
Bandwidth, Profile and Wavefront Reduction for Static
Variable Ordering in Symbolic Model Checking

Erik Kemp
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

e.kemp@student.utwente.nl

ABSTRACT
In symbolic model checking, decision diagrams are used to
store all reachable states of a computer program. The size
of decision diagrams is highly dependent on the used vari-
able ordering of the underlying structure, a matrix that
represents transitions and variables of the system. The
model checker LTSmin [16] currently uses a custom im-
plementation to find a good variable ordering, but with
this implementation LTSmin fails to produce good order-
ings for larger matrices. Therefore, this paper explores
existing bandwidth, profile and wavefront reduction algo-
rithms and properties, including algorithms used in the
field of Structural Analysis in Civil Engineering. We will
present the solution to apply existing algorithms to our
rectangular matrices in symbolic model checking.

Keywords
Symbolic model checking, Static variable ordering, Band-
width reduction, Profile reduction, Wavefront reduction,
Nodal ordering algorithms, Structural analysis, Rectangu-
lar matrices, Graph theory, Bipartite graph, K-total graph

1. INTRODUCTION
A symbolic model checker generates an efficient represen-
tation of a modeled system or computer program [8]. It
can verify the correctness of these systems, or discover er-
rors. A dependency matrix, obtained by static analysis
of the modeled system, is used to represent the modeled
system. These matrices are used in the process of creating
a Decision Diagram (DD). The problem is that the size of
a DD is very dependent on the used variable ordering in
the matrix. Initially, these matrices are not ordered in a
particular way. In general, the size of the DD explodes.
Optimal variable orderings efficiently exploit event locality
using the matrix. Empirical results show that this hap-
pens when the bandwidth and profile of the matrix are
reduced. The bandwidth minimization problem is proved
NP-complete in 1976, which results in the existence of a
lot of algorithms using heuristic methods. Early band-
width reduction algorithms are the Reverse Cuthill-Mckee
algorithm [10] and the GPS algorithm [14]. From the field
of Structural Analysis in Civil Engineering, we used al-
gorithms described in Kaveh’s book [19] and the corre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
23rd Twente Student Conference on IT June 22nd, 2015, Enschede, The
Netherlands.
Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

sponding papers. Therein bandwidth, profile and wave-
front reduction and methods for rectangular matrices are
explicitly mentioned. Since the matrices LTSmin uses can
be rectangular, these methods were found to be very help-
ful. By using the methods described, we were able to
apply existing algorithms on our rectangular matrices in
LTSmin.

1.1 Symbolic model checking
The reasons behind and definitions of model checking are
well described in McMillan [27]. ”There are several prac-
tical reasons for applying formal verification methods to
computer systems. The most obvious is the high cost of
correcting errors in digital designs.” In state of the art
infrastructures, software errors can cause enormous prob-
lems, making it very worthy to exhaustively check every
possible state, to prove no errors can occur. In model
checking, the problem commonly known as state space
explosion means that for large systems, the amount of
reachable states grows exponentially. In the first form of
model checking, explicit-state model checking, reachable
states were traversed one by one by the model checker.
But in [27], McMillan introduced Symbolic Model Check-
ing, where state spaces of the model are not explicitly
represented. Programs or systems are expressed as transi-
tion systems. The properties of this transition system are
then expressed in fixed point logic, such as the µ-calculus.
Then, multiple states are compressed in decision diagram
nodes. A symbolic model checker can then verify the cor-
rectness of these systems, or discover errors, by traversing
these nodes opposed to every reachable state one at a time.

1.2 Variable reordering
In LTSmin, a dependency matrix is obtained by static
analysis of the modeled system. It represents an over-
approximation of the system. This dependency matrix is
used for efficient symbolic model checking. In this matrix,
the rows represent operations (transitions of the transition
system), and the columns represent the global variables
of the system, which determine the state of the system.
The initial matrix is usually a sparse matrix, sometimes
rectangular, with the nonzero elements spread in no par-
ticular order. In this context, sparse means that there are
relatively few nonzero elements in the matrix. This ma-
trix is used in the process of creating a Decision Diagram
(DD). The problem that arises here is that the size of the
DD explodes, since most initial variable orderings are not
optimal. This is due to not exploiting the event locality
efficiently using the dependency matrix.

1.2.1 Creating a dependency matrix: Example
To explain how a dependency matrix is obtained, we pro-
vide an example based on the game Sokoban, a transport
puzzle game. The problem of solving Sokoban puzzles is

1

proven to be NP-hard [11]. This makes it an excellent
example for our model checker to solve it efficiently. In
Sokoban, the playing field is a board of squares, where
each square is a floor or a wall. The player can move onto
empty squares. Some floor squares contain boxes and some
are marked as storage locations. The goal of the player is
to move all boxes to a marked storage location. An ex-
ample of a Sokoban board is provided in Figure 1. We

Figure 1: An example of a Sokoban board

can represent a state of the board by using the following
ASCII notation, known as the XSB-format:

@ = player
$ = box
. = goal

= empty square

For the sake of simplicity, consider the following board,
with only 3 squares. When we label the rows and the
columns and use this notation, we get the following:

1 2 3
x . $ @

This state can be expressed in the following form: (.,$,@).
3 possible states are (.,$,@), ($,@,),($, ,@).
The transitions between these states are:

(.,$,@) → push(3,2) → ($,@,)
($,@,) → move(2,3) → ($, ,@)
($, ,@) → move(3,2) → ($,@,)

Then we obtain the dependency matrix by checking which
of the squares are ’read’ or ’changed’. For example, the
transition push(3,2) checks if x1 is empty, if x2 is a box and
if x3 is the player. Therefore, for push(3, 2), all columns
should be filled with a 1.
The dependency matrix of the 3 transitions is:


x1 x2 x3

push(3, 2) 1 1 1
move(2, 3) 0 1 1
move(3, 2) 0 1 1


Now this is not a sparse matrix, but it is clear that if
we have a larger Sokoban board which has more squares
(columns) and more possible transitions (rows), the amount
of 1s in a row will still be two or three. As a result, larger
matrices become very sparse. This also holds for depen-
dency matrices in general, as atomic operations in pro-
grams tend to interact with few global variables.

