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ABSTRACT
Sequential performance of CPU’s is reaching its limits,
which makes concurrent computing a necessity for improv-
ing software performance. This requires not only concur-
rent, but also scalable data structures. Concurrent hash
table implementations exist in Java, however these suf-
fer from poor scalability. In this research we developed
a new hash table with improved scalability over existing
implementations and high sequential performance. The
goal was to implement a hash table design by Laarman et
al. in Java in order to provide developers with new means
for creating scalable concurrent software, while also of-
fering the benefits Java provides such as portability and
maintainability. Throughput and speedup of the new hash
table was compared with three existing implementations.
With a maximum speedup 14.3 on 32 cores, the new im-
plementation greatly improved upon existing implementa-
tions. Results from Laarman’s paper regarding a C imple-
mentation of the hash table design in LTSmin were also
compared. This literature-based comparison found that
their benchmark achieved larger speedup than we obtained
with our implementation. Even though Java used to be
stigmatized as a slow language, we found that it provides
sufficient means for creating scalable algorithms, and us-
age should be considered over lower-level languages, as it
allows for great scalability without sacrificing portability
and maintainability.
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1. INTRODUCTION
This research describes a new concurrent hash table im-
plementation for Java, that is designed to achieve high
performance scaling on up to 64 CPU cores. The aim is to
improve upon the available thread-safe Java hash tables:
the two implementations of the Java Base Library’s lock-
based java.util.Hashtable [16] and the more recent lockless
java.util.concurrent.ConcurrentHashMap [15], as well as a
non-standard library concurrent hash table developed by
Dr. Click [4, 5].
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Aside from providing Java developers with a highly-scalable
hash table as a tool to create scalable software, low run-
times in our benchmarks provides a good argument in
favour of using Java as a sensible choice when designing
software that requires high performance. If high speedup
is achieved when running the algorithm on multiple cores,
our research provides evidence for Java as a suitable lan-
guage for developing distributed and multi- and many-core
software.

The design of the Java hash table based on the design in
the paper of Laarman et al. in which a lockless hash table
algorithm is described, developed for the LTSmin model
checker [12]. In their paper it is shown that their C im-
plementation outperforms two state-of-the-art multi-core
model checkers SPINS [8] and DiVinE [1]. Low-level op-
timizations are used in the implementation, most notably
cache line optimizations, and the current research depends
on the extent to which these low-level optimizations are
achievable in Java and if the same effect on performance
can be observed, also possibly in the absence of some low-
level features. In the past Java has been stigmatized for
being a slow language, however through developments on
the Java Virtual Machine and its Just-in-time compiler it
is now considered as having a comparable or equal perfor-
mance to lower-level languages like C [21].

For many programmers Java is a more attractive language
to work with than C, among other because of its porta-
bility, maintainability and its widespread popularity. Java
is also widely taught in higher education institutes during
introductory programming courses [7]. Attracting more
students to work on LTSmin may be desirable and help
the development of LTSmin. Additionally, other software
that requires a high-performance hash table, that is, or
will be, written in Java, can benefit from the resulting
hash table implementation.

Benchmarks are performed in order to compare the new
hash table with existing Java implementations, and also
a theoretical comparison is done by comparing our results
to those found by Laarman [12]. The Java implementa-
tion, described fully in section 4.1, uses Java’s Unsafe API
for its compare-and-swap and memory allocation methods,
and supports generic value types. The main operation the
hash table provides is the find-or-put method, and the per-
formed benchmarks resemble how a model checker such as
LTSmin would generally interact with it, that is by per-
forming many find-or-put operations.

1.1 Research questions
The current research aims to answer the following research
question:

• How does the performance of a Java implementation
of Laarman’s hash table design [12] scale on multi-
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core systems, compared to existing Java hash tables?

