
Fault Tree Analysis using Sylvan (multi-core BDDs)
Dennis Aanstoot
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

d.aanstoot@student.utwente.nl

ABSTRACT
Fault trees are abstractions of real systems that consist
of more than one component, and where the reliability of
each component can be calculated or estimated. Methods
exist that can analyze fault trees. The outcome of the
methods can tell the user information about which com-
ponents are vulnerable for total system failure.

Many computers nowadays have more than one core in its
processor, and there are even computers with more pro-
cessors on the motherboard. This can make the computer
a lot faster, but software is not always taking advantage
of it.

The purpose of the research described in this paper is cre-
ating a tool for static analysis of fault trees using binary
decision diagrams that makes use of multiple cores. After
that the tool will be benchmarked, to time the speed-up
that the ability to use multiple cores can bring.

Keywords
Fault Trees (FTs), Binary Decision Diagrams (BDDs),
multi-threaded.

1. INTRODUCTION
In the next paragraphs the theories needed for the research
will be discussed.

1.1 Fault Trees
A fault tree is a mathematical concept for calculating the
risk of failure in complex systems with multiple compo-
nents.

Fault trees are for example used in aerospace, nuclear reac-
tors and chemical industries to estimate the chances that,
the systems they use, will fail. The system can easily be
split in components, and the reliability of the components
can be tested with experiments. Analyzing the system is
for an airplane or reactor of great importance, because of
the damage a failure can inflict.

The fault tree represents the system, where the system is
divided in its individual components. The leaves of the
tree represent the components of the system. The top

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
24th Twente Student Conference on IT January 22nd, 2016, Enschede,
The Netherlands.
Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

node represents the system as a whole. Every other node
in between the top node and the leaves has a function.
Standard functions for Fault Trees are:

AND: If all children fail, this node fails.
OR: If one of the children fails, this node fails.
k/N: If k of the N children fail, this node fails.
INHIBIT: The same as AND. Is only used

for clarity for readers in some occasions

When a component of the whole system fails, it depends
on the node and its function where it is connected to if it
will also fail. If the node also breaks, that will propagate
further up, until a node doesn’t fail, or the top node is
reached. It is also possible that multiple components fail.
This means that multiple leaves will propagate a fail signal
up, which increases the chance of the whole system to fail.

Figure 1. Example of a Fault Tree

Figure 1 shows a fault tree representing subsystem A. The
nodes B, C and E represent OR nodes, and the nodes D
and F represent AND nodes. The numbers 1 to 8 represent
the components where subsystem A consists of. If, for
example, component 1 fails, node C will fail, and node B
will fail. This means the system as a whole will fail.

The nodes in fault trees can have reliabilities, percentages
that give the probability the component will fail in a given
amount of time.

Multiple methods for analyzing the reliability of the sys-
tem exist. One of the methods is calculating the Minimal
Cut Sets. A cut set is a set of components that together

1

can cause the system to fail. A minimal cut set is a cut
sets that is not a subset of the other cut sets.

An other method for analyzing the fault tree is by cal-
culating the Minimal Path Sets. A path set is the set of
components such that, is they do not fail, the system will
be operational. A minimal path set is a set that is not a
subset of the other path sets.

The last analyzing method mentioned in this paper is the
Rare Case Approximation, which is the sum of the prob-
abilities of the minimal cut sets failing. It estimates the
chance of the whole system failing by analyzing the the
most critical sets of components.

More information about fault trees can be found in [7].

1.2 Binary Decision Diagrams
A Binary Decision Diagram is an rooted, acyclic, directed
graph that represents a boolean function [1]. A boolean
function is a function with boolean inputs that will give a
true (1) or a false (0) as a result.

Every node also represents a boolean function, and has ex-
actly 2 outgoing edges, one labeled as “1” and one labeled
as “0”. The outcome of the boolean function of the node
depends which edge will be taken.

To construct a BDD from a boolean formula, the Shannon
expansion formula can be used to construct the top node
[1].

f(x1, x2, ..., xn) =
(x1 ∧ f(1, x2, ..., xn)) ∨ (¬x1 ∧ f(0, x2, ..., xn)).