1.2.2 Event locality
In Blom and Van de Pol [6], event locality is described
as the key to applying symbolic techniques to on-the-fly
models. ”The notion of event locality refers to the fact
that even though in a state several events could be en-
abled, each event separately affects just a small part of
the state vector”. In the context of our matrix, event lo-
cality is efficiently exploited if the nonzero elements in a
row are close to each other. From empirical results [6], it
is clear that efficient ordering of the variables improves,
i.e. reduces, the size of the DD. Conversely, the size of the
DD explodes if event locality cannot be exploited.

1.3 Variable reordering (continued)
Therefore, before transforming the matrix into a DD, it
is very useful to find an optimal variable ordering for the
matrix. In practice, this is an ordering where the nonzero
elements of the matrix are near the diagonal. An example
of DDs created with respectively good and bad variable
orderings can be seen in Figure 2a and Figure 2b. The
system enters a correct final state if one of the pairs x1
and x2, x3 and x4, x5 and x6, or x7 and x8 are both 1.
The boolean formula that represents this simple system is:
(x1 ∧ & x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) ∨ (x7 ∧ x8)

(a) DD with a good variable ordering

(b) DD with a bad variable ordering

Figure 2: An example of 2 DDs for a simple system. (a)
has a good and (b) has a bad variable ordering. Images
by Dirk Beyer1, 2005

1http://www.sosy-lab.org/∼dbeyer/ (March 2015)

2

1.4 Bandwidth, profile and wavefront
To explain the process of finding good variable orderings,
we introduce two definitions: The bandwidth and the pro-
file of a matrix. Since the matrices that LTSmin use are
not limited to square matrices, we present the definitions
that also hold for rectangular matrices, as described in
Kaveh [19]:

Let A be a rectangular matrix with m rows and n columns,
whose entries are denoted by bij . For each row i, the in-
teger part of the real number i(n

m
) is defined as id. For

the first and the last row, id = 1 and id = n respectively.
Now, the entry of A at position (i, id) is considered as the
ith diagonal entry. For square matrices m = n and i = id.

The bandwidth of A is then defined as

b(A) = mr +ml + 1,

with the upper bandwidth to the right of the diagonal

mr = max{k − id|aik 6= 0, k > id},
1 ≤ i ≤ n

and the lower bandwidth to the left of the diagonal

ml = max{id − k|aik 6= 0, k < id}.
1 ≤ i ≤ n

For our rectangular non-symmetric matrices, we define the
profile of A as follows:

p(A) =

n∑
i=1

bi,

with

bi = max{k|aik 6= 0} −min{l|ail 6= 0}.

Here the row width bi is defined as the number of inclusive
entries from the first to the the last non-zero element in
the row.

In literature, the term bandwidth is far more common than
the term profile. After the preliminary literature research,
our hypothesis was that for our problem, profile reduction
is more appropriate than bandwidth reduction. We based
this on the fact that we usually work with large matrices,
where outliers in the row width will have a small influence
on the final DD size, but will greatly increase the band-
width. In Kaveh [19], we found that most algorithms aim
to reduce both profile and bandwidth, so we don’t have to
choose and can investigate both.

1.4.1 Example
To ensure a clear understanding of bandwidth and profile,
we provide an example matrix B and calculate its band-
width and profile:


1 2 3 4 5

1 0∗ 1 0 1 0
2 1 0∗ 1 0 0
3 0 1 1∗ 0 1
4 1 0 1 0 0∗


The diagonal entries, defined for row i as i(m

n
) are marked

with a *. In the lower half, the element at (4,1) results in
a lower bandwidth (ml) of 4, since it has distance 4 to the
diagonal entry in (4,5). In the upper half, the element at
(1,4) similarly results in an upper bandwidth (mr) of 3.
Then the total bandwidth can be computed:

b(B) = 4 + 3 + 1 = 8.

The profile is the addition of the row bandwidths, being
for rows 1 to 4 respectively 1, 1, 2 and 1. Then the total
profile can be computed:

p(B) = 1 + 1 + 2 + 1 = 5.

1.4.2 Wavefront
During the research, we found that another property of
the matrix is also of interest: The wavefront. There are
three common metrics defined concerning the wavefront:
The maximum wavefront, the average wavefront and the
root-mean-square wavefront. Let A again be a rectangular
matrix with m rows and n columns. The column wavefront
fi for column i is defined as the number of rows before
the first nonzero appears in that column. The following
common wavefront metrics can be defined for matrix B.
The maximum wavefront:

fmax = max
1≤i≤n

(fi),

the average wavefront:

favg =
1

n

n∑
i=1

fi,

and the root-mean-square wavefront:

frms =


n∑

i=1

(fi)
2

n


1
2

1.5 Related work
We have two kinds of related literature, one part connected
to profile and bandwidth minimization and the other part
related to heuristics in static variable ordering. We pro-
pose to use profile and bandwidth reduction algorithms in
static variable reordering, but no link between these two
has been found in literature.

Related work connected to heuristics and static variable
ordering are presented first.

