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Abstract

Graphs have proved to be a powerful formalism to represent
structures in models and meta-models of software systems. In
this context, dynamic changes to graphs are described by rule-
based graph transformations and the use of type graphs to clas-
sify graph structures has emerged as a valuable principle.
While most studies towards the integration of type graphs in
graph transformation systems rely on the existence of manually
created type graphs, this project aims at automatically com-
puting these type graphs for graph tranformation systems. As
a logical extension, we also consider type graphs with inheri-
tance and verify our findings with an implementation of a type
inference algorithm into the Groove tool set.
The main results of this study show that automatic type graph
reconstruction in graph transformation systems is possible and
offers valuable insights to graph typings.
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CHAPTER 1

Introduction

In recent years, software systems have become more and more complex; therefore
modelling and abstraction play an increasingly important role in current soft-
ware development. Although modelling languages such as the Unified Modelling
Language (uml) are common heritage and widely used in the design of many
systems, implementation of those systems generally is still performed using tra-
ditional programming languages, which are unaware of the model. Techniques
such as object-oriented programming and aspect-oriented programming are use-
ful for implementing systems in a modular and clarifying way that approaches
the model, but the main drawback of this approach is that there is no synchro-
nisation between the models and the implementation, a fact which may lead
to inconsistencies between the specification and the implementation of systems
when these systems evolve.

In order to overcome this problem, model-based software development, in which
static structure is expressed in models and where model transformations describe
dynamic changes to these models, has been developed. Models are not merely
used for documentation using this approach, but fully describe the behaviour
and functionality of programs and act as a direct input for code generators.

In this thesis we use graphs and graph transformations to describe models and
dynamic changes to these models respectively. Graph transformations have been
succesfully applied to modelling, meta-modelling, and model-driven architecture
[EEPT06] and offer a simple and intuitive, but at the same time rigorous formal,
way to describe manipulations to models [Kön05]. An additional advantage of
using graph transformations is that they describe dynamic behaviour of object-
oriented systems through rules working directly on the models, rather than using
some intermediate modelling language [Ren08].

An important property of many frameworks concerned with model transforma-
tion, such as the Model Driven Architecture (mda) [MM03], is the use of meta-
models to which the models being transformed must conform. Analogously,
research concerning graph transformations has evolved towards the use of type
graphs, which are used to classify graph nodes and edges [BEdLT04, dLBE+07].

The basic idea of using type graphs in combination with graph transformations
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1.1. Motivation 2

is that type graphs describe and constrain the static structure of the instance
graphs that are being transformed, i.e. they are used for correctness and docu-
mentation of graph grammars.

Although the integration of type graphs into graph grammars has been thor-
oughly investigated (see e.g. [BEdLT04], [dLBE+07], or [Kön05]), most studies
on this subject so far have always assumed the existence of a predefined type
graph. In this thesis, however, we take an alternative approach: we aim at
automatically computing type graphs from existing graph grammars.

Because a type graph constrains the structure of the graphs that are being
transformed, a basic requirement for the type graphs that we automatically
compute is that they impose no constraints on the graphs and transformations
of the grammar given. Concretely, we aim at answering the following question
during this work:

Problem statement: Develop a method to automatically compute a
type graph from a given graph grammar, such that it imposes no restric-
tion on the derivations of this graph grammar.

This defines the main challenge of this project; however, in order to get a more
complete research project, we also ask ourselves the following sub-questions:

1. How does type inheritance fit within this method?
2. How can the theory we gathered during this project be applied in the

Groove tool set?

In the remainder of this thesis we will answer these questions. The results
regarding these questions will be presented in Chapters 3, 4, and 5 respectively.

1.1 Motivation

Most publications on type graphs in combination with graph grammars—often
referred to as typed graph grammars—are based on manually created type
graphs. On the contrary, existing type inference algorithms such as the Hindley-
Milner algorithm [Hin69, Mil78] have proved to be powerful in their application,
particularly in functional programming languages.

We think that automatic type reconstruction is also possible in graph transfor-
mation systems; moreover, we think that it might be a powerful extension to
the current theories on typed graph grammars. Not only does it save time when
implemented, it may also lead to important new insights with respect to graph
typings.

As an example to this, note that existing theories on type graphs define type
graphs just as graphs, possibly extended with notions such as inheritance edges
and multiplicities, that constrain their instance graphs. In this study on type
inference for graph transformation systems, however, we also define constraints
on the type graphs themselves.
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=⇒

Figure 1.1: The “Seven bridges of Königsberg” problem; on the left displayed
in a schematic way, on the right modelled as a graph. Nodes in
this graph represent the islands of Königsberg; the edges denote
the bridges between these islands.

1.2 Background

This section gives an intuitive introduction to the concepts used in this thesis
and is used to offer some basic understanding of these topics to the readers.
More detailed and particularly more formal descriptions of the concepts are
given in later chapters.

1.2.1 Graphs and Graph Transformations

Graphs are mathematical structures consisting of a set of nodes and a set of
edges that connect these nodes to each other. Because graphs have an intuitive
graphical representation, where nodes are represented by boxes and edges as
lines between these nodes, they can be used to model virtually any possible
structure.

Example 1.1. A well-known application of graphs to solve problems is the prl-
blem of the seven bridges of Königsberg, that was published in 1736 by the Swiss
mathematician Leonhard Euler. This problem, which is illustrated in Figure 1.1,
states that it is impossible to cross all seven bridges that are illustrated in this
figure without crossing at least one bridge more than once, and resulted in some
of the fundamental concepts of graph theory [Gri98].

Nowadays graphs are used in many applications, including computer networks,
wireless/mobile networks, and car navigation systems; in this thesis, however,
the primary use for graphs involves modelling and meta-modelling of software
systems, where graphs are used to define the static structure of such systems.

Dynamic changes of these static structures, on the other hand, are described
using graph manipulations. In this thesis, we define such manipulations on
graphs using graph transformations, which provide a formal yet intuitive way
to specify the manipulation of graphs based on rules [CMR+97].

The rich theory of graph transformations has developed in the past 30 years
[dLBE+07]; standard works on the subject include [Roz97] and [EEPT06].
Graph transformations have been subject of many international conferences (e.g.
ICGT) and workshops (e.g. GT-VMT, AGTIVE, SETRA, TERMGRAPH) and
have been succesfully applied to many areas in software engineering, such as
model and program transformation, visual programming, (meta-) modelling,
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L R

p = (L,R)

Figure 1.2: Schematic overview of a graph transformation (source:
[EEPT06]).

and model-driven architecture [EEPT06]; this clearly indicates that the topic is
thoroughly investigated in the last decades and still is an active area of research.

The main idea of graph transformations is rule-based manipulation of graphs
[EEPT06]. Graphs are manipulated using so-called production rules, p = (L,R),
which are pairs of graphs consisting of a left hand side L and a right hand side
R. These production rules describe how certain graphs (viz. those to which the
rule is applicable) are transformed into others [Ren05].

Application of a production rule is illustrated in Figure 1.2. Applying a rule
p = (L,R) to a graph G means finding an occurrence of L and replacing it by
R, leading to a resulting graph H. These graphs G and H are often called the
host graph and product graph of a graph transformation, respectively.

This describes the general structure of a graph transformation from a host graph
G to a product graph H, usually written G ⇒ H. There exist several differ-
ent approaches to graph transformation; these approaches describe how exactly
the ocurrence of L is deleted and how R is connected to the resulting graph
afterwards. For a list of different approaches, see e.g. [Roz97] or [EEPT06].

The approach we use in this thesis is the algebraic approach, specifically the
single-pushout variant of this approach. This approach is based on relations
between graphs that are called graph morphisms and on so-called pushout con-
structions, and is introduced by Löwe [Löw93].

Example 1.2. Figure 1.3 illustrates a simple example of a graph transformation
in the single pushout approach. Graphs L and R in this figure represent the
graphs of a production rule p and graphs G and H represent the host graph and
product graph of the application of p on G, respectively. The numbering of the
nodes indicates how the nodes of the graphs are mapped by graph morphisms;
the edge mappings are not explicitly shown but follow uniquely from the node
mappings.

1.2.2 Type Systems

The theory of types originates from the early 1900s when Bertrand Russell
wrote his Principles of Mathematics, containing what is currently well known
as Russel’s paradox. This paradox states that a set that contains all sets that do
not contain themselves, should and should not contain itself at the same time
and therefore can never exist; a solution to this problem constituted the first
theory on types.
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Figure 1.3: Example of a single pushout graph transformation.

Many definition for type systems have been introduced throughout history. Rus-
sell, for instance, defined a type as “a range of significance for certain proposi-
tional functions” [Rus03], and Constable et al as “a collection of objects having
similar structure” [CSB+86]. In modern software engineering, however, type
systems are one of numerous formal methods that help software engineers to
enforce systems to behave correctly according to their specifications [Pie02].
The main purpose of type systems is to prevent the occurrence of certain errors
during program execution [Car04].

Example 1.3. Consider the following Java method, which simply returs the
length of a given string:

public static int strLen(String s) {
return s.length();

}

Now suppose that this method is called as follows:

strLen(new Boolean(true));

Then, the type checker raises an error, because type String and Boolean are
incompatible.

This illustrates a simple example in which type checking allows early detection
of an error. In larger examples type checking is even more helpful because then
the mistake might be less ovbious.

Thus type systems are useful for the early detection of errors, which is a desirable
feature. A second function of type systems is documentation: types offer useful
help for reading programs [Pie02]. This is easily shown in the following code
fragment, which contains the interface of the method replaceAll in Java class
String. Regardless of the implementation of this function, its interface shows
that it requires two parameters of type String and that it also returns an
object of type String.
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Figure 1.4: An instance graph (left) and the corresponding type graph (right)

public String replaceAll(String regex, String replacement);

The main advantage of the form of documentation given by types is that it is
always up-to-date, since it is checked every time the code is compiled [Pie02].

An important mechanism that is present in most current type systems, partic-
ularly for object-oriented languages, is inheritance, or subtyping. The basic idea
of inheritance is that new types can be defined using already existing types; this
new type is then a subtype of the already existing type and this existing type is
a supertype of the new one.

A subtype is a specialisation of its supertype and is considered more concrete.
Reason for this is that the subtype extends the more abstract supertype and
inherits its functionality.

Inherent to inheritance is what Pierce calls the principle of safe substitution.
According to this principle, any object of type S can be used safely in contexts
where objects of type T are expected if S is a subtype of T [Pie02].

Type Graphs

In the setting of typed graph grammars, type graphs are used to classify nodes
and edges of instance graphs, i.e. they put restrictions on the possible nodes
and edges that their instances may have. A graph is an instance of a type graph
if it has a typing into the type graph, which intuitively means that the type
graph contains node types for all nodes of the instance graph and edge types
for all edges in the instance graph.

Example 1.4. Figure 1.4 illustrates an example of a type graph and one of its
possible instances. It is easy to see that the type graph contains node types and
edge types for all nodes and edges of the instance graph. The exact typing of the
instance graph into the type graph will be explained in Example 3.2 on page 20.

Several extensions to type graphs are proposed throughout the literature. With-
out doubt the most often used is inheritance, which is introduced in graph trans-
formation systems by Bardohl et al. [BEdLT04]; it comprises the use of a special
type of edges, called inheritance edges, to specify that certain node types are
subtypes or supertypes of others. Some papers, however, also introduce a notion
of node- and edge multiplicities into type graphs; rather than specifying what
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nodes and edges may be present in instance graphs, type graphs with multiplic-
ities specify how many of these nodes and edges may be present. Although we
will use type inheritance in this thesis (see Chapter 4), we will not elaborate
on multiplicities. For more information on multiplicities in type graphs see, e.g.
[EKTW06] or [TR05].

Type Inference

Most programming languages depend on type systems that use explicit type
annotations [Pie02]. This means that all variables in these programming lan-
guages must be explicitly annotated with their type. For instance, consider the
following Java code fragment:

public int aMethod(int a) {
this.a = a;

}

In this example, the input and output variables of function aMethod need to
be explicitly annotated with their types (int and int).

A technique present in some programming languages that makes explicit type
annotations unnecessary is called type inference. A definition that gives a good
idea of what type inference is, is given by Mitchell: he defines type inference
as “the process of finding types for untyped expressions” [Mit84]. In line with
this definition, type inference algorithms are capable of calculating types for
variables that are not explicitly annotated with type information.

A well-known type inference algorithms is the Hindley-Milner algorithm [Hin69,
Mil78], which is used by many functional programming languages such as Haskell
or Miranda. To illustrate the functioning of the algorithm, consider the following
Miranda implementation of a function length, which computes the length of
a given list:

length [] = 0
length (x:xs) = 1 + length xs

Although the two parameters of the function are not explicitly annotated with
their types, the type inference algorithm is capable to compute a type for the
function (which is [A] -> num).

1.2.3 Groove

During this project, we will implement a type inference algorithm into Groove,
which stands for GRaphs for Object-Oriented VErification [RBKS]. Groove
is a graph transformation based model checker created at the University of
Twente.

Groove is a tool that uses graphs and graph transformations to facilitate the
modelling and verification of object-oriented systems and model transforma-
tions. Although Groove offers many features with respect to automated veri-
fication, such as model checking, we are particularly interested in the design of
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object-oriented systems where types play an important role.

Currently, Groove does not support typed graph grammars. We believe that
type graphs give—next to a strong verification mechanism for graphs—many
insights to complex graph problems and therefore we trust that the addition of
a type inheritance algorithm to Groove will lead to many opportunities for the
future development of the tool and associated research.

1.3 Organisation of this Thesis

We start by introducing the formalisms used throughout this thesis in Chap-
ter 2. The chapter starts with a brief introduction into elementary mathematics
and thereafter introduces graphs, graph morphisms, and commutative diagrams;
these concepts form the basis of the algebraic approach to graph transforma-
tions, which is used throughout this thesis.

Chapter 3 introduces typings and type graphs in graph grammars. After dis-
cussing what properties a type graph for a graph grammar should have and
what it means for type graphs to be stronger than others, we define a perfect
type graph for a grammar. We shall see that this perfect type graph can not be
computed algorithmically; therefore we introduce two algorithms that compute
approximations of this perfect type graph. First, we define a naive algorithm,
which we thereafter refine; this results in an improved algorithm.

Chapter 4 adds the notion of node type inheritance to type graphs. It defines
a naive type graph with inheritance for a given graph grammar, that contains
an over-approximation of inheritance edges and describes an algorithm that
is defined in a similar way as this naive type graph with inheritance. The
chapter concludes with some contraction scenarios, which are used to decrease
the number of unnecessary inheritance edges in the naive type graph.

In order to verify the theory of the preceding chapters, Chapter 5 describes an
implementation of the two algorithms we defined in Chapter 3 in Groove. By
means of two examples we show that the algorithms compute valid type graphs
for given graph grammars and are useful in practice.

Finally, Chapter 6 summarises this work and discusses some possible directions
for future work.



CHAPTER 2

Preliminaries

This chapter is an introduction to the theory used in this thesis. Many concepts
in this thesis rely on concepts and notations concerned with elementaty math-
ematics, graph theory, and algebraic graph transformations. Although many of
these concepts may be familiar to the reader, we will give a brief overview of
those that we consider most important.

In Section 2.1 we introduce relations, functions, and some special relations such
as partial orders and equivalence relations, which form the basis for most con-
cepts in this thesis. Thereafter, in Section 2.2, we use many of these concepts in
combination with graphs; this section also introduces graph morphisms, which
describe relations between graphs and form a fundamental basis for graph trans-
formations. Section 2.3 subsequently introduces the concept of diagrams, which
form the underlying concept of graph transformations, which are introduced in
Section 2.4.

2.1 Basic Concepts

In this section we shall review some concepts and notations with respect to
elementary mathematics. We assume that the user is familiar with elementary
set theory and shall therefore not elaborate on this subject. Instead of this, we
will introduce relations and functions first, after which we list some common
binary relations—such as preorders, partial orders, and equivalence relations—
and define closure operations on binary relations.

2.1.1 Relations and Functions

Definition 2.1 (Relation). A relation on a tuple of sets S1, S2, . . . Sn is a subset
of the cartesian product of these sets, defined as

S1 × S2 × . . .× Sn = {(s1, s2, . . . , sn) | si ∈ Si, for i = 1, 2, . . . , n}.

9



2.1. Basic Concepts 10

A binary relation is a relation on two sets; in this thesis we shall mostly use
binary relations. Elements of a binary relation on two sets A and B are ordered
pairs (a, b) such that a ∈ A and b ∈ B. Instead of this notation, we will often
use a R b to denote that (a, b) is in binary relation R.

A special kind of relation is a function. A function is a relation for which it
holds that for all x there is at most one y such that (x, y) is in the relation.

Definition 2.2 (Function). A function f : A→ B is a relation on sets A and
B such that if (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.

1. The domain of f , denoted dom f , is the set of elements a ∈ A such that
(a, b) ∈ f for some b. The image of f , denoted im f , is the set of elements
b ∈ B such that (a, b) ∈ f for some a.

2. We use the standard notation f(x) = y to denote that (x, y) ∈ f .
3. f is injective if every element in the image of f is mapped by at most one

element from the domain, i.e. ∀a, b ∈ A, f(a) = f(b) implies a = b.
4. f is surjective if every element in the image of the function is mapped

by at least one element from the domain, i.e. ∀b ∈ B, ∃a ∈ A such that
f(a) = b.

5. f is bijective if it is both injective and surjective, i.e. ∀b ∈ B there exists
exactly one a ∈ A such that f(a) = b.

6. The inverse of f is a function f−1 : B → ℘(A), where ℘(A) is the
powerset of A. f−1 is defined as f−1(y) = {x | f(x) = y}; the set f−1(y)
is called the preimage of y.

7. f is total if dom f = A.
8. f is partial if dom f ⊆ A.

Figure 2.1 gives an example of an injective, a surjective, and a bijective function.

a1

a2

a3

b1

b2

b3

b4

(a) Injective, not surjec-
tive

a1

a2

a3

a4

b1

b2

b3

(b) Surjective, not injec-
tive

a1

a2

a3

a4

b1

b2

b3

b4

(c) Bijective

Figure 2.1: Examples of injective, surjective and bijective functions

A concept often used in this thesis is called function composition; it comprises
the application of a function to the result of another.

Definition 2.3 (Function composition). Let f : A→ B and g : B → C be two
functions. The composition of f and g is a function g ◦ f : A → C defined by
(g ◦ f)(a) = f(g(a)).

Definition 2.4 (Restriction of a function). Let f : A→ B be a function and let
S be a subset of A. Then the restriction of f to S is the function f |S : S → B
defined as f |S(s) = f(s) for all s ∈ S ∩ dom f .
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2.1.2 Common Binary Relations

Some common binary relations that we often use in this thesis are preorders,
partial orders, and equivalence relations.

Definition 2.5 (Preorder). Let S be a set and . be a binary relation on S.
Then . is a preorder on S if the following conditions hold:

– ∀a ∈ S . a . a (reflexivity)
– ∀a, b, c ∈ S . a . b ∧ b . c⇒ a . c (transitivity)

Definition 2.6 (Kernel of a preorder). Let S be a set and let . be a preorder
on S. Then the kernel of ., denoted ker., is the largest symmetric subrelation
of . and is defined as follows:

ker. = {(a, b) | a . b, b . a}

Definition 2.7 (Partial and total order). Let S be a set and ≤ be a preorder
on S. Then ≤ is a partial order on S if the following property holds:

– ∀a, b ∈ S : a ≤ b ∧ b ≤ a⇒ a = b (antisymmetry)

Furthermore, ≤ is a total order if additionally the following property holds:

– ∀a, b ∈ S : a ≤ b ∨ b ≤ a (totality)

Equivalence Relations

Equivalence relations are used to denote that some elements in a set are equiv-
alent in some way. An often used property of equivalence relations is that they
are able to partition their underlying set into their equivalence classes.

Definition 2.8 (Equivalence Relation). Let S be a set and ' be a preorder on
S. Then ' is an equivalence relation on S if the following property holds:

– ∀a, b ∈ S : a ' b⇒ b ' a (symmetry)

Definition 2.9 (Equivalence class). If ' is an equivalence relation on a set S
and a ∈ S, then the equivalence class of a defined by ' is the set

[a]' = {x ∈ S | x ' a}.

The set of all equivalence classes of a set is called a quotient set.

Definition 2.10 (Quotient set). Given a set S and an equivalence relation
' ⊆ S × S, the set

S/' = {[x]' | x ∈ S}

is called the quotient set of S over '.
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2.1.3 Closures of Relations

We often need relations that satisfy certain properties, i.e. relations that are
transitive, reflexive, or symmetric. The closure operators on relations are used
to define relations that have these properties, based on arbitrary relations that
do not necessarily have them.

Definition 2.11 (Transitive closure). The transitive closure R′ of a binary
relation R is the minimal transitive relation that contains R, i.e. a R′ b if a R b
or ∃c0, . . . , ck .(a, c0), (c0, c1), . . . , (ck−1, ck), (ck, b) ∈ R.