BDDs are used in for example model checking, to effi-
ciently represent the state space and transition relation.
BDDs are useful for analysis because they can encode fault
trees very efficiently.

Figure 2. Example of a Binary Decision Diagram

A BDD can be evaluated by starting at the root node,
and follow the path down by evaluating the boolean func-
tions, following the edge with the solution of each boolean
function, and finish at a leaf. This is the outcome of the
boolean function of the BDD. Figure 2 gives an example
of an BDD. So, if only E1 is failing, the path taken while
evaluating is E1 → (1 edge) → E3 → (0 edge) → E4 →
(0 edge) → (0 leaf). This means the system as a whole
isn’t failing, and will still be running.

The node “E3” and the 1 and 0 leaves can be found mul-
tiple times, but they have the same children, so the dupli-
cates are overhead. To save memory, one node“E3”can be
removed, along with its children, and all incoming connec-

tions can be connected to the other “E3”. All connections
to a leaf can be connected to the same 0 or 1 leaf. The
result of such optimization can be found in Figure 3.

Figure 3. Example of a Fault Tree converted to a
Binary Decision Diagram

1.3 Analysis of Fault Trees
1.3.1 Converting a FT to a BDD

A simple way to analyze a fault tree is by converting the
fault tree to a binary decision diagram and perform anal-
yse techniques on the BDD.

An efficient way of constructing the BDD is using the
Rauzy algorithm[2]. It makes use of the ite function. ite is
a function with three arguments, an if statement, a then
statement, and an else statement. (f ∧G) ∨ (¬f ∧H) re-
sults in ite(f,G,H) and it can be read as “if f, then G, else
H”.

By taking a node (N) with children (c1..cn) of a fault tree,
the ite function can be used as follows:

If AND node:

ite(c1, ite(c2, ite(c3, .., false), false), false)

if OR node:

ite(c1, true, ite(c2, true, ite(c3, .., false))

Figure 4 shows a binary decision diagram and a fault tree
that represent the same system. If the nodes of a fault
tree have reliabilities, the nodes of the binary decision tree
that represent the same component will have the same
reliability.

1.3.2 Quantitative Analysis
Fault Tree Analysis can be divided in Quantitative Anal-
ysis and Qualitative Analysis.

Qualitative Analysis provides insight into the structure of
the FT and detects system vulnerabilities. Examples of

2

Figure 4. Example of a Fault Tree converted to a
Binary Decision Diagram

qualitative analyzing are finding the minimal cut sets and
minimal path sets in the Fault Tree.

Cut sets are the sets of system components that if they
failed, the whole system would fail. Minimal cut sets are
cut sets that are not a subset of the other cut sets. The
minimal cut sets give insight in which components should
need redundancy, or need an increase in reliability, because
the components are very important for the system.

For a BDD the minimal cut set can be found by finding the
minimal cut sets for all nodes. Getting the minimal cut
sets for node N is getting the minimal cut sets of the node
at the 1 node and adding N to each set, and combine that
set with the minimal cut sets of the node at the 0 edge.
What’s left is removing cut sets that are not minimal, so
sets that are supersets of other cut sets.

Let’s take the BDD in Figure 3. For E4 that means that
the only cut set is {E4}. If itself fails, it will result in a
1 leaf. Than for E3 the minimal cut sets can be found by
following the 1 edge, that will lead to an 1 leaf, so {E3}
is a minimal cut set. Combine that will the {E4} of the 0
edge and the minimal cut sets for E3 are [{E3}, {E4}]. In
this example the minimal cut sets of the whole BDD (E1)
are [{E1, E3}, {E1, E4}, {E2, E3}, {E2, E4}].
Path sets are the sets of components needed for the system
to keep running. The minimal path sets are path sets that
are not a subset of other path sets. The knowledge of min-
imal path sets visualizes which components are important,
and shouldn’t fail.

The minimal path sets in a BDD can be found the opposite
way as the minimal cut sets. The only difference is that
the node itself must added to the sets obtained from the
0 edge, and not from the 1 edge. The minimal path sets
of the BDD in Figure 3 are [{E1, E2}, {E3, E4}].

