
Research Proposal

NWO Open Competition 2008

1 Project data

Project title

Security by Logic for Multithreaded applications

Project Acronym

SlaLoM

Principal Investigator

Dr. Marieke Huisman

Renewed Application

This is a new application.

2 Summary

English Summary

This project develops a uniform verification framework for the protection of data.
Key innovation on which the proposal is based is the notion of self-composition. This
gives a different view on classical security properties, recasting them into safety
properties of a single program, and allows reuse of existing program verification
techniques. We believe that this approach can handle a wide range of data-related
security properties, such as confidentiality, integrity and anonymity, in a uniform
way, allowing easier comparison. To make the framework usable for realistic ap-
plications, which interact with their environment, we concentrate on multithreaded
applications, and properties that specify complete executions of an application.

In earlier work, we have shown feasibility of the approach by translating the
confidentiality problem for multithreaded programs into a model checking problem.
However, to make the approach scale, we propose to address the following topics:
(a) widening the scope of the studied security properties; (b) development of a
realistic program model, containing the main features of a multithreaded language
like Java, including unbounded dynamic thread creation and termination; (c) use of
parametrised versions of temporal logic formalisms, to be able to express properties
over infinite data domains; (d) development of decision procedures for appropriate
probabilistic properties; (e) reuse and adaptation of existing tools for algorithmic
verification; and (f) definition of appropriate abstractions, to allow verification of
infinite state space programs.

Abstract for Laymen (in Dutch)

Dit project ontwikkelt een verificatiemethode voor gegevensbescherming, één van
de voorwaarden voor het garanderen van de veiligheid van hedendaagse applica-
ties. De technische innovatie die ten grondslag ligt aan dit voorstel is het begrip
zelf-compositie, d.w.z. de mogelijkheid om een programma met zichzelf samen te
stellen. Dit geeft de mogelijkheid om veiligheid van een programma uit te drukken

1



als een eigenschap van één enkele programma-executie, terwijl traditionele metho-
den meerdere executies met elkaar vergelijken. Voor eigenschappen die slechts één
programma-executie beschrijven kunnen we welbekende standaard programmaveri-
ficatietechnieken gebruiken om te laten zien dat het programma deze eigenschappen
daadwerkelijk heeft. Het voordeel van deze aanpak is dat verschillende belangrijke
veiligheidseigenschappen (bijvoorbeeld vertrouwelijkheid van gegevens, integriteit
van gegevens en anonimiteit) allemaal met dezelfde algorithmische methoden aan-
getoond kunnen worden.

In eerder werk hebben we al laten zien dat deze aanpak mogelijk is: eigenschap-
pen die de vertrouwelijkheid van gegevens beschrijven kunnen geverifieerd worden
d.m.v. het doorlopen van de toestandsruimte van het programma (het zgn. mo-
del checking). In dit project breiden we deze eerste resultaten uit, om de tech-
niek geschikt te maken voor een grotere klasse van eigenschappen en programma’s.
Hiervoor zullen we krachtigere specificatieformalismen en verificatietechnieken ont-
wikkelen, met daarbij natuurlijk de noodzakelijke software-ondersteuning. Twee
essentiële uitbreidingen daarbij zijn het toevoegen van onbegrensde data aan de
programmamodellen en eigenschappen en het gebruik van kansberekening om de
veiligheidseigenschappen uit te drukken.

3 Classification

Discipline: Computer Science
The most relevant themes from NOAG-ict 2005-2010 (the Dutch national re-

search agenda for computer science) are:

• Digital Security

– Privacy

– Protection

• Methods for Design and Construction

– Software Engineering

– Specification

– Verification

– Security

4 Composition of the Research Team

Principal Investigator Dr. Marieke Huisman is an expert on Java program veri-
fication and an active contributor to the Java Modeling Language (JML), a spe-
cification language for Java. She is currently involved in the development of BML,
the bytecode variation of JML [8, 11]. She has been one of the main players in
the development of the LOOP verification tool [22, 30, 28, 27, 24], has proposed
static analyses and extensions for JML [39, 9], and has worked on formal methods
for smart cards [33, 7]. Recently, she has also worked on model checking informa-
tion flow properties [29, 26] and on proof preserving parallellisation. Further, she
is involved in a long running project on the compositional verification of control
flow properties for programs with procedures [20, 19, 25], and in the development
of a separation-logic-based proof system for resource properties of multithreaded
programs [21].