Definition 2.12 (Reflexive closure). The reflexive closure R′ of a binary rela-
tion R is the minimal reflexive relation that contains R, i.e. a R′ b if a R b or
a = b.

Definition 2.13 (Symmetric closure). The symmetric closure R′ of a binary
relation R is the minimal symmetric relation that contains R, i.e. a R′ b if
a R b or b R a.

Sometimes we use combinations of these closures; for instance the reflexive-
transitive closure of a relation R is the minimal reflexive and transitive relation
that contains R.

2.2 Graphs and Morphisms

Graphs consist of nodes, and edges that connect these nodes to each other.
Although there exist many ways to define graphs, this thesis uses labeled, directed
graphs where node labels are represented as self-edges. The classical formal
definition of such graphs is as follows.

Definition 2.14 (Simple graph). Given a fixed set of edge labels Label, a simple
graph G = (VG, EG) is a pair consisting of a set of nodes VG and a set of edges
EG ⊆ (VG × Label× VG).

– For edges of a graph, three functions are present: srcG, tgtG : EG → VG

map edges to their source and target nodes respectively; lblG : EG → Label
maps edges to their labels. These functions are defined as

src
(
v, l, w

)
= v lbl

(
v, l, w

)
= l tgt

(
v, l, w

)
= w.

– For two graphs G and G′, if VG′ ⊆ VG and EG′ ⊆ EG, then G′ is a
subgraph of G and G is a supergraph of G′, written as G′ ⊆ G.

– We use graphs and simple graphs as synonyms.

As a further convention, we will use node labels to represent self-edges in all
figures of this thesis, unless stated differently.

Relations between graphs are represented using graph morphisms. A graph
morphism maps the nodes and edges of one graph to those of another one, such
that the source, target, and label of each edge is preserved.
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Definition 2.15 (Graph morphism). Given two graphs G and H, a graph mor-
phism f : G → H is a pair of functions fV : VG → VH and fE : EG → EH ,
such that f((s, l, t)) = (fV (s), l, fV (t)) for all (s, l, t) ∈ dom fE.

– Graph morphism f is called total if both functions fV and fE are total,
i.e. they contain a mapping for any element in their domain; f is called
partial if fV and fE are partial.

– Graph morphism f is injective, surjective, or bijective if both functions fV

and fE are injective, surjective, or bijective respectively.
– If morphism f is bijective, it is called an isomorphism. We use G ∼= H to

denote that there is an isomorphism from graph G to graph H.
– A graph morphism f : G → G from a graph into itself is called an endo-

morphism. If f is also an isomorphism it is an automorphism; when an
automorphism is the identity morphism, we call it trivial.

– For morphism f : G → H, we call G the source of f and H its target,
denoted src(f) and tgt(f) respectively.

– The image of f , denoted im f , is a graph (V ′, E′) such that V ′ = im fV

and E′ = im fE .

Figure 2.2 illustrates an example of a graph morphism. The edge mapping is
not explicitly shown, but follows uniquely from the node mapping. The nodes
are indexed in this figure with their node identities.

a1

a2

a3

a4

a

b

A

b1

b2

a,b

B

Figure 2.2: Example of a graph morphism

Nodes and edges of different graphs may overlap. Therefore we use the concept
of disjoint union to denote the union of graphs.

Definition 2.16 (Disjoint union of two graphs). Let G1 = (V1, E1) and G2 =
(V2, E2) be graphs. Then, if V1 ∩ V2 = ∅, H = (V1 ∪ V2, E1 ∪ E2) is called a
disjoint union of G1 and G2, denoted G1 ]G2. If, however, V1 ∩ V2 6= ∅, then
G1 ] G2 is defined by H = (V1 ∪ V ′2 , E1 ∪ E′2), where G′2 = (V ′2 , E

′
2) is a graph

isomorphic to G2, such that V ′2 ∩ V2 = ∅, and E′2 ∩ E2 = ∅.

Furthermore, given a set of graphs G, we denote the disjoint union of all elements
in G as ]G.

In some occasions we need to combine graph morphisms, e.g. when two distinct
graphs both have a morphism into the same target graph. We denote this
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combination of graph morphisms as a union of morphisms, which is defined as
follows:

Definition 2.17 (Union of morphisms). If, for graphs A, B, and C where
VA∩VB = ∅, f : A→ C and g : B → C are two morphisms, f∪g : (A]B)→ C
is defined as:

(f ∪ g)(x) =
{
f(x) if x ∈ A
g(x) if x ∈ B .

Lemma 2.18. Given graphs A, B, and C and graph morphisms f : A → C
and g : B → C, the union f ∪ g : (A ] B) → C of these morphisms is again a
graph morphism.

Proof. This is trivial, because f and g are graph morphisms and VA ∩ VB = ∅
(and hence EA ∩ EB = ∅).

2.2.1 Quotient Graphs

As with sets, the quotient construction can be used to partition graph nodes
into their equivalence classes. With respect to graphs, the resulting quotient is
again a graph in which all nodes of the same equivalence class are merged.

Definition 2.19 (Quotient graph). Let G = (VG, EG) be a graph and let ' ⊆
VG × VG be an equivalence relation. Then the graph H = (VH , EH) with

– VH = VG/', and
– EH = {([w1]', l, [w2]') | (w1, l, w2) ∈ EG}

is called the quotient graph of G over ', denoted G/'.

Definition 2.20. Given a graph G, if ' ⊆ VG × VG is an equivalence relation
on nodes of G and x ∈ VG ∪ EG, then the equivalence class of V containing x
is defined as:

[x]' =
{

[x]' if x ∈ VG

{(n1, a, n2) | n1 ' src(x), n2 ' tgt(x), a = lbl(x)} if x ∈ EG

Lemma 2.21. Given a graph G and an equivalence relation ' ⊆ VG × VG,
let H = G / ' be the quotient graph of G over '. Then there exists a total
surjective graph morphism G→ H.

Proof. Let f = (fV , fE) be a pair of functions such that fV : VG → VH and
fE : EG → EH are defined as follows, for all x ∈ VG ∪ EG:

fV,E(x) = [x]'.

Since fV and fE are uniquely defined for all x ∈ VG ∪ EG, f is well-defined
and total. From Definition 2.20 it follows that f preserves sources, targets, and
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labels of all e ∈ EEG
and hence f is a graph morphism. Finally, surjectivity of

f follows from the definition of f .

This proves that f : G→ H is a surjective graph morphism, as required.

Lemma 2.22. Let G and H be graphs and let R ⊆ VH × VH be an equivalence
relation. Then, if there exists a (total) graph morphism m : G→ H, there also
exists a (total) graph morphism m′ : G→ H / R such that m′(x) = [m(x)]R for
all x ∈ VG ∪ EG.

Proof. We define m′ as m′ = f ◦ m where f : H → H / R is a total graph
morphism. Existence of f follows from Lemma 2.21: f is defined as f(x) = [x]R
for all x ∈ VH ∪ EH .

The required property m′(x) = [m(x)]R is proved as follows:

m′ = f ◦m
m′(x) = f(m(x))
m′(x) = [m(x)]R

for all x ∈ VG ∪EG. Finally, since f is total, totality of m′ follows directly from
the totality of m.

2.3 Commutative Diagrams

A mathematical formalism often used in combination with graph transforma-
tions is category theory. Category theory allows to reason about mathematical
structures and relationships between these sructures in a uniform and abstract
way. A basic introduction to category theory is given in [BW90]. Despite the
expressive power of this formalism with respect to graph transformations, we
shall not use this theory in this thesis; rather we will use some concepts and
proof strategies from this theory.

One of the concepts we use is a diagram. We define a diagram as follows.

Definition 2.23 (Diagram). A diagram is a pair (G,M) where G is a set of
graphs and where M is a set of morphisms between these graphs.

Diagrams offer an intuitive way to reason about objects and relationships be-
tween these objects; in this thesis the objects are graphs and the relationships
are graph morphisms.

A special kind of diagram is a commutative diagram; a commutative diagram
is a diagram such that, for any two objects in the diagram, any path between
these objects through the morphisms of the diagram yields the same result by
composition.

Example 2.24. Consider the simple diagram illustrated in Figure 2.3, which
is a canonical example of a commutative diagram. It consists of three graphs A,
B, and C, and three morphisms f : A→ B, g : B → C, and h : A→ C between
these graphs.
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A

C

B
f

h g

Figure 2.3: Example of a diagram

This diagram is commutative (or commutes) if, and only if, h is the composite
function g ◦ f .

2.4 Graph Grammars

As defined in Section 1.2.1, a graph grammar consists of a set of production
rules and a start graph. Production rules are used to define manipulations on
graphs and the start graph acts as the host graph for the first applied production
rule. The transformation process consists of a sequence of transformation steps
in which the current graph is matched against all production rules, after which
one of the matching rules is applied. The new graph produced by the rule is
used as host graph in succeeding transformation steps.

In this section we shall introduce formal definitions concerned with graph gram-
mars, based on the single-pushout approach to graph tansformation as is spec-
ified in [Löw93]. First we define a production rule.

Definition 2.25 (Graph production). A graph production rule r = L
p−→ R

consists of a partial graph morphism p : L→ R and two graphs L and R, where
L is called the left-hand-side and R the right-hand-side of r.

Morphism p determines the change from G to H upon application of r. Elements
in R that are not in im p should be added, whereas elements in L that are not
in dom p have to be deleted. Furthermore, elements that are in dom p that are
being mapped to the same element in im p have to be merged.

According to the single pushout approach, deletion of a node in G automatically
causes the deletion of all incident edges and deletion of elements is favored over
preservation in case of conflicts [CMR+97]. A constructive definition of a graph
transformation in the single-pushout approach is based upon a definition by
Rensink [Ren08] and reads as follows.

Definition 2.26 (Graph Transformation). Let G be a graph and r : L
p−→ R

be a production rule, such that VG ∩ VR = ∅. Then, if there exists a total graph
morphism m : L → G, G

p,m
=⇒ H is a graph transformation from host graph G

into product graph H = (VH , EH) such that:

– V = VG ∪ VR.
– ' ⊆ V × V is the smallest equivalence relation such that p(v) ' m(v) for

all v ∈ VL.
– VH = {X ∈ V / ' | m−1(X) ⊆ dom p}



2.4. Graph Grammars 17

– EH = {(X, l, Y ) | (v1, l, v2) ⊆ EG ∪ ER, v1 ∈ X ∈ VH , v2 ∈ Y ∈ VH}

There exist two partial graph morphisms p∗ : G → H and m∗ : R → H such
that p∗ ◦m = m∗ ◦ p; in other words, such that the pushout diagram given in
Figure 2.4 commutes.

L R

G H

p

m m∗

p∗

Figure 2.4: Pushout diagram.

Example 2.27. Figure 2.5 demonstrates the application of a production rule
p : L → R on a graph G. Nodes in graphs L, R, and G are indexed with their
node identities; nodes in H with the node identities of the nodes they originate
from. The rule searches for two nodes with an edge labelled “a” inbetween and
subsequently removes this edge and its target node.

Equivalence relation ', as defined in Definition 2.26, is the relation

' = {(3, 4), (4, 3), (3, 3), (4, 4), (5, 5), (6, 6)}

and hence all '-equivalence classes of VG ∪ VR are {3, 4}, {5}, and {6}. These
'-equivalence classes are the nodes of graph H, as is depicted in figure 2.5.

Because of the restriction m−1(x) ⊆ dom p, as given in Definition 2.26, equiv-
alence class {5} should be omitted: m−1(5) = 2 and 2 /∈ dom p, where 2 and 5
represent nodes with corresponding node identities. Therefore, the correct prod-
uct graph of the application of rule p to host graph G is the subgraph of H drawn
with thick lines.

Definition 2.28 (Graph Grammar). A graph grammar GG = (G0,P) is a pair
consisting of a graph G0 and a set of production rules P. G0 is called the start
graph of GG.

A derivation of GG, denoted as G0 ⇒∗ Gn is a sequence of graph transforma-
tions (G0

p1,m1=⇒ G1
p2,m2=⇒ . . .

pn,mn=⇒ Gn). All graphs Gn such that G0 ⇒∗ Gn is a
derivation of GG are production graphs of GG; the language L of GG is the set
of all production graphs of GG. Furthermore, rule graphs of GG are all graphs
in the set {Lr | r ∈ P} ] {Rr | r ∈ P}
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1 2
a

L

3

R

4 5

6

a

b

G

3,4 5

6

a

b

H

p

m

Figure 2.5: Example graph transformation, used in Example 2.27. The sub-
graph of H drawn with thick lines is the actual result of the trans-
formation.



CHAPTER 3

Type Inference for Graph
Grammars

In this chapter we develop an algorithm that computes a type graph for a graph
grammar. A type graph is a graph, consisting of node- and edge types, that
describes the structure of a set of graphs. All graphs in this set are called
instances of the type graph and the typing of an instance over the type graph
is represented by a total graph morphism.

The main issue recalled at the beginning of this chapter, in section 3.1, is to
specify what information a type graph should contain to give rise to a certain
set of instances. We shall see that a type graph must at least contain node-
and edge types for the nodes and edges of all of its instances. But, on the other
hand, a type graph should not contain unnecessary information and needs to
be a finite structure, even if the set of production graphs of a graph grammar
is infinite.

After that, we shall define an ordering among type graphs, expressing which type
graphs give a better classification for a set of instance graphs than others. Using
this ordering, we shall then define a perfect type graph for a graph grammar,
which is the type graph that gives the best classification for this graph grammar.

This perfect type graph is the type graph we then try to compute algorithmically
in Section 3.2. Unfortunately, this turns out to be impossible in general, as we
will see on page 33; therefore, we shall come up with two algorithms computing
type graphs that are approximations of the perfect type graph.

The first, naive, algorithm assumes that all production rules eventually become
applicable. It adds typing information for all production rules to the type graph.
Because it does so, it possibly adds too much information to the type graph,
yielding a type graph that contains unnecessary, or spurious, elements. The
second, improved, algorithm tries to minimise the number of spurious elements
by omitting information from some production rules for which it certainly knows
that they never become applicable. After introducing this second algorithm, we
show that this improved algorithm indeed produces a better type graph than

19
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the first.

Finally, in section 3.3, we conclude the chapter with a discussion in which all
topics introduced in this chapter are briefly reviewed.

3.1 Type Graphs

In Section 2.2 we defined a graph as a tuple (V,E) containing a set of nodes V
and a set of edges E ⊆ V ×Label×V . As is the case in programming languages,
a type can be assigned to each element of a graph [dLBE+07]. In this thesis we
do this by defining a typing, which is a total graph morphism into a type graph.
Such type graph describes and constrains the structure of all its instances.

Definition 3.1 (Type graph). A type graph T = (VT , ET ) is a graph where VT

represents a set of node types and ET a set of edge types. A typing of a graph
G into T is a total graph morphism τG : G→ T . We call T a type of G and G
an instance of T .

We use IT to denote the set of instances of a type graph T .

Example 3.2. Consider Figure 3.1, showing an instance graph G and a type
graph T . The labels inside the nodes represent node labels. A typing morphism
τG : G → T would map the nodes labeled “List” and “Cell” of G onto their
respective nodes in T , as it would also do for edges labeled “head”, “next”, and
“val”. τG will map the nodes with labels “2”, “4”, and “10” of G onto the node
labeled “{2, 4, 10}” in T . Here we use this notation {2, 4, 10} to denote that the
concerning node has three self-edges, labelled 2, 4, and 10 respectively.

Note that we have explicitly drawn the self-edge labelled next in this figure, in
order to make a visible distinction between this intended self-edge and the self-
edges representing node labels.

List Cell Cell Cell

2 4 10

head

val

next

val

next

val

G

List Cell

{2,4,10}

head

val

next

T

Figure 3.1: A graph G representing a linked list and a type graph T for this
graph.

Similar to conventional programming languages, a type graph puts a restriction
on the set of legal instances for objects during program execution, i.e. it restricts
the legal instances of objects to those that are in some sense correct. In the
context of typed graph grammars, graphs are correct if, and only if, they have a
typing into the type graph [MvEDJ05]. Analogously, sets of graphs are correct
only if all graphs in this set are instances of the type graph.
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Definition 3.3 (Type graph for a set of graphs). Let T be a graph and G a set
of graphs. T is a type graph for G if G ⊆ IT .

This defines some lower bound for a type graph: a type graph for a set of
graphs must at least contain typings for all graphs in this set. On the other
hand, type graphs should ideally only contain node- and edge types in the image
of the node- and edge mappings of some typing morphism. We shall call these
elements instantiable, elements that are not instantiable are spurious.

This concept of spuriousness of node- and edge types gives rise to a special class
of type graphs, which we shall call genuine. A genuine type graph is a type
graph that contains no spurious elements.

Definition 3.4 (Genuine type graph). Given a type graph T and a set of in-
stance graphs G, T is a genuine type graph for G if the typing morphisms
τG : G→ T for all G ∈ G are collectively surjective, meaning that every element
x ∈ VT ∪ ET is in the image of at least one typing morphism.

When constructing a type graph, we prefer genuine type graphs over others.
Spurious elements do not contain any valuable information and can therefore be
safely omitted. We shall now prove that all type graphs containing spurious ele-
ments can be reduced to genuine type graphs by removing these non-instantiable
elements.

Lemma 3.5. Every type graph has a subgraph that is a genuine type graph.

Proof. Let T be a type graph and G a set of instance graphs. Since all graphs
in G are instances of T , there exist typing morphisms τG : G→ T for all G ∈ G.

Furthermore let
V ∗ = {v ∈ VT | ∃G ∈ G . v ∈ im τG,V }

be a set of nodes of T and let

E∗ = {e ∈ ET | ∃G ∈ G . e ∈ im τG,E}

be a set of edges of T , such that all v ∈ V ∗ and all e ∈ E∗ are in the image of
some typing morphism τG. Then the graph (V ∗, E∗) is a genuine type graph.

3.1.1 An Ordering over Type Graphs

In the previous section we have defined a type graph and a typing from instance
graphs into this type graph. Without any restrictions, however, any graph or
set of graphs has an infinite number of possible type graphs. Although genuinity
already poses some restriction on the set of desirable type graphs, we want to
be able to select the best type graph out of a set of possible type graphs.

In order to do so, we shall now define an ordering over type graphs, based
on their strength. The strength of a type graph defines how well it gives a
classification for its instances; stronger type graphs are more restrictive than
weaker type graphs. In other words, the number of instances of a stronger type
graph is smaller than the number of instances of a weaker type graph. Formally,
this is expressed as follows.
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A B
b

A B A B
b b

Figure 3.2: Two type graphs that are not isomorphic, but have the same set
of instances

Definition 3.6 (Strength of a type graph). Let T1 and T2 be two type graphs.
Then T1 is stronger than T2 if IT1 ⊆ IT2 .

This stronger-than relation defines a preorder over type graphs; this follows
directly from the reflexivity- and transitivity properties of ⊆. It is not a partial
order, however, since different type graphs can have the same set of instances;
this violates the antisymmetry property. A simple example of two type graphs
that are not isomorphic but that have the same set of instances is given in
Figure 3.2.

The main drawback of this stronger-than relation is that it is not straightfor-
wardedly derivable from the structure of the type graphs associated by this
relation. Therefore we shall now define a binary relation ≤ over type graphs,
purely based on the structure of the type graphs, and thereafter we shall prove
that ≤ and the stronger-than relations are equivalent.

Definition 3.7. Given a set of type graphs T , ≤ ⊆ T ×T is the relation defined
as

T1 ≤ T2 if there exists a graph morphism from T1 into T2.

Lemma 3.8. Given a set of type graphs T , ≤ forms a preorder over T .

Proof. Recall that ≤ needs to be reflexive and transitive to be a preorder.

For reflexivity, we have to show that for all T ∈ T there exists a graph morphism
from T into itself. This holds since each graph has an identity morphism id :
T → T .

For transitivity, we have to show that for all T, T ′, T ′′ ∈ T such that there exitst
two graph morphisms ϕ : T → T ′ and ψ : T ′ → T ′′, there also exists a graph
morphism χ : T → T ′′. This directly follows from morphism composition and
the required morphism is defined as χ = ψ ◦ ϕ.

Having now identified two preorders over type graphs, we shall now examine
the similarity of these two preorders. Intuitively, given two graphs T1 and T2

such that T1 ≤ T2, there are two reasons why the number of instances of T2 can
be larger than the number of instances of T1, namely

1. If the morphism T1 → T2 is non-surjective, T2 contains node- and edge
types that T1 does not contain. These node- and edge types may give rise
to new instances with respect to T1.
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2. If the morphism is non-injective, multiple elements of T1 are mapped onto
the same element in T2. The following example explains why this may
give rise to new instances with respect to T1.

Example 3.9. Figure 3.3 illustrates two type graphs, T1 and T2, and one in-
stance graph, G. It is clear that there exists a graph morphism from T1 into T2,
which maps the two nodes labeled B in T1 onto the same node labeled B in T2

and leaves the rest of the graph intact.

Because of this merging, the node labeled B in T2 has all incident edges of the
two nodes labeled B in T1 combined; hence G has a typing into T2 although it
does not have a typing into T1.