With scalable performance we mean the decrease of com-
putational time when the number of CPU cores increases.
The following hash tables are considered:

1. nl.utwente.hashtable.FastSet (The new hash table)

2. java.util.concurrent.ConcurrentHashMap (Lockless)

3. java.util.Hashtable (Lock-based)

4. org.cliffc.high scale lib.NonBlockingHashMap

Additionally, the following sub-questions are answered:

1. Which of the aforementioned hash tables has the
shortest sequential runtime?

2. Which means for implementing a scalable concurrent
hash table does Java provide?

3. How does the achieved speedup compare to the speedup
of a C implementation of the hash table design, as
reported in Laarman’s paper[12]?

2. RELATED WORK
The paper by Laarman et. al. describes how a scalable
concurrent hash table for use in the LTSmin model checker
was designed[12]. They show that it outperforms two state
of the art SPIN [8] and DiVinE [1]. The paper describes
design decisions, but its results are based on a compari-
son of model checkers (written in C) and are results on
scalability limited to 16 cores. Van den Brink developed a
Java implementation based on Laarman’s work[25], show-
ing scalability on 4 cores. Comparisons were not done and
due to its single-purpose design their work was not used
in our research. We use alternative techniques and aim for
multi-purpose usage through Java generics.

3. BACKGROUND
3.1 CPU Caches
Modern x86 CPU architectures have multiple levels of
memory caches to feed the CPU core with data from the
main memory faster, which can be utilized to speedup al-
gorithms that perform many memory accesses, such as a
hash table [12]. Some of these caches are shared among
cores (L2) and some are local to each core (L1), which
causes a problem called cache line sharing. With true
sharing misses the cache data is invalidated because an-
other core has written to data that was needed by another
core, while false sharing misses invalidates the cache data
when a write occurs to another part of the cache, which is
not directly needed by the other core [18]. These cache
misses are costly and degrade performance of an algo-
rithm, and should therefore be minimized through cache-
aware programming. Some techniques that minimize the
number of cache misses are keeping the memory working
set small, and controlling where in the memory the data
is stored by aligning the data on the cache lines. Explicit
control over the memory access patterns help with analyz-
ing how effectively caches are utilized in a program.

3.2 Hash table
A hash table is a data structure that provides fast opera-
tions for storing data and looking up data. These opera-
tions are performed with a time-complexity of O(1) [19].
It associates a key with a value, both of which are pro-
vided as inputs to an insertion operation. The key can be

used to retrieve its associated value from the hash table.
The load-factor of a hash table is defined as the number
of values it holds divided by its capacity. The low time-
complexity of a hash table is made possible by storing
the hash of the value, which can be generated, compared
and mapped to a memory location in linear and constant
time. In absence of a perfect hash function, with which ev-
ery value is mapped to a unique hash, collisions will occur
and need to be resolved. In order to resolve collisions var-
ious strategies exist, commonly used are external probing,
double hashing, linear- and quadratic probing.

3.2.1 External probing
External probing resolves hash collisions by inserting lists
of values into the slot where two or more collided hashes
map to, for example a linked list. This has the advantage
being able to implement a hash table with a constant size
backing array while supporting an unlimited (although dy-
namic memory bound) number of elements. It supports
load-factors > 1, although this case can result in a time-
complexity of O(n), because the hash table starts to be-
have like a list. It requires dynamic allocation of elements
in the list and has the problem of unpredictable memory
access patterns, as pointers of the linked list could point
to any memory location, which causes many cache misses,
thus degrading performance.

3.2.2 Double hashing
Double hashing resolves collisions by generating an addi-
tional hash value hn for the n-th collision, which is added
to the original hash value to find a new index into the ta-
ble. This method provides better distribution of keys than
linear (and quadratic) probing.

3.2.3 linear probing
Linear probing resolves hash collisions by using linear search
through the memory that succeeds the memory address
obtained from the hash, and insert the value in the first
available location. “Walk-in-the-line” is a form of linear
probing, where the probing is performed on a single cache
line in order to minimize cache misses. In isolation, linear
probing causes clustering because values where hash col-
lisions occurred are inserted in a narrow memory address
range. This effect is amplified when a bad hash function is
used. The aforementioned hash collision resolving strate-
gies can sometimes be combined in order to profit from
the advantages of multiple strategies.