Huisman participates in the European FET Integrated Project Mobius (see
http://mobius.inria.fr), where she leads the task on the verification of multi-
threaded applications, and is a member of the Management Committee of the ESF

2



(European Science Foundation) COST action on “Formal Verification of Object-
Oriented Software” (since November 2007). COST provides funding for network
activities, e.g., workshops and extended research visits, not staff.

Huisman obtained her PhD from the University of Nijmegen in the Netherlands.
She worked 8 years at INRIA (as post doc and as chargée de recherche - researcher),
and recently (August 1, 2008) she took up a special tenure track position for women
at the University of Twente. She is appointed as assistant professor in the Formal
Methods and Tools group (led by Prof. dr. Jaco van de Pol), and, based on quality
of her work, will become an associate professor within five years.

Other team members Other members of the Formal Methods and Tools group
are also involved in the project, to advise on issues related with their particular
expertise. This includes in particular Prof. dr. Jaco van de Pol, Dr. Arend Rensink,
associate professor, and Dr. Mariëlle Stoelinga, assistant professor on a tenure track
position, to become an associate professor within 5 years. Van de Pol is an expert
in process-algebra-based modeling, testing and model checking. Rensink is an ex-
pert in the application of graph transformations for specification and verification
of dynamic behaviour, and for verification of design-time models and model trans-
formation. In addition, he has worked on model checking object-oriented programs.
Finally, Stoelinga is an expert in the analysis (in particular using formal verific-
ation, testing and game theory) of quantitative and extra-functional properties of
embedded systems, and in particular of probabilistic, hybrid, and timed systems.

Within the project, a PhD student will be appointed. At the moment, there is
no particular candidate for this position. Appropriate announcements will be made
via mailing-lists and contacts of team members. Huisman will be daily supervisor
of the PhD student, while Van de Pol is planned promotor.

name
involvement

(fte)
specialism university

Dr. M. Huisman 0.2 program verification, U. of Twente
specification languages

Prof. dr. J.C. van de Pol 0.1 process algebra, U. of Twente
model checking

Dr. A. Rensink p.m. graph transformations U. of Twente

Dr. M. Stoelinga p.m. probabilistic, hybrid, U. of Twente
and timed systems,
quantitative analysis

project PhD student 1.0 U. of Twente

5 Research School

The research will be embedded in the University of Twente research institute CTIT.
In addition, the research group at the University of Twente is part of the na-
tional research school Institute for Programming Research and Algorithmics (IPA,
www.win.tue.nl/ipa). The proposed research falls within IPA’s themes Formal
Methods and Software Technology and Engineering. Its relevant IPA focus area is
Software Analysis.

6 Description of the Proposed Research

This project develops a uniform verification framework for the protection of data.
Key innovation on which the proposal is based is the notion of self-composition. This
provides a different view on classical security properties, recasting them into safety

3

www.win.tue.nl/ipa


properties of a single program, and allows to reuse existing program verification
techniques for efficient and precise verification. We believe that this approach can
handle a wide range of data-related security properties in a uniform way, allowing
for easier comparison. Moreover, because of the use of general program verifica-
tion techniques, the approach can easily be extended to newly proposed security
properties.

Motivation and Challenges There cannot be much doubt that there is a grow-
ing need for formal means to guarantee security of applications, as for example
illustrated by the recent media debate around the hacking of the OV-chip card and
the Oyster card (the public transport card in the Netherlands and London, respect-
ively). If users have the feeling that they cannot safely use such a card (without the
risk of for example people stealing their bank information, observing their travel
behaviour, or modifying their travel history), they will refuse to use it - as witnessed
by the withdrawal of the consumer organisations from the OV-chip card discussion
platform. To avoid such situations, one needs clear procedures to develop such
applications, and appropriate tools to give formal security assurances.

A complicating factor is that because of increased computing power, software is
becoming more and more complex. In particular the use of multithreading complic-
ates the traceability of an application, because of the possible interferences between
different threads. Thus a manual code inspection is insufficient to guarantee secur-
ity; instead the use of dedicated tools is required.