1.3.3 Quantitative Analysis
Quantitative Analysis methods derive relevant numerical
values for the Fault Trees.

An example of Qualitative Analysis is Rare Event Ap-
proximation. It is the sum of the unavailabilities of all the
Minimal Cut Sets. Again, this is more easily evaluated
using BDDs.

The rare event approximation is a approximation of the
reliability of the fault tree. The reliability of every node
can be calculated as follow. For a AND node the formula
for the reliability is∏

Ci∈Children(Ci)

For a OR node the formula is

1−
∏

Ci∈Children(1− Ci)

Lets say the reliabilities of the nodes of Figure 1 are:

E1: 0.02
E2: 0.07
E3: 0.03
E4: 0.10

Than the unavailability can be calculated.

The OR node above E1 and E2 has a reliability of 1 - (1
- 0.02) * (1 - 0.07) = 0.0886, and the OR node above E3
and E4 have a reliability of 1 - (1 - 0.03) * (1- 0.10) =
0.127. The AND node has a reliability of 0.0886 * 0.127
= 0.0113, so is the reliability of the fault tree as a whole.

In a BDD the rare event approximation gives a approxi-
mation of this number. It is the sum of the products of
the reliabilities of the members of the minimal cut sets.∑

Miinmcs(
∏

NjinMi
Nj)

For the BDD in Figure 3, which represents the FT in Fig-
ure 3 the rare event approximation is:

0.02×0.03+0.02×0.10+0.07×0.03+0.07×0.10 = 0.0117

1.4 Multi-threaded
Modern computers have multiple processing units, but
they are not always utilized by the computer. This re-
quires the programs that run on the pc to be programmed
in a way it can take advantage of the cores. In a recent
study a library called Sylvan has been developed for ma-
nipulating BBDs that can take advantage of multiple cores
[3].

Because CPU’s won’t get much faster in aspects like clock
speed, but instead more cores will be added to CPU’s to
give them more processing power. To make use of all cores,
the processes that run on the computer should be written
in a way the tasks can be divided to all cores. This applies
only to processes that can be divided. This isn’t possible
for all processes.

A parallel solution for Fault Tree Analysis will be benefi-
cial to multi-core computers in this modern world.

1.5 Sylvan
Sylvan is a parallel (multi-core) BDD library in C devel-
oped by the University of Twente. It can store BDDs and
perform operations on them. It uses the work-stealing
framework Lace to do this multi-threaded. This means it
wil make use of all cores of a computer, if it has more than
one. More information about Sylvan can be found here [3].

1.6 Lace
Lace is a work-stealing framework. Work-stealing is a
method for load balancing task-based parallel programs.
Workers will be make, which can perform a task, and re-
turn the result at a later moment. The framework can be
fed tasks, that will be divided among the initiated workers.
To use Lace the most efficiently, the amount of workers
should be equal to the amount of processing units of the
computer and every worker will be kept busy with tasks
at all time.

2. THE PROGRAM
The main function of the program is to first open a file
in the CP format. The CP format defines a Fault Tree.
The file is read and a model for the Fault Tree is created.
The Fault Tree is then converted to a BDD model in the
Sylvan library.

The program has functions to find the minimal cut set, the
minimal path set and the rare case approximation. The

3

functions are written with the work stealing framework
Lace to parallelize the function and take advantage of the
multiple cores of the computer. Moreover, Sylvan already
has functions which run in parallel.

2.1 Approaches
2.1.1 FT to BDD

A Fault Tree can be converted to a BDD using Rauzy’s
method[2]. A BDD type can be a node or a leaf. The
resulting BDD will represent the top node of the BDD.
ithvar will create a node, and gives it the same number as
the FT leaf, so we have mapped the FT component with
the BDD component.