A B

B C

a

b

c

T1

A B

C

a

b

c

T2

A B

C

a

c

G

Figure 3.3: Two type graphs T1, T2 and one instance graph G. G is an instance
of T2 and is not an instance of T1.

An interesting observation is that a ≤-smaller—that is, smaller with respect
to ≤—type graph is actually not smaller than a larger type graph in terms of
numbers of nodes and edges. As an example consider the example above, where
T1 ≤ T2 while T1 has more nodes and edges than T2.

Although this may be confusing, a justification for this ordering is the restric-
tiveness of both type graphs: if T1 ≤ T2, then IT1 is a subset of IT2 and hence
T1 has a smaller set of instance graphs.

We shall now prove that the two preorders ≤ and the stronger-than relation
over type graphs are equivalent.

Lemma 3.10. Let T1 and T2 be type graphs. Then T1 ≤ T2 ⇐⇒ IT1 ⊆ IT2 .

Proof. We shall prove both directions of this equivalence separately.

=⇒ This follows directly from morphism composition. Let G ∈ IT1 ; we prove
that G ∈ IT2 under the assumption that T1 ≤ T2.
Let τG,1 : G → T1 be a typing morphism and let f : T1 → T2 be a
graph morphism. f exists since T1 ≤ T2. Then the typing morphism
τG,2 : G→ T2 is defined as τG,2 = f ◦ τG,1.

⇐= Because each graph trivially is an instance of itself, it holds that T1 ∈ IT1 .
Then, since IT1 ⊆ IT2 , it also holds that T1 ∈ IT2 and hence that there
exists a typing morphism τT1,2 : T1 → T2. Since τT1,2 is a total graph
morphism, we have proved that there exists a graph morphism from T1

into T2 and hence that T1 ≤ T2.
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Since it is possible for two disjoint type graphs T1, T2 that T1 ≤ T2 and T2 ≤ T1

(as shown in Figure 3.2), ≤ is not a partial order. With respect to the instances
of T1 and T2 this means that IT1 = IT2 . We shall now use this information to
introduce an equivalence relation ' over type graphs, which allows us to divide
type graphs into equivalence classes based on their instance graphs.

Definition 3.11. Given a set of type graphs T and preorder ≤ ⊆ T × T , as
defined in definition 3.7, ' ⊆ T × T is the relation defined as

T1 ' T2 if T1 ≤ T2 and T2 ≤ T1.

Since ' is reflexive, symmetric, and transitive, it is an equivalence relation.
Moreover, ≤ up to ' is a partial order over sets of type graphs. These sets are
equivalence classes with respect to '; type graphs within the same equivalence
class have the same set of instances.

We shall not elaborate on these equivalence classes. Rather, we introduce canon-
ical representatives (up to isomorphism) for every equivalence class of ', which
we will call proper type graphs. A proper type graph is a type graph that does
not contain total non-surjective endomorphisms. As defined in section 2.2, an
endomorphism is a graph morphism from a graph into itself.

Definition 3.12 (Proper type graph). Let T be a type graph. T is a proper
type graph if contains no total non-surjective endomorphisms.

Type graphs that are not proper contain duplications of node and edge types.
This in contrast to non-genuine type graphs. Such type graphs contain node-
and edge types that are never instantiated, while non-proper type graph contain
duplications of node and edge types.

These duplications give rise to ambiguous typings from instances into such type
graphs. Therefore we prefer proper type graphs over type graphs that are not
proper.

Example 3.13. Figure 3.4 illustrates the difference between properness and
genuinity of type graphs. Suppose that the graph in Figure 3.4a is a proper and
genuine type graph for some set of instance graphs I.

Then it is obvious that the graph in Figure 3.4b is not genuine for I: it contains
a spurious node labelled D and a d-labelled edge from node A to this node. The
graph is proper, however, because it contains no total non-surjective endomor-
phisms.

The graph in Figure 3.4c does contain non-surjective endomorphisms, mapping
the nodes labelled B and the edges labelled b onto each other; hence, this type
graph is not proper. It is genuine for I, however, because it contains no non-
instantiable nodes types.

Proposition 3.14. Every '-equivalence class contains a proper type graph.

Proof. Let T be an arbitrary type graph. If T is proper, the '-equivalence class
of T contains a proper type graph: T itself.

If T is not proper, it contains non-surjective endomorphisms. Then there exists
a type graph T ′ ⊂ T , in which all elements that are not in the image of any of
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proper

Figure 3.4: Difference between proper and genuine type graphs

these non-surjective endomorphisms are removed. T ' T ′ follows directly from
T ′ ⊂ T .

Moreover, we shall now prove that all '-equivalence classes have a unique proper
type graph, up to isomorphism.

Lemma 3.15. Let T1, T2 be two proper type graphs such that T1 ' T2. Then
T1
∼= T2.

Proof. According to Lemma 3.10, it holds that IT1 = IT2 . Since all type graphs
trivially are instances of themselves, this means that T1 and T2 are also instances
of each other and hence there exist total graph morphisms m1 : T1 → T2 and
m2 : T2 → T1, as illustrated below.

T1 T2

m1

m2

Morphism composition gives two extra morphisms: m2 ◦ m1 : T1 → T1 and
m1 ◦m2 : T2 → T2. Both m1 ◦m2 and m2 ◦m2 are total; this follows directly
from the totality of both m1 and m2.

Surjectivity of m1 ◦ m2 and m2 ◦ m1 follows directly from Definition 3.12: if
one of these morphisms is not surjective, either T1 or T2 has a non-surjective
endomorphism and therefore is not proper.

For injectivity suppose that m1 is non-injective. Then |VT2 | < |VT1 |, which
means that T2 has less nodes than T1. Since m2 is surjective, |VT1 | ≤ |VT2 |
holds, which results in |VT2 | < |VT2 |. Since T2 is finite, this is a contradiction
and therefore m1 must be injective, as is also the case with m2.

Thus we have proved that there exist graph isomorphisms from T1 into T2 and
vice versa. Therefore T1 and T2 are isomorphic.

Thus we have defined a preorder ≤ over type graphs which, in combination
with the equivalence relation ', forms a partial order over equivalence classes
of type graphs. Each of these equivalence classes contains a proper type graph,
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which is unique up to isomorphism according to Lemma 3.15 and is preferred
over non-proper type graphs. In other words, the preferred type graph for a
'-equivalence class is a proper type graph and ≤ is a partial ordering over
isomorphism classes of proper type graphs.

3.1.2 The Smallest Type Graph

Having defined an ordering among type graphs, purely based upon their struc-
ture, we shall now examine the boundaries of this ordering, particularly the
smallest element because this is the most restrictive, and therefore the desired,
type graph. Since this graph is the smallest type graph with respect to ≤, we
shall call this type graph the smallest type graph.

Many type systens identify a weakest type. For instance, in an object oriented
setting, the weakest type corresponds to the type Object, see e.g. [Pie02]. The
weakest type is the most general (every possible object is an instance of this
type); the strongest the most restrictive. In the setting of typed graph gram-
mars, however, we are not interested in finding the weakest type. Actually, it
is easy to define the weakest type graph: a graph consisting of one node and
self-edges for labels in Label, which is a finite set.

We are rather interested in finding the strongest type graph, the type graph
that gives the best classification for its instances. As stated in section 3.1.1,
this element is the smallest element of ≤.

We shall now prove that such a smallest type graph always exists, but first we
introduce a related concept, namely a minimal type graph. A minimal type
graph is a type graph such that there exist no smaller type graphs.

Definition 3.16 (Minimal type graph). Let T be a set of type graphs. Then
T ∈ T is a minimal type graph with respect to ≤ if T ′ ≤ T implies T ∼= T ′ for
all T ′ ∈ T .

Besides being minimal, the type graph we try to find is the smallest type graph
with respect to ≤. Although the difference between a minimal type graph and
the smallest type graph is subtle, the smallest type graph is a minimal type
graph with the extra requirement that it is stronger than any other type graph.
This is defined as follows.

Definition 3.17 (Smallest type graph). Let T be a set of type graphs. Then
T ∈ T is the smallest type graph with respect to ≤ if T ≤ T ′ for all T ′ ∈ T .

Example 3.18. Figure 3.5 is a graphical representation of two partially ordered
sets, which we shall call set A for the set represented by Figure 3.5a and set B
for the set represented by Figure 3.5b. The partial order on the elements of the
sets is represented by lines between the elements, with the convention that these
lines go from x to y in upward direction if x < y, i.e. in set A we have d < a,
d < b, and c < b.

Both sets have minimal elements. In set A these are c and d; set B has one
minimal element, e, which is also its smallest element. Set A has no smallest
element, since the preorder over this set does not relate c and d to each other.
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Figure 3.5: Graphical representation of two partially ordered sets. (b) has a
smallest element while (a) does not.

Although the smallest object of an ordering usually is unique, this is not the
case with the smallest type graph. Since ≤ is a preorder, it gives rise to a set
of smallest type graphs. According to Lemma 3.15, however, the smallest type
graph is unique up to '.

Proposition 3.19. The smallest type graph for a set of instance graphs G is
genuine with respect to G.

This follows directly from Definition 3.4.

3.1.3 A Type Graph for a Diagram

In this section we shall define a type graph for a diagram. As specified in
Section 2.3, a diagram is a pair (G,M) consisting of a set of graphs G and a set
of morphisms M between these graphs. We use diagrams as an intermediate
step towards type graphs for graph grammars, because diagrams allow us to
make proofs in a uniform way, which thereafter can be easily reused for graph
grammars.

A type graph for a diagram must satisfy at least two properties. First, it must
have a typing for all graphs in the diagram; second, if two nodes are mapped
onto each other by any morphism or any composition of morphisms, the typing
morphisms must map them onto the same node type in the type graph. This last
property comes down to the commutativity property of the typing morphisms.

Definition 3.20 (Type graph for a diagram). Let (G,M) be a diagram. A
graph T is a type graph for (G,M) if T is a type graph for G, with typing
morphisms τG for all G ∈ G, such that

∀m ∈M .m : G→ H =⇒ τH ◦m = τG.

This commutativity property is depicted in the following diagram:
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G

T

H
m

τG τH

Moreover, from morphism composition it directly follows that, for a diagram
(G,M), if there exists a sequence of morphisms m1,m2, . . . ,mn ∈M such that
H = m1(m2(. . . (mn(G)))) for G,H ∈ G, then

τH ◦mn ◦ . . . ◦m2 ◦m1 = τG

as illustrated below:

G G’ . . . H

T

m1 m2 mn

τG

τG′

τH

We shall now define an equivalence relation ∼ over nodes of the graphs in a
diagram (G,M). This equivalence relation is defined such that n1 ∼ n2 for any
n1, n2 ∈ ]G, if it holds that n2 is the image of n1 under some morphism m ∈M
or some composition of such morphisms.

Definition 3.21. Given a diagram (G,M), ∼′ ⊆ V]G × V]G is the relation
defined as

n1 ∼′ n2 if n1 = n2 ∨ ∃m ∈M . m(n1) = n2 ∨m(n2) = n1

Then ∼ is the transitive closure of ∼′.

Since ∼ is reflexive, symmetric, and transitive, it is an equivalence relation.
Using this equivalence relation, we can now define a particular type graph for
a diagram, which we shall call the perfect type graph. First we prove that this
graph is indeed a valid type graph for (G,M).

Lemma 3.22. The graph ]G / ∼ is a type graph for (G,M).

Proof. In order for ]G / ∼ to be a type graph for (G,M), a typing morphism
from every G ∈ G should exist and all morphisms in M should commute. The
first property directly follows from the Lemma 2.21; the typing morphisms τG
for all G ∈ G are defined as ∀x ∈ VG ∪ EG . τG(x) = [x]∼.

Next, we prove commutativity of the morphisms. Let x ∈ VG ∪ EG and let
m : s → t ∈ M be a morphism such that x ∈ domm. Then, according to
Definition 3.21, we have x ∼ m(x) and hence

[m(x)]∼ = [x]∼.

Rewriting gives

[x]∼
def
= τs(x) and [m(x)]∼

def
= τt(m(x))



3.1. Type Graphs 29

and hence the required property

τt(m(x)) = τs(x)
m ◦ τt(x) = τs(x).

Definition 3.23 (Perfect type graph for a diagram). Let (G,M) be a diagram.
Then, the graph ]G / ∼ is called the perfect type graph for (G,M).

According to this definition, the nodes of the perfect type graph for a diagram
are ∼-equivalence classes of ]G.

Proposition 3.24. The perfect type graph for a diagram (G,M) is genuine
with respect to G.

This follows directly from Definition 3.4. Although the perfect type graph for a
diagram is genuine, it is not proper in general. It is, however, the smallest type
graph for a diagram.

Theorem 3.25. The perfect type graph for a diagram is the smallest type graph
for this diagram, with respect to ≤.

In order to prove this theorem, we need to show that there exists a graph
morphism from the perfect type graph for a diagram (G,M) into any other
type graph for (G,M). Before we can do so, we shall first define the structure
of an arbitrary type graph for (G,M). We shall, without loss of generality, only
use genuine type graphs in these proofs, because Lemma 3.5 states that all type
graphs can be reduced to genuine type graphs and because if a type graph T is
reduced to a genuine type graph T ′, it follows directly from Definition 3.4 that
T ′ ≤ T .

Lemma 3.26. Every genuine type graph for a diagram (G,M) is isomorphic
to ]G / R, for some equivalence relation R such that

∀n1, n2 ∈ V]G . n1 ∼ n2 =⇒ n1 R n2. (3.1)

Proof. Let T be a genuine type graph for (G,M). Then there exists a typing
τG : G→ T for all G ∈ G, such that these typing morphisms and the morphisms
in M commute.

Let f : ]G → T be the union of the typing morphisms τG, as defined in Def-
inition 2.17. From Lemma 2.18 it follows that f is a graph morphism; f is
surjective because T is genuine.

Because f is a surjection, it can be represented as a quotient ]G / R, where R
is the smallest equivalence relation such that v1 R v2 if f(v1) = f(v2), for all
v1, v2 ∈ V]G .

To prove (3.1), let n1, n2 be two arbitrary nodes, let G1, G2 be two graphs
such that n1 ∈ VG1 and n2 ∈ VG2 , and let τG1 : G1 → T and τG2 : G2 → T
be two typings. Then, if n1 ∼ n2 holds but n1 R n2 does not, this means
that τG1(n1) 6= τG2(n2) although n1 ∼ n2. This means that there exists a
morphism m : G→ H ∈ M such that τH ◦m 6= τG, which is a violation of the
commutativity property of definition 3.20.
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Conversely, we can also prove the following.

Lemma 3.27. Let (G,M) be a diagram and let R be an equivalence relation
such that

∀n1, n2 ∈ V]G . n1 ∼ n2 =⇒ n1 R n2. (3.2)

Then, every graph that is isomorphic to ]G / R is a genuine type graph for
(G,M).

Proof. Let T = ]G / R be a graph and let R be an equivalence relation such
that (3.2) holds.

We define the typing morphisms τG : G → T as τG(x) = [x]R, for all G ∈ G
and for all x ∈ G. Then T is a valid type graph for (G,M) if for all morphisms
m : s→ t in M it holds that τt ◦m = τs. This holds if [x]R = [m(x)]R for all x
in V]G ∪ E]G . From (3.2) it follows that, for all x ∈ V]G ,

x1 ∼ x2 =⇒ [x1]R = [x2]R

and x ∼ m(x) follows from the definition of ∼. Therefore, [x]R = [m(x)]R for
all x ∈ V]G ∪ E]G , as is required for the proof.

From this we can now give a proof for Theorem 3.25.

Proof of Theorem 3.25. Let Tp be the perfect type graph for (G,M). Further-
more, let T be an arbitrary type graph for (G,M) and let T ′ ⊆ T be a genuine
type graph defined as ]G / R, for some equivalence relation R such that

∀n1, n2 ∈ V]G . n1 ∼ n2 =⇒ n1 R n2.

The existence of such T ′ follows from Lemma 3.26. Because T ′ ⊆ T , it trivially
holds that if there exists a graph morphism f : Tp → T ′, there exists also a
graph morphism g : Tp → T .

Furthermore, let r : ]G → T ′ be the morphism defined as r(x) = [x]R. Then
we can define f : Tp → T ′ as f([x]∼) = r(x) for all x in ]G. This morphism is
well-defined because the characterisation of R states that [x]∼ ⊆ [x]R.

Since this morphism exists, there also exists a graph morphism from Tp into T ,
as stated before. From Definition 3.7 it then follows that Tp is stronger than
T and since this holds for every T , the perfect type graph is the smallest type
graph for a diagram.

In the following example, the perfect type graph for a diagram consisting of two
graphs and one morphism between these graphs is given.

Example 3.28. Consider two graphs, G and H and a graph morphism m, as
depicted in figure 3.6a. Furthermore, let (G,M) = ({G,H}, {m}). According
to Theorem 3.25, the graph ]G / ∼, as depicted in figure 3.6b, is the smallest
type graph for (G,M). This type graph is illustrated in Figure 3.6b.
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Figure 3.6: (a): Graphs G, H and morphism m. (b): The perfect type graph
for ({G,H}, {m}). The text inside the nodes represents their node
identities.

3.1.4 A Type Graph for a Graph Grammar

In the last section we defined a type graph for a diagram and claimed that all
proofs we created for diagrams can be easily reused for graph grammars. This
is possible due to the fact that a graph grammar can be seen as a diagram with
some additional properties. In this section we shall therefore start with defining
a transformation from graph grammars into diagrams; thereafter we define the
perfect type graph for a graph grammar based on Definition 3.23.

In Section 2.4 we defined a graph grammar as a pair GG = (G0,P), consisting
of a start graph G0 and a set of production rules P. Furthermore, we defined
the language of GG as the set of production graphs of GG. We define a diagram
for a graph grammar as follows:

Definition 3.29 (Diagram of a graph grammar). Let GG = (G0,P) be a graph
grammar. Then, the diagram of GG is a pair (G,M) where G and M are the
smallest sets such that:

– G0 ∈ G
– If G ∈ G and there exists a matching of a production rule L

p→ R, i.e.
∃L p→ R ∈ P .m : L → G, then there exists G′ such that G

m,p
=⇒ G′ is a

graph transformation, and

· p,m, p∗,m∗ ∈M
· L,R,G′ ∈ G

Having now defined a diagram of a graph grammar, we can use the concepts
from the previous section in order to define the perfect type graph for a graph
grammar. As mentioned in Chapter 1, a type graph for a graph grammar should
be defined such that it poses no restrictions on any derivation of the graph
grammar. In this thesis we make sure that this property holds by requiring the
following:

1. The left-hand side and right-hand side graphs of all production rules of
the grammar must have a unique typing into this type graph.
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2. All production graphs of the grammar must have a typing into the type
graph.

3. The typing morphisms must commute with the morphisms p, m, p∗, and
m∗ in any of the graph transformations.

From this characterisation it follows that a graph T is a type graph for a graph
grammar GG if, and only if, T is a type graph for the diagram of GG: this
diagram contains exactly those graphs and morphisms as given in the charac-
terisation above. Using this information, a type graph for a graph grammar can
be formulated as follows:

Definition 3.30 (Type graph for a graph grammar). Let GG be a graph gram-
mar and let (G,M) be its diagram. A type graph T is called a type graph for
GG if T is a type graph for the diagram of GG.

The same applies to the perfect type graph; we define the perfect type graph for
a graph grammar based on the definition of a perfect type graph for a diagram.

Definition 3.31 (Perfect type graph for a graph grammar). Let GG be a graph
grammar and let (G,M) be its diagram. Then the perfect type graph for GG is
defined to be the perfect type graph for (G,M).

We have now defined the perfect type graph for a graph grammar. This type
graph is the most restrictive for the graph grammar, without imposing con-
straints on any of the derivations of this graph grammar; this follows directly
from the proofs in the preceding section. We shall now define an algorithm that,
given a graph grammar, computes a type graph that approaches this perfect type
graph as much as possible.

3.2 Type Graph Inference

In the preceding section, we defined a perfect type graph for a graph grammar.
The main problem that arises when trying to find an algorithm that finds this
type graph is that the perfect type graph is defined using the entire set of
production graphs of a graph grammar. Since this is an infinite set, we can not
iterate over all of its elements and create the type graph accordingly.

Rather, we need an approach to find a type graph for a graph grammar based
upon a finite set of elements. This is what this section aims at. We shall propose
an algorithm that computes a type graph that approximates the perfect type
graph for a graph grammar, but is based only on the start graph and rule graphs
of this grammar, which constitute a finite set.

Unfortunately, it turns out to be impossible to find the perfect type graph for
a graph grammar entirely based on its start graph and rule graphs, since the
applicability of production rules is undecidable. Let us make this more precise.

Applicability of production rules is defined with respect to graphs. If a pro-
duction rule is applicable with respect to a graph, it has a matching into this
graph. In this thesis we shall also refer to applicability of a production rule
in a graph grammar, meaning that this production rule is applicable in some
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production graph of the graph grammar. In order to prove that the application
of production rules in graph grammars is undecidable, we shall now prove that
the halting problem for Turing machines can be reduced to the applicability of
production rules in a graph grammar.

