exam-
ple of a TA. Note that quiescence is not modeled in this
example.

Practical testing is important to verify the correctness of
software. As mentioned before, it is hard, if not impossi-
ble, in practical testing to determine whether quiescence,
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Figure 3: An example of a TA

the absence of outputs, is really the case. Therefore practi-
cal testing of LTSs, or QTSs when quiescence is modeled,
is hard and there is not a standardized way to perform
such tests.

Research shows that in current testing time outs are used
to determine if quiescence is the case. Usage of time outs
is however quite intuitive and they are not used in a sys-
tematic or standardized way, i.e. there is no real founda-
tion for using time outs in combination with QTSs even
though they are already used. TAs are, due their real val-
ued clocks, capable of capturing timing in the transition
systems. Using these clocks, it is therefore possible to tell
after a certain amount of time if no output is given that
quiescence is the case, i.e. time outs can be modeled and
integrated in the transition systems when using TAs. Be-
cause of this property it becomes way more intuitive to
use time outs for determining quiescence and TAs seem
to model and test quiescence in a more systematical way.
Therefore it is important to study TAs as an alternative
for QTSs. If TAs can really be used as an alternative for
QTSs, a foundation is made for a practical and systematic
way of testing that is now only done intuitively.

Overview
To conduct tests with quiescence using TAs a few steps
are needed beforehand. First, a way needs to be defined
to integrate quiescence in TAs. No earlier research of TA
presented this explicitly. If quiescence is not integrated
in TAs there is no reason to explore the options of us-
ing them as an alternative for QTSs or to even make the
comparison. In section 3 a solution of adding quiescence
to TAs can be found, the Quiescent Timed Automaton
(QTA). Secondly it is important that there is a way to
create such a QTA from an IOTS. In this case, an IOTS is
used instead of a LTS, because in most models of systems
a distinction between input and output actions is neces-
sary. This transformation is described in section 4. The
third step of the research is the comparison of the QTS
and the QTA created from the same IOTS. In [3] a way
is already presented to transform a IOTS to a QTS. The
comparison of the QTS and the QTA can ensure whether
the QTA is indeed a reliable and formal alternative for
the QTS. This is presented in section 5. In section 6 the
transformation of the QTS to the QTA and vice versa can
be found which is the last part of the research presented
in this paper. These transformations are very useful for
practical testing of your QTS without having the original
IOTS or if you do not want to perform more than one
transformation. The practical use of the QTA becomes
way more realistic by the transformation presented in the
section 6. All the transformations presented in this paper
can be found in Figure 4.
Section 2 contains some background information about all
the different transitions systems used in this paper. Some
related work is also described in this section. This in-
formation is necessary to fully understand all the infor-
mation presented in the paper. If already familiar with
transition systems and timed automata this section can
be skipped. All the next sections in this paper refer to a

certain research question. The conclusion contains the an-
swer to the main research question which can be answered
by combining the information of all previous sections.

Figure 4: The transformations presented in this paper

Research questions
All research questions presented here are answered in all
upcoming sections. The main research question is the first
question presented and focuses on the overall idea of find-
ing a way to use a TA as an alternative for a QTS. The
other research questions focus on the steps necessary to
ensure that TAs are an alternative for QTSs.

1. How can timed automata where quiescence is added
to be used in a way that their behavior and struc-
tural properties are preserved and timed automata
can be used as an alternative for quiescent transition
systems?

2. How can quiescence be added to a timed automaton
in such a way that the timed automaton keeps all its
original properties and behavior?

3. How can a timed automaton be created from a la-
belled transition system in a way that it has the same
behavior and what are the limitations of this trans-
formation?

4. To what extent are a timed automaton and a qui-
escent transition system created from the same la-
belled transition system equivalent when it comes to
behavior and test results when performing a certain
test?

5. How can a timed automaton be created from a qui-
escent transitions system or a quiescent transitions
system from a timed automaton in a way that it has
the same specifications and what are the limitations
of this transition?

2. BACKGROUND
2.1 Labelled Transition Systems

Definition 1. A labelled transition system (LTS) is a
quadruple A = <S, S0, L ∪ {τ}, →> such that:

• S is a set of states

• S0 ⊆ S is a non-empty set of initial states

• L is a set of labels where each element represents a
different action, and where τ is an internal unobserv-
able action

• → ⊆ S × Lτ × S is the transition relation, where Lτ

= L ∪ {τ}
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With a standard LTS there is no distinguishment between
actions that are initiated by the environment, input ac-
tions, and actions that are initiated by the system it-
self, output actions. Therefore an extension of the stan-
dard LTS is created, the input-output transition system
(IOTS).

Definition 2. An IOTS is a quintuple A =<S, S0, LI ,
LO ∪ {τ}, →> such that:

• S is a set of states

• S0 ⊆ S is a non-empty set of initial states

• LI is a set of input labels where each element repre-
sents a different input action

• LO is a set of output labels where each element rep-
resents a different output action, and where τ is an
internal unobservable action

• → ⊆ S × Lτ × S is the transition relation, where Lτ

= LI ∪ LO ∪ {τ}

IOTSs are the basis for all the transitions systems pre-
sented in this paper. Three important standard operations
defined for IOTSs are determinisation, parallel composi-
tion and action hiding [3].