de f node to BDD (node) {
r e t v a l = i n v a l i d ;

i f (node . type == OR) {
f o r (c h i l d in node . c h i l d l i s t) {

i f (c h i l d . type == LEAF
&& r e t v a l == i n v a l i d) {

r e t v a l = i thva r (c h i l d . va lue) ;
}
e l s e i f (c h i l d . type == LEAF) {

other = i thva r (c h i l d . va lue) ;
r e t v a l = i t e (other ,

true , cur rent) ;
}
e l s e i f (r e t v a l == i n v a l i d) {

r e t v a l = node to BDD (c h i l d) ;
}
e l s e {

other = node to BDD (c h i l d) ;
r e t v a l = i t e (other ,

true , cur rent) ;
}

}
}

e l s e i f (node . type == AND) {
f o r (c h i l d in node . c h i l d l i s t) {

i f (c h i l d . type == LEAF
&& r e t v a l == i n v a l i d) {

r e t v a l = i thva r (c h i l d . va lue) ;
}
e l s e i f (c h i l d . type == LEAF) {

other = i thva r (c h i l d . va lue) ;
r e t v a l = i t e (other ,

r e tva l , f a l s e) ;
}
e l s e i f (r e t v a l == i n v a l i d) {

r e t v a l = node to BDD (c h i l d) ;
}
e l s e {

other = node to BDD (c h i l d) ;
r e t v a l = i t e (other ,

r e tva l , f a l s e) ;
}

}
}

re turn r e t v a l ;
}

2.1.2 Analysing a BDD
The function FT minimal cs will create a task for the
workers of Lace, so it will run in parallel.The result of
the function will be an array of minimal cut sets. Each

minimal cut set will be encoded as an array of BDD nodes
(bdd).

de f FT minimal cs (bdd) {
high = get h igh node (bdd) ;
low = get low node (bdd) ;
i f (high == true) {

array [] ;
array . add (bdd) ;
h i g h r e s u l t s . add (array) ;

}
e l s e {

h i g h r e s u l t s = FT minimal cs (high) ;
add node (h i g h r e s u l t s , bdd) ;

}
i f (low != s y l v a n f a l s e) {

l o w r e s u l t s = FT minimal cs (low) ;

// combine r e s u l t s
// and remove not−minimals
f o r (low array in l o w r e s u l t s) {

f o r (h igh ar ray in h i g h r e s u l t s){
i f (low array .

i s s u b s e t (h igh ar ray){
h i g h r e s u l t s . remove (h igh ar ray) ;
h i g h r e s u l t s . add (low array) ;
done = true ;
break ;

}
e l s e i f (h igh ar ray .

i s s u b s e t (low array)) {
done = true ;
break ;

}
}
i f (! done) {

h i g h r e s u l t s . add (low array) ;
}

}
}
re turn h i g h r e s u l t s ;

}

void add node (r e s u l t , bdd){
f o r (array in r e s u l t) {

array . add (bdd) ;
}

}

The function FT minimal ps will create a job for the work-
ers of Lace, so it will run in parallel. The result of the
function will be an array of minimal path sets. Each min-
imal path set will be encoded as an array of BDD nodes
(bdd).

de f FT minimal ps (bdd) {
high = get h igh node (bdd) ;
low = get low node (bdd) ;
i f (low == f a l s e) {

array [] ;
array . add (bdd) ;
l o w r e s u l t s . add (array) ;

}
e l s e {

l o w r e s u l t s = FT minimal ps (low) ;
add node (l o w r e s u l t s , bdd) ;

}
i f (high != sy lvan t rue) {

h i g h r e s u l t s = FT minimal ps (high) ;

4

// combine r e s u l t s
// and remove not−minimals
f o r (h igh ar ray in h i g h r e s u l t s) {

f o r (low array in l o w r e s u l t s) {
i f (h igh ar ray .

i s s u b s e t (low array) {
l o w r e s u l t s . remove (low array) ;
l o w r e s u l t s . add (h igh ar ray) ;
done = true ;
break ;

}
e l s e i f (low array .

i s s u b s e t (h igh ar ray)) {
done = true ;
break ;

}
}
i f (! done) {

l o w r e s u l t s . add (h igh ar ray) ;
}

}
}
re turn l o w r e s u l t s ;

}

void add node (r e s u l t , bdd){
f o r (array in r e s u l t) {

array . add (bdd) ;
}

}

The Rare Event Approximation can be found by summing
the probability of all Minimal Cut Sets.

