
University of Twente
Faculty of Electrical Engineering, Mathematics & Computer Science

Formal Methods and Tools

Graph-Based Semantics of the
.NET Intermediate Language

by

N.B.H. Sombekke

May, 2007

Graduation Committee: dr. ir. A. Rensink (1st supervisor)
ir. H. Kastenberg
ir. T. Staijen

Abstract

The semantics of a programming language are often described in a natural language. Such de-
scriptions are often ambiguous and hard (or even impossible) to construct in a precise way. To
tackle these problems one could specify a formal description of the semantics by using a mathe-
matical model. In this report such a mathematical model is presented for the .NET Intermediate
Language (IL) in the form of graphs and transformations to these graphs.

In order to be able to perform transformations on graphs, we need a start graph. The .NET In-
termediate Language generates bytecode and cannot supply such a start graph. Therefore we have
constructed a translator that translates an arbitrary IL program into a so called Abstract Syntax
Graph (ASG). The ASG is the start graph to which we now can apply graph transformations.

Central in this report are graph production rules that we have specified in order to describe
the semantics of .NET IL instructions. These production rules are used for transforming graphs,
and by applying them to the (intermediate) graphs repeatedly it is possible to simulate a program.

Although further research is necessary, we believe this project provides a promising basis of
representing the semantics of the .NET Intermediate Language in an intuitive and formal way.

Contents

1 Introduction 5
1.1 Problem Statement . 6
1.2 Approach . 6
1.3 Overview . 7

2 The .NET Framework 9
2.1 Overview of .NET . 9

2.1.1 Common Language Runtime . 10
2.1.2 Base Class Library . 10
2.1.3 Common Type System and Common Language Specification 10
2.1.4 Types . 11
2.1.5 Portable Executables . 11
2.1.6 Virtual Execution System . 13
2.1.7 Code Management . 14
2.1.8 Garbage Collection . 14

2.2 The Intermediate Language . 15
2.2.1 Directives . 16
2.2.2 Modules and Assemblies . 16
2.2.3 Namespaces . 16
2.2.4 Methods . 16
2.2.5 The IL Instruction Set . 17
2.2.6 Generics . 18
2.2.7 Name Resolution . 19

2.3 Our Work . 19
2.4 Summary . 19

3 Graphs and Graph Transformations 21
3.1 Graphs . 22

3.1.1 The Pacman Example . 22
3.2 Graph Production Rules . 22

3.2.1 The Pacman Example - Production rules 23
3.3 Graph Production System . 24

3.3.1 The Pacman Example - Graph Transition System 24
3.4 Graph Transformation Tool . 25

3.4.1 The Pacman Example - GROOVE . 25
3.5 Summary . 26

4 Translating IL Programs to Graphs 27
4.1 Translator . 27
4.2 Meta-Model Abstract Syntax Graph . 28

4.2.1 High-level structure . 28
4.2.2 Types . 30

4 CONTENTS

4.2.3 Attributes . 31
4.2.4 Instructions . 31

4.3 Design Decisions . 33
4.3.1 Classnames and namespaces . 34
4.3.2 Method signatures . 36
4.3.3 Identifiers . 37

4.4 Translating C# and VB.NET to IL . 37
4.5 Example: IL to ASG . 39
4.6 Summary . 39

5 Specifying IL Semantics with Graph Transformations 41
5.1 Static Analysis . 41
5.2 Control Flow Analysis . 42
5.3 Modelling the runtime environment . 44

5.3.1 Meta-model of the Frame Graph . 44
5.3.2 Meta-model of the Value Graph . 48
5.3.3 Stack . 49
5.3.4 Method Frame Representation and Transferring Arguments 51

5.4 Production rules . 54
5.4.1 Starting Execution . 54
5.4.2 Object Creation . 55
5.4.3 Calling methods . 58
5.4.4 Common Instructions . 60
5.4.5 Limitations . 61

5.5 Simulation Examples . 62
5.5.1 Example: Fibonacci . 62
5.5.2 Example: Calculator . 64

5.6 Performance . 67
5.7 Summary . 68

6 Conclusion 69
6.1 Discussion . 69

6.1.1 Implementation . 69
6.1.2 GROOVE . 70
6.1.3 Approach . 70

6.2 Related Work . 70
6.3 Future Work . 71

Appendices 75

A IL programs side to side 77

B Calculator Example: IL Code and ASG 81

C Production Rules - Simulation 87

Chapter 1

Introduction

Probably everybody has experienced a time that a communication problem between two persons
appeared. For example, when your mother asked you to get a bread from the bakery and that
when you were at the bakery you did not know what bread to take.