In addition, the term “security” covers a large range of properties, and for each
of these, dedicated techniques and tools are developed. As mentioned above, within
this project, we focus on the protection of data. Typical security properties that will
be covered are confidentiality (no private information can be derived from public
data), integrity (private data cannot be affected by public data), and anonymity
(identity is private information that cannot be derived from other actions of the
application). Typical for these properties is that they can be expressed over pairs
of executions. For example, confidentiality is ensured if from any two executions
starting with the same public data, but possibly different private data, no differences
in the public data can be observed.

In the literature, different properties are proposed to ensure data protection [37].
However, classical definitions often restrict only the input-output behaviour of an
application, which is often not the most appropriate model for realistic (security-
sensitive) applications, since these interact and exchange intermediate results. Thus
to show that notwithstanding these interactions and communications, data is prop-
erly protected, also reachable intermediate states need to be confined by the secur-
ity properties. The literature contains several proposals for this (again focusing in
particular on the confidentiality of data, see [36] for an overview), but they often
impose severe restrictions on the accepted programs. Moreover, they often are not
compositional, which means that security of individual applications does not im-
ply security of their composition. And finally, these properties (and techniques to
ensure these properties) are often expressed over idealised programming languages,
that for example do not consider dynamic thread creation and termination.

Thus to summarise, two important challenges to guarantee data protection are
(1) to develop verification techniques that also work for realistic multithreaded
applications, including dynamic thread creation and termination, and (2) to express
the appropriate security properties, that apply to software that interacts with its
environment.

Approach In recent years, a promising approach to guarantee security has been
the adaption of techniques from programming languages, see [37] for a survey. Work

4



in this area has in particular focused on the development of special type systems
to ensure the protection of data. However, such a type-based approach is typically
incomplete: since it is insensitive to control-flow, many secure applications will be
rejected. Moreover, for multithreaded applications often serious restrictions are
imposed on how applications can be written, so that they are amenable to security
type checking.

A recent, exciting alternative proposes to use logic-based program verification
techniques to verify security properties that can be expressed as properties over two
executions [3, 15]. The key idea behind this approach is to compose an application
with itself, in such a way that the original two copies still can be distinguished, and
to rephrase the security requirements as properties over a single execution of this
self-composed application. This allows one to reuse standard program verification
techniques, thus giving a sound and potentially complete verification technique.

Within this project, the self-composition approach will be extended to multi-
threaded applications. Therefore, an appropriate model for multithreaded applica-
tions will be developed, and composed with itself. The security properties will be
re-expressed as safety properties over this self-composed model. As explained above,
the security properties will have to confine intermediate reachable states, therefore
temporal logic or process equivalences will be used. This gives the possibility to
reuse model checking, bisimulation or equivalence checkers and other algorithmic
verification techniques for the verification of security properties.

First steps taken We have already done some work to extend the self-composition
approach to multithreaded applications. As a first step, we rephrased observational
determinism [42] (a property proposed to protect data of multithreaded applica-
tions) as a formula in temporal logic [29], and experimented with the CADP model
checker [16]. Unfortunately, the alternation-free modal µ-calculus supported by
CADP turned out not to be expressive enough for our purpose. Besides the reph-
rasing in temporal logic, our investigations also revealed that observational determ-
inism on the one hand was a very restrictive property, while on the other hand it
would accept programs containing a security breach.

Therefore, as a next step, we investigated other confidentiality properties for
multithreaded applications that we could find in the literature (reported in [4, 26]).
We rephrased these properties over a uniform program model, to allow easier com-
parison between the different proposals. We had expected to find at least some
partial hierarchy between the different properties, but in fact they turned out all
to be incomparable. Further, we found that we could divide the proposed secur-
ity properties into two categories: those that required visible executions (i.e., the
public traces) to be deterministic, and those that required an equal probabilistic
distribution over the visible executions. In both categories, we found that there were
properties that came close to characterising our intuitive notion of confidentiality.
Further, as a proof of concept, we rephrased the “deterministic” confidentiality
properties into temporal logic, again using the idea of self-composition, and we
used the Concurrency WorkBench (CWB) [12], which supports modal µ-calculus
with alternations, to model check these over some simple examples. This succeeded
for some properties and some very simple examples, limiting the state space to only
a few values, but clearly more work is required to apply this to realistic examples.