2.2 Quiescence and Quiescent Transition Sys-
tems

Quiescence is the absence of outputs. Quiescence was in-
troduced for the first time by Vaandrager [7]. Tretmans [5]
then introduced the concept of repetitive quiescence and
made it possible to continue testing (even in quiescent
states) by introducing the suspension automata. This was
partly a solution to the quiescence issues, but there were
still some shortcomings. Quiescence is for example not
treated as a first-class citizen and basic operators like par-
allel composition and action hiding are not defined for sus-
pension automata. Therefore a new theory for quiescence
is presented by Stokkink et al. [3]: the quiescent transition
systems (QTSs).

First a formal definition of quiescent states is given. This
definition is relevant in order to understand the formal
definition of the QTS, which is also defined here.

Definition 3. A state s of a transition system A = <Sa,
S0
a, LIa , LOa , →a> is called quiescent when ∀ (s,a,s′) ∈
→a then a /∈ LO ∪ {τ}. The set of quiescent states of the
transition system A will be referred to as q(A).

Definition 4. A QTS is an IOTS A =<S, S0, LI , LO ∪
{τ} ∪ {δ}, →> such that

• S is a set of states

• S0 ⊆ S is a non-empty set of initial states

• LI is a set of input labels where each element repre-
sents a different input action

• LO is a set of output labels where each element rep-
resents a different output action, where τ is an in-
ternal unobservable action, and where δ is a special
output label that is used to denote the observation
of quiescence

• → ⊆ S × Lδτ × S is the transition relation, where Lδτ
= LI ∪ LO ∪ {δ} ∪ {τ}

The standard operations determinisation, parallel compo-
sition and action hiding are defined for QTSs [3]. QTSs
can be created from an IOTS by the process called deltafi-
cation. The following well-formed rules are defined for
QTSs:

1. Quiescence should be observable

2. No outputs after quiescence

3. Quiescence does not enable new behavior

4. Continued quiescence preserves behavior

QTSs can be convergent and divergent. They are called
divergent if there is an infinite path that only contains τ
transactions. Stokkink et al. [3] first presented the results
only for input-enabled and convergent QTSs. In [4], the
author however presents Divergent Quiescent Transition
Systems, DQTSs, which can also handle divergent IOTSs.
The research in this paper will only focus on convergent
and input-enabled IOTSs and QTSs. Research conducted
with DQTSs is future work and is not included in this
paper.

2.3 Timed Automata
This subsection first presents the formal definition of a
timed automaton given by Alur et al. [1]. The symbols
used in this definition are adapted to the symbols used
by Stokkink et al. [3] and are therefore different from the
original symbols used by Alur et al.

Definition 5. A timed automaton is a quintuple <S, S0,
L ∪ {τ}, C, →> such that

• S is a set of states

• S0 is a set of non-empty initial states

• L is a set of labels where each element represents a
different output action, and where τ is an internal
unobservable action

• C is a finite set of real-valued clocks

• → is a transition which is defined as (s, a, s′, λ, µ)
∈ S × Lτ × S × Φ(C) × 2C , where Lτ = L ∪ {τ},
λ is the set of clocks that need to be reset with this
transition, and µ is a clock constraint over the clock
C.

Earlier research is conducted on timed automata. The
two papers on this topic that are most important for this
research are shortly described here. First, the paper by
Alur et al. [1] which focuses on the fundamental theory of
TAs. This paper introduces TAs and gives the first formal
definition of TAs. This is followed up by a way to check
emptiness and intractable problems. Finally, determinis-
tic timed automata are defined and there is a topic on
the verification of timed automata. The second paper by
Bengtsson et al. [2] is about using TAs for modeling and
verification of real time systems. In this paper TAs are
presented which is followed up by the symbolic semantics
and the verification of TAs. Next, the algorithm and data
structures of TAs are presented and in the end the use
of UPPAAL for TAs. UPPAAL is a tool that is used to
model and verify TAs [6]. This tool is also used in this
research to create the images of transitions systems and
(Q)TAs used in this paper.
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3. QUIESCENT TIMED AUTOMATA
In the previous section TAs are already introduced, but
quiescence for TAs is not specified in earlier research. To
model quiescence using TAs, Quiescent Timed Automata
(QTAs) are introduced.

Definition 6. A Quiescent Timed Automata is a TA A
=<S, S0, LI , LO ∪ {τ} ∪ {δ}, C, →>, such that:

• S is a set of states. ∀ s ∈ S there is an invariant x ≤
t.

• S0 ⊆ S is a non-empty set of initial states.

• LI is a set of input labels where each element repre-
sents a different input action, which are recognized
by the ? at the end.

• LO is a set of output labels where each element rep-
resents a different output action that are recognized
by the ! at the end, where τ is an internal unobserv-
able action, and where δ is the label that represents
quiescence explicitly.

• C is a finite set of clocks which contains the extra
clock x.

• → ⊆ S × L × S × Φ(C) × 2C is the transition rela-
tion, where µ ∈ Φ(C) is the set of clock constraints
over C and λ ∈ 2C is the set of clocks that need to
be reset together with this transition. ∀ (s,a,s′,µ,λ)
∈ → then x ∈ λ. ∀ s ∈ q(A) then ∃ (s,a,s′,µ,λ) ∈ →
where a ∈ {δ}, and x == t ∈ µ.