An interesting paper on static variable ordering is [33],
that introduces a new family of metrics to be used as a
guide for static variable ordering in symbolic methods. A
survey of static variable ordering heuristics can be found
in [31]. Recent comparative studies of heuristics for static
variable ordering can be found in [5] and [9].

Regarding bandwidth and profile reduction, in 1976 Pa-
padimitrou proved the bandwidth minimization problem
NP-complete in [28]. In 1978, Rose and Tarjan provided
a clear proof that finding a minimum ordering (profile re-
duction) is NP-complete in [32]. After the problems were
proved NP-complete, a lot of heuristics are proposed to
tackle these problems efficiently.

Most research has been conducted on bandwidth and pro-
file reduction of symmetric matrices. In this paper multi-
ple nodal ordering algorithms are discussed, which are on
itself designed for symmetric matrices. A well-known and
widely used algorithm is Cuthill-McKee (CM) [10], intro-
duced in 1969. In 1971, reversing the order that is returned
by CM was proposed by George (Reverse Cuthill-McKee,
RCM), leading to better results. [26] [12]. Other well-
known nodal ordering algorithms are King [25], Sloan [34]
and GPS [14]. GPS is improved in [35] and [36] by Wang
et al.

An early comparative study of bandwidth and profile re-
duction algorithms is [15] by Gibbs et al.

Another paper worth looking at is [2], where it is stated

3

that an algorithm which gives a lower profile does not give
the smallest bandwidth. In addition, it states that in solv-
ing solving a linear system of equations, for numerical sta-
bility it is best to minimize bandwidth, and to minimize
execution time it is best to minimize profile. In their re-
sults, their proposed algorithm seems to lead to a lower
profile than both RCM and Sloan in most cases.

As we hope to be able to incorporate any nodal ordering
algorithm in our static variable reordering algorithm, we
also provide multiple recent nodal ordering algorithms.

Kaveh has multiple papers nodal ordering algorithms, such
as [18], [21], [22], [23] and [24].

A very promising paper for this particular research is [30],
on bandwidth reduction of unsymmetric matrices.

Kaveh’s book Computational Structural Analysis [19], ex-
plicitly considers bandwidth reduction for rectangular ma-
trices. Since this is exactly what we are looking for, it is a
great source worth investigating. This book has been most
helpful to understand the problem and come up with a so-
lution.

1.6 Problem statement
Bandwidth and profile reduction algorithms are well-studied
for square and symmetric matrices [34],[10], [29], [5], [9].
The goal of this research is to find a way to apply existing
nodal ordering algorithms on rectangular matrices, and
to implement this in the symbolic model checker LTSmin
[16].

1.7 Research questions
The main research question is:

To what extent are bandwidth and profile reduction
algorithms suitable for static variable ordering?

We divide this question into these subquestions:

1. Which algorithm is most suitable for our static vari-
able ordering problem?

2. Which parts of this algorithm have to be customized
to implement it in LTSmin?

3. Does the new algorithm perform well, in ordering as
well as computation time?

4. Does the new algorithm always provide a better band-
width or profile?

5. What has the most influence on the actual compu-
tation time of the reachability analysis, bandwidth
or profile reduction?

1.8 Goal
The goal of this research is to find a bandwidth or pro-
file reduction algorithm that we can use for static variable
ordering. When implemented in LTSmin, we expect this
to lead to a decrease in computation time and memory
footprint. If we succeed in achieving this, in the future
LTSmin will be able to reorder the variables for large ma-
trices within a reasonable time.

2. BACKGROUND
In this section, we shortly discuss the NP-completeness
of bandwidth minimization [28], and profile minimization
[32]. We introduce the current implementation in LTSMin.

Then we provide brief explanations of well-known band-
width and profile reduction algorithms, called nodal or-
dering algorithms, such as Cuthill-McKee [10], King [25],
Sloan [34] and GPS [14].

2.1 NP-completeness
It is outside the scope of this paper to explain the full
proofs of the NP-completeness for bandwidth minimiza-
tion and profile minimization here. We do provide a short
explanation of the proof for the profile minimization prob-
lem.

2.1.1 Bandwidth minimization
Papadimitrious proof of the NP-completeness of band-
width minimization can be found in [28].

2.1.2 Profile minimization
Based on Rose and Tarjan, [32], this is a short explanation
of how the problem of profile minimization is proved NP-
complete: The problem can be formulated as follows, for
any graph G = (V,E) with size (profile) e′: Does G have
an ordering which produces a profile of e′ edges or less?
The proof then consists of two steps. The first step is to
demonstrate that there is a non-deterministic polynomial-
time algorithm for solving the problem. This algorithm
is as follows: Guess an ordering and calculate its profile.
If it produces a profile of e′ or less, the algorithms an-
swers ”yes”. The second step consists of reducing a known
NP-complete problem to our problem. In the paper, the
satisfiability problem is reduced to our problem. Since this
was quite a bit harder according to the authors, we omit
how this is done.

2.2 Current implementation
In the current version of LTSmin, a custom algorithm is
used to sort the columns and rows, in order to get a bet-
ter variable ordering. This implementation can be found
online2. We won’t explain how it works here, but the
computational complexity of this algorithm is too high to
make it viable for larger matrices. This is the reason we
will provide a more efficient algorithm. The current im-
plementation will be included in the test results, to show
how the current algorithm performs.

2.3 Nodal ordering algorithms
Nodal algorithms from the Related Work section are Cuthill-
McKee,Sloan and King. We present explanations of those
algorithms.