Research Goals As mentioned above, final goal of this project is the devel-
opment of a uniform verification framework for the protection of data, using the
self-composition approach to re-express appropriate security properties as temporal
logic formulae or process equivalences. This allows the reuse of appropriate al-
gorithmic verification techniques (if necessary, after adaptation) for the verification

5



of security properties.
The earlier results described above show that the self-composition approach in-

deed makes precise algorithmic verification of security properties feasible. However,
at the same time they also reveal many open problems that need to be solved be-
fore the technique can be used efficiently on realistic applications. This leads to the
following list of concrete research topics that have to be addressed to achieve the
final goals of the project:

a) widening the scope of the security properties studied;

b) development of a more realistic program model, containing the main features
of a multithreaded language like Java, including unbounded dynamic thread
creation and termination;

c) use of parametrised versions of temporal logic formalisms, to be able to express
properties over infinite data domains;

d) development of decision procedures for appropriate probabilistic properties;

e) reuse and adaptation of existing tools for algorithmic verification (including
tools supporting probabilities) to make verification scale to realistic programs;

f) definition of appropriate abstractions, to allow verification of infinite state
space programs.

For each of these points, we briefly describe the relevant issues and possible
solutions.

a) Scope of the security properties. So far, self-composition has been applied on
confidentiality properties (or more precisely, on the technical non-interference prop-
erty, from which confidentiality follows). However, many other security properties
can be expressed as a property over two (or more) executions, which makes them
suited for our technique. In particular, integrity of data can be ensured by the
following technical property:

in any two executions starting with the same private data, but possibly
different public data, the private data should remain the same, i.e.,
the public data does not affect changes to the private data.

We will also study characterisations of other security properties, such as anonym-
ity (see e.g. [17]), authentication (see e.g. [13]) and availability (see e.g. [14]), to see
if and how these can be expressed as properties over multiple executions. Also for
these properties, many different proposals exist. Because of our approach, we can
handle the general case where properties restrict the allowed traces of multithreaded
executions.

As mentioned above, the properties in the literature for confidentiality are all
incomparable, and moreover, none of them exactly matches our intuitive under-
standing of the property. Thus, we expect that studying the literature in itself is
not sufficient, and we will also propose improved properties that match better with
the intended notion of data protection.

b) Program model. Typically, verification techniques for security properties are
developed for simplified programming languages. On the one hand, this is good,
because many details of full programming languages are irrelevant to the security
properties at hand. On the other hand, sometimes these simplifications are too
restrictive, and severely limit their applicability. In particular, for multithreaded

6



applications, typically a fixed number of parallel threads is considered, while applic-
ations written in widely-used multithreaded programming languages as Java rely
on the possibility to dynamically create and terminate threads (and thus have an
unbounded number of parallel threads). These dynamic aspects have to be properly
defined in the program model, so that Java programs can be directly mapped onto
it. The basics for the program model will be a labelled transition system, derived
directly from the operational semantics (as we did in earlier work [29, 4]), using
our experience with control flow graph extraction from Java applications [25]. The
focus on Java programs is important, since Java is currently the most-used language
to develop security-critical applications.

c) Parametrised temporal logic. The key ingredient of the self-composition ap-
proach is that a security property over program P is rephrased into a safety property
over program P , composed with itself (where each copy maintains an independent
memory). Since we are interested in specifying allowed traces, temporal logic is
a suitable formalism. In the earlier work described above, we used propositional
modal µ-calculus [31] to characterise confidentiality properties. We found that we
needed the expressiveness of alternating µ-calculus to be able to express that an
execution in a program copy could be mimicked (i.e. repeated w.r.t. the publicly
visible variables) by the other program copy.