Theorem 3.32. There is no algorithm that determines whether an arbitrary
pruduction rule is applicable in a graph grammar.

Proof. Consider a Turing machine and reduce this Turing machine to a graph
grammar such that all state-symbol combinations are represented by a produc-
tion rule in this graph grammar. It is well-known that graph grammars are
Turing complete; therefore such reduction is possible. We will not give it here
in order to avoid unnecessary technical details. Furthermore, introduce produc-
tion rules for all state-symbol combinations that are not in the transition table
of the Turing machine.

Now suppose that one of these extra production rules becomes applicable in any
derivation of the graph grammar. This would mean that the Turing machine
enters a state-symbol combination for which it has no entry in its transition
table and therefore halts. This has been proven undecidable and therefore the
applicability of the production rule is also undecidable.

Having proved this, we can now prove that computing the perfect type graph
in an algorithmic way is impossible. Intuitively this is because the perfect type
graph contains a typing for exactly all graphs that can be produced by the graph
grammar. Since the applicability of production rules in a graph grammar is
undecidable, as proved in Theorem 3.32, computing this exact set of producible
graphs is impossible in a finite amount of time and therefore the perfect type
graph can not be computed by any algorithm in general.

Lemma 3.33. Computing the perfect type graph for a graph grammar is im-
possible in general.

Proof. Let GG = (G0,P) be an arbitrary graph grammar and let GG′ =
(G0,P ′) be an extension of GG, such that a disconnected node with a uniquely
labelled self-edge is added to the right-hand side graphs of all production rules
(we call this label up for production rule p). This extendsion yields a unique
identification for all applied production rules while the applicability of the rules
is not modified in any way.

Let p ∈ P ′ be an arbitrary production rule of GG′ and let T be the perfect type
graph for GG′. Then T either must or must not contain an edge labelled up,
depending on whether p is applicable in GG; this is undecidable according to
Theorem 3.32.

This means that if T contains a an edge labelled up while p is not applicable
in GG, T is not genuine—since it contains a spurious type—and hence is not
the pefect type graph, according to Lemma 3.24. On the other hand, if T does
not contain any edge labelled up while p is applicable in GG, the type graph
does not contain a typing for all elements in LGG′ and hence is not a valid type
graph for GG′, according to Definition 3.3.
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Algorithm 3.1: Naive type inference algorithm
Input: GG = (G0,P)
Output: A type graph for GG

T ← G0 ] {Lr | r ∈ P} ] {Rr | r ∈ P};1

Equiv ← {(v, v′) | ∃L p→ R ∈ P . p(v) = v′};2

T ← T / Equiv;3

T ′ = ∅;4

repeat5

T ′ ← T ;6

Equiv ← ∅;7

forall L
p→ R ∈ P do8

M← {m | m : L→ T};9

forall v, v′ ∈ VT do10

if ∃m ∈M .m(v) = v′ then11

Equiv ← Equiv ∪ {(τL(v), v′)};12

end13

end14

end15

T ← T / Equiv;16

until |T | = |T ′| ;17

return T ;18

This proves that it is impossible to compute the perfect type graph for GG′.
Because the reduction does not affect the applicability of production rules, this
also proves that computing the perfect type graph for GG is impossible, as
required.

Although the perfect type graph can not be computed by any algorithm, the
following sections will present two algorithms that compute type graphs given
a graph grammar, approximating the perfect type graph. The first algorithm
we present, which we shall call the naive algorithm, assumes that all production
rules are eventually applicable and uses information from all production rules
plus the start graph of a graph grammar to compute a type graph. The main
drawback of this algorithm is that it may contain many spurious elements if
some of the production rules in the grammar are not applicable in the grammar.
Therefore, we introduce an improved algorithm in which some production rules
that are certainly not applicable are omitted, yielding a type graph that is at
least as small as the type graph computed by the naive algorithm.

3.2.1 Naive Algorithm

The naive algorithm is outlined in Algorithm 3.1. It accepts a graph grammar
as its input and produces a type graph for this grammar. As specified at line 1 of
the algorithm, it starts with an initial type graph that is the disjoint union of the
start graph and all rule graphs of the provided graph grammar. Then it merges
the left hand side and right hand side graphs based on the rule morphisms on
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lines 2 and 3. Thereafter, it repeatedly merges nodes of this type graph using
the quotient construction for graphs, until no more merges are necessary; the
type graph that has been computed by the algorithm until this point is the
resulting type graph of the algorithm.

The merging of nodes is executed by three nested loops. The outermost loop,
starting at line 5 of the algorithm, continually checks whether any of the nodes
of the current type graph need to be merged. If no more merges are necessary,
the loop terminates, and so does the algorithm.

In one iteration of this outer loop, first a binary relation, called Equiv, is created.
This happens in the middle loop, starting at line 8 of the algorithm. This loop
iterates over all production rules and computes all matchings from these rules
into the current type graph. When a rule has matchings into the current type
graph, the innermost loop, ranging from lines 10 until 14, adds information
about what nodes need to be merged to Equiv.

After the middle loop has finished, the algorithm closes Equiv reflexively and
transitively and then uses it for merging nodes using the quotient construction
for graphs, as specified at line 16 of the algorithm. The resulting type graph is
then used as the current type graph in the next iteration of the outer loop.

In order to omit unnecessary details, we do not explicitly define τL in the al-
gorithm, although it is used at line 12. We implicitly assume that τL(v) maps
a node v ∈ VL onto the node in the current type graph T that contains v as
an element. However, because T is the product of multiple invocations of the
quotient operation, this is not simply the equivalence class of v in T . Actually
it is the equivalence class of v in some T ′, where T ′ is a flattened version of T .

Evaluation

Having identified an algorithm that computes a type graph for a graph grammar,
we shall now evaluate whether it is correct with respect to the type graph it
computes and how it computes this type graph.

First we examine whether the algorithm itself behaves correctly, i.e. if the
algorithm is confluent and eventually terminates, for any input; thereafter we
shall prove that the algorithm computes a valid type graph for a given graph
grammar.

Confluence is a concept often used with term rewriting systems, as discussed in,
e.g. [Klo92]. If a term rewriting system is confluent, this means that elements
in such a rewriting system can be rewritten in more than one way, yielding the
same result. Termination, on the other hand, means that there exist no infinite
rewriting sequences.

Confluence of Algorithm 3.1 is straightforward, since the construction of Equiv
and the quotient of T over the transitive-reflexive closure of Equiv are executed
independently and because the ordering of the production rules only affects in
what order the tuples of nodes to be merged are added to Equiv, the order in
which production rules are processed does not affect the resulting type graph.
Therefore, regardless of the order in which the production rules of GG are
processed, the algorithm always computes the same type graph for a given
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graph grammar.

Furthermore, it is also straightforward that the algorithm always terminates
because the algorithm starts with initialising the type graph based on a finite
amount of production rules and subsequently only merges nodes using the quo-
tient construction. Since the number of nodes is finite, it is straightforward that
this merging eventually terminates: in every iteration of the loop ranging from
line 5 until 17 the number of nodes decreases; therefore the algorithm will either
eventually end up with one node and then terminate, or it will terminate earlier.

Now we shall prove that the algorithm computes a valid type graph from a graph
grammar. According to Definition 3.20 the produced type graph should fulfill
two properties: first, all production graphs of the grammar must be instances
of this type graph and all typing morphisms from these instances into the type
graph must commute with all morphisms between the graphs in the grammar.

We shall inductively prove these properties, but first we prove that given a host
graph G and a production rule L r→ R such that there exist typing morphisms
τG : G → T and τL : L → T into some type graph T , then there also exists a
typing morphism τH : H → T , where H is the product of graph transformation
G

r,m
=⇒ H.

Lemma 3.34. Given a graph G and a production rule L
p→ R, let H be the

result of the graph transformation G
r,m
=⇒ H for matching m : L → G, and let

p∗ : G → H and m∗ : R → H be the morphisms in the pushout, as specified in
Definition 2.26.

Furthermore, let T be a type graph and let τG : G→ T and τR : R → T be two
typings such that τG ◦m = τR ◦ p. Then, there exists a unique typing morphism
τH : H → T such that τG = τH ◦ p∗ and τR = τH ◦m∗; in other words, such
that the following diagram commutes:

L R

G H

T

p

m m∗

p∗
τR

τG

τH

This is precisely the pushout property, which has been proved in many works
on algebraic graph transformations (see, e.g. [EEPT06]). We shall give a proof
though, because in Chapter 4 we will use a slightly different property.

Proof. We define τH as follows:

– τH(v) =
{
τG(v′) if v = p∗(v′)
τR(v′) if v = m∗(v′) for nodes of H, and

– τH(e) =
{
τG(e′) if e = p∗(e′)
τR(e′) if e = m∗(e′) for edges of H.
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First we prove that τH is well-defined, i.e. functions τH , V and τE must be
well-defined. This holds if τG(x′) = τR(x′′), for all x ∈ VH ∪ EH such that
x = p∗(x′) = m∗(x′′).

This holds because x′ and x′′ have the same preimage in L, meaning that there
exists an l ∈ L such that x′ = m(l) and x′′ = p(l). Then

τG(x′) = τG(m(e)) = τR(p(e)) = τR(x′′).

Second, we prove that τH is a graph morphism. As specified in Definition 2.15
this holds if, for all e ∈ EH , the following holds:

– τH(src(e)) = src(τH(e)),
– τH(tgt(e)) = tgt(τH(e)), and
– τH(lbl(e)) = lbl(e).

The third property, τH(lbl(e)) = lbl(e), follows trivially from the definition of
τH . For src(e) and tgt(e) two distinctive cases can be identified:

1. Let e ∈ im p∗ and src(e) /∈ imm∗. Then there exists a unique typing
for e and src(e), defined as τH(e) = τG(e′) and τH(src(e)) = τG(src(e′)).
Because τG is a graph morphism, we prove the required property as follows:

τH(src(e)) = τG(src(e′))
= src(τG(e′))
= src(τH(e))

2. Let e ∈ im p∗ and src(e) ∈ imm∗. Then there exists a v ∈ domm∗

and a v′ ∈ dom p∗ such that m∗(v) = p∗(v′). In this case, v and v′

have the same preimage in L. From τG ◦ m = τR ◦ p it then follows
that τG(v′) = τR(v) = τH(src(e)). Because τH is a graph morphism, the
required property holds in this case.

3. If e ∈ imm∗, the proofs are analogous to those for im p∗, as given in (1)
and (2).

Since the proof for tgt(e) is analogous to the proof for src(e), this proves that
there exists a typing morphism τH : M → T for any graph H resulting from
graph transformation G

r,m
=⇒ H.

Finally we prove τG = τH ◦ p∗ and τR = τH ◦m∗. This follows directly from the
definition of τH :

τH(p∗(e′)) = τG(e′)|dom p∗

τH(m∗(e′)) = τR(e′)|dom m∗ .

Intuitively, all nodes and edges of H, the result graph of the graph transfor-
mation, either originate from G, R, or both. Commutativity of the pushout
diagram, as used in graph transformations, ensures that all nodes and edges,
regardless where these originate from, always have the same node- and edge
types.

Using the information in Lemma 3.34 we shall now prove that Algorithm 3.1
produces a type graph for a given graph grammar.
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Theorem 3.35. Let GG = (G0,P) be a graph grammar and let (G,M) be the
diagram of GG. Then, the type graph induced from GG by Algorithm 3.1 is a
type graph for GG.

Proof. We prove that the type graph T at line 24 of the algorithm is a type
graph for (G,M).

Let D0, . . . , Di, . . . be an infinite sequence of diagrams, inductively defined as
follows:

– D0 = (G0,M0)

· G0 = {G0} ∪ {Lr | r ∈ P} ∪ {Rr | r ∈ P}
· M0 = {p | L p→ R ∈ P}

– Di = (Gi,Mi)

· Gi = Gi−1 ∪ {H | ∃r ∈ P .∃G ∈ Gi−1 . G
r,m
=⇒ H}

· Mi =Mi−1 ∪m,m∗, p∗ | ∃r = L
p→ R ∈ P,∃G ∈ Gi−1 .

L R

G H

p

m m∗
p∗


Let T0, . . . , Ti, . . . be an infinite sequence of type graphs, where T0 is the inter-
mediate type graph at line 10 of Algorithm 3.1 before the first iteration of the
loop ranging from line 5 until 17, and Ti (i > 0) is the intermediate type graph
at line 17 of Algorithm 3.1 after the ith iteration of this loop.

We shall now inductively prove that Ti is a type graph for Di, for all i ≥ 0.

Basis step:
We prove that T0 is a type graph for D0, i.e.

(a) ∀G ∈ G0 .∃τG : G→ T0

(b) ∀m : G→ H ∈M0 . τH ◦m = τG

To prove (a), we prove that all G ∈ {G0} ] {Lr | r ∈ P} ] {Rr | r ∈ P}
have a typing in T0. Since the algorithm initialises the type graph to the
disjoint union of exact this set of graphs, and the only changes to T are
performed at line 3 of the algorithm using the quotient construction, it
follows from Lemma 2.22 that (a) holds.
To prove (b), we prove that τR ◦ p = τL for all p = {p | L p→ R ∈ P}.
This follows directly from lines 2 and 3 of the algorithm: for all these
morphisms it merges all elements in dom p with their images under p.

Induction hypothesis:
Ti is a type graph for Di, i.e.

(a) ∀G ∈ Gi, .∃τG : G→ Ti

(b) ∀m : G→ H ∈Mi . τH ◦m = τG

Induction step:
We prove that Ti+1 is a type graph for Di+1, i.e.

(a) ∀G ∈ Gi+1 .∃τ ′G : G→ Ti+1

(b) ∀m : G→ H ∈Mi+1 . τ
′
H ◦m = τ ′G
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Let α : Ti → Ti+1 be a total graph morphism. Existence of such α follows
directly from Lemma 2.21.
First we prove (a). Let G ∈ Gi+1 be a graph. If G ∈ Gi, there exists
τ ′G : G→ Ti+1, defined as τ ′G = α ◦ τG.
If G /∈ Gi, there exists G′ ∈ Gi such that G′

r,m
=⇒ G, for some r = (L

p→
R) ∈ P and some m : L → G′. According to Lemma 3.34, τ ′G exists in
this case if there exist τ ′G′ : G′ → Ti+1 and τ ′R : R → Ti+1 such that
τ ′G′ ◦m = τ ′R ◦ p.
Since G′, R ∈ Gi, τ ′G′ and τ ′R exist; these morphisms are defined as τ ′G′ =
α ◦ τG′ and τ ′R = α ◦ τR. Since τG′ ◦m = τR ◦ p holds—this follows from
the induction hypothesis—we have α ◦ τG′ ◦ m = α ◦ τR ◦ p and hence
the required property τ ′G′ ◦ m = τ ′R ◦ p. (a) then follows directly from
Lemma 3.34.
Next we prove (b). Let m : G → H ∈ Mi+1 be a graph morphism. If
m ∈Mi, then τH ◦m = τG follows from the induction hypothesis.
If m /∈Mi, then m is a match, co-match, or co-production that gave rise
to the construction of some G ∈ Gi \ Gi−1. For the match we have proved
the required property in (a). For the co-match and co-production this
property follows directly from Lemma 3.34.

This proves that Ti is a type graph for Di, for all i > 0. The algorithm termi-
nates when Ti+1 = Ti. Because of this, Ti is a type graph for Di+1 and hence
for all Di for i→∞. Since Di converges to (G,M) if i→∞, Ti is a type graph
for (G,M), as required.

3.2.2 Improved algorithm

So far, we have defined a perfect type graph and have outlined an algorithm
that calculates a type graph for a graph grammar. As stated before, the main
drawback of this algorithm is that it uses all production rules of a graph grammar
for creating a type graph instead of those that are applicable; this may result
in a type graph with many spurious elements.

In this section we shall give an improved type inference algorithm in which
some of the non-applicable production rules are omitted, in order to reduce
this number of spurious elements. Although applicability of production rules
in a graph grammar is undecidable in general, it is possible to determine some
production rules that certainly will never become applicable. A small example,
where the non-applicability of a production rule is obvious, is as follows.

Example 3.36. Figure 3.7 represents a grammar consisting of a start graph
(G0, see Fig. 3.7a) and one production rule (p, see Fig. 3.7b). Nodes in this
figure are identified using their node labels. It is obvious that p is never applicable
in this graph grammar and hence the language of the grammar consist only of
graph G0. Therefore, the perfect type graph for the grammar is the type graph
illustrated in Figure 3.8a; the type graph computed by Algorithm 3.1 is illustrated
in Figure 3.8b.

In general it holds that production rules for which the left hand side graphs
do not have a typing into the type graph for a graph grammar will not be



3.2. Type Graph Inference 40

Algorithm 3.2: Improved type inference algorithm
Input: GG = (G0,P)
Output: A type graph for GG

Processed ← ∅;1

T ← G0;2

T ′ ← ∅;3

repeat4

T ′ ← T ;5

Equiv ← ∅;6

forall L
p→ R ∈ P .∃m : L→ T do7

if p /∈ Processed then8

Equiv′ ← {(v, v′) | ∃L p→ R ∈ P . p(v) = v′};9

T ← T ] ((L ]R) / Equiv′);10

Processed ← Processed ∪ {p};11

end12

M← {m | m : L→ T};13

forall v, v′ ∈ VT do14

if ∃m ∈M .m(v) = v′ then15

Equiv ← Equiv ∪ {(τL(v), v′)};16

end17

end18

end19

T ← T / Equiv;20

until |T | = |T ′| ;21

return T ;22

applicable in any derivation of the graph grammar. This follows directly from
Lemma 2.22: since both typing morphisms and matchings are total morphisms,
it follows that, given a production rule r, a type graph T , and a graph G ∈ IT ,
if there exists a matching m : Lr → G, there also exists a typing τL : Lr → T .

We shall use this information in this section and shall define an algorithm that
ignores production rules that do not have a typing into the type graph produced
up to that point. An algorithm for finding this improved type graph is given in
Algorithm 3.2.

This algorithm works analogously to Algorithm 3.1, with the exception that

A

G0

(a)

A B
b

L

A B
b

R

p

(b)

Figure 3.7: Example graph grammar consisting of a start graph (a) and one
production rule that will not be applicable (b).
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A

T1

(a)

A B
b

T2

(b)

Figure 3.8: Type graphs for the graph grammar illustrated in Figure 3.7. (a)
illustrates the perfect type graph for this grammar; (b) is the type
graph for this grammar, as computed by Algorithm 3.1.

the improved algorithm starts with an initial type graph that contains typing
information for only the start graph of the grammar, as specified in line 2 of
the algorithm. Information from the right-hand side graph of a production rule
is now added only if the left-hand side graph of the concerning production rule
has a matching into the current type graph. This is specified at lines 8 until 12
of the improved algorithm.

Because the information from the right-hand side of a production rule only needs
to be added once to the type graph, the algorithm introduces a set of production
rules, called Processed for which this information is already added to the type
graph.

Except this alternate strategy of when to add information from right-hand side
graphs to the type graph, the algorithm is identical to the naive algorithm.
Therefore, most proofs used for this naive algorithm can be reused to prove
properties of the improved algorithm, as we shall do in the next section.

Evaluation

As we did for the naive algorithm in Section 3.2.1, we shall now prove that
the improved algorithm behaves correctly and whether it computes a valid type
graph given a graph grammar.

We first verify whether Algorithm 3.2 is confluent and whether it terminates.
For confluence we can use a reasoning analogous to the one used for the naive
algorithm. Each iteration of the outer loop that starts at line 4 ranges until line
21 of the improved algorithm, basically does two things.

First, it iterates over all production rules and constructs a binary relation Equiv
based on which nodes of the current type graph will later be merged. This
happens in the middle loop, specified at lines 7 until 19 of the algorithm. If a
rule that has a matching into the current type graph has not been processed
yet, the right-hand side graph of the rule is added to the current type graph.
Because this middle loop only adds elements to the type graph and constructs
relation Equiv without merging any nodes yet, the order in which production
rules are processed does not affect the resulting type graph.

After this middle loop is executed, the algorithm computes the transitive-
reflexive closure of Equiv and merges nodes of the current type graph using
the quotient construction for graphs at line 20. Therefore, regardless of the
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order in which the production rules of the given graph grammar are processed,
the algorithm always computes the same type graph for a given graph grammar.

Termination of Algorithm 3.2 is also straightforward since the algorithm ba-
sically does two things: it adds the right-hand side graphs of a finite amount
of production rules to the type graph and thereafter only merges nodes using
the quotient construction for graphs. Since the number of nodes is finite, it is
straightforward that this merging eventually terminates: in every iteration of
the loop ranging from line 4 until 21 the number of nodes decreases; therefore
the algorithm will either eventually end up with one node and then terminate,
or it will terminate earlier.

We shall now inductively prove the validity of the type graph computed by the
algorithm. Because of the similarity of Algorithm 3.1 and Algorithm 3.2, we
can reuse the proof of Theorem 3.35 for proving correctness of the improved
algorithm.