2.3.1 Cuthill-McKee
The Cuthill-McKee algorithm [10] focuses on bandwidth
reduction. It is implemented in the Boost library3, as well
as the ViennaCL library4. The Reverse Cuthill-McKee
algorithm is well described by Ciprian Zăvoianu5, in the
following seven steps:

Step 0: Prepare an empty queue Q and an empty result
array R.
Step 1: Select the node in G(n) with the lowest degree
(ties are broken arbitrarily) that hasn’t previously been
inserted in the result array. Let us name it P (for Parent).
Step 2: Add P in the first free position of R.

2https://github.com/utwente-
fmt/ltsmin/blob/master/src/dm/dm.c#L1079-L1207
(March 2015)
3http://www.boost.org (March 2015)
4http://viennacl.sourceforge.net (March 2015)
5http://ciprian-zavoianu.blogspot.nl/2009/01/project-
bandwidth-reduction.html (March 2015)

4

Step 3: Add to the queue all the nodes adjacent with P in
the increasing order of their degree.
Step 4.1: Extract the first node from the queue and ex-
amine it. Let us name it C (for Child).
Step 4.2: If C hasn’t previously been inserted in R, add it
in the first free position and add to Q all the neighbors of
C that are not in R in the increasing order of their degree.
Step 5: If Q is not empty repeat from Step 4.1.
Step 6: If there are unexplored nodes (the graph is not
connected) repeat from Step 1.
Step 7: Reverse the order of the elements in R. Element
R[i] is swapped with element R[n+1-i].

This last step is the reason this algorithm is called ’Re-
verse’ Cuthill-Mckee. It was not included in the origi-
nal Cuthill-Mckee algorithm, but was proposed by George
[12], and leads to a better profile while the bandwidth is
never increased [26].

The time complexity for the algorithm is the following,
according to the boost online boost library6:

O(m log(m)|E|) where m = max{degree(v)|v in V }

2.3.2 Sloan
Sloan’s algorithm [34] focuses on profile and wavefront re-
duction. It is implemented in the Boost library6 It is
well described in Reid [29], of which we present a short
summary. Reid states that the algorithm consists of two
phases. In the first phase, a start and end node are chosen.
In the second phase, the start node from the first phase
is numbered first. Then, at each stage of numbering a list
is formed containing neighbours of nodes which have been
numbered and their neighbours. The next node is chosen
from the list by a priority function, where a node has a
higher priority if it causes only a small increase, or none
at all, to the current wavefront size and if it is at a large
distance from the end node.

The time complexity for the algorithm is the following,
according to the boost online boost library6:

O(log(m)|E|) where m = max{degree(v)|v in V }

This is the lowest complexity of the three algorithms men-
tioned here.

2.3.3 King
We have not found a detailed description of how King’s
algorithm [25] works. The summary from boost is that the
King algorithm focuses on reducing bandwidth, and that
this is achieved by locally minimizing the row bandwidths.

The time complexity for the algorithm is the following,
according to the boost online boost library3:

O(m2log(m)|E|) where m = max{degree(v)|v in V }

3. RESEARCH METHODOLOGY
3.1 Approach
The most valuable resource for this research proved to be
Kaveh’s book [19]. By carefully reading it, we obtained
the idea that we could indeed use any nodal ordering al-
gorithm if we could find a suitable representation for the
rectangular matrix, and transform the returned permuta-
tion into row and column permutations for the rectangular
matrix. How we have achieved this will be described in de-
tail.

6http://www.boost.org (March 2015)

3.1.1 Representing the rectangular matrix
In Kaveh [19], p.177 - p.181, the idea of a K-total graph is
suggested to order two types of matrices, a cutset basis in-
cidence matrices and a cycle basis incidence matrix. Since
our matrices were not applicable for the graph represen-
tations used, we used another representation, also found
in Kaveh. This is the bipartite graph. Later, we also con-
structed the total graph of this bipartite graph to compare
the results for reordering.

3.1.2 Constructing the bipartite graph
If we represent our rectangular matrix as a bipartite graph,
we can apply any nodal ordering algorithm on the bipartite
graph. The matrix is transformed into a bipartite graph
through the following function. The input for the function
is a rectangular matrix A, with m rows and n columns. U
and V are the distinct Vertex sets of the bipartite graph,
and E the set of edges. G is undirected.

createBipartiteGraph : Am∗n → G = (U, V,E),

with

U = 1, ...,m,

V = m+ 1, ...,m+ n,

E = {{a, b+m}|Aab = 1}.

3.1.3 Constructing the total graph
As hinted by Kaveh, we constructed the total graph as
defined in [3],[4]. We compare the results of reordering
the total graph to reordering the bipartite graph. From
MathWorld7:
The total graph T (G) of a graph G has a vertex for each
edge and vertex of G and an edge in T (G) for every edge-
edge, vertex-edge, and vertex-vertex adjacency in G.

3.1.4 Processing the computed permutation
Now we can reorder the bipartite and total graphs of our
matrix, by using any nodal ordering algorithm available.
The algorithms will return a permutation, as a list of node
numbers. Since we want to permute the rows and the
columns of the matrix separately, we have to define a func-
tion to split the permutation. We define the output of the
algorithms as the permutation vector x, and again a rect-
angular matrix A, with m rows and n columns.

splitPermutation : x < N >→ (y < N >, z < N >),

where

x is the original permutation vector,

y is the row permutation vector,

z is the column permutation vector.

splitPermutation(x) = (y, z)

where the following function is applied sequentially to the
elements of x, starting with the first element in x:

∀x ∈ x :

{
x ∈ y if x ≤ m

x−m ∈ z if x > m

3.1.5 Obtaining test results
We first obtained models from an online source. For this
research, we chose Petri Nets from the Model Checking
Contest website8. We used these models as an input for

7Weisstein, Eric W. ”Total Graph.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/TotalGraph.html (March
2015)
8http://mcc.lip6.fr/models.php (March 2015)

5

the model checker LTSmin[16]. For the tests, we used
nine different reordering parameters. Three of them are
existing parameters, No variable ordering, Row sort and
Column Swap - Row Sort (the currently used algorithm in
LTSmin). The other six are the Reverse Cuthill-McKee,
Sloan and King algorithms on both the bipartite and to-
tal graph created from the matrix. For the three reorder-
ing algorithms, we used the implementation in the boost
library6. In total, 843 test runs had complete and useful
output.