Every QTA has a special clock x which measures whether a
state s is quiescent. This clock x is only used to determine
whether quiescence is the case and can not be used for
any other purpose. Every QTA also has a fixed time t
after which a state is said to be quiescent. A distinction
is made between quiescent and non-quiescent states. In
non-quiescent states the invariant makes sure that if after
the time t no transition happened, the state is marked
as quiescent. Since this is a non-quiescent state this is
unwanted behavior and the invariant makes it possible to
detect erroneous behavior in (the model of) a system. In
quiescent states there is, besides the invariant x ≤ t, an
outgoing transition with the δ label and the constraint that
x == t. Because of the combination of the invariant and
the clock constraint that the δ-transition needs to happen
at a time t, it is ensured that quiescence is always noticed
in quiescent states because of the δ-transition which always
happens at the time t. Note that to get a correct working
of the QTA every transition needs to reset the clock x.

The time t after which a state is considered to be quiescent,
can be determined by the user. This can depend on the
time used by the system, the preferences of the user, or
the kind of system that needs to be tested. When the time
t is chosen incorrectly this has some risks for the system.
First, the time t chosen can be too long. In that case, in
quiescent states the special transitions with the quiescence
label δ can only happen after that long time t and in that
time t another input transition might already happened
and quiescence is never noticed. In QTSs, that use the
same quiescence label, it is assumed that the δ-transition
happens. In QTAs this depends on the clock. If the time
t is too long, quiescence can stay unnoticed and a QTA
will therefore have a different behavior than the QTS and
can not be used as an alternative for the QTS.

The second risk is that the time t chosen is too short. In
non-quiescent states the following invariant is added: you

can only be in a certain state if the clock x ≤ t. If the
clock x is greater than t, the state is marked as quiescent
and the system is said to not work properly. If the time
t chosen is too short, non-quiescent states can be marked
as quiescent too soon and the system can be labelled as
erroneous. This is unwanted behavior. Another side-effect
of the time t chosen too short is that in a quiescent state
the δ-transition happens real soon and even multiple times
before another transition might happen. This is not per
definition erroneous behavior, but it is unwanted behavior.
When determining the time t, the user should keep all of
these risks in mind. This gives great responsibility to the
user. It is impossible to set a standard for this, since this
time heavily depends on the behavior of the system. It is
assumed however that the time t is chosen in such a way
that it should never happen that quiescence is noticed too
soon or not at all.

4. FROM IOTS TO QTA
IOTSs are most commonly used when modeling a system.
In order to perform the necessary testing on such models,
the notion of quiescence needs to be made explicit. One
way to do this is proposed in the previous section: the
QTA. In this section we present a way to transform an
IOTS to a QTA by adding a new clock x to the IOTS, and
formulate constraints on this clock x for the transitions
and states of the original IOTS, to make the notion of
quiescence explicit. An IOTS can be tested in a practical
way after this transformation. Notice that this clock x is
only used to determine quiescence and is not used for any
other purposes.

Definition 7. Given an IOTS A = <Sa, S0
a, LIa ,LOa ∪

{τ}, →a> we define the transition of A to the QTA B
C(A) = <Sb, SOb , LIb , LOb ∪ {τ} ∪ {δ}, Cb, →b> where:

• Cb consists of the extra clock x

• Sa = Sb and ∀ s ∈ Sb an invariant is added to s that
x ≤ t

• S0
a = S0

b

• LIa = LIb

• LOa = LOb

• →b = {(s, a, s′, λ, µ) ∈ Sb × Lτb × Sb × Φ(C) × 2C

| (s,a,s′) ∈ →a ∧ µ = ∅ ∧ λ = {x})} ∪ {(s, δ, s, λ,
µ) ∈ Sb × {δ} × Sb × Φ(C) × 2C | s ∈ q(B) ∧ µ =
{x == t} ∧ λ = {x})}, where Lτb = LIb ∪ LOb ∪ {τ}

An example of the transformation of an IOTS A to the
corresponding QTA can be found in Figure 5. No value
is given to the time t after which quiescence in a state is
determined.

A difference between two kind of transitions from state s
to state s′ is made with the transformation of an IOTS to
the QTA: the transition was already part of the IOTS A,
or state s is quiescent and the special quiescence transition
occurs. For the first possibility the transition is an input,
output or internal action and the addition is made that
clock x needs to be reset. There is no clock constraint
for such a transition. In the second possibility the state s
is quiescent and therefore the clock should determine this
after the time t. For this purpose an extra transition with
the special quiescence label δ is added. This transition has
the clock constraint that the clock x has to be equal to t
and after this transition the clock x resets. Because of the
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x:=0

(b) The QTA B

Figure 5: The transformation of the IOTS A to the QTA
B

combination of the invariant in the quiescent states that x
needs to be smaller or equal to t and the constraint for the
δ-transition that x needs to be equal to t it is ensured that
the delta transition always occurs in a quiescent state.

The definition of the transition relation covers the notice
of quiescence in quiescent states. QTAs have the great
benefit to also notice quiescence in non-quiescent states
and therefore detect incorrect behavior in (the model of) a
system. To ensure this happens the invariant is also added
to every non-quiescent state that the clock x needs to be
smaller or equal to t. After adding the delta transition
to quiescent states and adding this invariant to both the
quiescent and the non-quiescent states a correct QTA is
created from an IOTS where quiescence can be noticed in
every state. Note that this only works correctly if with
every transition the clock x resets.