However, many security properties are inherently data-dependent. For every
possible value of a variable, a change to any possible other value has to be con-
sidered. In earlier work, we solved this problem by explicitly limiting the data
domain. However, this is too restrictive, and moreover for any realistic application,
this will still result in very large formulae. Therefore, we will investigate whether
first-order µ-calculus [32], which includes data parameters and quantifiers, can be
used. Recently parametrised boolean equation systems (PBES) [18] have been pro-
posed as a technique for model checking this logic and to characterise equivalence
of (possibly infinite) processes with data [10]. PBES have already been used to
show anonymity over protocols with n participants [17], so they seem adequate to
for security properties. However, in the specific case of this project, properties are
verified w.r.t. program code. Therefore, we will investigate whether the use of PBES
is appropriate, whether existing solving techniques for PBES [18, 10] can be used
for the properties at hand, and if necessary, we will develop these further.

d) Verification of probabilistic properties. However, a generalisation of µ-calculus
with parameters alone will not be sufficient to handle all security properties of in-
terest, since confidentiality properties are often expressed using probabilities [40, 38].
To verify such properties, our basic approach will be to map programs to a prob-
abilistic model, and then to apply probabilistic verification techniques to establish
observational equivalence between the original program and its copy. Our target
program model will be based on probabilistic modules [1], an extension of reactive
modules [2] that support probabilistic assignments to variables and parallelism.

To prove confidentiality, we will in particular focus on partial probabilistic bisim-
ulation [38] and variations thereof [4], a probabilistic notion of low bisimulation.
This property has the advantage that it closely matches the intuitive understand-
ing of secure information flow, and that it is compositional. We plan to devise
efficient decision procedures for it, using that a program and its copy are inde-
pendent, non-synchronising processes. In addition, we will study whether partial
probabilistic bisimulations can also be used to express for example integrity and
anonymity.

To mechanise the verification, we will provide an automatic translation to prob-
abilistic modules, which is the input format of the probabilistic model checkers

7



Prism [23] and MRMC [41] and implement our probabilistic low-bisimulation pro-
cedure in MRMC, an open-source model checker developed in Aachen and Twente.
Currently, MRMC does not support data, therefore we will also closely follow what
happens within the STOP project (a FMT project), which aims at the combination
of data and probabilities.

e) Tool support. To make the self-composition approach applicable for realistic
Java programs, appropriate tool support is necessary. As mentioned above, a pro-
gram model will be defined that captures the essential ingredients of multithreaded
Java programs, in particular the unbounded number of dynamically created threads.
This will be supported by a tool that extracts program models from Java applic-
ations, based on our experience with extraction of control flow graphs for Java
applications [25], via the SOOT framework.

To provide tool support for verification, we will study existing tools, in particular
those handling probabilistic and parametrised temporal logics (several of which are
developed within the FMT group, i.e., the parity game solver for full µ-calculus [34]
and MRMC [41], or in groups with which close contacts exist), and to decide which
one comes closest to implementing the algorithms that we need. Then, we will
tailor the existing algorithms to our specific needs. We expect that we might have
to make (small) changes to the core verification algorithms, but that this pragmatic
approach will allow us to reuse a large part of the underlying infrastructure of such
tools.

f) Abstractions. Initial experiments with the use of CWB to model check con-
fidentiality properties showed that algorithmic verification is feasible, but time-
consuming. Moreover, because of the focus on data, the models that we verify
have infinite state spaces. For the initial experiments, we significantly reduced the
state spaces, only considering a few possible values for each variable. To generalise
to realistic programs, we need to use appropriate abstraction techniques. Several
abstractions come to mind directly. One possibility is to abstract each variable to
its level in the security lattice. However, this abstraction will often be too coarse.
Another possibility is to distinguish states where we know that two variables (in
the two program copies) are equal, and states where we know that the two variables
are different - without actually caring what the actual values are. Finally, since we
are dealing with applications where an unbounded number of threads can be cre-
ated dynamically, we will also look into appropriate abstractions that handle this
situation. In particular, several useful under- and over-approximations have been
proposed in the literature (see e.g., [35, 6, 5]). Experiments will be needed to decide
how appropriate these abstractions are, and if more fine-tuning is necessary.