3.1.6 Measuring performance
One important consideration in this research is how to
measure the performance of the algorithms. During the
test, we will measure bandwidth, profile, average wave-
front, maximum wavefront and root-mean-square wave-
front, for the rows, the columns and combined. We will
measure the following for each test run: regrouping time,
reachability time, total computation time and peak nodes.
These peak nodes are the maximum number of nodes rep-
resenting a model during the reachability analysis. For
measurement, we will use memtime, a tool that can be
found online9. The maximum number of peak nodes is
set to 20 million, for visibility. The maximum number of
peak nodes reached during the tests is 18108480. These
are worth measuring, because if the amount of nodes ex-
ceeds the available memory at some time in the program,
the program is terminated. Due to time constraints, we
set the maximum computation time for each test run to
3600 seconds (1 hour). If the regrouping, or the total com-
putation time exceeded this this limit, the run was can-
celled. These tests can be found in the total time plots,
where the time is set to infinity. Due to functioning of the
scripts to visualize test results, we omitted these tests in
the regrouping time plots.

3.2 Results
First, we show some of the most promising results, achieved
with applying Sloan’s algorithm to the bipartite graph.
The measured times are plotted in a scatter plot against
the algorithm that is currently used in LTSmin (column
swap, row sort). Note that the scatter plots have a log-
arithmic scale. The axes for time range from 0.1 seconds
to an hour, the axes for peak nodes from 1 to 20 million
nodes. We have to mention that in all plots, there ex-
ist some dots on the infinity value, for which no test has
actually been run, due to a crash of the resource manager.

3.2.1 Most promising results: Sloan

●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●●●●●●

● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

● ●

●

●●

●

●

● ●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
column swap, row sort

S
lo

an

Figure 3: Total time: Column swap, row sort vs. Sloan

9http://fmt.cs.utwente.nl/tools/scm/memtime.git
(March 2015)

The total time in this context is the total computation
time measured by memtime from the start of the program
to the end of the reachability analysis of LTSmin. In Fig-
ure 3, all dots beneath the diagonal indicate that the total
computation time is lower for the Sloan algorithm than
for the column swap, row sort algorithm currently used in
LTSmin. We have checked all dots on infinity for Sloan
manually, and we conclude that they are all because of the
resource manager bug. By analyzing all produced scatter
plots, we conclude that the Sloan algorithm on the bi-
partite graph is in general the best performing algorithm.
From Figure 3 we derive that Sloan outperforms column
swap, row sort for the major part of the tests. We will
continue to investigate the other scatter plots for these
two algorithms.

●●

●

●●●●

●

●●● ● ●

●

●●

●

●●

● ●● ● ●●●●●●●●●●●

●

●● ● ● ●●●●●

●

●

●

● ●

●

● ● ●

●

● ● ●●●

●

●●●●●● ●
●

●● ●●

●

●● ●●●

●

●

●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
column swap, row sort

S
lo

an

Figure 4: Regrouping time: Column swap, row sort vs.
Sloan

In Figure 4, the power of the Sloan algorithm is clearly
visible. It is faster than column swap, row sort for every
single test. Since the growing regrouping times for large
matrices was the main problem of column swap,row sort,
this is exactly the result we hoped for. All regrouping
times for column swap, row sort that exceed the 1 hour
time-limit are even omitted in this plot.

●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●

●

●
●

●

●

● ●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●●
●

●
●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
column swap, row sort

S
lo

an

Figure 5: Reachability time: Column swap, row sort vs.
Sloan

In Figure 5 we see that in terms of reachability time,
there is no clear winner between the two algorithms. This
matches our expectations from manual tests during the re-
search, which showed that the ordering that column swap,
row sort produces is actually pretty good.

6

●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

1

10

100

1000

10000

1e+05

1e+06

1e+07

∞

1 10 100 1000 10000 1e+05 1e+06 1e+07 ∞
column swap, row sort

S
lo

an

Figure 6: Peak nodes: Column swap, row sort vs. Sloan

If a test did not terminate within the time limit, the
amount of peak nodes is set to infinity. The amount of
peak nodes is similar for the two algoriths, as can be seen
in Figure 6. Since this did not heavily influence the compu-
tation time, we omit further discussion of the peak nodes.

3.2.2 Results for the current algorithm

●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

● ●●●

●

●

●

●●●

●

●

● ● ●

●

●

●
●●

●

●

● ●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

● ●●●●

●

●

●

●

●

●

●●

●

●

●

●●●● ●●●

●●

●

● ●●●

●

●● ●

●

●

●●

●

●

● ●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●●●

●

● ●●●

●

●

●●●●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
column swap, row sort

no
ne

Figure 7: Reachability time: Column swap, row sort vs.
no variable reordering

If we look at the reachability time scatter plot of column
swap, row sort vs no variable reordering at all in Figure 7,
we see that reordering the matrix indeed speeds up the
reachability analysis. Some models initially already have a
reasonably good variable ordering, but especially for larger
matrices reordering pays off.