de f FT rare event approximat ion (bdd) {
mcs = FT minimal cs (bdd) ;
r e s u l t = 0 . 0 ;
f o r (s e t in mcs) {

temp = 1 . 0 ;
f o r (node in s e t) {

temp ∗= node . g e t r e l i a b i l i t y () ;
}
r e s u l t += temp ;

}
re turn r e s u l t ;

}

3. TEST SETUP
The tests will be performed on a 48 core computer so that a
large amount of Lace workers can be tested on parallelism.
2 implemented methods with the use of Sylvan (minimal
cut sets, minimal path sets) will be timed on 1, 2, 4, 8, 16,
32, and 48 cores with models by Rauzy [4]. In the most
optimal situation, the processing time will decrease to the
time used by one processing unit divided by the amount
of processing units.

To compare the rare event approximation and the real re-
liability, they will both be calculated. Because the models
used don’t provide probabilities, they will be generated.
Each node will be given a random number lower than 0.01.

4. TEST RESULTS
Table 1 contains the durations of calculating the minimum
cut sets for different fault tree models on different amount
of CPUs. In Figure 5 the data can be found in a chart.

Table 1. This table shows the time taken to cal-
culate the minimal cut sets on different amount of
CPUs

Model 48 CPU 32 CPUs 16 CPUs

ftr10.cp 8.585 12.071 22.544
das9202.cp 72.872 59.084 55.488
das9203.cp 48.110 38.503 33.367
das9204.cp 36.341 28.692 26.917
das9205.cp 103.223 81.746 71.933
das9206.cp 476.522 493.905 772.005

Model 8 CPUs 4 CPU 2 CPUs

ftr10.cp 46.404 86.968 165.090
das9202.cp 55.317 66.466 104.061
das9203.cp 31.898 31.200 31.284
das9204.cp 30.208 36.104 53.126
das9205.cp 68.541 66.764 65.877
das9206.cp 1337.704 2524.314 4866.159

Model 1 CPUs Speedup 1/48

ftr10.cp 298.758 34.799
das9202.cp 174.931 2.400
das9203.cp 33.035 0.686
das9204.cp 97.463 2.681
das9205.cp 65.987 0.639
das9206.cp 9345.069 19.610

ftr10 and das9206 can keep a steady decrease of processing
time. das9202 and das9204 have a decrease till 4 CPUs,
where after the processing time will stagnate decreasing.
das9203 and das9205 don’t get any speedup at all.

Table 2 contains the durations of calculating the mini-
mum path sets for different fault tree models on different
amount of CPUs. In Figure 6 the data can be found in a
chart. All models show a low to high speed-up, with the
exception of das9205.

Table 3 shows the rare event approximation compared
with the real reliability of the fault tree. The approxima-
tion is for most models close. The rare event approxima-
tion has for every model overestimated the real reliability.

5. DISCUSSION
The results in Table 1 and Figure 5 show that the par-
allelism can have good speed-ups, but in some cases no
speed-up at all. The fact that the models das9203 and
das9205 weren’t faster with multiple processing units was
probably due to the uneven distribution of OR and AND
nodes. The das9203 and das9205 had respectively only 1
and 2 AND nodes and many OR nodes. Analyzing this
kind of fault trees led to fast termination of a thread be-
cause nodes tend to lead to a leaf quickly. Fault trees that
had a more even distribution of OR nodes as AND nodes
did well, and had a good speed-up.

The results in Table 2 and Figure 6 show for all models,
with the exception of das9205, a lower calculation time
when using more processing units to do the calculation.
The overall durations where low for the das series because
a low amount of AND nodes, which led to a low amount
of path sets, so less time was spend on combining the two
lists of path sets.