Embedding of the Proposed Research into the Current Research of the

Group Our proposed research fits perfectly in the theme of the FMT group, that
develops formal techniques and tools as a means to support the development of
software, including probabilistic verification. Our verification approach based on
self-composition complements other software verification and validation techniques
being developed in the FMT group, but also clearly connects with ongoing research
in which the group is involved, such as the STOP project, the NWO-focus projects
MOQS (modeling of quantitative aspects) and VeriGem (tool support for PBES),
and the FP7 project Quasimodo (quantitative system properties). This connection
is also indicated by the involvement of several team members in the project.

Other Research Relations On the national level, several possibilities for col-
laboration exist. Since the project also has a clear security aspect, it will be a good

8



opportunity to collaborate with the DIES group, at the University of Twente. Fur-
ther, we expect to collaborate with the Universities of Nijmegen (Digital Security
group) and Eindhoven (the Formal Methods, Systems Engineering, and Security
groups). Additionally, we expect collaboration within the context of the VEMPS
project (on multi-party protocol security).

On the international level, Huisman plays an important role in the European
Integrated Project Mobius, which still runs until October 2009. We will keep col-
laborating with other Mobius participants. The proposed research will also benefit
from the collaboration and contacts within the ESF COST action on “Formal Veri-
fication of Object-Oriented Software”.

Finally, on a bilateral basis, we expect to collaborate with Dr. T. Rezk, INRIA
Sophia Antipolis, France, Dr. G. Barthe, IMDEA, Spain, and Dr. P. D’Argenio,
FaMAF, Córdoba, Argentina, all experts in formal methods for security and original
proposers of the self-composition approach.

Application Perspective As explained above, formal techniques to guarantee
security of applications are important for the wide-spread acceptance of new tech-
niques such as the OV-chip card. Within the project, we do not plan to develop
an industrially usable tool, but we do aim for a prototype that can be used to
demonstrate feasibility of the approach in a convincing way. Because of the focus
on algorithmic verification techniques, and the goal to make verification as precise
as possible, we believe that the results produced by the project will be an import-
ant step forward towards industrially usable software to guarantee various security
aspects of security-critical software.

7 Project Planning

Year 1: Literature study of security properties, uniform formalisation of security
properties based on self-composition using temporal logic, process equivalence
and probabilities; comparison and improvement of characterisations. Expec-
ted result: collection of formal security properties, expressed in (an extension
of) temporal logic, expressing classical properties like confidentiality, integ-
rity and anonymity, suitable for multithreaded applications, and matching
intuitive understanding of “security” as close as possible.

Year 2: Formalisation of appropriate program model, capturing aspects such as
dynamic thread creation and termination, implementation of a tool that can
map Java programs to program models, appropriate (adaptation of) verific-
ation techniques for (parametrised) temporal logic, process equivalences and
probabilistic bisimulations used to capture security properties. Expected res-
ult: algorithmic support for security properties of Java programs, using as
much as possible existing tools and techniques. Since no specific tailoring to
the security properties is developed yet, verification might be inefficient and
not scale to infinite state spaces.

Year 3: Development and implementation of appropriate abstraction techniques,
tailored to security properties at hand. Expected result: adaptation of existing
tools and techniques, allowing efficient verification of security properties for
(possibly infinite state) multithreaded applications.

Year 4: Application of techniques to several case studies, and improvements of
developed tools and techniques where necessary. Writing of thesis.

9



The PhD student will participate in training activities offered by the research
school IPA, and is expected to attend relevant summer schools (e.g., Marktoberdorf
or LASER).

8 Expected Use of Instrumentarium

None, except standard desktop equipment. FMT has a verification cluster for large
computation jobs.

9 Literature

Relevant references

Five relevant references of the applicants are:

1. M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation
of observational determinism. In 19th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, July 2006.

2. D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of se-
quential programs with procedures. Information and Computation, 206:840–
868, 2008.

3. M. Huisman, I. Aktug, and D. Gurov. Program models for compositional
verification. In International Conference on Formal Engineering Methods
(ICFEM ’08), volume 5256 of LNCS, pages 147–166. Springer Verlag, 2008.

4. T. Chen, S.C.W. Ploeger, J.C. van de Pol, and T.A.C Willemse. Equivalence
checking for infinite systems using parameterized boolean equation systems.
In Concurrency Theory (CONCUR 2007), volume 4703 of Lecture Notes in
Computer Science, pages 120–135. Springer, 2007.