3.2.3 Results for other algorithms

●●●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
Cuthill McKee

S
lo

an

Figure 8: Reachability time: Cuthill-McKee vs. Sloan

●

●

●●

●

●

●●●●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
King

S
lo

an

Figure 9: Reachability time: King vs. Sloan

The regrouping time for all new algorithms are almost the
same, both on bipartite and on total graphs. The scatter
plot shown for Sloan vs. column swap, row sort in Fig-
ure 4 is almost identical to all other scatter plots that plot
a new algorithm against the column swap, row sort algo-
rithm. The reachability time for both the Reverse Cuthill-
McKee and the King algorithms led to worse results than
Sloan’s algorithm. Two relevant scatter plots are included
in Figure 8 and Figure 9.

●●●● ●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●

●●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●●

●

●

0.1

0.2

0.5

1
1.5

2
3
4
6
8

10
15
20
30
40
60

100

200

350

600

1100

1800

∞

0.1 0.2 0.5 1 1.5 2 3 4 6 8 10 15 20 30 40 60 100 200 350 600 1100 1800 ∞
Sloan

to
ta

l g
ra

ph
, S

lo
an

Figure 10: Reachability time: Sloan on total graph vs.
Sloan on bipartite graph

Regarding the total graphs, Sloan also outperforms both
Cuthill-McKee and King when the latter two are applied
on a total graph. The scatter plot of Sloan on the bipartite
graph vs. Sloan on the total graph is provided in Figure 10.

Kaveh [19] states that reordering the total graph usually
returns a better ordering than reordering the bipartite
graph, at the cost of execution time. We don’t see a sig-
nificantly better reachability time when we use the total
graph, though the reachability time is a bit lower for Sloan
on the total graph for a majority of the tests. We note that
maybe Kavehs argument was only when regarding cut sets
or cocycle basis, which we did not.

3.2.4 Detailed results
We give detailed results for some points from the column
swap, row sort vs. Sloan scatter plot. From Figure 3,
we show the details of the point in the right lower corner,
where the total time for column swap, row sort is 962.92
seconds, and the total time for Sloan is 1.9 seconds. This
is the model for 100 dining philosophers.

7

Table 1: Test results for the 100 dining Philosophers model

Column swap,
row sort

Sloan

Bandwidth 279 17
Profile 5183 3777
Max. wavefront 500 500
Avg. wavefront 254 255
RMS wavefront 293 294
Peak nodes 9806 3968
DD nodes 9806 3968
Regrouping time 961.99 1.25
Reachability time 0.79 0.41

The matrix is a square matrix with 500 rows and 500
columns. We see that the column swap, row sort algo-
rithm has a very high regrouping time. It produces a
slightly higher profile than Sloan, but a very high band-
width. Since the reachability time for both algorithms
seems proportional to the profile rather than to the band-
width, this supports our hypothesis that for our problem,
bandwidth alone doesn’t have a big influence on the reach-
ability time. Of course, if bandwidth is reduced a lot, the
upper bound of the profile also decreases.

From our results, we found that for certain models, profile
and wavefront indeed seem proportional to the reachabil-
ity time. We present graphs for the profile, root-mean-
square (RMS) wavefront and the bandwidth plotted ver-
sus the reachability time, for the combination of all dining
philosophers models. In the appropriate cases, we added
a trend line.

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000

R
ea

ch
ab

ili
ty

 t
im

e

Profile of the reordered matrix

Figure 11: All dining philosopher models combined,
profile vs. reachability time

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000

R
ea

ch
ab

ili
ty

 t
im

e

RMS wavefront of the reordered matrix

Figure 12: All dining philosopher models combined,
root-mean-square wavefront vs. reachability time

It makes sense that the points are in different parts of the
graph, as the Philosopher problems are of different size,

with great gaps between the different models. The right
upper dots are all from the 1000-philosophers problem, the
middle dots are from the 500-philosophers problem, and
then to the lower left corner are the 200-, 100-, 50-, 20-,
10-, 5-philosophers problem.

0

5

10

15

20

25

30

0 50 100 150 200 250 300

R
ea

ch
ab

ili
ty

 t
im

e

Bandwidth of the matrix

Figure 13: All dining philosopher models combined,
bandwidth vs. reachability time

From this figure, it is clear that a lower bandwidth does
not necessary results in a lower reachability time.

There are other scalable problems that have similar-looking
scatter plots for profile and wavefront, but not all of them.
Here we present some scatter plots for profile against reach-
ability time, where we see no proportionality.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

R
ea

ch
ab

ili
ty

 t
im

e

Profile of the matrix

Figure 14: All angiogenesis models combined, profile vs.
reachability time

0

10

20

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000 60000 70000

R
ea

ch
ab

ili
ty

 t
im

e

Profile of the matrix

Figure 15: ARM Cache Coherence, profile vs.
reachability time

In Figure 14 and Figure 15, we see that there is no ap-
parent relation between the profile of the matrix and the
reachability time, because a lower profile does not always
lead to a lower reachability time. We manually checked
the bandwidths and wavefronts for these problems too,

8

but they do not reveal a relation either. In addition, no
direct proportionality is found between profile / wavefront
and reachability time in general.

3.3 Conclusion
The most important result from this research is the notion
that we can transform rectangular matrices into bipartite
graphs (and optionally into total graphs), then apply the
permutation returned by a nodal ordering algorithm on
the matrix by splitting it into a row and column permu-
tation. Furthermore, our results show that for LTSmin,
it is undeniably a good choice to use bandwidth or profile
reduction algorithms in the future. We found that Sloan
had the best results of the three new algorithms that we
tested. Both the application on the on the bipartite and
total graph of the matrix led to good results.