This transformation to a QTA ensures that the behavior
of the original IOTS is not altered. In each state all the
input, output, and internal actions of the IOTS are also
possible in the QTA, without any restrictions on time.
Adding the invariant to non-quiescent states can however
create some differences in the behavior of an IOTS and a
QTA created from this IOTS, since there is no notion of
time in the IOTS. In the IOTS it is assumed an input, out-
put, or internal transition happens. In a QTA a transition
can only happen if the invariant allows it. However, it is
assumed that the time t after which such a non-quiescent
state is marked quiescent is chosen in such a way that all
transitions are still possible under normal circumstances.
With this assumption the invariant does not influence the
behavior of the created QTA in such a way that it is dif-
ferent from the behavior of the IOTS.

The aim of this research is to use QTAs as an alternative
for QTSs when testing with quiescence. To ensure this, in
the next section comparisons are made between the QTS
and the QTA created from the same IOTS. To be sure no
transformation rules are needed for this, the QTA uses the
same special quiescence label δ as proposed by Stokkink et
al. [3]. The quiescence label is necessary to make explicit
that quiescence was really the case.

5. COMPARISON OF QTS AND QTA
As mentioned before, the aim of this research is to use
QTAs as an alternative for QTSs. In order to ensure QTAs
are a valid alternative for QTSs, the specifications and
the behavior of both transition systems have to be equal.

In this section several comparisons of a QTA and a QTS
created from the same IOTS are shown. An example can
be found in Figure 6. No value is given to the time t after
which quiescence in a state is determined. This example
will be referred to in the upcoming subsections.

5.1 Trace equivalence
The first aspect that is relevant to establish that QTAs
are an alternative for QTSs is to determine if both sys-
tems are trace equivalent. Before ensuring that both sys-
tems are trace equivalent the definitions of trace and trace
equivalence and the definition of path is given.

Definition 8. A trace σ = a1a2. . . an is the sequence of
actions executed by a transition system A, where the τ -
actions are removed. The length of the trace is denoted by
|π| and is the number of actions occurring in the trace. The
set of all traces of A is denoted by Traces(A). Two tran-
sition systems A and B are called trace equivalent when
traces(A) = traces(B).

Definition 9. A path is a sequence π = s0a1s1a2. . . ansn
of a transition system A such that ∀ 1 ≤ i ≤ n then
(sn−1,an,sn) ∈ →A. For this path trace(π) = a1a2. . . an.
The set of all traces of A is denoted by paths(A).

Theorem 1. Let A be an IOTS = <Sa, S0
a, LIa ,LOa ∪

{τ}, →a>, B be the QTS = <Sb, S0
b , LIb , LOb ∪ {τ} ∪

{δ}, →b> created from the IOTS A by deltafication as
described in [3], and C the QTA = <Sc, S0

c , LIc , LOc ∪ {τ}
∪ {δ}, Cc,→c> created from the IOTS A by the algorithm
described in Definition 7. Then traces(B) = traces(C).

Proof. First, we show that traces(B) ⊆ traces(C). Let
σ = a1a2. . . an ∈ traces(B). We need to show that σ ∈
traces(C). By Definition 9, we know that there is a path
π = s0a1s1a2. . . ansn. QTS B and QTA C are only trace
equivalent if the trace of π is in both B and C. We define
La = LIa ∪ LOa ∪ {τ}, Lb = LIb ∪ LOb ∪ {τ} ∪ {δ}, and Lc
= LIc ∪ LOc ∪ {τ} ∪ {δ}. By definition of deltafication [3]
we know that La ∪ {δ} = Lb, Sa = Sb, and S0

a = S0
b . By

Definition 7 we know that La ∪ {δ} = Lc , Sa = Sc, and S0
a

= S0
c . Because of these definitions we also know that →a

⊆ →b and →a ⊆ →c. Therefore all the input, output and
internal transitions in the IOTS, the QTS and the QTA
are the same (1). From (1) it can also be concluded ∀ an
∈ σ we know that if an /∈ La then an ∈ {δ}. For both the
QTS and the QTA Definition 3 is used for quiescent states.
It is known Sa = Sb and Sa = Sc and therefore Sb = Sc.
Because of this, and the definition of quiescent states we
know q(B) = q(C). Besides this we know that ∀ s ∈ q(B)
the delta transition happens and thus ∀ an ∈ {δ} that sn
∈ q(B). Because q(B) = q(C) also sn ∈ q(C) and therefore
that the transition with label an ∈ →c (2). By Definition
6 we know that for all transitions in the QTA the clock
constraint and the clocks that need to be reset with those
transitions need to be defined. By Definition 7 we know
that when creating the QTA from the IOTS the clock x
is added and that the clock constraint and the clocks that
need to be reset are added to the transitions, but that this
does not influence the transitions possible and even make
sure that the delta transition indeed happens as is assumed
with QTSs. Therefore it can be concluded from 1 and 2
that ∀ (sn−1, an, sn) ∈ π that there ∃ (sn−1, an, sn, µ, λ) ∈
→c and thus that σ ∈ traces(C).

Now we have to show that traces(C) ⊆ traces(B). This
proof is symmetric to the first part of the proof and there-
fore we know the traces(C) ⊆ traces(B).
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Figure 6: The transformation of the IOTS A to the according QTS and QTA

Since it is shown that traces(B) ⊆ traces(C) and traces(C)
⊆ traces(B) it can now be concluded that traces(B) =
traces(C) and thus that the QTS B and the QTA C created
from the same IOTS A are trace equivalent.