Theorem 3.37. Let GG = (G0,P) be a graph grammar and let (G,M) be the
diagram of GG. Then, the type graph induced from GG by Algorithm 3.2 is a
valid type graph for GG.

Proof. We prove that the type graph T at line 24 of the algorithm is a type
graph for (G,M).

Let D0, . . . , Di, . . . be an infinite sequence of diagrams, inductively defined as
follows:

– D0 = (G0,M0)

· G0 = {G0}
· M0 = ∅

– Di = (Gi,Mi)

· Gi = Gi−1 ∪ {H,Lr, Rr | ∃r ∈ P .∃G ∈ Gi−1 . G
r,m
=⇒ H}

· Mi =Mi−1 ∪m, p,m∗, p∗ | ∃r = L
p→ R ∈ P,∃G ∈ Gi−1 .

L R

G H

p

m m∗
p∗


Let T0, . . . , Ti, . . . be an infinite sequence of type graphs, where T0 is the inter-
mediate type graph at line 4 of Algorithm 3.2 before the first iteration of the
loop ranging from line 4 until 21, and Ti (for i > 0) is the intermediate type
graph at line 21 of Algorithm 3.2 after the ith iteration of this loop.

We shall now inductively prove that Ti is a type graph for Di, for all i ≥ 0.

Basis step:
We prove that T0 is a type graph for D0, i.e.

(a) ∀G ∈ G0 .∃τG : G→ T0

(b) ∀m : G→ H ∈M0 . τH ◦m = τG
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To prove (a), we prove that G0 has a typing in T0. Since the algorithm
initialises the type graph to exactly this graph and the type graph remains
invariant until line 4, we may conclude that (a) holds.
(b) is trivial, because M0 = ∅.

Induction hypothesis:
Ti is a type graph for Di, i.e.

(a) ∀G ∈ Gi, .∃τG : G→ Ti

(b) ∀m : G→ H ∈Mi . τH ◦m = τG

Induction step:
We prove that Ti+1 is a type graph for Di+1, i.e.

(a) ∀G ∈ Gi+1 .∃τ ′G : G→ Ti+1

(b) ∀m : G→ H ∈Mi+1 . τ
′
H ◦m = τ ′G

Let α : Ti → Ti+1 be a total graph morphism. Existence of such α follows
directly from Lemma 2.21.
First we prove (a). Let G ∈ Gi+1 be a graph. If G ∈ Gi, there exists
τ ′G : G→ Ti+1, defined as τ ′G = α ◦ τG.
If G /∈ Gi, then G ∈ {H,Lr, Rr | ∃r ∈ P .∃G ∈ Gi−1 . G

r,m
=⇒ H}. For the

existence of τ ′G in this case, we first need to prove that r ∈ Processed at line
21 of the algorithm, after the i+ 1th iteration of the loop; Processed is the
set Processed used in the algorithm. Since the defintion of G states that
r gives rise to graph transformation G

r,m
=⇒ H, r has a matching in some

G′ ∈ Gi−1. From Lemma 2.22 it then follows that r also has a matching
mr into Ti−1; the matching m′r from r into Ti is then defined as α ◦mr.
Because m′r exists, r is added to Processed at line 11 of the algorithm and
hence r ∈ Processed at line 21 of the algorithm. The proof that G has a
typing in Ti+1 in this case is given in the proof of Theorem 3.35 and is
therefore omitted here.
Next we prove (b). Let m : G → H ∈ Mi+1 be a graph morphism. If
m ∈Mi, then τH ◦m = τG follows from the induction hypothesis.
If m /∈ Mi, then m is a match, production (rule morphism), co-match,
or co-production (m, p,m∗, p∗ resp.) that gave rise to the construction of
some G ∈ Gi\Gi−1. For the match we have proved the required property in
(a). For the rule morphism this follows from lines 10–12 of the algorithm:
all nodes v, v′ ∈ VTi

such that p(v) = v′ are added to Equiv and hence
merged at line 23 of the algorithm and hence τL(v) = τR(p(v)) holds for all
these nodes. For the co-match and co-production, the required property
property follows directly from Lemma 3.34.

Furthermore, we need to prove that the set Processed eventually contains all
production rules that are applicable in GG. To prove this, suppose that the
algorithm terminates after n iterations of the loop and that there exists a pro-
duction rule r /∈ Processed that would have been added after n + j iterations,
for some j > 0.

Because the algorithm terminates, there exist no p ∈ Processed that yield
changes to Tn. According to Lemma 2.22, this means that there also exist
no q ∈ Processed that influences the applicability of any production rule in P.
This means that r will not become applicable and hence will not be added to
Processed, which is a contradiction.
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This proves that Ti is a type graph for Di, for all i > 0. The algorithm termi-
nates when Ti+1 = Ti. Because of this, Ti is a type graph for Di+1 and hence
for all Di for i→∞. Since Di converges to (G,M) if i→∞, Ti is a type graph
for (G,M), as required.

This concludes our evaluation of the improved algorithm. First we have shown
that the algorithm is both confluent and terminating; thereafter we proved that
the algorithm computes a valid type graph for a given graph grammar. The next
section will give a comparison of both algorithms, illustrating why the improved
algorithm computes a smaller type graph than the naive algorithm.

3.2.3 A comparison of the algorithms

An interesting question that arises is whether the type graph computed by
Algorithm 3.2 is always smaller than the type graph computed by algorithm 3.1.
Although we suppose that this is always the case, but because of the limited
amount of time for this project, we did not manage to formally prove this;
instead we shall give a possible proof strategy and give an intuitive explanation
for why the improved algorithm computes smaller type graphs than the naive
algorithm for the same graph grammars.

To improve readability we shall denote algorithm 3.1 as algorithm A and Algo-
rithm 3.2 as algorithm B. Likewise, we shall denote the type graphs computed
by algorithm A and B as TA and TB , respectively.

As we have seen in Theorem 3.35 and Theorem 3.37, both algorithms A and B
compute an infinite sequence of intermediate type graphs, which we shall call
T 0

A, T
1
A, . . . , T

i
A, . . . and T 0

B , T
1
B , . . . , T

i
B , . . . respectively. We define T i

A as follows,
for all i > 0:

– T 0
A = G0 ] {Lr | r ∈ P} ] {Rr | r ∈ P}

– T i
B = T 0

A / R∗i , where R∗i is the cumulative relation Equiv, i.e. the union of
all relations Equiv in the algorithm, until the ith iteration of the algorithm.

Likewise, we define T i
B as follows, for all i > 0:

– T 0
B = G0

– T i
B = (T i−1

B ]{Lr, Rr | r ∈ P,∃m : Lr → T i−1
B }) / Qi for some equivalence

relation Qi.

We think that it is possible to write an inductive proof that proves that TB ≤ TA,
for all i > 0. The main reason for this intuition is that algorithm A has a typing
for all production rules in P, while algorithm B only adds the production rules
that are in Processed. Furthermore, it is intuitive to see that all elements that
are merged by algorithm B in step i are also merged by algorithm A in the
same step or in earlier steps. Finally, note that all left-hand side graphs and
right-hand side graphs that are added in T i+1

B also have a typing in T i+1
A ; this

follows directly from the proof of Theorem 3.35.

Thus we have given some ingredients for a possible proof and we think the
required property can be proved using this strategy, but as we already stated
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we did not manage to write a complete proof in the amount of time we had
during this project.

3.2.4 Application Conditions

Production rules are often accompanied by application conditions. Such con-
ditions restrict the possible matchings for a production rule in the host graph
in a graph transformation. The general idea is that a production rule that is
accompanied by one or more application conditions matches into a host graph
if, and only if, there exists a matching from the left-hand side of the rule into
the host graph that satisfies all application conditions.

This illustrates the often negative nature of application conditions. Although
both positive and negative application conditions exist, only negative appli-
cation conditions make the graph transformations formalism more powerful
[Wag95]. Therefore we shall only consider negative application conditions in
this thesis, which are defined as follows.

Definition 3.38 (Negative application condition). A negative application con-
dition N is a graph such that n : L → N is a graph morphism. A graph
morphism m : L → G satisfies N , denoted m � N , if there exists no graph
morphism f : N → G such that f ◦ n = m.

As stated before, a production rule that is accompanied a set of negative ap-
plication conditions N is only applicable if none of the conditions in N are
satisfied; in other words, if there exist no graph morphisms Ni → G for any
Ni ∈ N , such that the diagram given in Figure 3.9 commutes.

L G. . .

N2

N1

Nn

m

Figure 3.9: A graph transformation with negative application conditions

Definition 3.39 (Graph production with application conditions). A graph pro-
duction with application conditions is a pair r̂ = (r : L

p→ R,N ) consisting of
a production rule r and a set of negative application conditions N . r̂ is appli-
cable to a graph G via matching m : L → G, yielding a graph transformation
G

p,m
=⇒ H, if m 2 N for all N ∈ N .

Application conditions give extra information about the applicability of pro-
duction rules. However, although they give information about what elements
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should be absent at a certain moment, they do not state that these elements
should never occur in the program.

Moreover, even though application conditions imply that certain elements should
exist somewhere in some derivation of a graph grammar, these elements are in-
troduced by a right-hand side of any rule already and hence are in the type
graph already.

Nevertheless, even though not used in the type inference algorithm, application
conditions can be used to detect some errors in a graph grammar, since if there
exists no matching for an application condition into the induced type graph, the
application condition is not necessary and may be erroneous.

3.3 Discussion

In this chapter we have defined a perfect type graph for a graph grammar
and have introduced two algorithms that compute a type graph given a graph
grammar, that is an approximation of the perfect type graph. Unfortunately,
because the applicability of production rules is undecidable, it turned out to be
impossible to compute the perfect type graph in an algorithmic way.

Although we did not find what we aimed for—an algorithm that computes
the perfect type graph for a graph grammar—we managed to come up with
an algorithm that produces a good type graph for the grammar. Using this
computed type graph we are able to find several types of errors that would have
been difficult to identify in an untyped setting. We shall briefly discuss some of
them in this section.

First, the computed type graph represents a model of all graphs that can be
produced by a graph grammar. Because type graphs are always finite structures
and languages of graph grammars are infinite in general, type graphs give rise to
a finite model for an infinite set of graphs. Additionally, since instance graphs
may contain many nodes of one type while type graphs contain each node type
only once, type graphs are generally small compared to their instances. Because
of these properties, type graphs are able to model complex and possibly infinite
structures in a synoptic way.

Particularly if type graphs are small, programmers often have some idea of what
a type graph for a graph grammar should look like. Using this information, type
graphs may give information about errors in graph grammars, such as erroneous
production rules, if the computed type graph is different from the expected type
graph.

Additionally, the improved algorithm, given in Algorithm 3.2, can detect some
production rules that are never applicable. If at the end of the execution of this
algorithm the set Processed is not equal to the set of all production rules of the
grammar, this means that all production rules that are not in Processed do not
have a typing into the type graph and, accordingly, are never applicable in any
derivation of the graph grammar.

A similar detection of erroneous or superfluous application conditions is also
provided by the improved algorithm. If any negative application condition does
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not have a typing into the type graph computed by the algorithm, there will
never be a graph morphism from this application condition into any production
graph of the graph grammar and therefore this application condition will never
prevent the application of any production rule.

As a potential improvement, we expect that an algorithm that produces proper
type graphs for given graph grammars may be advantageous over the algorithms
presented in this chapter; these two algorithms produce non-proper type graphs
in general, while we saw earlier in this chapter that proper type graphs are
preferred over non-proper ones. As we did not consider such an algorithm that
produces only proper type graphs, we consider it future work.

This concludes our discussion on type graphs defined as simple graphs, contain-
ing only nodes and edges. In Chapter 4 we shall extend the definition of type
graphs by adding a special type of edges, called inheritance edges.



CHAPTER 4

Type Inheritance

Hitherto we have investigated ordinary type graphs, which distinguish only node
types and edge types. In this chapter we will introduce the notion of type
graphs with inheritance, in which a special kind of edges, called inheritance
edges, are present. The basic idea for using type graphs with inheritance in-
stead of ordinary type graph is to classify instance graphs using more compact
representations by reducing redundancy [dLBE+07]. Additionally, as is the case
in the object-orientation paradigm, inheritance increases the reusability and ex-
tensibility of type graphs by combining information in so-called supertypes and
reusing this information in subtypes, which inherit all information from the
supertypes.

In this chapter we will use the principle of inheritance as it has been formalised
for graph transformations by Bardohl et al [BEdLT04]. In this theory a new
notion of typing is introduced, which is different from the typing morphisms we
have seen in Chapter 3, describing a typing from an instance graph into a type
graph with inheritance. We shall first elaborate on this theory in Section 4.1.

After this, we shall identify the properties of type graphs with inheritance for
graph grammars and we will define a particular type graph with inheritance for
such grammars, which we will call the naive type graph with inheritance. This
naive type graph with inheritance is constructed in a similar way as the perfect
type graph defined in Chapter 3, but here we choose a more liberal approach by
not merging all equivalent node types, but by adding inheritance edges between
these node types in some cases.

In Section 4.2 we will introduce an algorithm that computes a type graph with
inheritance for a given graph grammar. As is the case with the algorithms
defined in Chapter 3, this algorithm cannot compute the exact naive type graph
with inheritance because it is defined based upon an infinite set of graphs. The
algorithm will, however, construct its type graph in a similar way as the naive
type graph with inheritance.

Although both the naive type graph with inheritance and the type graph with
inheritance constructed by the algorithm are valid type graphs, we shall see that
both type graphs distinguish too many node types because too few nodes are

48
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merged. This is what we try to solve in Section 4.3, by merging some nodes
of the naive type graph with inheritance based on some general scenarios and,
because of that, acquiring a denser type graph with inheritance.

Finally, in section 4.4, we conclude the chapter with a discussion in which all
topics discussed in this chapter are briefly reviewed.

4.1 Type Graphs with Inheritance

In Section 3.1 we defined a type graph as a graph T = (VT , ET ) where VT

represents a set of node types and ET a set of edge types. Furthermore we
defined a typing from a graph G into T as a total graph morphism τ : G→ T .

We shall now extend this notion of type graphs by introducing a special kind of
edges, called inheritance edges, into type graphs. Inheritance edges are directed
edges indicating an inheritance relation among node types: the source node
of an inheritance edge is said to be a subtype of the target node, whereas the
target node is called the supertype of the source node. Moreover, nodes in a type
graph with inheritance can either be abstract or concrete; the difference between
the two is that concrete node types can be instantiated, whereas abstract ones
cannot.

The classical definition of a type graph with inheritance is given by Bardohl et
al [BEdLT04] and reads as follows:

Definition 4.1 (Type graph with inheritance). A type graph with inheritance
is a triple TGI = (T, I,A) consisting of a type graph T = (VT , ET ), an acyclic
inheritance relation I ⊆ VT ×VT , and a set of abstract nodes A ⊆ VT . For each
x ∈ VT , the inheritance clan is defined by clanI(x) = {y ∈ VT | (x, y) ∈ I∗},
where I∗ is the reflexive-transitive closure of I.

As is the case in object-oriented systems, a type inherits attributes from all
its supertypes. With respect to type graphs with inheritance this means that,
given two node types v1, v2 ∈ VT such that v2 is a subtype of v1, v2 inherits all
incoming and outgoing edges of v1. Because of this, the inheritance gives rise
to new instances.

Example 4.2. Consider Figure 4.1a. It illustrates a type graph with inheritance
TGI containing three nodes, labelled A, B, and AA, and two edges. One of
these two edges, labelled c, is an ordinary edge, wehereas the open-ended arrow
from AA to A represents an inheritance edge; this edge indicates that the node
labelled AA is a subtype of the node labelled A. All node types in this example
are concrete, we will explicitly mark abstract node types in the example graphs
in this chapter, if the difference between concrete and abstract node types is
significant (see, e.g. Figure 4.3c).

Figure 4.1b illustrates two instances of TGI. Graph G1 clearly is a legal instance
of TGI, because there exists a typing morphism τG1 : G1 → TGI. Although
there does not exist a typing morphism τG2 : G2 → TGI, graph G2 also is a
valid instance of TGI.

In order to specify a typing into a type graph with inheritance and to be able
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Figure 4.1: A type graph with inheritance and two instances.

to benefit from the theory of typed graph transformations without inheritance,
we define a closure of type graphs with inheritance into ordinary type graphs.
Intuitively, a closure of a type graph with inheritance is an ordinary type graph
that contains the same information as this type graph with inheritance.

Definition 4.3 (Closure of a type graph with inheritance). Let TGI = (T, I,A)
be a type graph with inheritance with T = (VT , ET ). The abstract closure of
TGI is the graph TGI = (VT , ET ) with

ET = {(s, l, t) | ∃(s′, l, t′) ∈ ET , s ∈ clanI(s′), t ∈ clanI(t′)}.

The concrete closure of TGI is the graph T̂GI = TGI|VT \A.

The two closures of a type graph with inheritance gives rise to two different
type graphs: the abstract closure contains both concrete and abstract types
and the concrete closure contains only concrete types. Using this distinction,
also instances of a type graph with inheritance can either be abstract or concrete.

Definition 4.4 (Instance of a type graph with inheritance). Let TGI be a type
graph with inheritance. An abstract instance of TGI is an instance graph of
TGI; a concrete instance of TGI is an instance graph of T̂GI.

As stated before, only concrete types can be instantiated. Moreover, Bardohl
et al. [BEdLT04] remark that production graphs of a graph grammar are typed
over the concrete closure, whereas rule graphs are typed over the abstract closure
in general. A comparable situation holds for object-oriented systems, as is
illustrated by the following example.

Example 4.5. Many object-oriented systems discriminate between abstract and
concrete types. Since only concrete types can be instantiated, all objects in such
systems are concrete. Methods, however, are often specified using abstract types
to indicate that their input parameters and return variables must at least be
subtypes of these abstract types. Therefore, a method that is defined for input
parameters of an abstract type is actually defined for parameters of all types
inheriting from that abstract type.

In graph grammars typing works in a similar way. In analogy to object-oriented
systems, production graphs represent objects, and methods are represented by
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Figure 4.2: Example of a clan morphism

production rules: left-hand side graphs define the input parameters of these
methods and right-hand side graphs represent their return values. Following this
analogy, production graphs in a graph grammar contain only nodes of concrete
types, while rule graphs may contain nodes of abstract types as well.

A typing of an instance graph into a type graph with inheritance uses the
construction of the closure, as specified in Definition 4.3. Similar to typings
into ordinary type graphs, a typing from an instance graph into a type graph
with inheritance incorporates two functions, mapping nodes to node types and
edges to edge types respectively.

This pair of functions is not a graph morphism, however, but will be called a
clan morphism. This clan morphism uniquely characterises the typing morphism
into the abstract closure of the type graph with inheritance, i.e. given a clan
morphism ctp : G→ TGI there exists a unique typing morphism τG : G→ TGI
[BEdLT04].

Definition 4.6 (Clan morphism). Let TGI = (T, I,A) be a type graph with
inheritance. A clan morphism ctp : G→ TGI from a graph G = (VG, EG) into
TGI is a pair ctp = (ctpV : VG → VT , ctpE : EG → ET ) such that for all e ∈ EG

the following holds:

– ctpV ◦ srcG(e) ∈ clanI(srcT ◦ ctpE(e)) and
– ctpE ◦ tgtG(e) ∈ clanI(tgtT ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph.

Example 4.7. Figure 4.2 shows the typing of graph G2 into TGI, both from
Example 4.2. This typing is done by a clan morphism; the edge typing is not
explicitly shown, but follows uniquely from the node typing.

Although the node type labelled AA in TGI does not have an outgoing c-edge
while the AA-labelled node in G2 does, the clan morphism defines a mapping
between these two nodes because the node in TGI inherits this edge from the
node type labelled A.

We shall now introduce an order over the set of clan morphisms of a given
instance graph: one clan morphism is considered finer than another if it assigns
more concrete node types to the nodes of the instance graph. This order will be
used in the next section to be able to specify commutativity of clan morphisms.
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Definition 4.8 (Type refinement). Let TGI = (T, I,A) be a type graph with
inheritance, and let ctp, ctp′ : G→ T be clan morphisms. ctp is a refinement of
ctp′, denoted ctp ≤ ctp′, if

– ctpV (v) ∈ clanI(ctp′V (v)) for all v ∈ VG, and
– ctpE = ctp′E.

Given two clan-typed graphs (G, ctpG) and (H, ctpH) over TGI, a graph mor-
phism f : G → H is called type-refining if ctpH ◦ f ≤ ctpG and is called
type-preservering if ctpH ◦ f = ctpG.

Thus we have now defined a type graph with inheritance and a typing from
an instance graph into a type graph with inheritance. In the following section
we shall investigate how to deduce a type graph with inheritance from a graph
grammar.

4.1.1 Type Graph with Inheritance for a Graph Grammar

In Chapter 3 we have defined the perfect type graph for a graph grammar
GG as the graph ]G / ∼ such that (G,M) is the diagram of GG and ∼ is
the equivalence relation defined in Defintion 3.21. In this approach, two node
types were merged if they were mapped onto each other by any morphism or
composition of morphisms.