Formally speaking, executing the task can have a different result than the person who gave
the task had in mind. Something similar holds for the meaning and behaviour (semantics) of
programming languages. When describing the semantics of programming languages in a natural
language (such as English), this can lead to ambiguity. Furthermore, by using a natural language
to describe semantics of a programming language it is hard (or even impossible) to present the
semantics in a precise way. It is also easy to introduce mistakes or forget details. Take for example
an instruction which adds two values. It is easy to forget specific details of where these two values
can be found, or where the result of this operation should be stored.

To tackle these problems, one should specify the semantics in a formal way. This specification
is represented in the form of a mathematical model and can serve as a basis for understanding
and formal reasoning about the behaviour of programs. It is also useful for precisely defining the
meaning of program constructions. When giving a formal description, details that are normally
easily overseen will be unrevealed and made explicit, leaving no space for ambiguity. Another
advantage of using a mathematical model is that it opens possibilities for analysis and verification.

There are several formal languages for expressing semantics of a programming language. The
Structural Operational Semantics (SOS) approach, introduced by Plotkin[20] in 1981, has been
very popular. SOS generates a transition system by using logical rules. Due to these logical rules,
SOS can be hard to grasp for persons unfamiliar with logic. Also see [1, 27] for more information
about SOS.

A more recent technique of giving a formal description of semantics is by using graphs and
applying transformations to these graphs. A graph is used to model a state of a program, and
the graph transformations are an intuitive, easy to understand, and a clear way to express the
behaviour of the program in a rule-based way, just as with SOS. Using graphs is especially useful
for representing object-oriented programs because the states of these programs mainly depend
on a set of reference values. Furthermore, graph transformations lend themselves for describing
dynamic changes to such states. To be able to work with graphs and graph transformations, a
tool is needed to construct graphs and perform transformations to these graphs. There exist quite
some tools on this, but in this work we use the GROOVE tool set[9].

The Graphs for Object-Oriented Verification (GROOVE) project aims at using graphs to model
the structure of object-oriented programs and using graph transformations to model operational
semantics[9]. As part of the GROOVE project, a tool set has been developed. Among others, this
tool set consists of an editor that can be used to construct graphs and graph transformation rules
(which we also call production rules). The tool set also contains a simulator that is able to apply
production rules to graphs. Each time a production rule is applied, a new graph is constructed.
When we use graphs as a representation of states, and the application of production rules as
transition between these states, we can uses these graphs and production rules to construct a

6 Introduction

transition system. In such a transition system states are represented by nodes, and transitions
between states are represented by edges.

This thesis shows that graph transformations can be used for the specification of the semantics
of a programming language, in particular the .NET Intermediate Language. We have chosen the
.NET Intermediate Language because this is a low-level intermediary language which covers all
other .NET languages. The relation of the .NET Intermediate Language and the other .NET
languages can be explained using the analogy of an interpreter that translates Russian and Dutch
to English. Here, English is analogous to the Intermediate Language, and Russian and Dutch
to the other .NET languages. If you are able to understand English, you will also be able to
understand the other languages when talking via the interpreter.

1.1 Problem Statement

The semantics of programming languages described by using natural languages can be ambiguous,
meaning that a text can easily be open for multiple interpretations. On the other hand, pictures
in the form of graphs and graph transformations are often more clear and less ambiguous than
natural languages. Also, it is possible to reason about graphs and graph transformations thanks
to their formal background [25]. Another motivation to use a graph-based representation is that
graphs are a convenient way to represent the structure of a program, and graph transformations
are a good technique to represent object-oriented behaviour.

Our interest is that we want to describe the semantics of an object-oriented programming
language using graph transformations. We have chosen for the .NET Intermediate Language (IL)
because all .NET languages are compiled to IL, which makes it attractive to do our research on
IL instead of other .NET languages individually.

The main question now is: how can we describe the semantics of the .NET IL by using graph
transformations? Therefore, the goal of this research project is the development of a graph-based
specification of the semantics of the Microsoft .NET IL.

1.2 Approach

To accomplish the graph-based representation, we decided to construct a set of graph production
rules specifying the semantics of the IL. When modelling the syntax and states of IL programs as
graphs accordingly, we can apply the rules to those graphs, i. e. simulate the program. Figure 1.1
contains an overview of these two steps.

.NET Intermediate Language

Program

Abstract Syntax Graph

Execution Graph

Parsing & Static Analysis

Static Analysis & Simulation

Translator

Graph

Production

Rules

Figure 1.1: From program to simulations, an overview.

This figure shows that a translator translates a .NET Intermediate Language program into
the Abstract Syntax Graph, to which graph production rules are applied. Both the translator
and the graph production rules do not exist yet and need to be constructed by us. The following
paragraphs provide a description of these components.

1.3 Overview 7

Translator We need a translator to construct a graph from an arbitrary IL program. This
graph is an abstract syntax representation of the IL program, and therefore is called an Abstract
Syntax Graph (ASG). The ASG contains the structure of the program, the instructions that have
to be executed and the syntactic order of these instructions. During the static analysis phase,
we enrich the ASG by creating and adding method signatures, transforming namespaces, and
resolving identifiers.