There are two important issues to notice when exploring
trace equivalence for the QTA and the QTS due to the
addition of the real-valued clock in the QTA. First there
can be a difference in the traces of the QTA and the QTS
because of the invariant added to all non-quiescent states
of the QTA. With the QTS one can assume that an in-
put, output, or internal action happens. QTAs have time
restrictions, which brings the possibility that an input,
output or internal action does not happen before the time
of clock x is already bigger than the invariant allows, and
the state is marked as quiescent before the input, output,
or internal action can happen. In this case the QTA and
QTS are not trace equivalent. However it can be assumed
that the user chooses a time long enough that every action
can occur. With this assumption the QTA and the QTS
are trace equivalent.

The second issue that should be taken into consideration is
that QTSs do not have any (timing) constraints on when
a δ-transition should happen. It can therefore be that in
a QTS two δ-transitions appear shortly after another or
that the δ-transition happens after a long period of time.
In the QTA there is the timing constraint, which makes
sure that a delta-transition happens after a certain time.
The possibility that two delta-transitions happen shortly
after another is therefore not there (assuming that the
time t is not chosen too short). When performing brute-
force testing it can therefore happen that there are an
unequal number of δ-transitions in a certain state s. This
is only the case when performing practical testing for trace
equivalence on both the transition systems. Both the QTS
and the QTA are however theoretical models and therefore
this is not considered as an issue. When practical testing

with the QTA is performed, it is for the user of a QTA to
notice this aspect when determining the time t after which
a state is marked as quiescent.

5.2 Well-formed rules
In section 3.1 of the paper by Stokkink et al. [3] the so
called well-formed rules are presented. If a QTS obeys
to all these rules, a QTS is called well-formed. In order
to determine if the QTA is an alternative for QTSs, it is
necessary that the QTA also holds to these rules when a
QTS is well-formed. In order to make this comparison
more readable, the well-formed rules are included in this
section. These well-formed rules are stated in the notation
of the paper by Stokkink et al. [3]

• Rule R1 (Quiescence should be observable): if s is

quiescent, then s
δ→.

• Rule R2 (No outputs after quiescence): if s
δ→s′,

then s′ is quiescent.

• Rule R3 (Quiescence does not enable new behav-

ior): if s
δ→s′, then traces(s′) ⊆ traces(s).

• Rule R4 (Continued quiescence preserves behav-

ior): if s
δ→s′ and s′

δ→s′′, then traces(s′) = traces(s′′).

Theorem 2. Let A be an IOTS = <Sa, S0
a, LIa ,LOa ∪

{τ}, →a>, B be the QTS = <Sb, S0
b , LIb , LOb ∪ {τ} ∪

{δ}, →b> created from the IOTS A by deltafication as
described in [3] , and C the QTA = <Sc, S0

c , LIc , LOc ∪ {τ}
∪ {δ}, Cc,→c> created from the IOTS A by the algorithm
described in Definition 7. Then if B is well-formed, then
C is well-formed.

Proof. Let B be a QTS that is well-formed. We need
to show that C is also well-formed. We define Lb = LIb
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∪ LOb ∪ {τ} ∪ {δ}, and Lc = LIc ∪ LOc ∪ {τ} ∪ {δ}.
From Theorem 1 we know that Sb = Sc, S0

b = S0
c , Lb =

Lc and we know that B and C are trace equivalent. For
the determinisation of quiescent states of both the QTS
and the QTA Definition 3 is used. Because of this and
because Sb = Sc we know that q(B) = q(C). Because B
and C are trace equivalent and because q(B) = q(C) we
know that if Rule R1, R2, R3 and R4 apply to the QTS
B it also applies to the QTA C. Because q(B) = q(C) all
the quiescent states of B and C are the same and because
they are trace equivalent we know that all the δ transitions
that happen in B also happen in C. If B applies to the well-
formed rules it is therefore only possible that the QTA C
also applies to these rules.

Note that the clock x added to the QTA to determine
quiescence does not influence the behavior of the QTA in
a way that the well-formed rules do not apply anymore.
As mentioned before, it is possible that the time t after
which a state is said to be quiescent is chosen in such a
way that the state is too said to be quiescent and certain
transitions can not happen. It is however assumed that
the time t is chosen in such a way that this is not the
case and that the clock does not influence the behavior of
the QTA. Therefore the well-formed rules do apply on the
QTA when they apply on the QTS.

This section showed that a QTS and a QTA created from
the same IOTS are trace equivalent and that if the well-
formed rules as defined by [3] apply on the QTS, they also
apply on the QTA. Therefore, QTAs are a valid alternative
for QTSs and the behavior of QTSs is not altered when
using QTAs instead.

6. TRANSFORMATIONS
In the previous section it is already proven that a QTS and
a QTA created from the same IOTS are trace equivalent
and that if the well-formed rules apply on the QTS, they
also apply on the QTA. This makes clear that it is also
possible to create a QTA from a QTS (and vice versa)
without using the original IOTS. In this section we first
present the transformation from a QTS to a QTA. This
transformation basically consists of adding the clock x and
the constraints belonging to this clock to the QTS. This
section also contains the proof that a QTS and the QTA
created from this QTS are trace equivalent and that if the
well-formed rules apply on the QTS, they also apply on the
QTA. In the next subsection we present the transformation
from the QTA to the QTS. With this transformation the
clock x and all its belonging constraints are removed.