5. C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s reentrant
locks. In Asian Programming Languages and Systems Symposium, December
2008. To appear.
Available from http://www-sop.inria.fr/everest/Clement.Hurlin/publis/sljrl.pdf.

References

[1] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for prob-
abilistic systems. In Concurrency Theory (CONCUR), volume 2154 of Lecture
Notes in Computer Science, pages 351–365. Springer, 2001.

[2] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15:7–48, 1999.

[3] G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114,
Pacific Grove, USA, June 2004. IEEE Press.

[4] H.-C. Blondeel. Security by logic: characterizing non-interference in
temporal logic. Master’s thesis, KTH Sweden, 2007. Available from
ftp://ftp-sop.inria.fr/everest/Marieke.Huisman/blondeel.pdf.

10

http://www-sop.inria.fr/everest/Clement.Hurlin/publis/sljrl.pdf


[5] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejček. Reachability analysis of
multithreaded software with asynchronous communication. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS ’05), volume
3821 of Lecture Notes in Computer Science, pages 348–359. Springer, 2005.

[6] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. SIGPLAN Notes, 38(1):62–
73, 2003.

[7] C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods for
smart cards: an experience report. Science of Computer Programming, 55(1-
3):53–80, 2005.

[8] L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A beha-
vioral interface specification language for Java bytecode. In Fundamental Ap-
proaches to Software Engineering (FASE 2007), volume 4422 of Lecture Notes
in Computer Science, pages 215–229. Springer-Verlag, 2007.

[9] N. Cataño and M. Huisman. Chase: a static checker for JML’s assignable
clause. In L.D. Zuck, P.C. Attie, A. Cortesi, and S. Mukhopadhyay, editors,
Verification, Model Checking and Abstract Interpretation, volume 2575 of Lec-
ture Notes in Computer Science, pages 26–40. Springer, 2003.

[10] T. Chen, S.C.W. Ploeger, J.C. van de Pol, and T.A.C Willemse. Equivalence
checking for infinite systems using parameterized boolean equation systems.
In Concurrency Theory (CONCUR 2007), volume 4703 of Lecture Notes in
Computer Science, pages 120–135. Springer, 2007.

[11] J. Chrzaszcz, M. Huisman, A. Schubert, J. Kiniry, M. Pavlova, and E. Poll.
BML Reference Manual, 2008. In progress. Available from
http://www.jmlspecs.org/BML.

[12] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Trans-
actions on Programming Languages and Systems, 15(1):36–72, January 1993.

[13] C.J.F. Cremers, S. Mauw, and E.P. de Vink. Injective synchronisation: An
extension of the authentication hierarchy. Theoretical Computer Science,
367:139–161, 2006.

[14] F. Cuppens, N. Cuppens-Boulahia, and T. Ramard. Availability enforcement
by obligations and aspects identification. In Availability, Reliability and Secur-
ity (AReS 2006), 2006.

[15] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In R. Gorrieri, editor, Workshop on Issues in the
Theory of Security. IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

[16] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A toolbox
for the construction and analysis of distributed processes. In 19th Interna-
tional Conference on Computer Aided Verification (CAV 2007), volume 4590
of Lecture Notes in Computer Science, pages 158–163. Springer, 2007.

[17] J.F. Groote and S. Orzan. Parameterised anonymity. In Proceedings FAST’08,
Lecture Notes in Computer Science. Springer, 2008. To appear.

[18] J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems.
Theoretical Computer Science, 343:332–369, 2005.

11

http://www.jmlspecs.org/BML


[19] D. Gurov and M. Huisman. Reducing behavioural to structural properties
of programs with procedures. In Verification, Model Checking, and Abstract
Interpretation (VMCAI 2009), LNCS. Springer, 2009. To appear.

[20] D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of sequen-
tial programs with procedures. Information and Computation, 206:840–868,
2008.

[21] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s reentrant locks.
In Asian Programming Languages and Systems Symposium, December 2008. To
appear. Available from
http://www-sop.inria.fr/everest/Clement.Hurlin/publis/sljrl.pdf.