What we do not know, is what matrix metric has the most
influence on the reachability time. We found that only for
a few scalable models, profile and the RMS wavefront seem
to be proportional to the reachability time, but this is not
definitive and does not hold for all models.

All in all, the results from this research are directly appli-
cable and very promising, and further study in the subject
will probably lead to even better results. A lot of recent
literature on nodal ordering algorithms is worth investi-
gating in future work.

4. FUTURE WORK
There are three main challenges for future work based on
this research. The first one is to find out what metric has
the most influence on the reachability time of LTSmin.
Our hypothesis is now that any nodal ordering algorithm
can be applied to the bipartite and total graph. Then the
second challenge is to find an optimal nodal ordering al-
gorithm, in computation time as well as in the optimized
values. Therefore, we include some recent nodal order-
ing algorithms. The last challenge is to implement the
found optimal nodal ordering algorithm efficiently. We
have found one paper that proposes the first parallel im-
plementations of the older nodal ordering algorithms.

4.1 Finding the optimal metrics
It has to be proven which metric has most influence on
reachability time: bandwidth, profile, wavefront, or some-
thing else. A metric that might be considered is the dis-
tance to the diagonal, from both the horizontal as the ver-
tical axis. So this is something like the summation of all
column wavefronts with all row wavefronts, the distance
from the axis until the first element in the column or row.
Additionally, the performance differences between apply-
ing a nodal ordering algorithm on a bipartite graph or a
total graph have to be investigated.

Papers mentioned in the Related work section that could
be useful for investigating metrics are Siminiceanu and
Ciardo [33] from 2006, that introduces a new family of
metrics to be used as a guide for static variable order-
ing in symbolic methods. A survey of static variable or-
dering heuristics can be found in Rice and Kulhari [31],
from 2008. Recent comparative studies of heuristics for
static variable ordering can be found in Bernardes and de
Oliveira [5] and Chagas and de Oliveira [9], both from
2015.

4.2 Nodal ordering algorithms
Now that we have incorporated implementations of RCM,
Sloan and GPS in LTSmin, newer algorithms from the
Related Work section can hopefully also be implemented.

Here we present a list of relatively recent algorithms.

An algorithm for which multiple (open source) implemen-
tations can be found online is the Minimum Degree Or-
dering Algorithm. A historical overview of this algorithm
can be found in [13]. An implementation is AMD ([1]),
which is available in MATLAB and in the SuiteSparse on-
line library10.

Reid and Scott [30], from 2006, should be investigated
because they focus on other ways to apply nodal ordering
algorithms to unsymmetric matrices.

Zhou and Ren [37], from 2009, proposing a new clustering
algorithm to reduce the profile of a sparse asymmetric 0-1
matrix.

Wang et al. [36], from 2009, with an improved nodal or-
dering algorithm based on GPS.

Boutora et al. [7], proposing a new fast method for profile
and wavefront reduction, from 2011.

Three recent algorithms by Kaveh are:
Kaveh and Sharafi [23] from 2009, nodal ordering for pro-
file reduction is performed using ant colony optimization.
The results show that Sloan’s method can be improved us-
ing the new parameters. The second algorithm is Kaveh
and Sharafi [24] from 2011, introduces a new nodal order-
ing algorithm, which uses a meta-heuristic optimization
method known as charged system search. Results show
that it is applicable to bandwidth and profile optimiza-
tion. It performs better than Sloan and several other algo-
rithms, in the optimized value as well as the computation
time. The third algorithm can be found in Kaveh and Bi-
jari [20], from 2015. It is the most recent one, and it uses
two recently developed meta-heuristic optimization meth-
ods for optimum nodal ordering to minimize bandwidth of
sparse matrices. These methods are Colliding Bodies Op-
timization and Enhanced Colliding Bodies Optimization.
The author states in his concluding remarks that the ob-
tained values by these algorithms are the best results so
far.

4.3 Parallelization
For possible improved performance, the nodal ordering al-
gorithm could be parallelized. Parallelization falls outside
the scope of this research, but a paper on parallelization
is Karanthasis et al. [17]. In this paper the first parallel
implementations of the Reverse Cuthill-McKee and Sloan
algorithms are proposed, which perform significantly bet-
ter than their sequential implementations in the HSL li-
brary11. In the future, the optimal nodal ordering algo-
rithm could possibly also be parallelized.

5. REFERENCES
[1] P. R. Amestoy, T. A. Davis, and I. S. Duff.

Algorithm 837: Amd, an approximate minimum
degree ordering algorithm. ACM Transactions on
Mathematical Software (TOMS), 30(3):381–388,
2004.

[2] A. Baldi and A. de Paulis. On the profile reduction
of sparse symmetric matrices. Ratio Mathematica,
4:1–11, 1992.

[3] M. Behzad. Graphs and their chromatic numbers.
PhD thesis, 1965.

[4] M. Behzad. A characterization of total graphs.
Proceedings of the American Mathematical Society,
26(3):383–389, 1970.

10http://faculty.cse.tamu.edu/davis/suitesparse.html
(March 2015)

11http://www.hsl.rl.ac.uk/

9

[5] J. A. B. Bernardes and S. L. G. de Oliveira. A
systematic review of heuristics for profile reduction
of symmetric matrices. Procedia Computer Science,
51:221–230, 2015.

[6] S. Blom and J. van de Pol. Symbolic reachability for
process algebras with recursive data types.
International Colloquium on Theoretical Aspects of
Computing, 5:81–95, 2008.