3.3 Concurrency and Speedup
Graph traversal on large graphs can require a large amount
of time to complete. In the past component count on in-
tegrated circuits was expected to double every two years
(also known as Moore’s law [14]), implying that the se-
rial performance of CPU’s would keep rising. Recent re-
search shows that this trend must eventually flatten out
because of fundamental limits of physics [10]. Also In-
tel announced that they currently expect a two and a
half year cycle to match Moore’s law [3], indicating a
slowed down increase of serial CPU performance. An
widely used alternative to increasing serial performance
is to use concurrency, for example by utilizing multi-core
CPU’s. While it is harder to program software to run cor-
rectly in a concurrent way, it can drastically decrease the
required time to run the program. Speedup represents the
performance increase when the program is run on multi-
ple cores (parallel) compared to a single core (sequential):
Speedup = tsequential/tparallel. Ideally the value of the
speedup equals the amount of cores the program runs on
(Linear speedup), although reaching such a value is not re-
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alistic due to parts of the program that require sequential
execution.

3.4 C and Java
The C programming language is regarded as a low-level
programming language compared to Java. In C the pro-
grammer is tasked with, among others, memory manage-
ment and writing system dependent code, while Java man-
ages memory for you, through garbage collection for heap
allocations, and Java provides an abstraction layer be-
tween the programmer and the hardware. These features
of Java enables writing more maintainable code with great
portability. The abstraction layer for Java is formed by its
typical target platform, the Java Virtual Machine (JVM).
The JVM does not execute native instructions, but inter-
prets Java bytecode, which enables the possibility to per-
form platform specific optimizations at runtime through
the Just-in-time compiler (JIT). In the past, Java was stig-
matized as a slow language, however through development
in the Java ecosystem (e.g. better JVM, JIT) it presently
achieves performance comparable or equal to programs
written in C [21]. Still, the hardware abstractions of the
higher-level language can make it either difficult or im-
possible to implement some architecture specific optimiza-
tions or memory management schemes a high-performance
program requires.

3.5 Compare-and-swap
Compare-and-swap is an operation, supported by mod-
ern CPU’s, which makes it possible to perform an atomic
comparison of a value in memory (A) with another value
(B) combined with writing a new value (C) to the mem-
ory location of A. This write only occurs if value A equals
value B. Algorithm 1 describes the functionality of the op-
eration, but it must be stressed that its usefulness comes
from its atomicity.

inputs: address A, value B, value C
if (value at A) = B then

(value at A) ← C
return true

else
return false

end
Algorithm 1: compare-and-swap operation

Compare-and-swap enables the creation of any wait-free
data object [6]. Similar operations are available through
Java classes such as AtomicReference, which encapsulate
calls to native CAS instructions, but also Java’s Unsafe
class provides methods such as compareAndSwapLong.

3.6 Unsafe
Java has an API for internal use, that provides low-level
functionality that is not available through ”regular” meth-
ods, defined in sun.misc.Unsafe. It is used by many projects
that require more control over the platform it is running
on, including Grails and Apache Spark. For our purposes,
it provides methods for direct memory allocation and man-
agement, as well as the compareAndSwapLong method. It
is proposed to adapt parts of the Unsafe API and make it
public in the upcoming JDK 9 release [20].

4. METHOD
4.1 Hash table implementation
4.1.1 Overview

The hash table storage is divided over two locations, the
buckets buffer and a data array. The buckets buffer tracks

Figure 1. Bitlayout of a bucket

information about the data array’s contents. Querying
and maintaining this buffer facilitates fast data lookups
and insertions, by providing information on the contents
and state of actual data without requiring expensive lookups
and comparisons on the data array’s elements. The find-
or-put operation is the main operation of our hash table.
It looks up a given value and returns false the value was
already found in the hash table, and returns true if the
value was not found. In the latter case, the value is put
into the hash table. The find-or-put operation is described
in Algorithm 2.

4.1.2 Buckets
A bucket is an element in the buckets buffer. It is a 64-bits
long integer comprised of the bit-layout in figure 1.