6.1 From QTS to QTA

Definition 10. Given the QTS A = <Sa, S0
a, LIa ,LOa ∪

{τ} ∪ {δ} ,→a> we define the transition of A to the QTA
B T(A) = <Sb, SOb , LIb , LOb ∪ {τ} ∪ {δ}, Cb, →b> where:

• Cb consists of the extra clock x

• Sa = Sb and ∀ s ∈ Sb the invariant is added to s that
x ≤ t

• S0
a = S0

b

• LIa = LIb

• LOa = LOb

• →b = {(s, a, s′, λ, µ) ∈ Sb × Lτb × Sb × Φ(C) × 2C

| (s,a,s′) ∈ →a ∧ µ = {} ∧ λ = {x})} ∪ {(s, δ, s′, λ,

deltadelta d!c!

c!b?

a?

(a) The QTS A

x<=tx<=t

x<=t

x<=tx<=t

delta
x==t

x:=0
delta
x==t

x:=0 d!

x:=0

c!

x:=0

c!
x:=0

b?
x:=0

a?

x:=0

(b) The QTA B

Figure 7: The tranformation of the QTS A to the QTA B

µ) ∈ Sb × {δ} × Sb × Φ(C) × 2C | (s,δ,s′) ∈ →a ∧
µ = {x == t} ∧ λ = {x})}, where Lτb = LIb ∪ LOb ∪
{τ}

Figure 7 shows an example of the QTS A and the corre-
sponding QTA B which is created from the QTS A by the
algorithm described in Definition 10. No value is given to
the time t after which quiescence in a state is determined.

Contrary to IOTSs QTSs already contain the transition
with the special δ label for quiescence. Therefore for →b

a distinction is now made between a transition that is
already labelled with the δ label or a transition that is
labelled with any other label. With every transition that
occurs in a QTA the clock x needs to be reset because that
is the only way possible to detect if quiescence is the case
in that a state. Transitions with the special quiescence
label δ also have the clock constraint that when the clock
x is exactly t seconds the δ transition should happen. In
combination with the invariant added to all states it is
ensured that the delta transitions happen in all quiescent
states and that it is determined that this state is quiescent.
Because of this constraint a distinction is made between
the δ transition and all other transitions when defining
→b.

In order to determine if the QTA created from a QTS as
described by Definition 10 is an alternative for the QTS
it needs to be ensured that also in this case the QTS and
QTA are trace equivalent and that the well-formed rules
also apply on the QTA when they apply on the QTS.

Theorem 3. Let A be a QTS = <Sa, S0
a, LIa ,LOa ∪ {τ}

∪ {δ} , →a> and B the QTA = <Sb, SOb , LIb , LOb ∪ {τ}
∪ {δ}, Cb, →b> that is created from A as described in
Definition 10. Then traces(A) = traces(B).

Proof. First we show that traces(A) ⊆ traces(B). Let
σ = a1a2. . . an ∈ traces(A). We need to show that σ ∈
traces(B). By Definition 9 we know that there is a path π
= s0a1s1a2. . . ansn. If A and B are trace equivalent then
π ∈ paths(B). We define La = LIa ∪ LOa ∪ {τ} ∪ {δ} and
Lb = LIb ∪ LOb ∪ {τ} ∪ {δ}. By Definition 10 we know that
Sa = Sb, S0

a = S0
b , La = Lb. By Definition 10 we can also

conclude that all the transitions possible in the QTS can
also happen in the QTA. For all these transitions in the
QTA the clock constraint on the extra clock x and if clock x
needs to be reset is added. By Definition 10 we know that
the extra added clock x does not influence the transition
possible and that no extra transitions are added to the
QTA when creating it from the QTS. Because of this we
know that ∀ (sn−1,an,sn) ∈ π that there ∃ (sn−1,an,sn,µ,λ)
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∈ →b and thus that σ ∈ traces(B). Therefore traces(A) ⊆
traces(B).

Now we have to show that traces(B) ⊆ traces(A). Let σ =
b1b2. . . bn ∈ traces(B) and let the path π = s0b1s1b2. . . bnsn
be the path from σ. We need to show that σ ∈ traces(A).
By Definition 10 we know that all the transition of the
QTS A are also in the QTA B and that no new transitions
are added when creating the QTA. To the transitions of
the QTA the clock constraint on the added clock x and if
clock x needs to be reset is added, but by Definition 10 we
know that this does not alter the transitions possible. Be-
cause of this we know that ∀ (sn−1,bn,sn) ∈ π that there ∃
(sn−1,bn,sn) ∈ →a and therefore σ ∈ traces(A). Therefore
traces(B) ⊆ traces(A).

Since traces(A) ⊆ traces(B) and traces(B) ⊆ traces(A) it
can be concluded that traces(A) = traces(B). The QTS A
and the QTA B created from QTS A by Definition 10 are
therefore trace equivalent.

Theorem 4. Let A be a QTS = <Sa, S0
a, LIa ,LOa ∪ {τ} ∪

{δ} ,→a> and B the QTA = <Sb, SOb , LIb , LOb ∪ {τ} ∪ {δ},
Cb, →b> that is created from A as described in Definition
10. If the well-formed rules as described in section 5.2
apply to the QTS A, then they also apply to the QTA B.