Now we shall choose a more liberal approach by creating an inheritance edge
between two nodes if one of these nodes is mapped onto the other by any graph
morphism or composition of graph morphisms. These nodes are only merged
under certain constraints, which we shall identify in this section.

Example 4.9. Figure 4.3 gives an example of the difference between an ordi-
nary type graph and a type graph with inheritance. Consider the simple graph
grammar given in Figure 4.3a. The only rule, we call this rule r, in this example
removes the address attribute of a Student or Teacher.

A possible type graph for this grammar is given in Figure 4.3b; Figure 4.3c
shows a possible type graph with inheritance. The difference between these two
different type graphs reveals an important drawback of the ordinary type graphs
constructed as in Chapter 3: all nodes sharing some property may be considered
type equivalent—because they are mapped by the same left-hand side node in
some matching—and are therefore merged. In the case of this example, rule r
causes all nodes having an outgoing edge labelled address to be type equivalent.

Analogously to Chapter 3, a type graph with inheritance for a graph grammar
should at least satisfy two conditions: it should contain a classification for all rule
graphs and al production graphs of the grammar, and all morphisms between
these graphs should commute with the clan morphisms.

Definition 4.10 (Type graph with inheritance for a graph grammar). Let
GG = (G0,P) be a graph grammar and let (G,M) be the diagram of GG. Then
a type graph with inheritance TGI is a type graph with inheritance for GG if
there exist clan morphisms ctpG : G→ TGI for all G ∈ G such that
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Figure 4.3: A type graph and a type graph with inheritance for a graph gram-
mar

1. All morphisms m ∈M are type-refining.
2. Al rule morpshisms p ∈M are type-preserving.
3. All co-matches m∗ ∈M for all elements that are not in the image of any

rule morphism p ∈M are type-preserving.

We shall now introduce a particular type graph with inheritance and we shall
call this the naive type graph with inheritance for a graph grammar. This type
graph will be defined such that it adheres to Definition 4.10.

In order to formalise when morphisms should be either type preserving or type
refining, we shall now first define a preorder . over nodes of the graphs in G,
defined such that, for any m ∈ M and for any v ∈ domm it holds that m is
type refining if v . m(v) and type preserving if v . m(v) and m(v) . v.

Definition 4.11. Given a graph grammar GG = (G0,P) and the diagram
(G,M) of GG, . ⊆ V]G × V]G is the smallest reflexive and transitive relation
such that

– For all morphisms m ∈M it holds that m(n) . n for all n ∈ domm.
– For all L

p→ R ∈ P, it holds that

· n . p(n) for all n ∈ dom p
· If there exists a co-match m∗ : R→ H ∈M, then n . m∗(n) for all
n ∈ (domm∗ \ im p).
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Since . is reflexive and transitive, it is a preorder. Given this preorder, we can
now define the naive type graph with inheritance.

Basically, nodes of this naive type graph with inheritance are equivalence classes
of ]G over the kernel of the preorder ., which is an equivalence relation since
it is reflexive, transitive, and symmetric. Furthermore, the tuples (n1, n2) ∈ .
that are not in ker. give rise to the inheritance relation I.

Definition 4.12 (Naive type graph with inheritance). Let GG = (G0,P) be a
graph grammar and let (G,M) be the diagram of GG. Then T̃GI = (T̃ , I,A) is
a type graph with inheritance for GG such that

– T̃ = (ṼT , ẼT ) = ]G / '
– I = {([a]', [b]') | bl a}
– A = {[v]' | ∃L

p→ R ∈ P . v ∈ dom p ∨ v ∈ im p},

where . is the relation defined in Definition 4.11, ' = ker., and l is the direct
predecessor relation inside ., which is defined as v l v′ if, and only if, v . v′

and v′ 6. v such that there exists no w with w /∈ {v, v′} and v . w . v′.

Then the type graph with inheritance TGI = (T, I,A) such that

– T = (ṼT , ET )
– ET = {(s, l, t) ∈ ẼT | @(s′, l, t′) ∈ ẼT . s

′ ∈ clanI(s) ∧ t′ ∈ clanI(t)}

is called the naive type graph with inheritance for GG.

According to this definition, type preservation of morphisms is achieved by
merging nodes and type refinement by creating inheritance edges between nodes.
We shall now prove that the naive type graph with inheritance is a valid type
graph for a graph grammar.

Lemma 4.13. Let GG be a graph grammar and let (G,M) be the diagram of
GG. Then the naive type graph with inheritance for GG is a type graph with
inheritance for GG.

Proof. Definition 4.12 consists of two parts: First T̃GI = (T̃ , I,A) is defined.
Thereafter, type graph T ⊆ T̃ is defined, resulting in a type graph with in-
heritance TGI = (T, I,A) that is the naive type graph with inheritance for
GG.

We shall also divide the proof into two parts: (1) T̃GI is a type graph for GG;
and (2) TGI is also a type graph for GG.

In order to prove (1), we need to prove two properties, according to Definition
4.10:

– There exists a clan morphism ctpG : G→ T̃GI for all G ∈ G.
– These clan morphisms commute with all morphisms m ∈M.

We define ctpG as ctpG(x) = [x]', for all x ∈ VG∪EG. Well-definedness of ctpG

directly follows from Definition 2.19: ctpG is uniquely defined for all v ∈ VG and
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for all e ∈ EG. Furthermore, in order for ctpG to be a clan morphism, for all
e ∈ EG the following should hold:

ctpG(src(e)) I∗ src(ctpG(e))

and hence
[src(e)]' I∗ src([e]'),

where I∗ is the reflexive-transitive closure of I. From Definition 2.19 it follows
that

[src(e)]' = src([e]').

and therefore ctpG is a clan morphism.

Next we need to prove commutativity of the clan morphisms, i.e.

∀m ∈M .m : G→ H =⇒ ctpH ◦m ≤ ctpG.

Rewriting gives, for all m ∈M and for all x ∈ VG ∪ EG,

(ctpH ◦m)(x) I∗ ctpG(x)
ctpH(m(x)) I∗ [x]'

[m(x)]' I∗ [x]'

This directly follows from Definition 4.11 and hence T̃GI is a type graph with
inheritance for GG.

To prove (2), we define a clan morphism ctp′G : G→ TGI as

– ctp′G,V (v) = ctpG(v)
– ctp′G,E(e) = ctpG(e′)

where e′ ∈ ET such that lbl(e) = lbl(e′), src(e′) ∈ clanI(src(e)), and tgt(e′) ∈
clanI(tgt(e)). From Definition 4.12 it follows that such e′ exists; from Defini-
tion 4.6 it follows that ctp′G is a clan morphism and hence we have proved that
such clan morphism exists, as required.

This naive type graph with inheritance contains inheritance relations between all
node types n1, n2 for which n1 . n2 holds, including all cases where type equiv-
alence of these node types would be more appropriate. As an example, consider
Figure 4.4, which illustrates the type naive type graph with inheritance for the
graph grammar given in Figure 4.3a. In comparison with the type graph with
inheritance we expected for this graph grammar, which is given in Figure 4.3c,
this naive type graph with inheritance contains too many inheritance edges and
too few nodes are merged.

Therefore we shall define scenarios in section 4.3, that describe when certain
nodes in the type graph with inheritance need to be merged, in order to contract
the inheritance relation of a type graph with inheritance.

But first we shall define an algorithm that computes a type graph with inheri-
tance from a given graph grammar; this type graph possibly contains, like the
naive type graph with inheritance, many inheritance edges that can be omitted.
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Figure 4.4: A naive type graph with inheritance for the graph grammar given
in Figure 4.3a.

4.2 Inference of Type Graphs with Inheritance

In this section we shall outline an algorithm for computing a type graph with
inheritance for a given graph grammar. This algorithm is given in Algorithm 4.1.
In contrast to the algorithms presented in Chapter 3, this algorithm statically
initialises the type graph with inheritance as a quotient of the disjoint union
of the start graph and all rule graphs of the grammar, over some equivalence
relation. Thereafter, it does not merge any more elements but only introduces
new inheritance edges.

At lines 1 until 4 the initial type graph with inheritance is initialised as just
described; line 5 initialises the inheritance relation to the empty set and line 6
marks all nodes in the domain and image of any rule morphism as abstract.

Thereafter the algorithm enters the outer loop, ranging from line 7 to line 17,
in which the inheritance relation is constructed. This is done similarly to the
construction of the equivalence relation Equiv in the algorithms described ear-
lier: if a left-hand side node matches into any node in the type graph with
inheritance, an inheritance edge from this matched node to the left-hand side
node will be added to the type graph with inheritance.

The algorithm obviously terminates: the main loop of the algorithm introduces
inheritance edges between a finite amount of node types. At most inheritance
edges are created between any two node types, but this is still a finite num-
ber. Also confluence follows directly from the structure of the algorithm: each
iteration of the loop adds extra elements to the inheritance relation, regardless
of the current contents of that relation. Therefore the inheritance relation will
have the same contents after each iteration of the loop, regardless the order in
which production rules are processed.

We shall now prove that the algorithm computes a valid type graph with inher-
itance for a graph grammar.

Lemma 4.14. Given a graph G and a production rule r : L
p→ R, let H be the

result of the graph transformation G
r,m
=⇒ H for matching m : L → G, and let

p∗ : G → H and m∗ : R → H be the morphisms in the pushout, as specified in
Definition 2.26.

Furthermore, let TGI be a type graph with inheritance and let ctpG : G→ TGI
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Algorithm 4.1: Algorithm for computing a type graph with inheritance
for a graph grammar

Input: GG = (G0,P)
Output: A type graph with inheritance for GG

T ← G0 ] {Lr | r ∈ P} ] {Rr | r ∈ P};1

Equiv ← {(v, v′) | ∃L p→ R ∈ P . p(v) = v′};2

T ← T / Equiv;3

I, I ′ ← ∅;4

A ← {[v]Equiv | ∃L
p→ R ∈ P . v ∈ dom p ∨ v ∈ im p};5

repeat6

I ′ ← I;7

forall L
p→ R ∈ P do8

M← {ctpm | ctpm : L→ T};9

forall v, v′ ∈ VT do10

if ∃m ∈M .m(v) = v′ then11

I ← I ∪ {(v′, [v]Equiv)} ;12

end13

end14

end15

until |I| = |I ′| ;16

return (T, I,A);17

and ctpR : R→ TGI be two clan morphisms such that ctpG◦m ≤ ctpR◦p. Then,
there also exists a clan morphism ctpH : H → TGI such that ctpG|dom p∗ =
ctpH ◦ p∗ and ctpR|dom m∗ ≥ ctpH ◦m∗.

Proof. We define ctpH as follows:

– ctpH(v) =
{
ctpG(v′) if v = p∗(v′)
ctpR(v′) if v = m∗(v′), v′ /∈ im p∗

for nodes of H, and

– ctpH(e) =
{
ctpG(e′) if e = p∗(e′)
ctpR(e′) if e = m∗(e′), e′ /∈ im p∗

for edges of H.

First we need to prove that ctpH is well-defined, i.e. functions ctpH,V and ctpH,E

must be well-defined. This holds if ctpG(x′) ≤ ctpR(x′′), for all x ∈ VH ∪ EH

such that x = p∗(x′) = m∗(x′′).

This holds because x′ and x′′ have the same preimage in L, meaning that there
exists an element l ∈ L such that x′ = m(l) and x′′ = p(l). Then

ctpG(x′) = ctpG(m(e)) ≤ ctpR(p(e)) = ctpR(x′′).

Second, we need to prove that ctpH is a clan morphism. As specified in Defini-
tion 4.6 this holds if, for all e ∈ EH , the following holds:

– ctpH(src(e)) I∗ src(ctpH(e))) and
– ctpH(tgt(e)) I∗ tgt(ctpH(e)))
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where I∗ is the reflexive-transitive closure of I. For this, the following distinctive
cases can be identified. We shall only prove these for src(e); the proofs for tgt(e)
are symmetric:

1. If e ∈ im p∗, then src(e) ∈ im p∗. So

ctpH(src(e)) =
ctpG(p∗(src(e))) =
ctpG(src(p∗(e))) I∗

src(ctpG(p∗(e))) = src(ctpH(e))

and hence the required property ctpH(src(e)) I∗ src(ctpH(e))) holds in
this case.

2. If e /∈ im p∗ and src(e) ∈ im p∗, there exists a v ∈ domm∗ and a v′ ∈
dom p∗ such that m∗(v) = p∗(v′) = src(e). In this case, v and v′ have the
same preimage in L, thus there exists v′′ ∈ L such that v′ = m(v′′) and
v = p(v)). Then

ctpH(src(e)) I∗

ctpR(v) =
ctpR(src(e′)) I∗

src(ctpR(e′)) = src(ctpH(e))

and hence the required property ctpH(src(e)) I∗ src(ctpH(e))) holds in
this case.

3. If e, src(e) /∈ im p∗, then e, src(e) ∈ imm∗. So

ctpH(src(e)) I∗

ctpR(m∗(src(e))) =
ctpR(src(m∗(e))) I∗

src(ctpR(m∗(e))) = src(ctpH(e))

and hence the required property ctpH(src(e)) I∗ src(ctpH(e)) holds in this
case.

Since the proof for tgtG is analogous to the proof for srcG, this proves that there
exists a clan morphism ctpH : H → TGI for any graph H resulting from graph
transformation G

r,m
=⇒ H.

Next, we prove ctpG|dom p∗ = ctpH ◦ p∗. Let e ∈ EH . Because ctpG is restricted
to dom p∗, we know that e ∈ im p∗. Hence, the required property follows directly
from the definition of ctpH :

ctpH(p∗(e′)) = ctpG(e′)

for some e′ ∈ dom p∗ such that p∗(e′) = e.

Finally, we prove ctpR|dom m∗ ≥ ctpH ◦ m∗. Let e ∈ EH . If e /∈ im p∗, the
required property follows from the definition of ctpH :

ctpH(m∗(e′′)) = ctpR(e′′)
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for some e′′ ∈ dom p∗ such that m∗(e′′) = e. If e ∈ im p∗, then there exists e′ ∈
dom p∗ such that p∗(e′) = e and m−1(e′) = p−1(e′′). From ctpG ◦m ≤ ctpR ◦ p
it then follows that

ctpH(m∗(e′′)) ≥ ctpR(e′′)

Using this proof, we now prove that Algorithm 4.1 is correct, i.e. it computes a
valid type graph with inheritance for a given graph grammar.

Theorem 4.15. Given a graph grammar GG, the type graph with inheritance
induced from GG by Algorithm 4.1 is a valid type graph with inheritance for
GG.

Proof. We prove that the type graph with inheritance TGI at line 24 of the
algorithm is a type graph for (G,M).

Let D0, . . . , Di, . . . be an infinite sequence of diagrams, inductively defined as
follows:

– D0 = (G0,M0)

· G0 = {G0} ∪ {Lr | r ∈ P} ∪ {Rr | r ∈ P}
· M0 = {p | L p→ R ∈ P}

– Di = (Gi,Mi)

· Gi = Gi−1 ∪ {H | ∃r ∈ P .∃G ∈ Gi−1 . G
r,m
=⇒ H}

· Mi =Mi−1 ∪m,m∗, p∗ | ∃r = L
p→ R ∈ P,∃G ∈ Gi−1 .

L R

G H

p

m m∗
p∗


Let TGI0, . . . , TGIi, . . . be an infinite sequence of type graphs with inheritance,
where TGI0 is the intermediate type graph with inheritance at line 10 of Algo-
rithm 4.1 before the first iteration of the loop ranging from line 10 until 23, and
TGIi (i > 0) is the intermediate type graph at line 23 of Algorithm 4.1 after
the ith iteration of this loop.

We shall now inductively prove that TGIi is a type graph with inheritance for
Di, for all i ≥ 0.

Basis step:
We prove that TGI0 is a type graph with inheritance for D0, i.e.

(a) ∀G ∈ G0 .∃ctpG : G→ TGI0
(b) ∀m : G→ H ∈M0 . ctpH ◦m ≤ ctpG

To prove (a), we prove that all G ∈ {G0}]{Lr | r ∈ P}]{Rr | r ∈ P} have
a clan morphism into TGI0. Since the algorithm initialises the type graph
to the disjoint union of exact this set of graphs, and the only changes to
TGI are performed by the loop ranging from line 3 to 7 of the algorithm
using the quotient construction, it follows from Lemma 2.22 that (a) holds.
To prove (b), we prove that ctpR ◦ p ≤ ctpL for all p = {p | L p→ R ∈
P}. This follows directly from lines 3–8 of the algorithm: for all these
morphisms it merges all elements in dom p with their images under p.
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Induction hypothesis:
TGIi is a type graph with inheritance for Di, i.e.

(a) ∀G ∈ Gi, .∃ctpG : G→ TGIi
(b) ∀m : G→ H ∈Mi . ctpH ◦m ≤ ctpG

Induction step:
We prove that TGIi+1 is a type graph with inheritance for Di+1, i.e.

(a) ∀G ∈ Gi+1 .∃ctp′G : G→ TGIi+1

(b) ∀m : G→ H ∈Mi+1 . ctp
′
H ◦m ≤ ctp′G

Let α : TGIi → TGIi+1 be a total graph morphism. Existence of such α
follows directly from Lemma 2.21.
First we prove (a). Let G ∈ Gi+1 be a graph. If G ∈ Gi, there exists
ctp′G : G→ TGIi+1, defined as ctp′G = α ◦ ctpG.
If G /∈ Gi, there exists G′ ∈ Gi such that G′

r,m
=⇒ G, for some r = (L

p→
R) ∈ P and some m : L → G′. According to Lemma 4.14, ctp′G exists in
this case if there exist ctp′G′ : G′ → TGIi+1 and ctp′R : R→ TGIi+1 such
that ctp′G′ ◦m ≤ ctp′R.
Since G′, R ∈ Gi, ctp′G′ and ctp′R exist; these morphisms are defined as
ctp′G′ = α ◦ ctpG′ and ctp′R = α ◦ ctpR. Since ctpG′ ◦m ≤ ctpR holds—this
follows from the induction hypothesis—we have α ◦ ctpG′ ◦m ≤ α ◦ ctpR

and hence the required property ctp′G′ ◦m ≤ ctp′R. (a) then follows directly
from Lemma 4.14.
Next we prove (b). Let m : G → H ∈ Mi+1 be a graph morphism. If
m ∈Mi, then ctpH ◦m ≤ ctpG follows from the induction hypothesis.
If m /∈Mi, then m is a match, co-match, or co-production that gave rise
to the construction of some G ∈ Gi \ Gi−1. For the match we have proved
the required property in (a). For the co-match and co-production this
property follows directly from Lemma 4.14.

This proves that TGIi is a type graph with inheritance for Di, for all i > 0.
The algorithm terminates when TGIi+1 = TGIi. Because of this, TGIi is a
type graph with inheritance for Di+1 and hence for all Di for i→∞. Since Di

converges to (G,M) if i→∞, TGIi is a type graph for (G,M), as required.

Thus we have now specified an algorithm and have proved that it computes a
valid type graph with inheritance for a given graph grammar. In the next section
we will define contraction scenarios for reducing the size of type graphs with
inheritance. Because of the similarity between the algorithm that we defined
and the naive type graph with inheritance we defined earlier in this chapter,
these contraction scenarios are also useable for the type graph computed by the
algorithm.

4.3 Contraction

In the last section we introduced the concept of type graphs with inheritance
and typings from instance graphs into such type graphs; using this information
we defined a naive type graph with inheritance for a graph grammar, which
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contains inheritance edges for all tuples of nodes that are in preorder .. In
many cases, however, merging these nodes instead of creating an inheritance
edge between them is preferred in order to reduce redundancy.

In this section we will discuss criteria for when to merge nodes instead of creating
inheritance edges between these nodes. To formalise the notion of merging
nodes in a type graph with inheritance, we shall start with defining the quotient
construction on type graphs with inheritance.

Definition 4.16 (Quotient of a type graph with inheritance). Given a type
graph with inheritance TGI = (T, I,A) and an equivalence relation ' ⊆ VT×VT ,
the type graph with inheritance TGI / ' = (T ′, I ′,A′) such that

– T ′ = T /'
– I ′ = {([a]', [b]') | (a, b) ∈ I, (a, b) /∈ '}
– A′ = {[n]' | [n]' ⊆ A}

is called the quotient of TGI over '.

Note that if two nodes are merged using this construction, the resulting node is
concrete if, and only if, at least one of the two nodes is concrete.

This describes a general quotient construction on type graphs with inheritance.
We shall, however, use this construction under two additional constraints; two
nodes can only be merged if they are connected through a inheritance edge
and if these nodes connected to each other by a chain of inheritance edges, all
intermediate nodes in this chain are also merged with these nodes. We shall call
this construction a contraction of a type graph with inheritance, and define it
formally as follows:

Definition 4.17 (Contraction of a type graph with inheritance). Given a
type graph with inheritance TGI = (T, I,A), let I∗ be the reflexive-transitive-
symmetric closure of I and let ' ⊆ I∗ be an equivalence relation such that

∀x, y, z ∈ VT . (x ' y ∧ x I z ∧ z I∗ y) =⇒ x ' z. (4.1)

Then, TGI / ' is a contraction of TGI.