[22] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in
object-oriented languages: Logical models and tools. In C. Hankin, editor, Pro-
ceedings of European Symposium on Programming (ESOP ’98), volume 1381
of Lecture Notes in Computer Science, pages 105–121. Springer, 1998.

[23] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’06), volume 3920 of Lecture
Notes in Computer Science, pages 441–444. Springer, 2006.

[24] M. Huisman. Reasoning about Java Programs in Higher Order Logic with PVS
and Isabelle. PhD thesis, University of Nijmegen, 2001.

[25] M. Huisman, I. Aktug, and D. Gurov. Program models for compositional veri-
fication. In International Conference on Formal Engineering Methods (ICFEM
’08), volume 5256 of LNCS, pages 147–166. Springer, 2008.

[26] M. Huisman and H.-C. Blondeel. Secure information flow for multi-threaded
programs, 2008. Manuscript.

[27] M. Huisman and B. Jacobs. Inheritance in higher order logic: Modeling and
reasoning. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher
Order Logics: 13th International Conference (TPHOLs 2000), volume 1869 of
Lecture Notes in Computer Science, pages 301–319. Springer, 2000.

[28] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editor, Fundamental Approaches to Soft-
ware Engineering (FASE 2000), volume 1783 of Lecture Notes in Computer
Science, pages 284–303. Springer, 2000.

[29] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation
of observational determinism. In 19th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, July 2006.

[30] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and
H. Tews. Reasoning about Java classes (preliminary report). In Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA’98),
pages 329–340. ACM Press, 1998.

[31] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[32] D. Park. Finiteness is mu-ineffable. Theoretical Computer Science, 3(2):173–
181, 1976.

12

http://www-sop.inria.fr/everest/Clement.Hurlin/publis/sljrl.pdf


[33] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing
high level security properties for applets. In J.-J. Quisquater, P. Paradinas,
Y. Deswarte, and A.A. El Kalam, editors, Cardis’04, pages 1–16. Kluwer, 2004.

[34] J.C. van de Pol and M. Weber. A multi-core solver for parity games. In I. Černa
and G. Lüttgen, editors, Proceedings of PDMC 2008, ENTCS, 2008. To appear.

[35] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent soft-
ware. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’05), volume 3440 of LNCS, pages 93–107. Springer, 2005.

[36] A. Russo and A. Sabelfeld. Securing Interaction between Threads and the
Scheduler. In Computer Security Foundations Workshop. IEEE Press, 2006.

[37] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communication, 21:5–19, January 2003.

[38] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded
programs. In Computer Security Foundations Workshop, pages 200–215, Cam-
bridge, UK, July 2000. IEEE Press.

[39] K. Trentelman and M. Huisman. Extending JML Specifications with Temporal
Logic. In H. Kirchner and C. Ringeissen, editors, Algebraic Methodology And
Software Technology (AMAST’02), volume 2422 of Lecture Notes in Computer
Science, pages 334–348. Springer, 2002.

[40] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent lan-
guage. In Computer Security Foundations Workshop, pages 34–43, Rockport,
Massachusetts, June 1998. IEEE Press.

[41] I. S. Zapreev. Model Checking Markov Chains: Techniques and Tools. PhD
thesis, University of Twente, Enschede, The Netherlands, 2008.

[42] S. Zdancewic and A.C. Myers. Observational determinism for concurrent pro-
gram security. In 16th IEEE Computer Security Foundations Workshop, 2003.

10 Requested Budget

The PhD student that will be hired within the project is expected to collaborate
with one of the project’s international collaborators during a long-term visit (1 or
2 months, most likely with Dr. T. Rezk at INRIA Sophia Antipolis). In addition,
we request some money to finance visits from our collaborators to the University of
Twente.

appointment PhD student (standard amount) 177,495 eur
bench fee (standard amount) 5,000 eur
long visit to INRIA Sophia Antipolis (estimate) 3,000 eur
2 visits from international collaborators (estimate) 1,500 eur

—————
total 186,995 eur

13


	Project data
	Summary
	Classification
	Composition of the Research Team
	Research School
	Description of the Proposed Research
	Project Planning
	Expected Use of Instrumentarium
	Literature
	Requested Budget