Occupied flag is 1 if the bucket has been written to, 0 if
otherwise. Writing flag is 1 if the bucket is taken but the
value is not written to yet, 0 if otherwise. Reserved bits:
for future use or longer hash prefixes. Hash prefix : the 32
highest bits of the hash value.

The buckets buffer is allocated through the allocateMem-
ory(int bytes) method of the Unsafe’s API, with size be-
ing a power of two. Subsequently buckets must be ac-
cessed with the base memory location and an offset into
the buffer, for example with Unsafe.getLong() and Un-
safe.compareAndSwapLong(). Using compareAndSwap-
Long() an attempt is done to atomically set the occu-
pied flag, writing flag and hash prefix, while expecting
an empty value. Before calling compareAndSwapLong()
for a bucket, first the contents of the memory are checked
for writing and occupied flags, to prevent wasting cycles
in the expensive atomic operation. As long as the writing
flag is set, other threads that attempt to use this bucket
will wait for the write operation to complete, unless the
hash prefixes don’t match. When a bucket is obtained, the
value is written to the data array and the writing flag is
removed from the bucket.

4.1.3 Hash function
Initially the original hash of a to be inserted value is cal-
culated using Java’s Object.hashCode(), which returns a
32-bit integer hash value, dependent on value’s type’s im-
plementation of this method. This original hash value is
inserted in the hash field of a bucket. While probing for
an available bucket, the hash may have to be recalculated
for better distribution. Specifically this occurs after the
algorithm reached the end of the cache line, after which
rehash(originalHash, n) is called, where n is the number
of times the value has already been rehashed, yielding a
new hash that is used to determine from where to continue
linear probing. Because a hash value can exceed the size of
the buckets buffer, the index into the buffer is determined
by calculating index = h%|buffer |. In Java, the % opera-
tor is the remainder operator, where the result always has
the sign of the dividend (possibly negative). Although the
absolute value can be used, using the % operator already
has a large performance hit compared to a bitwise oper-
ation. Therefore an alternative index = h&(|buffer | − 1),
where |buffer | is a power of two, is used for calculating an
index from a hash value.
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inputs: Vector v, Vector[] values,
long[] buckets, int size
h0 ← v .hashCode()
a← 1
while true do

start ← rehash(h0 , a)&(size − 1)
for i← start to start+8 do

b← i&(size − 1)
v ← buckets[b]
new ←<1, 1, h0 & MASK HASH>
if v not occupied and CAS(b, EMPTY, new)
then

values[b]← v
remove writing flag from buckets[b]
return false

else
if hash prefixes of h0 and v match then

Wait for write to complete...
If values[b] = v return true

end

end

end
a← a + 1

end
Algorithm 2: find-or-put algorithm

4.2 ByteBuffer and Atomic classes
The ByteBuffer and DirectByteBuffer classes were devel-
oped for high throughput of mostly file based data. While
they provides a nice interface to retrieve and store the
data, tests found it to have lower throughput than off-
heap memory managed with Unsafe, similar to arrays of
primitives[22, 11, 23]. More importantly, it lacks features
needed for our purposes: the ability to store more than
2GB of data due to it using 32-bit signed indices, and it
does not allow atomic operations, such as compare-and-
swap. AtomicLongArray does support these two features,
however from the source[17] can be seen that it uses a regu-
lar heap allocated long[] internally, thus will likely perform
similarly to regular primitive arrays in Java[22].

4.3 Benchmarking
4.3.1 Metrics

To analyze the speedup that can be reached by using dif-
ferent hash table implementations, the throughput of the
hash table will be measured. The throughput is defined
here as the number of vectors inserted into the hash table,
divided by the time required to insert these vectors:
Throughput = N

t
[V
s

]. It was chosen to measure the through-
put instead of applying the hash table in a graph traversal
algorithm, such as breadth-first search, in order to keep
the benchmark simple and concrete, and so that it is not
influenced by the design difficulties that come with a con-
current graph traversal algorithm, such as load-balancing.