One important property that should be satisfied is that the contraction of a type
graph with inheritance must give a classification to at least the set of instances
of this type graph with inheritance. Reason for this is that if this property is
not satisfied, the type graph produced by contraction is not a valid type graph
with inheritance.

Lemma 4.18. Let TGI = (T, I,A) be a type graph with inheritance and let
TGI ′ = TGI /' for some equivalence relation '. Then, if TGI ′ is a contraction
of TGI, we have ITGI ⊆ ITGI′ .

Proof. Given a clan morphism ctpG : G → TGI for an arbitrary graph G ∈
ITGI , we shall prove that there exists a clan morphism ctp′G : G→ TGI ′.
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We define ctp′G as ctp′G(x) =
[
ctpG(x)

]
'. ctp′G is a clan morphism if, for all

e ∈ EG, [
ctpG(src(e))

]
' I
′∗ src(

[
ctpG(e)

]
')

holds under the assumption that

ctpG(src(e)) I∗ src(ctpG(e)),

which follows from Definition 4.6. Here, I∗ is the reflexive-transitive closure of I
and I ′∗ is the reflexive-transitive closure of I ′, the inheritance relation of TGI ′.

Let v, v′ ∈ VT be nodes of T such that v I∗ v′ and v 6= v′. From this it follows
that there exist w1, . . . , wn ∈ VT such that

v I w1 I . . . I wn I v
′,

and according to Definition 4.16, we have

[v]' I ′∗ [w1]' I ′∗ . . . I ′∗ [wn]' I ′∗ [v′]'

and hence [v]' I ′∗ [v′]'. If we now substitute v by ctpG(src(e)) and v′ by
src(ctpG(e)), we get

[ctpG(src(e))]' I ′∗ [src(ctpG(e))]'.

From the definition of graph quotienting it then follows that

[src(ctpG(e))]' = src([ctpG(e)]')

and hence
[ctpG(src(e))]' I ′∗ src([ctpG(e)]').

This proves the required property for v 6= v′; if v = v′, this property trivially
follows from

[ctpG(src(e))]' = [src(ctpG(e))]'.

4.3.1 Contraction Scenarios

Although the decision whether to use a subtype relation between types or to
merge these nodes in an object-oriented setting often relies upon personal pref-
erences of programmers, we shall introduce some scenarios in which we think
contraction is appropriate in general. Because the scenarios provide criteria for
merging nodes between which there exist inheritance relations, applying con-
traction on these scenarios to the naive type graph with inheritance yields a
more compact type graph with inheritance, i.e. with less redundant inheritance
edges.

Each scenario described in any of the next sections will define an quivalence
relation that can be used for contraction, as specified in Definition 4.17. These
equivalence relations will be called R1, R2, and R3 for the three contraction
scenarios, respectively; the first scenario identifies a contraction based on a
bisimulation over node types, the second over supertypes that simulate their
subtypes, and the third specifies a contraction for abstract supertypes that
have exactly one subtype.
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Figure 4.5: An example of a supertype with multiple equivalent subtypes

Bisimulation over node types

This first scenario is based on a form of equivalence that is called bisimulation.
This type of equivalence is often used in state transition systems to express that
states in such systems have the same behaviour. In terms of type graphs with
inheritance, we describe the behaviour of node types based on their outgoing
edges and their supertypes.

Example 4.19. Figure 4.5 illustrates an example of contraction based on this
scenario. It shows two type graphs with inheritance TGI and TGI ′. Because
in TGI there are two nodes labelled AA and two nodes labelled BB, we have
indexed them with numbers in subscript; this index is not part of the label.

Nodes AA1 and AA2 have the same behaviour—they have the same outgoing
edge and the same supertype—and so do BB1 and BB2; therefore these nodes
are merged in TGI ′, which is the contraction of TGI based on this scenario.

To formalise the way the nodes in the preceding example are equivalent, we
shall now introduce the notions of simulation and bisimulation, based upon the
definitions by Milner [Mil99]. Note that these are not the classical definitions of
simulation and bisimulation, but a slightly altered version to cope with inheri-
tance edges.

Definition 4.20 (Simulation over a type graph with inheritance). Let TGI =
(T, I,A) be a type graph with inheritance, and let S ⊆ I∗ be a binary relation
where I∗ is the reflexive-transitive-symmetric closure of I. Then S is called a
simulation over TGI if, whenever n1 S n2, the following properties hold:

1. if n1
a→ n′1 then there exists n′2 ∈ VT such that n2

a→ n′2 and n′1 S n′2.
2. if n′1 ∈ clanI(n1) then there exists n′2 ∈ clanI(n2) such that n′1 S n′2.

We use s l→ t to denote that there exists (s, l, t) ∈ ET . If there exists a simula-
tion S such that p S q, we say that q simulates p.

If the converse of S also is a simulation, we call S a bisimulation. This is defined
as follows.

Definition 4.21 (Bisimulation over a type graph with inheritance). A simu-
lation S over a type graph with inheritance TGI is a bisimulation over TGI
if also S−1 is a simulation over TGI. Two nodes n1, n2 ∈ VT are bisimilar,
denoted n1 ∼ n2 if there exists a bisimulation S such that n1 S n2.
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The bisimilarity relation ∼ is also a bisimulation relation [Mil99]; moreover,
from the definition of ∼ it follows that ∼ is the largest bisimulation relation
over TGI. A proof that ∼ is also an equivalence relation is given by Milner
[Mil99].

This notion of simulation does not necessarily satisfy (4.1) of Definition 4.17;
therefore we define equivalence relation R1 with an extra requirement to fullfil
this property.

Definition 4.22. Let R1 be the smallest equivalence relation such that n1 R1 n2

if n1 ∼ n2, with the additional requirement that

∀x, y, z ∈ VT .(x R1 y ∧ x I z ∧ z I∗ y) =⇒ x R1 z.

This defines the equivalence relation used for contraction based on this scenario.
Now we prove that R1 can indeed be used for contraction.

Lemma 4.23. Given a type graph with inheritance TGI = (T, I,A), TGI / R1

is a contraction of TGI.

Proof. R1 must be a subset of I∗ and must satisfy Property (4.1) of Defini-
tion 4.17. The first requirement follows directly from Definition 4.20; the second
from Definition 4.22.

Having proved this, we may conclude that R1 is a valid equivalence relation for
contraction.

The equivalence relation used for contraction based on the scenario of
bisimulation over node types is R1.

Simulation relation between subtypes and supertypes

This second scenario focuses on a similar equivalence of node types. This is
shown in Figure 4.6; nodes in this figure are indexed with their node identities.
Graph TGI contains five node types of which the nodes A and AA and B and
BB behave identically—they have the same outgoing edges—and therefore the
inheritance relation between these nodes is unnecessary.

A B

C

AA BB

c

b

b {A,AA} {B,BB}

C
c

b

Figure 4.6: A supertype simulating its subtype
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This scenario is based on a more indirect form of simulation between node types.
We use the information that a node inherits the outgoing edges of all nodes in
its inheritance clan; there implicitly always exists a simulation relation from a
subtype to all of its supertypes because of this property. Therefore, subtype and
a supertype can be considered equivalent if the supertype simulates the subtype
according to the following definition.

Definition 4.24. Given a type graph with inheritance TGI = (T, I,A), R′2 is
the relation defined as

n1 R
′
2 n2, if n1 I n2 and there exists a simulation S such that n1 S n2.

R2 is defined as the symmetric closure of R′2.

Since S is reflexive and transitive, R1 is reflexive, transitive, and symmetric and
hence is an equivalence relation. Now we prove that R1 can also be used for
contraction.

Lemma 4.25. Given a type graph with inheritance TGI = (T, I,A), TGI / R2

is a contraction of TGI.

Proof. R2 must be a subset of I∗ and must satisfy Property (4.1) of Defini-
tion 4.17. The first requirement follows immediately from Definition 4.20; the
second follows from Definition 4.24, which states that n1 R2 n2 can only hold if
n1 I n2. This satisfies the required property.

Having proved this, we may consider R2 as the equivalence relation used for
contraction based on this scenario.

The equivalence relation used for contraction based on the scenario of a
simulation relation between subtypes and supertypes is R2.

Abstract supertype with one concrete subtype

The first two scenarios were useful for identifying general situations in which
subtypes and supertypes could be merged. This last scenario aims at a more
specific criterion: an abstract type that has only one concrete subtype. As
expressed in Section 4.1, abstract node types cannot be instantiated and are
therefore unnecessary if they have only one subtype.

Figure 4.7 gives an example of this scenario. Type graph TGI contains one
abstract node type, labelled A, that has exactly one subtype, labelled AA. Type
A cannot be instantiated and contains only information for type AA; therefore
these two node types should be merged.

We shall now define the equivalence relation, yielded by this scenario, that can
be used for contraction.

Definition 4.26. Let TGI = (T, I,A). We define R3 as the smallest equiva-
lence relation such that n1 R n2 for all n1 ∈ A, n2 ∈ VT , if n2 I n1 such that
there exists no n3 with n3 6= n2 and n3 I n1.
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Figure 4.7: An abstract supertype with one concrete subtype

R3 is an equivalence relation by definition. Now we prove that this equivalence
relation can be used for contraction.

Lemma 4.27. Let TGI = (T, I,A) be a type graph with inheritance. Then
TGI / R3 is a contraction of TGI.

Proof. R3 must be a subset of I∗ and must satisfy to Property (4.1) of Defini-
tion 4.17. Both requirements follow directly from Definition 4.26.

Having proved this, we may consider R3 as the equivalence relation used for
contraction based on this scenario.

The equivalence relation used for contraction based on the scenario of
one abstract sypertype with one concrete subtype is R3.

4.4 Discussion

In this chapter we have extended the notion of type graphs with inheritance over
node types. After introducing the concept of type inheritance with respect to
graph grammars, we defined a naive type graph with inheritance and introduced
an algorithm that computes a type graph with inheritance in a similar way.

Both the naive type graph with inheritance and the type graph computed by
the algorithm contain an over-approximation of inheritance edges and therefore
are generally larger graphs than the type graphs we defined in Chapter 3; there-
fore we introduced contraction scenarios to remove some obvious redundant
inheritance edges.

Although application of these scenarios to the naive type graph with inheritance
yields a type graph in which some redundant nodes, the list of contraction sce-
narios is not exhaustive; future research should point out whether more scenarios
can be found.

The main problem with inheritance is that it is highly user-specific. Although
this means that it will be impossible to automatically construct a “perfect” type
graph with inheritance in general, using the theory and algorithm defined in this
chapter a good approximation of such type graph can be made.



CHAPTER 5

Implementation

In the preceding chapters we have investigated the theory of typed graph gram-
mars and have specified how type graphs can be constructed from a given graph
grammar. In this chapter we will describe how this theory can be used in prac-
tice and we shall describe an implementation of the improved type inference
algorithm, which we defined in Chapter 3 on page 40, in Groove.

We will first give a brief overview of Groove, particularly focused on the extra
functionality that has been added by the implementation of the type inference
algorithm. Thereafter, in Section 5.2, we will discuss the implementation it-
self; but instead of getting into too much detail we will rather describe the
implementation process.

Next, in Section 5.3, we evaluate the implemented algorithm using two sample
test cases. The first test case is the implementation of a problem called “gossip-
ing girls” in Groove. The limited size of this example allows a understandable
outline of the execution of the algorithm for this problem. In the second ex-
ample, which is an implementation of a list append function, we find out that
the algorithm computes a type graph that distinguishes more types than we
expected beforehand. This leads to new insights, which are subsequently eval-
uated in Section 5.4, as well as other suggestions to take advantages of the
implemented algorithm in Groove.

5.1 An overview of Groove

Groove is a tool set that uses graphs and graph transformations to facilitate
the modelling and verification of object-oriented systems and model transfor-
mations. In its original form the tool was based on simple edge labelled graphs,
which we defined in Definition 2.14; currently extensions towards attributed
graphs and graph abstractions are being introduced. Groove uses the single-
pushout approach with negative application conditions as a basis for the graph
transformations, although the tool is designed modularly such that other ap-
proaches can easily be implemented [Ren04a].

67
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Figure 5.1: Screenshot of the Groove simulator

Although Groove consists of several different tools, during this project we
are particularly interested in the simulator that acts as a graph based model
checker; a screenshot of the graphical user interface of the simulator is given
in Figure 5.1. The user interface consists of three panels: the leftmost panel
displays an index of all production rules of a grammar and their matches into
the current graph, which is displayed in the middle panel; the rightmost panel
displays a list of all labels used in the current graph.

Instead of the current graph, the middle panel can also display the currently
selected production rule, the graph transition system constructed by the graph
grammar so far, control automata, and the type graph for the grammar. Later
in this section we will elaborate on the functionality to display type graphs; the
other options are beyond the scope of this thesis; information on these options
can be found on the Groove website [RBKS]. First, we will briefly discuss the
notation of production rules in Groove, which deviates from the notation we
have used for production rules thus far.

5.1.1 Production Rules

As opposed to the theory discussed in the preceding chapters, Groove uses
a single-graph representation for production rules. Instead of separate graphs
for left-hand sides, right hand sides and possible application conditions, all
information of a production rule is represented in one single graph L∪R∪{N |
N ∈ N}. Despite this distinction, production rules expressed in this single-
graph representation can contain all information that can also be expressed
using separate left-hand side and right-hand side graphs.

In order to distinguish between elements (i.e., nodes and edges) originating from
L, R, or any of the production rules in this single-graph representation, Groove
separates these elements into four different kinds, being so-called reader, eraser,
creator, and embargo elements. This distinction is visualised in Groove using
different colours and shapes and can be achieved using different labels.
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Figure 5.2: Three versions of production rule put of a linked list.

Reader elements are the elements that remain unchanged during graph trans-
formation; they represent dom p ∪ im p of traditional production rules. Eraser
elements are the elements in L \ dom p and represent the elements that are
deleted upon transformation. Creator elements are the elements that are intro-
duced upon transformation; they represent the elements R \ im p of traditional
production rules. Finally, embargo elements represent negative application con-
ditions, i.e. the elements {N | N ∈ N} \ {imn | n : L → N} of traditional
production rules.

Example 5.1. Figure 5.2 gives an example of the format Groove uses for
displaying production rules. Separate graphs for the left-hand side, right-hand
side, and negative application condition of this rule, according to the theory used
in preceding chapters is illustrated in Figure 5.2c; Figure 5.2a and Figure 5.2b
illustrate how this rule is presented in Groove when it is edited and displayed,
respectively.

5.1.2 Type Graphs

Before we started this project, Groove did not have any support for typings
and type graphs. By implementing the type inference algorithm, we added
the possibility to obtain a graphical representation of the type graph of the
graph grammar that is currently loaded in the Simulator; this type graph is
automatically computed by the algorithm.
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Figure 5.3: Tab bar in Groove, with the panel for type graphs selected.

With respect to the graphical user interface, the extension comprises an extra
functionality for the middle panel of the screenshot illustrated in Figure 5.1. The
panel used for type graphs is loaded by selecting the rightmost tab on the tab
bar, which is illustrated in Figure 5.3. The panel for type graphs contains two
elements: a button “Compute type graph” and a visualisation area for graphs,
which is equal to the middle panel in Figure 5.1.

Not surprisingly, clicking the “Compute type graph” button causes Groove
to compute a type graph for the currently selected graph grammar, which is
then displayed in the visualisation area. Since the algorithm is implemented as
a proof of concept for the theory in this thesis, this visualisation of the type
graph is the only functionality with respect to type graphs at this moment;
potential extensions are discussed in Section 5.4.

5.2 Implementation of the Algorithm

The algorithm that we implemented in Groove is the improved algorithm
for ordinary type graphs, given in Algorithm 3.2. We have implemented this
algorithm instead of Algorithm 4.1 because a more thorough study on type
graphs with inheritance is needed in order for an implementation to be useful.

Listing 5.1 contains the core method of the Java-implementation of the algo-
rithm in the Groove framework; this method can be invoked by calling the
following method:

public static Graph reconstruct(GraphGrammar grammar) {
return new TypeReconstructor(grammar).getTypeGraph();

}

In this section we shall not further elaborate on implementation specifics; rather
we give an indication of the work we had to do in order to implement the
algorithm in Groove and a brief evaluation of the results.

5.2.1 Extendability of Groove

Implementation of the algorithm in Groove was straightforward because of the
modular organisation of Groove and the existing functionality that is present
in the current Groove implementation. In contrast to the documentation on
Groove that is available on the internet, the Javadoc documentation in most
Groove-classes gives a clear overview of how these classes can be used.

Because of this, implementation of a basic version of the algorithm costed less
than an hour; this initial version was able to compute a type graph for most
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protected TypeReconstructor(GraphGrammar grammar) {
Graph startGraph = grammar.getStartGraph();
Collection<Rule> rules = grammar.getRules();

addTyping(startGraph);

boolean addedRule;
int nodeCount;
do {

nodeCount = typeGraph.nodeCount();
addedRule = false;
MergeMap equivalentTypes = new MergeMap();

for (Rule rule : rules) {

if (removeApplicationConditions(rule).
hasMatch(typeGraph)) {

if (getTyping(rule.rhs()) == null) {
addedRule = true;
addTyping(rule.lhs());
addTyping(rule.rhs());

}

MergeMap newMerges = calculateMerges(rule);
equivalentTypes.putAll(newMerges);

}
}
for (Map.Entry<Node,Node> mapping :

equivalentTypes.nodeMap().entrySet()) {
Node from = getNodeType(mapping.getKey());
Node to = getNodeType(mapping.getValue());
if (from != null && to != null) {

typeGraph.mergeNodes(from, to);
nodeTypes.putNode(from, to);

}
}

} while (addedRule || typeGraph.nodeCount() != nodeCount);
}

Listing 5.1: Core method of the implementation of the algorithm in Groove

models bundled with the Groove tool set but threw exceptions for some larger
graphs. After some investigation, it turned out that these exceptions were
caused by incorrectly updating the typing morphisms after nodes were merged,
and now this is fixed the exceptions do not occur anymore.

5.2.2 Encountered Problems

During implementation of the algorithm, we were hindered by two issues in the
current Groove-implementation.
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1. First, although Groove is constructed in a modular way, we did not
find a general way to create fresh nodes when copying graphs. To be
more concrete, we have to make a distinction between default nodes and
attribute nodes: default nodes need to be freshly created while attribute
nodes may only exist once and therefore cannot copied in a similar way.
Therefore, we implemented this behaviour specifically for default graphs
(of type DefaultGraph in Groove); therefore no support for other graph
formalisms such as attributed graphs is present in the algorithm, at this
moment.

2. Second, it surprisingly turned out that it is impossible to easily display
a graph for debugging purposes in Groove. We started implementation
with the assumption that we could just call a static method to get a
graphical representation in some pop-up window, but it turned out that
we had to implement such behaviour ourselves.

5.2.3 Performance analysis

The implemented algorithm computes a type graph for all example models that
are bundled with Groove in tens of milliseconds.1 An overview of the per-
formance results is given in Table 5.1. Since we have not implemented any
support for attributed graphs or quantified production rules, which are both
supported by Groove, the algorithm does not compute valid type graphs for
these models. The current implementation of the algorithm, however, does cre-
ate some graph for graph grammars containing these extendsions; therefore we
think that also type graphs for these grammars are computed within one second
when supported.

The largest example model that we tested is named activity ; it describes the se-
mantics of uml activity diagrams. Its start graph has 29 nodes and the grammar
contains 170 production rules; however, only 47 of these were processed. The
average node count of the production rules is 15 and the resulting type graph
contains 11 nodes. Despite the size of this grammar, the algorithm finishes in
1259 milliseconds.

5.2.4 Limitations

We limited the implementation of the algorithm to support simple graphs; there-
fore the following formalisms are currently not supported by the implemented
algorithm:

– Quantified production rules
– Attributed graphs
– Regular expressions

1Experiments were run on a 2.4 GHz Core 2 Duo processor with 2 GB of memory, running
under Mac OS X with a default Java SE 6 configuration.
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Example time rules proc. iter. npr. start TG
append 26 4 4 5 7 11 7
assign 2 1 1 2 6 3 2
avl 32 8 8 4 4 6 1
babbelaars 26 5 5 3 4 12 2
buffer 7 3 3 5 5 4 3
circular buffer 11 2 2 4 7 5 3
circ. buf. ext. 31 5 5 4 8 5 3
control 8 5 3 5 4 9 2
crashing cars 8 4 4 3 4 5 3
ferryman 17 6 6 3 6 6 3
frogs 11 4 4 2 7 13 3
gossips 15 5 5 3 4 12 2
method lookup 20 3 3 3 7 14 6
method filters 78 8 8 6 6 13 8
phil 27 5 5 6 4 8 2
priorities 8 4 4 3 3 4 2
prod-cons 4 3 3 3 3 1 2
prod-cons leak 5 4 4 3 3 1 2
solitaire 44 4 4 2 9 65 2
tictactoe 15 3 3 3 7 11 2

Table 5.1: Performance results of the type inference algorithm when applied
to sample grammars bundled with Groove. The column headers
are read as follows: time = execution time in ms; rules = number
of rules of the grammar; proc. = number of rules processed; iter.
= number of iterations of the main loop; npr. = average number
of nodes per rule; start = number of nodes of the start graph; TG
= number of nodes of the computed type graph.