[7] Y. Boutora, R. Ibtiouen, S. Mezani, N. Takorabet,
and A. Rezzoug. A new fast method of profile and
wavefront reduction for cylindrical structures in
finite elements method analysis. Progress In
Electromagnetics Research B, 27:349–363, 2011.

[8] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. Symbolic model checking: 1020 states
and beyond. In Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE
Symposium on e, pages 428–439, Jun 1990.

[9] G. O. Chagas and S. L. G. de Oliveira.
Metaheuristic-based heuristics for symmetric-matrix
bandwidth reduction: A systematic review. Procedia
Computer Science, 51:211–220, 2015.

[10] E. Cuthill and J. McKee. Reducing the bandwidth
of sparse symmetric matrices. In Proceedings of the
1969 24th National Conference, ACM ’69, pages
157–172, New York, NY, USA, 1969. ACM.

[11] D. Dor and U. Zwick. Sokoban and other motion
planning problems. Computational Geometry,
13(4):215–228, 1999.

[12] A. George and J. W. Liu. Computer solution of
Large Sparse Positive Definite. Prentice Hall
Professional Technical Reference, 1981.

[13] A. George and J. W. H. Liu. The evolution of the
minimum degree ordering algorithm. SIAM Review,
31(1):pp. 1–19, 1989.

[14] N. E. Gibbs, J. Poole, William G., and P. K.
Stockmeyer. An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM
Journal on Numerical Analysis, 13(2):pp. 236–250,
1976.

[15] N. E. Gibbs, W. G. Poole, Jr., and P. K.
Stockmeyer. A comparison of several bandwidth and
profile reduction algorithms. ACM Trans. Math.
Softw., 2(4):322–330, Dec. 1976.

[16] G. Kant, A. Laarman, J. Meijer, J. van de Pol,
S. Blom, and T. van Dijk. Ltsmin:
High-performance language-independent model
checking. Tools and Algorithms for the Construction
and Analysis of Systems, 90:1, 2015.

[17] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J.
Garzarán, and K. Pingali. Parallelization of
reordering algorithms for bandwidth and wavefront
reduction. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’14, pages
921–932, Piscataway, NJ, USA, 2014. IEEE Press.

[18] A. Kaveh. Advances in computational mechanics via
graph theory. Asian Journal of Civil Engineering,
7(4):393–410, 2006.

[19] A. Kaveh. Computational Structural Analysis and
Finite Element Methods. SpringerLink : Bücher.
Springer, 2013.

[20] A. Kaveh and S. Bijari. Bandwidth optimization
using cbo and ecbo. Asian journal of Civil
Engineering, 16(4):535–545, 2015.

[21] A. Kaveh and A. Mokhtar-Zadeh. Bandwidth
optimization for rectangular matrices. Computers &

Structures, 73(1-5):497 – 509, 1999.

[22] A. Kaveh and P. Sharafi. Optimal priority functions
for profile reduction using ant colony optimization.
Finite Elem. Anal. Des., 44(3):131–138, Jan. 2008.

[23] A. Kaveh and P. Sharafi. Nodal ordering for
bandwidth reduction using ant system algorithm.
Engineering Computations, 26(3):313–323, 2009.

[24] A. Kaveh and P. Sharafi. Ordering for bandwidth
and profile minimization problems via charged
system search algorithm. 2011.

[25] I. P. King. An automatic reordering scheme for
simultaneous equations derived from network
systems. International Journal for Numerical
Methods in Engineering, 2(4):523–533, 1970.

[26] W.-H. Liu and A. H. Sherman. Comparative
analysis of the cuthill-mckee and the reverse
cuthill-mckee ordering algorithms for sparse
matrices. SIAM Journal on Numerical Analysis,
13(2):pp. 198–213, 1976.

[27] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 1992. UMI Order No. GAX92-24209.

[28] C. Papadimitriou. The np-completeness of the
bandwidth minimization problem. Computing,
16(3):263–270, 1976.

[29] J. K. Reid and J. A. Scott. Ordering symmetric
sparse matrices for small profile and wavefront.
International Journal for Numerical Methods in
Engineering, 45(12):1737–1755, 1999.

[30] J. K. Reid and J. A. Scott. Reducing the total
bandwidth of a sparse unsymmetric matrix. SIAM
J. Matrix Anal. Appl., 28(3):805–821, Aug. 2006.

[31] M. Rice and S. Kulhari. A survey of static variable
ordering heuristics for efficient bdd/mdd
construction. University of California, Tech. Rep,
2008.

[32] D. J. Rose and R. E. Tarjan. Algorithmic aspects of
vertex elimination on directed graphs. SIAM Journal
on Applied Mathematics, 34(1):pp. 176–197, 1978.

[33] R. I. Siminiceanu and G. Ciardo. New metrics for
static variable ordering in decision diagrams. In
Proceedings of the 12th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’06, pages 90–104,
Berlin, Heidelberg, 2006. Springer-Verlag.

[34] S. W. Sloan. An algorithm for profile and wavefront
reduction of sparse matrices. International Journal
for Numerical Methods in Engineering,
23(2):239–251, 1986.

[35] Q. Wang, Y.-C. Guo, and X.-W. Shi. A generalized
gps algorithm for reducing the bandwidth and
profile of a sparse matrix. Progress In
Electromagnetics Research, 90:121–136, 2009.

[36] Q. Wang and X.-W. Shi. An improved algorithm for
matrix bandwidth and profile reduction in finite
element analysis. Progress In Electromagnetics
Research Letters, 9:29–38, 2009.

[37] J. Zhou and Y. Ren. An algorithm for reducing the
profile of a sparse asymmetric 0-1 matrix. In 2009
WRI World Congress on Software Engineering,
volume 2, pages 234–238, 2009.

10