We define a run as an execution step of the benchmark for
a given set of parameters: statespace size (also denoted
as |statespace|), load-factor (lf) and thread-count. The
speedup of a given run is defined as the inverse of the
time required to complete this run divided by the time
required to complete an identical, but sequential run (i.e.
thread-count= 0):

Speeduprun = 1/ trun
tsequential

=
tsequential

trun
, where run is

any parallel run. Speedup is a good measurement of the
scalability of an algorithm, which is why this is regarded as
the most important metric for comparing the concurrent
hash tables.

4.3.2 Benchmark design
Because the metric to be measured is the throughput, the
benchmark consists of a large number of find-or-put op-
erations (which is often the main interaction between a
graph search algorithm and a hash table). The vectors
that are inserted are generated on the heap, before the
threads start executing. The amount of generated vectors
is referred to as statespace size (|statespace|). The gener-
ated vectors are unique Java Strings consisting of 2 to 9
alphanumeric characters. All vectors are distributed over

n worker-threads, giving each worker-thread |statespace|
n

unique vectors to insert. The amount of times the find-
or-put operation is applied to each unique vector can be
tweaked in order to change the ratio of insertions to reads
(i.e. the ratio of find-or-put applications that return true
respectively false). In our benchmarks this ratio is set to
1, so that for |statespace| = 225 the number of performed
operations is 226. Using Barriers, the worker-threads and
the benchmark timer are started simultaneously.

The following hash tables are compared using the same
benchmark:

1. nl.utwente.hashtable.FastSet

2. java.util.Hashtable (Lock-based)

3. java.util.concurrent.ConcurrentHashMap (Lockless)

4. org.cliffc.high scale lib.NonBlockingHashMap (by Dr.
Cliff Click)

The hash tables are constructed with a given load-factor
in mind, by passing an initial capacity of 1

load−factor
∗

|statespace|.

4.3.3 Warming up the JIT compiler
In order to minimize the effects the Just-In-Time (JIT)
compiler of the JVM has on the execution times of the
benchmarks, every benchmark will be preceded by ”warm-
up” runs. These runs consist of the same code that will
be executed during the real benchmark, and allows for the
JIT compiler to analyze and optimize parts of this code
without affecting the execution time of the ”real” runs.
The results of the warm-up runs are disregarded for de-
termining the speedup of the hash tables, however they
are critically analyzed to determine how many warm-up
runs are required for the execution time of a benchmark
to stabilize, within a small margin (determined by manual
inspection). The final results were obtained by repeating
every run 10 times.

4.3.4 System
The benchmarks have been performed on a Dell R815 with
4 Opteron 6376 CPU’s, which provides a total of 64 avail-
able cores, with 512GB of RAM, running Ubuntu 14.04.4
LTS and Java HotSpotTM 64-Bit Server VM (build 24.80-
b11, mixed mode). Means for gaining exclusive access
to the resources were not enabled on this server (e.g. a
job-scheduler), however through process logs and manual
inspection it was ensured that no other tasks were exe-
cuted throughout the benchmarks. Multiple benchmarks
are performed using subsequently 1, 2, 4, 8, 16, 32 and 64
threads, mapping each thread to a physical core.

5. RESULTS
Table 1 and figure 2 show the wall-clock time (runtime) to
perform the benchmarks for multiple thread counts, aver-
aged over load-factors (lf) of 1

2
and 1

4
using
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nl.utwente.hashtable.FastSet (FastSet),
java.util.concurrent.ConcurrentHashMap (CHM),
java.util.Hashtable (Hashtable) and org.cliffc.high scale lib.
NonBlockingHashMap (NBHM). Table 2 and figure 3 show
the calculated speedup of the benchmarks. The appen-
dices include the results on speedup and runtimes for dif-
ferent load-factors in tables 3, 4, 5 and 6.