Proof. Let A be a QTS that is well-formed. We need
to show that the QTA B is also well-formed. We define La
= LIa ∪ LOa ∪ {τ} ∪ {δ} and Lb = LIb ∪ LOb ∪ {τ} ∪ {δ}.
By Definition 10 we know that Sa = Sb, S0

a = S0
b , La = Lb

and that A and B are trace equivalent. Because Sa = Sb
and because for both QTS A and QTA B Definition 3 is
used to define quiescent states we know that q(A) = q(B).
Therefore and because of the trace equivalence we know
that all the well-formed rules apply also on the QTA B if
they apply on the QTS A.

The QTA created from the QTS is a valid alternative for
the QTS since both transition systems are trace equiva-
lent and when the QTS applies to the well-formed rules
then the QTA also applies to these rules. The main dif-
ference between these two transition systems is that with
the QTS you can assume transitions happen but with the
QTA the clock determines if an action can happen (or can
not happen). This can create some differences between
both transition systems when performing tests. In general
it however assumes that the time t is chosen in such a
way, this is not the case. Therefore the QTA created from
a QTS is a good alternative for this QTS.

6.2 From QTA to QTS
Earlier in this section it is explained that QTAs can be
created from QTSs by adding the extra clock x. In this
subsection the exact opposite is presented by removing the
clock x from a QTA to create a QTS.

Definition 11. Given the QTA B = <Sb, SOb , LIb , LOb ∪
{τ} ∪ {δ}, Cb, →b> we define the transition of B to the
QTS C T(B) = <Sc, S0

c , LIc ,LOc ∪ {τ} ∪ {δ} ,→c> where:

• the extra clock x is removed

• Sb = Sc and ∀ s ∈ Sc the invariant x ≤ t is removed

• S0
b = S0

c

• LIb = LIc

• LOb = LOc

• →c = {(s, a, s′) ∈ Sc × Lδτ × Sc | (s,a,s′) ∈ →b ∧ the
clock constraint is removed ∧ the set of clocks that
need to be reset is removed}, where Lδτ = LIc ∪ LOc
∪ {τ} ∪ {δ}

In order to ensure that the QTS created from a QTA is
a valid alternative for the QTA it once again needs to be
ensured that both transition systems are trace equivalent
and that if the well-formed rules apply on the QTA they
also apply on the QTS.

Theorem 5. Let A be a QTA = <Sa, SOa , LIa, LOa ∪ {τ}
∪ {δ}, Ca, →a> and B the QTS = <Sb, S0

b , LIb ,LOb ∪
{τ} ∪ {δ} , →b> that is created from A as described in
Definition11. Then traces(A) = traces(B).

Proof. This proof is similar to the proof of Theorem 3.
From this we can conclude that Traces(A) = Traces(B).

Theorem 6. Let A be a QTA = <Sa, SOa , LIa, LOa ∪
{τ} ∪ {δ}, Ca, →a> and B the QTS = <Sb, S0

b , LIb ,LOb
∪ {τ} ∪ {δ} , →b> that is created from A as described
in Definition11. If the well-formed rules as described in
section 5.2 apply to the QTA A, then they also apply to
the QTS B.

Proof. This proof is similar to the proof of Theorem
4. From this we can conclude that if the well-formed rules
apply on the QTA A, they also apply on the QTS B.

The proofs of Theorem 3 and Theorem 4 are based on the
fact that all the transitions are in both transition systems
and that for both transition systems Definition 3 is used
to determine quiescent states. This is also the case in the
transformation from QTA to QTS. Therefore it is certain
that the proofs are similar and that the QTS created from
the QTA and the QTA are trace equivalent and that if the
well-formed rules apply on the QTA they also apply on
the QTS.

For this transformation it also counts that the difference
between these two systems is that in the QTA the clock
determines whether an action can happen or can not hap-
pen. In transition systems without integrated clocks like
the created QTS, it is assumed that all transitions (can)
happen at a certain point. This can create differences be-
tween two models, but as explained before, it is assumed
that the time t after which the clock x notices quiescence
is chosen in such a way that this in not the case. Therefore
the QTS created from a QTA is a valid alternative for the
QTA.

Note that the QTS C presented in Definition 11 is ex-
actly the same as the QTS A presented in Definition 10.
These two definitions show that the transformation from
the QTS to the QTA is reversible and that it does not in-
fluence the behavior of the system. This is very important
when you look at the purpose of testing. It now became
relatively easy to transform a QTS to a QTA and then
perform more quantitative testing with the QTA, without
worrying whether the behavior of the system is influenced.
This is of great importance when looking at the reason for
this research: is a TA a reliable alternative for a QTS
when testing? Therefore it is possible to do more practi-
cal testing with TAs when it comes to quiescence. With
the transformations presented in this section it is made
possible to easily create a TA as an alternative for the
QTS and thus perform testing with quiescence in an easy
and systematical way.
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In Figure 7 it becomes clear that the transformation from
the QTS to the QTA is indeed reversible by applying the
description of Definition 11 to the QTA B from the figure.
The QTS A from the figure is then created and therefore
this example shows that the transformation is indeed re-
versible.