6. FURTHER WORK
The program didn’t take advantage of a important aspect
of BDDs, namely node sharing. While analyzing nodes,
intermediate results aren’t stored. When a node is passed

5

1 2 4 8 16 32 48

10

100

1,000

10,000

CPUs

T
im

e(
s)

Processing time minimal cut sets

ftr10

das9202

das9203

das9204

das9205

das9206

Figure 5. This plot shows the time taken in sec-
onds to calculate the minimal cut sets on different
amount of CPUs

1 2 4 8 16 32 48

0.001

0.01

0.1

1

10

100

1,000

CPUs

T
im

e(
s)

Processing time minimal path sets

ftr10

das9202

das9203

das9204

das9205

das9206

Figure 6. This plot shows the time taken in sec-
onds to calculate the minimal path sets on different
amount of CPUs

Table 2. This table shows the time taken to calcu-
late the minimal path sets on different amount of
CPUs

Model 48 CPU 32 CPUs 16 CPUs

ftr10.cp 9.203 9.277 9.292
das9202.cp 0.0271 0.0348 0.0566
das9203.cp 0.0015 0.0018 0.0021
das9204.cp 0.0283 0.0085 0.0134
das9205.cp 0.0066 0.0010 0.0015
das9206.cp 20.200 27.531 48.334

Model 8 CPUs 4 CPU 2 CPUs

ftr10.cp 10.106 12.872 18.114
das9202.cp 0.0869 0.1512 0.2891
das9203.cp 0.0030 0.0037 0.0055
das9204.cp 0.0216 0.0377 0.0673
das9205.cp 0.0016 0.0022 0.0029
das9206.cp 87.273 160.863 299.534

Model 1 CPUs Speedup 1/48

ftr10.cp 26.995 2.933
das9202.cp 0.3843 14.178
das9203.cp 0.0071 4.481
das9204.cp 0.0645 2.278
das9205.cp 0.0030 0.456
das9206.cp 435.109 21.539

Model Rare event approximation Real reliability

ftr10.cp 3.942 0.979
das9202.cp 0.061315 0.000004
das9203.cp 0.106 0.025
das9204.cp 0.000001 0
das9205.cp 0.000509 0.000195
das9206.cp 1.511 0.790

Table 3. This table shows the rare event approxi-
mation compared to the real reliability of the fault
trees

multiple times, the minimal cut set or minimal path set
for that node is calculated the same amount of times. This
is time spending and unnecessary. A addition to the the
program will be intermediate result storage, so a benefit
can be taken from node sharing.

Another improvement will be an other ordering technique
for constructing the BDD from the FT. R. Remenyte-
Prescott and J.D. Andrews have proposed an ordering
(top-down left-right) that probably will result in lower
computation times [6].

7. CONCLUSION
This paper gives result of a multi-threaded solution of per-
forming analyzing techniques on fault trees. The tool an-
alyzes fault trees that have been converted to BDDs and
gives speedup when using more than 1 CPU core. The
speed-up can vary depending on the fault tree. For some
fault trees the speed-up will keep increase, for some fault
trees the speed-up will stagnate after an amount of cores,
and for some fault trees there won’t be a speed-up. The
method isn’t always beneficial for the performance when
analyzing a fault tree, but it is also never destructive for
the performance.

8. REFERENCES
[1] S.B. Akers. Binary Decision Diagrams. IEEE

TRANSACTIONS ON COMPUTERS, VOL. c-27,

6

NO. 6, JUNE 1978

[2] Andrews, J.D. and Rementye, R Fault tree conversion
to binary decision diagrams. Loughborough
University Institutional Repository

[3] T. van Dijk and J. van de Pol Sylvan: Multi-Core
Decision Diagrams. Formal Methods and Tools,
University of Twente, The Netherlands

[4] Antoine Rauzy Aralia Fault Trees
http://www.itu.dk/research/cla/externals/clib/Aralia.zip

[5] K.A. Reay and J.D. Andrews. A Fault Tree Analysis
Strategy Using Binary Decision Diagrams.
Loughborough University, Loughborough,
Leicestershire, LE11 3TU.

[6] R. Remenyte-Prescott, J.D. Andrews An enhanced
component connection method for conversion of fault
trees to binary decision diagrams Loughborough
University, Loughborough LE11 3TU, UK

[7] Enno Ruijters and Mariëlle Stoelinga Fault tree
analysis: A survey of the state-of-the-art in modeling,
analysis and tools. Formal Methods and Tools,
University of Twente, The Netherlands

7