Table 1. Runtime, avg. over lf = { 1
2
, 1
4
}

Threads FastSet CHM Hashtable NBHM
1 13.614 21.029 4.974 41.794
2 8.972 21.518 18.681 45.945
4 4.780 13.062 30.393 33.285
8 2.542 8.146 28.268 26.050
16 1.467 8.120 28.842 21.941
32 1.078 8.599 24.544 21.226
64 1.108 9.025 23.265 43.481

Table 2. Speedup, avg. over lf = { 1
2
, 1
4
}

Threads FastSet CHM Hashtable NBHM
1 0.925 0.930 0.842 0.962
2 1.407 0.918 0.219 0.875
4 2.633 1.498 0.133 1.208
8 4.939 2.390 0.143 1.541
16 8.574 2.395 0.139 1.830
32 11.859 2.261 0.164 1.922
64 11.668 2.160 0.174 1.221

6. DISCUSSION
6.1 Java.util.Hashtable
The results in figure 2 match the expectations regarding
Java’s Hashtable. It shows that Hashtable has a signifi-
cantly shorter runtime than any other hash table imple-
mentation in the sequential case, but slows down to about
a tenth of the throughput as soon as concurrency is in-
troduced. This serves as an argument against lock-based
algorithms when scaling is required. When designing for
performance, Hashtable can be considered when thread-
safety is a requirement and the larger part of the interac-
tion with the hash table is expected to be single-threaded.

6.2 ConcurrentHashMap
With ConcurrentHashmap a maximal speedup of 2.750
is achieved (table 2), although the sequential runtime is
slower than Hashtable. It doesn’t suffer from multithread-
ing like Hashtable does, therefore ConcurrentHashmap should
be considered when running software that requires mostly
parallel access to the hash table. Figure 2 shows an in-
creased runtime on 2 threads compared to 1 thread, which
is likely caused by a large runtime deviation in one of the
runs with 2 threads. This is apparent in figure 2 but not
in figure 2 due to the fact that in the latter figure outliers
were filtered out.

6.3 FastSet
FastSet scales better than the other tested implementa-
tions, and also has a good sequential runtime of 13 sec-
onds. With a load-factor of 1

2
it achieves a speedup of

9.435, and with a load-factor of 1
4

it achieves a speedup
of 14.283, both peaking at 32 cores. Running on 64 cores
did not yield additional speedup.

6.3.1 Comparison to Laarman’s version
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For reference, in the paper of Laarman et al., for which
benchmarks with up to 16 cores were performed, speedup
values between 12 and 14 were found[12, figure 2 and
3], while for our implementation speedup between 7.366
and 9.783 was found on 16 cores. Their benchmarks run
LTSmin, while our benchmark tests the throughput of the
hash table directly, which may make our benchmarks more
memory limited. Therefore this comparison is only meant
as a vague reference, and comparing runtimes does not
provide any meaningful information.

6.4 NonBlockingHashMap
NonBlockingHashMap scales well up to 16 cores, but when
using it on more than 32 cores the runtime saw a large in-
crease and several more serious problems arose, as further
discussed in section 6.5.1.

6.5 Limitations
6.5.1 NonBlockingHashMap

In our tests NonBlockingHashMap did not only achieve not
the advertised linear scaling up to 768 CPUs[5] but it also
failed to prove its correctness. In our benchmarks some
seemingly arbitrary pattern of runs did not pass the veri-
fication of checking that the number of vectors in the hash
table equals the size of the statespace. Also, when using a
statespace larger than 225 (meaning a hash table capacity
of 226 and 227 elements to account for load factors of 1

2
and

1
4
) the benchmark was terminated after an hour, for it had

not been able to perform a single run. The hash table also
claims (too) much memory in certain cases, and throws
an OutOfMemoryError. This was also reported to the au-
thor by others, however these issues were not resolved [24,
9]. In order to incorporate NonBlockingHashMap into the
research, the results of a statespace with a size of 225 were
compared as opposed to larger statespaces.

6.5.2 Limited operations
A reason that may provide large perceived benefit for Fast-
Set is the fact that it does not support all operations a
typical hash table provides, such as deletions or dynamic
resizing. It can be argued that its interface is more like a
set instead of a hash table. Noted about Set implemen-
tations in Java must be that they are backed by a Map
implementation, where the key is the to be inserted value,
and the value is a static, reused object.[13].