7. CONCLUSION
Section 3 up to section 6 answer research questions two up
to five respectively. The research questions are defined in
the introduction. First, in section 3 a way is provided to
add quiescence to a timed automaton by defining the QTA.
This section shows that all properties of the original TA
stay intact when using QTAs. This is possible because an
extra clock x is added to the TA which only purpose is to
determine if quiescence is the case. In quiescent states this
clock x makes sure that after a certain time t, quiescence
is always made explicit by performing a transition with
the special quiescence label δ. It is ensured this transition
happens after a certain time t because of the invariant
added to the quiescent state that x ≤ t and the clock
constraint on the δ transition that x needs to be equal to
t. In non-quiescent states the invariant that the clock x
needs to be smaller or equal to the time t is also added to
the state. Because of this invariant, it is possible in QTAs
to determine whether there is an error in the system if
no output or internal actions happens after a certain time
t. The time t after which a state is marked quiescent is
determined by the user.

In section 4 a way is presented to create a QTA from
a labelled transition system. When creating QTAs from
IOTSs two additions are needed: the extra clock x to de-
termine if quiescence is the case and transitions with the
special quiescence label δ to make quiescence explicit in
quiescent states. This section showed that the original
behavior and the original properties of the IOTS are not
altered since the same input, output and internal tran-
sitions are possible. The IOTS is just extended and not
changed. A small remark on this point is that with adding
the invariant to non-quiescent states, it is possible that a
state is too soon said to be quiescent and the system is
erroneous when the time t chosen is too small. When this
happens some input, output or internal actions can not oc-
cur anymore. In practice we assume that the user chooses
the time t after which a state s is said to be quiescent in
such a way that it does not alter the behavior of the sys-
tem. Because of this, the behavior of the original IOTS is
not altered and there are no limitations on this.

Section 5 describes to what extent QTSs as presented by
Stokkink et al. [3] have the same behavior and structural
properties as QTAs presented earlier in this paper. For
this purpose we compare QTSs and QTAs created from
the same IOTS. They are compared on two important
things: trace equivalence and the well-formed rules. First,
it is shown that the QTS and the QTA are trace equiv-
alent since the QTA also contains the special transition
for quiescence in quiescent states with the δ-label. Once
again it is a issue here that the invariant in non-quiescent
states can influence the transitions possible. Here it is also
assumed that the user chooses the time t in such a way
that this is not the case.This section also shows that if the
well-formed rules defined by Stokkink et al. [3] apply on a
QTS, they also apply on the QTA that is created from the
same IOTS. There are no constraints on this. After this
section it is therefore concluded that QTSs and QTAs can
be used as alternatives for each other.

The last research question is answered in section 6. This

section proposes a way to create a QTA from a QTS and
vice versa. This is possible by adding or removing the
clock x and the constraints on this clock respectively. In
the section a proof is included that a QTS and a QTA
created from this QTS are trace equivalent and that if the
well-formed rules apply on the QTS, they also apply on
the QTA. When creating a QTS from a QTA, this is also
the case. Therefore it is possible to use a QTA instead
of a QTS for practical testing when creating the QTA by
Definition 10. Furthermore it becomes easier to actually
use a QTA when you already have a QTS and want to save
the trouble of using the original IOTS. It is even possible
to create a QTA now without even having the original
IOTS. The transformations of section 6 can therefore be
a great stimulation (to start) usage of QTAs.

All sections described above together ensure that it is pos-
sible to model quiescence with timed automata and that
this is a valid alternative for QTSs. Because in a QTA
the modeling and determining of quiescence happens only
by adding the extra clock x and the other properties of a
TA are not influenced by this, this is a valid way to model
quiescence with timed automata. Both a QTS and a QTA
created from the same IOTS and a QTS and the QTA
created from this QTS are trace equivalent, and in both
cases it is ensured that if the well-formed rules apply on the
QTS, they also apply on the QTA. This establishes that
the QTS and the QTA can indeed be used as an alternative
for each other. As mentioned multiple times before there
is one remark on the usage of QTAs. The user needs to
determine the time t after which is determined that quies-
cence is the case with QTAs. This time t depends heavily
on the system and only the user can therefore determine
this time t. The QTA only works as proposed if this time
t is not too big or too small. When implementing QTAs
this is something that always needs to be kept in mind and
therefore it is also the biggest constraint on using QTAs.
For the purpose of theoretical testing as presented in this
paper, one can assume that the time t is chosen in such a
way that quiescence is only detected where expected and
the clock x does not influence any other behavior of the
QTA then the detection of quiescence.

8. FUTURE WORK
As mentioned before this research only focuses on con-
vergent and input-enabled transitions systems. For future
work it will be very interesting to explore the possibilities
of the QTA and its role as an alternative for a QTS when
using divergent transition systems. A start for this is al-
ready made by Stokkink et al. [4] for QTSs. Another inter-
esting topic for future work is to conduct more research in
the time t after which quiescence is noticed. Now it is only
left to the user to determine the time t and no standards
are defined for this. Standardization may be possible after
exploring more types of systems. This is definitely some-
thing that can influence usage of QTAs and it therefore
seems like an important topic to explore. The last topic
for future work will be the usage of more than one time
t. In the QTA presented in this paper all the states are
said to be quiescent after the same time t. A system that
is modeled with the QTA can however have different be-
havior in different states and therefore the usage of more
than one time t can make the determinisation of quies-
cence much more specific.
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