5.3 Examples

In this section we evaluate the implemented algorithm using two example graph
grammars, which are both part of the standard Groove-distribution. The
first example, called the “gossiping girls” problem, models a small algorithm
concerned with girls that want to share their secrets. The graph grammar
for this example is relatively small; therefore we are able to give a detailed
description of the execution of the implemented algorithm on this grammar. The
second example is an implementation of a list append function; it shows many
features that are typical for object-oriented programs [Ren04a] and therefore
constitutes a useful test case for the algorithm. In addition to this, this second
example also gave us new insights that are worth considering in future research
projects on type graph reconstruction.
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Figure 5.4: Graph grammar for the gossiping girls example

5.3.1 The Gossiping Girls Problem

There are n girls who all have one secret, which is not known to the
others. All these girls are eager to tell their secrets to all others and to
also hear their secrets.
The girls communicate via telephone; only pairwise communication is
possible. Each time two girls talk to each other they exchange all their
secrets, i.e. after a phone call they know all secrets they knew together
before they called.

This well-known problem is called the gossiping girls problem. Main objective
is to compute the minimal number of phone calls needed for all girls to know
all secrets. This problem can also be solved by Groove; a graph grammar for
the problem with four girls is given in Figure 5.4. This grammar consists of a
start graph, given in Figure 5.4a, and four production rules.

The production rule Call initialises a phone call between two girls; the embargo
edge labelled ’=’ specifies that the girls that call each other are distinct. Then
the rule Exchange is used (or Reveal, if one girl already knows all secrets of
the other) to exchange all secrets between the girls calling each other; after
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knows

phones

Figure 5.5: Type graph for the gossiping girls example

this is done the phone connection can be closed using the Hangup production
rule. Finally, the Finish rule provides a stopping criterion for the transformation
system; when this rule becomes applicable, all girls know all secrets and hence
a solution to the problem is found. The ’ !’ in the label of this rule defines a
negation; this rule thus specifies that there are no secrets that any of the girls
do not know. The algorithm, however, treats this negation as an ordinary label,
since the algorithm does not support regular expressions; it thus distinguishes
two different labels, knows and !knows, instead of just one.

The type graph that the implemented algorithm produces for the graph gram-
mar outlined in Figure 5.4 is given in Figure 5.5. We shall now briefly discuss
how this type graph is constructed by the algorithm. For understandability we
shall describe this construction as if it were performed by Algorithm 3.1 in-
stead of Algorithm 3.2, which we actually implemented; in fact both algorithms
compute the same type graph for this grammar.

First, the algorithm initialises the type graph for the grammar as the disjoint
union of the start graph and the right-hand sides of all production rules in the
grammar. This produces an initial type graph that is depicted in Figure 5.6a.
After that, the algorithm enters the loop in which elements of this initial type
graph are merged. Suppose the algorithm starts merging based on production
rule Call or Hangup—both rules merge the same nodes, viz. all nodes labelled
Girl—the intermediate type graph that results from this operation is given in
Figure 5.6b. Clearly, all nodes labelled Girl are merged; the nodes labelled Secret
still need to be merged.

When after this merging of all nodes labelled Girl, the algorithm starts merging
nodes based on production rule Exchange or Reveal, all nodes labelled Secret are
also merged. The resulting type graph is illustrated in Figure 5.5; according to
this type graph, nodes of type Girl possibly have outgoing edges labelled phones
to other nodes of type Girl, and may have outgoing edges labelled knows to nodes
of type Secret. In other words, girls may be calling other girls and may know
secrets; this is exactly what we expected for this grammar.

5.3.2 The Concurrent Append Problem

The second example is a list append method, which recursively appends input
parameters to a list of cells [Ren04a]. A Java implementation of this method
is given in Listing 5.2. Given an integer x as parameter, the program appends
a new cell with value x to the back of the list, with the additional criterion
that the list must not contain the same value more than once, while concurrent
invocations of the method are allowed.

Figure 5.7 illustrates the graph grammar for the concurrent append example
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Figure 5.6: Initial and intermediate type graphs for the gossiping girls exam-
ple, in the execution of Algorithm 3.1

in Groove, which comprises a start graph and four production rules. In the
production graphs of this grammar, different invocations of the append method
are modelled by append nodes; outgoing edges from these nodes represent the
local variables inside these methods. Also a caller edge and a this edge are
present for all append nodes, representing pointers to the invoking method and
the object executing the method, respectively. Finally, the currently active
invocations of the append method are denoted by a self-edge labelled control.

The dynamic behaviour of this recursive append method is defined by the four
production rules of the grammar; the comments in Listing 5.2 indicate the
correlation between the Java method and these production rules. We shall now
briefly explain the operation of these four production rules by walking trough
the process of appending a fresh element to the list. A more detailed description
is given by Rensink et al [RSV04].

First thing that has to be done is to check whether the list does not already
contain an element that is equal to the value of the new element. This job is
performed by rules Next and Stop: rule Next checks whether the provided value
is not equal to the value stored in the current cell and makes a recursive call for
checking the next cell if this is the case. For this recursive call, a new Append
node is created and gets the control passed to it. If the provided value is equal
to the value stored in the current cell, rule Stop is applied; this rule returns the
control from the current append node to its caller.

When the append method reached the end of the list without having found the
provided value in the list, the Append rule is applied. This rule appends the
provided value to the end of the list and returns the control to its caller. Finally,
when an append node finishes its execution, it is removed by the Return rule and
the control is returned to its caller.

The resulting type graph for this grammar is given in Figure 5.8a. This type
graph is almost as we expected: append nodes may be connected to a list with
a list arrow or to a specific cell with a this pointer. Furthermore it may have a
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class Cell {
Cell next;
int val;
void append(int x) {

if (x == this.val) {
return; // Rule "stop"

} else if (this.next == null) {
this.next = new Cell(); // Rule "append"
this.next.val = x;

} else {
this.next.append(x); // Rule "next"
return; // Rule "return"

}
}

}

Listing 5.2: Java implementation of the Concurrent Append example [Ren04a,
RSV04]

caller pointer (to another append node), a return value of type void, and an input
variable pointed to with an x edge. The program counter of each invocation of
the append method is denoted by a self-loop labelled control. Finally, all Cell
nodes of the list may have a next edge to another cell and a value via an edge
of type val.

However, this type graph distinguishes too many node types: it contains node
types for value nodes 1, 2, and 3 and one for values 4 and 5 together, while
we expected these to have the same type, as illustrated in Figure 5.8b. Reason
for this difference is not the implementation: none of the production rules in
Figure 5.7 specify that these nodes need to be merged. Rules Append and Stop
specify that values having an incoming x edge should be merged; this is exactly
what the implemented algorithm does.

Rather, this example clearly illustrates the difference between a type graph that
is constructed in a systematical way and one we expect because we have some
expectations and knowledge the algorithm does not know. For instance, we
know that the nodes labelled 1, 2, 3, 4, and 5 represent numbers; therefore we
expect them to have the same type.

5.4 Potential Extensions for Groove

Now we have implemented the type inference algorithm in Groove as a proof
of concept, we are ready to reason about potential applications of the new
functionality and possible extensions for Groove with respect to type graphs.
Although we assume that the current implementation of the algorithm is a valu-
able addition to Groove, we believe that these extensions would help making
the tool even more powerful.

First of all, the type graph computed by the algorithm is currently only used
for documentation purposes: it is displayed and not further used. In addition
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Figure 5.7: Graph grammar for the append example

to this, we opine that the type graphs should be used for ensuring the correct-
ness of graph grammars by constraining changes to these graph grammars after
their type graphs have been computed. Concretely, the functionality could be
implemented in Groove such that it is possible to compute a type graph for
a graph grammar and that this type graph can be fixed. After this, the type
graph is used to constrain changes to the graph grammar, i.e. if production
rules or instance graphs are added to or changed in the grammar, only nodes
and edges that have corresponding node types and edge types in the type graph
are allowed.

Additionally, it should be possible to manually change the type graph after
it has been computed. According to Lemma 3.33 it is impossible to compute
the perfect type graph; therefore changes to the type graph after it has been
computed may be necessary. This is particularly true if eventually an algorithm
that computes a type graph with inheritance is implemented, because whether
to use inheritance edges between node types usually is a matter of personal
taste, as stated in Chapter 4.
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5.5 Discussion

In this chapter we have described an implementation of the algorithms defined
in previous chapters in Groove. We have seen that the implementation went
straightforward and that the algorithm was able to compute valid type graphs
for all graph grammars bundled with Groove that did not have attributed
graphs or quantified production rules, in a small amount of time. To demon-
strate the functioning of the algorithm, we have described the application of the
algorithm to two example graph grammars, and finally we have discussed some
potential applications for the added functionality in Groove.

As said before, the algorithm currently has no support for quantified production
rules and attributed graphs, which are relatively new in Groove. In order to
be able to compute type graphs for all possible graph grammars in Groove,
the algorithm should be extended to support these two formalisms. Addition-
ally, for the incorporation of type graphs in Groove to be more powerful,
the implementation should eventually be extended to support type graphs with
inheritance and multiplicities.

Finally, the difference between the type graph that we expected and the type
graph that was computed by the algorithm for the Append example provided
us new insights regarding future extensions of the theory. For instance, in
this Append example, it is easy to observe that, although all value nodes have
different labels, they are uniquely characterised by the fact that they all have
an incoming val edge from the Cell node type. Stated differently: in the type
graph of Figure 5.8a the Cell node type has multiple outgoing val edges to these
value nodes.

Using this information, a possible extension for the definition of type graphs is
that nodes in a type graph must not contain multiple outgoing edges with the
same label; in other words, with this extension a type graph T is only valid if
the following property holds:

∀v ∈ VT .@(v, l, w), (v, l, w′) ∈ ET . w 6= w′ (5.1)
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It is easy to see that the type illustrated in Figure 5.8a is not valid with respect
to this extended definition; an algorithm that complies with the additional prop-
erty (5.1) would compute the expected type graph instead. We do, however,
not know whether this property violates any of the theory discussed in this the-
sis, but it possibly is a useful extension to be investigated in future research
projects.



CHAPTER 6

Conclusions and Recommendations

In this thesis, we have described a method to automatically compute type graphs
for given graph grammars. In this chapter we reflect upon this; first, we sum-
marise the main results we found during this research project. Then we evalu-
ate our findings during this project and explain whether the solutions we found
answer the questions we asked ourselves beforehand. After this, we give an
overview of related work, to be able to see how our project relates to other re-
search that has been conducted in the same research area. Finally, we propose
promising directions for future work.

6.1 Summary of the Results

In Chapter 3 we extended the general theory of typed graph grammars by
identifying what properties make some type graphs better type graphs than
others for a given set of instances. We did this by first defining an ordering over
type graphs based on their strength, after which we defined the lower bound
of this ordering, i.e. the strongest type graph for a certain set of instances.
Strongest in this sense means being restrictive regarding its set of instances and
distinguishing as many node types as possible that are not somehow spurious.

Then we looked specifically at graph grammars; we identified the strongest type
graph for a given graph grammar and called it the perfect type graph. This
perfect type graph is the strongest type graph for a graph grammar that poses
no restrictions on any derivation of the grammar.

Next, we introduced two algorithms for computing a type graph from a given
graph grammar. Unfortunately it turned out that computing the perfect type
graph in an algorithmic way is impossible in general; therefore we defined an
initial algorithm, which computes a type graph that is an overapproximation of
the perfect type graph regarding its set of instances.

The main problem of this algorithm is that is bases the type graph it computes
on all production rules of a grammar instead of the rules that are actually
used for producing graphs. Therefore we proposed an improved algorithm that

81
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excludes certain production rules, i.e. those for which it can be decided that
they never become applicable in any derivation of the grammar.

In Chapter 4 we extended the notion of type graphs with node type inheritance.
Since inheritance is subject to personal preferences, we were not able to identify
a perfect type graph with inheritance for a given graph grammar; alternatively
we defined a naive type graph with inheritance, which contains too many inher-
itance edges, and specified contraction scenarios to subsequently decrease this
number.

Additionally, we have specified an algorithm for computing a type graph with
inheritance for a given graph grammar. This algorithm computes type graphs in
a way similar to the definition of a naive type graph with inheritance; therefore
an implementation of the contraction scenarios specified in this chapter is needed
to compute compact type graphs with inheritance.

Chapter 5 describes an implementation of the improved algorithm for ordinary
type graphs, as specified in Chapter 3, into the Groove tool set. This imple-
mentation acts as a proof of concept for the proposed algorithm and is tested
against two example graph grammars that are bundled with Groove. One
of these test cases gave rise to an additional requirement for type graphs that
needs to be evaluated in future studies on the subject.

6.2 Evaluation

During this project we aimed at finding a type inference algorithm for graph
transformation systems. More specifically, the problem statement we defined in
Chapter 1 read as follows:

Find a method to automatically compute a type graph from a given graph
grammar, such that it imposes no restriction on the derivations of this
graph grammar.

Clearly, the declarative definition of a perfect type graph (Def. 3.31 on page 32)
and the two algorithms we described (Alg. 3.1 on page 34 and Alg. 3.2 on page
40) indicate that we have succeeded in finding the method we aimed at in this
statement. Also the two sub-questions we asked ourselves in the introduction
have been answered during this project: a notion of type inheritance has been
added to the theory in Chapter 4 and an implementation of the proposed method
in Groove is described in Chapter 5.

Although this indicates that many new insights were developed, the area of re-
search turned out to be too large for this research project to be complete. We
decided to focus our research on ordinary type graphs as specified in Defini-
tion 3.1 (on page 20) and to extend this by adding a notion of type inheritance;
further extensions are left for future research.

Inheritance turned out to be more complicated than we expected beforehand: it
requires a complete research on whether nodes in a type graph with inheritance
should be merged or be connected with an inheritance edge. This judgement
obviously comprises more cases than the three contraction scenarios we have
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specified in Chapter 4; therefore, more research on deducing type graphs with
inheritance from a graph grammar is needed.

The results we obtained by this research were, however, promising; the imple-
mentation in Groove showed that the proposed algorithm performed well on
all example graph grammars that are bundled with Groove—i.e. those that
do not contain attributed graphs or quantified production rules, and valid type
graphs were computed for all of these grammars. Because of this, we expect
that this direction of research may lead to promising results; particularly when
the directions we designate as future research later on in this chapter are further
investigated.

6.3 Related Research

The work described in this thesis can be categorised in roughly two research
areas: typed graph grammars and type inference. In both areas a lot of work
related to ours has been done. In this section we list some of these works,
particularly those that we consider most relevant.

With respect to specifying structural properties of graphs, different approaches
have been investigated. Probably the one most thoroughly investigated is the
use of type graphs, which we used in this thesis. As said before, important works
on typed graph grammars include [BEdLT04] and [dLBE+07] and the technique
has been successfully implemented in graph transformation tools such as agg
[AGG].

An alternative approach is the use of graph predicates, as introduced by Rensink
[Ren04b]; in this approach, unversal and existential quantifiers are used to de-
note that certain graph structures may or must be present (or absent, if negated)
in a graph. Also research in the direction of abstract graph transformations
[RD06, BBKR08], where graphs are contracted by collecting nodes that are
sufficiently similar, is being conducted.

Probably most related to the research that we have conducted is König’s work
on type systems in hypergraph rewriting systems [Kön00, Kön05]. In this work,
König aims at statically deriving types of hypergraphs—in which arbitrarily
many nodes can be attached to one edge instead of two for normal graphs—
inductively based on the structure of these graphs.

König defines a general framework that can be used to define specific type
systems and is based on five essential properties of type systems: correctness,
subject reduction (also called type invariance), compositionality, subtypes and
principal types, and type inference [Kön05]. It defines type graphs as annotated
hypergraphs, where hypergraphs are annotated with lattices, and uses graph
morphisms to denote subtype relations.

In contrast to this, we defined a particular method to induce type graphs from
graph grammars, in which type graphs are represented by simple graphs, pos-
sibly extended with inheritance edges which denote subtype relations. Despite
the differences between the two approaches, part of the theory presented by
König also applies to our work.
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As an example, we take the five essential properties we mentioned earlier: all of
these properties apply to our work, except compositionality, which states that
the type of a system always can be derived from the types of its subsystems. In
this project we assume production graphs of a graph grammar to be composed
by the execution of a sequence of production rules instead of from subgraphs.
Accordingly, the types of all elements of a production graph can be derived from
the typings of the rules that were used to construct this graph, instead of its
subgraphs.

It is straightforward to see that the other four essential properties hold for the
type system created in this thesis:

1. Correctness (if a system has a certain type, then we can conclude that this
system has certain properties): If a graph has a certain type, then it has
the property that it only contains elements prescribed by the type graph.

2. Subject reduction (types describe an invariant property of the system):
This follows directly from the commutativity property of the morphisms:
if a node in some graph has a certain type, then its type remains invariant
upon transformation of this graph.

3. Subtypes and principal types: In Chapter 4 we investigate inheritance; the
principal type is the type graph we compute for a graph grammar.

4. Type inference: Type inference is the primary subject of this project and
hence supported.

A different approach for establishing a connection between instance graphs and
type graphs is described by Ehrig et al. [EKTW06]. Main difference with
our approach is that this work studies this relation between instance graphs
and type graphs in the opposite direction: it describes a method to generate
instance graphs from a given type graph. Main objective of this approach is to
be able to automatically compute many instance models that can be used for
large-scale testing of model transformations.

The approach taken by Ehrig et al. in [EKTW06] comes down to the use of an
instance-generating graph grammar, i.e. it uses a graph grammar to compute
instances for a given type graph.

An option to be considered, related to this approach, which we did not inves-
tigate, would be the construction of a type graph-generating graph grammar
from a given graph grammar, i.e. a modification of the production rules of a
grammar such that the modified graph grammar computes a type graph instead
of a graph language. We think, however, that such approach would not have
any effect on our findings we described in this thesis since it only incorporates
a different implementation of the same algorithm.

Further related work can be seen in the area of type inference algorithms for sys-
tems different from graph grammars, such as the Hindley-Milner algorithm we
mentioned earlier in this thesis. This existing algorithm computes types for ex-
pressions in programming languages based on the types of their sub-expressions.
Since graph transformations do not construct graphs from subgraphs, but by
applying sequences of transformations, we think that these conventional type
inference algorithms do not relate to the algorithms we presented in this thesis.
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6.4 Future Research

Although the investigation we performed led to many useable results, a lot
of research still has to be done on the subject. This section highlights some
promising directions to investigate for future work.

First, we suggest some improvements regarding the theories we have described.
As specified in Chapter 5, a restriction to type graphs that comply to prop-
erty (5.1) (on page 79) may be desirable, as well as an investigation on how
compact type graphs with inheritance can be computed from a graph grammar
and an implementation of an algorithm that computes such type graphs with
inheritance.

Second, it would be useful to investigate an implementation of the algorithm
that computes proper type graphs, which we introduced on page 24, for pro-
vided graph grammars. We have not investigated this during this project, but
we consider it to be an important improvement to the theory of type graph
inference.

Third, we suppose that multiplicities in type graphs are an important mecha-
nism to restrict the structure of instance graphs in a type graph. Instead of
specifying that certain structures are allowed in instance graphs, they specify
restrictions on how many of such structures are permitted. Therefore, we think
that type graphs with multiplicities are a valuable addition to the existing theory
and should be investigated accordingly.

Finally we propose some improvements regarding support for type graphs in
Groove that were already listed in Section 5.4: the ability to manually change
type graphs after they have been computed and the use of the computed type
graphs as a correctness criterion for future changes to the grammar rather than
only as a method of documentation.
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Glossary

Notation Description
IT The set of instances of a type graph T 20
L,R (Lr, Rr) Left-hand side and right-hand side graphs (of a

rule r)
16

Label Universal set of labels 12
G ]H Disjoint union of graphs G and H 13
]G Disjoint union of all graphs in G 13
VG, EG Set of nodes, edges of graph G 12
G,H, . . . Simple graph 12
G Set of graphs 21
(G,M) Diagram, containing a set of graphs G and a set

of morphisms between these graphs M
15

[x]' Equivalence class of x over an equivalence rela-
tion '

11

(G0,P) Graph grammar with start graph G0 and pro-
duction rules P

17

G1
∼= G2 G1 and G2 are isomorphic 13

LGG Language of graph grammar GG 17
G / ' Quotient graph of graph G over an equivalence

relation '⊆ VG × VG

14

τG Typing for a graph G 20
G

p,m
=⇒ H Graph transformation from G into H, applying

rule p on matching m
17
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