7. CONCLUSION
Our research found that the new hash table achieves bet-
ter performance scaling than existing Java hash table im-
plementations. It scales up to 32 cores, reaching speedup
values between 9.4 and 14.3, depending on the load-factor.
ConcurrentHashMap scaled up to 8 cores with a maximal
speedup of 2.4, NonBlockingHashMap up to 32 cores with
a speedup of 1.9 and Hashtable suffers from slowdown
when used concurrently. Issues regarding NonBlocking-
HashMap’s results were discussed in section 6.5.1.

Sequential runtime of the new hash table is shorter the
other scalable hash tables, but longer than the non-scalable
Hashtable.

Results in the paper by Laarman et al. show higher speedup
of between 12 to 14 on 16 cores, although comparability
of the results is debatable due to our benchmark possi-
bly being more memory bound than their LTSmin based
benchmark.

We found that Java provides sufficient means for imple-

menting high-performance concurrent algorithms. Mul-
tiple possibilities were explored in this research, and for
achieving control over cache-alignment and compare-and-
swap operations the methods in the Unsafe API were a
necessity, and an essential alternative to classes that en-
capsulated these concepts, such as ByteBuffer and Atom-
icReferenceArray.

This research provides an argument in favour of the possi-
bility to create scalable algorithms in Java. It is not rare
for a programming language related argument to spark ex-
plosive debates, so to conclude on an Unsafe note: future
software projects should consider Java over lower-level lan-
guages, as it allows for great scalability without sacrificing
portability and maintainability.

8. FUTURE WORK
8.1 Benchmarking bias
The benchmark and FastSet were both developed during
the same research, focussing mostly on FastSet. Though
serious thought was put into developing benchmarks that
are fair for all tested hash tables, it is possible for the
benchmark to unintendedly have become biased towards
certain implementations. Also, the performance of Fast-
Set has not been determined for all possible combinations
of parameters such as load-factor, cache-line size or ele-
ment type. Future work could incorporate the hash table
in other projects to see how well it performs in different
contexts.

8.2 Verification
FastSet has not been mathematically or programmatically
verified. Before the hash table can be used in any safety-
critical application, like for example a model checker, first
its correct functioning needs to be verified. A possibil-
ity for programmatic verification that became available
by writing the hash table in Java is to apply the exist-
ing tool VerCors, a tool for verification of concurrent data
structures [2]. Future work can be done with this tool, or
by devising a mathematical proof, in order to either proof
or disproof correctness.
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APPENDIX

Table 3. Runtime in seconds, load− factor = 1
2

Threads FastSet CHM Hashtable NBHM
1 14.829 21.369 5.242 39.805
2 9.116 22.703 19.068 45.911
4 4.719 13.830 31.467 33.883
8 2.530 8.315 28.739 26.396
16 1.436 8.126 29.115 21.505
32 0.984 8.375 24.294 21.884
64 1.005 8.589 22.906 50.232

Table 4. Runtime in seconds, load− factor = 1
4

Threads FastSet CHM Hashtable NBHM
1 12.399 20.688 4.706 43.784
2 8.829 20.333 18.295 45.980
4 4.841 12.293 29.318 32.687
8 2.554 7.977 27.797 25.705
16 1.499 8.114 28.569 22.377
32 1.172 8.823 24.794 20.569
64 1.211 9.461 23.624 36.730

Table 5. Speedup values, load− factor = 1
2

Threads FastSet CHM Hashtable NBHM
1 0.902 0.947 0.821 0.939
2 1.271 0.966 0.208 0.894
4 2.289 1.591 0.129 1.256
8 4.326 2.453 0.136 1.596
16 7.366 2.411 0.132 1.833
32 9.435 2.216 0.152 2.008
64 9.374 2.070 0.161 1.646

Table 6. Speedup values, load− factor = 1
4

Threads FastSet CHM Hashtable NBHM
1 0.948 0.913 0.864 0.985
2 1.542 0.870 0.230 0.857
4 2.978 1.406 0.137 1.160
8 5.552 2.327 0.150 1.485
16 9.783 2.379 0.147 1.827
32 14.283 2.307 0.177 1.836
64 13.963 2.251 0.188 0.796
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