Graph Production Rules Although static analysis is mostly performed in the translator, a
minor part of static analysis will be performed by using a graph production rule in order to provide
some intuition of what happens during static analysis. This involves merging of labels having the
same identifier. Furthermore, the ASG contains implicit control flow information. A decision has
to be made whether or not to make this control flow explicit by using a control flow analysis phase.

The major goal of this project is the specification of the semantics of the .NET Intermediate
Language by graph transformations. We aim at specifying the semantics with one or two transfor-
mation rules per instruction. These graph production rules transform a graph, which in fact is the
Abstract Syntax Graph delivered by the translator, into another graph. Each time a production
rule from this graph transformation system is applied, a so called Execution Graph is created.
Such a graph is a representation of a system state. Thus by applying the whole graph transforma-
tion system to the Abstract Syntax Graph, we can simulate the IL program. By simulating the
program a transition system is constructed, which consists of Execution Graphs (states) and the
applied production rules (transitions) to these Execution Graphs .

1.3 Overview

This thesis is organized as follows: First, some background information will be provided. There-
fore, Chapter 2 presents an overview of the .NET framework and its most important parts; among
others, the common language runtime, common type system, types and garbage collection. Chap-
ter 2 also contains a brief introduction into the .NET Intermediate Language and its instructions.
Graph transformations and their use are described in Chapter 3. In this chapter we will also tell
something about the GROOVE tool set. Chapter 4 discusses the implementation of the trans-
lator and some problems that are encountered. The specification of the graph transformation
rules, which represent the semantics of the Intermediate Language, is elaborated in Chapter 5.
This chapter also includes an explanation of the encountered design problems and their solutions.
Finally, a discussion about the project and the conclusions are presented in Chapter 6.

Chapter 2

The .NET Framework

In the year 2000 Microsoft launched the .NET (pronounced: dot net) initiative. The .NET Frame-
work is a development and runtime infrastructure that can be used for the development of appli-
cations for the Windows platform.

The framework is designed to fulfil the following objectives [16]:

• To provide a consistent object-oriented programming environment whether object code is
stored and executed locally, executed locally but Internet-distributed, or executed remotely.

• To provide a code-execution environment that minimizes software deployment and versioning
conflicts.

• To provide a code-execution environment that promotes safe execution of code, including
code created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance problems of in-
terpreted or scripted environments.

• To make the developer experience consistent across widely varying types of applications,
such as Windows-based applications and Web-based applications.

• To build all communication on industry standards to ensure that code based on the .NET
Framework can integrate with any other code.

This chapter contains an introduction to the .NET Framework and the Intermediate Language.
First we will present an overview of the .NET Framework, what it contains and how it works.
After that, more will be explained about the Intermediate Language. Most figures presented in
this chapter are derived or based on figures from [19] and [6].

2.1 Overview of .NET

A .NET program is written in a programming language that uses the .NET runtime as its execution
environment. That is, the sources of this program are compiled, using a language compiler for
the specific programming language, to an intermediate format called the Common Intermediate
Language (CIL) or just Intermediate Language (IL). The intermediate format is accepted by the
Common Language Runtime which uses just-in-time (JIT) compilation to compile the intermediate
format to CPU specific code (also called native machine code). After this, the CPU specific code
can be executed. A schematic overview of this principle is given in Figure 2.1.

10 The .NET Framework

VB.NET …C# Perl

Intermediate Language

+

Metadata
JIT Compiler

Language

Compilers

Native Code

Common Language

Runtime

Figure 2.1: Overview of Languages, Intermediate Language and Common Language Runtime

2.1.1 Common Language Runtime

The Common Language Runtime (CLR) is the runtime environment in which .NET applications
are executed. Consider the CLR to be comparable to the Java Virtual Machine (JVM) (see [11]).
Like JVM uses an intermediate language representation of Java (called bytecode), the CLR uses
IL. IL code is sometimes referred to as managed code because the CLR manages its lifetime and
execution [24]. To do this, the CLR provides necessary core services such as memory and thread
management and strict type safety. Code that does not target the runtime is known as unmanaged
code. Unmanaged code is for example native code (i. e. machine code).

The CLR uses a just-in-time (JIT) compiler to compile the IL code, which is stored in a so
called Portable Executable file, into native (platform-specific) code. After this conversion, the
native code is executed. This means that .NET code is always compiled, not interpreted. The
usage of IL code and JIT compilation ensures that code is portable as well as efficient.

2.1.2 Base Class Library

The Base Class Library (BCL), sometimes also referred as .NET Framework Class Library (FCL)
[24], is a library containing all important types (i. e. classes) of the .NET Framework. The BCL is
language independent, meaning that it does not depend on the used .NET language. Furthermore,
the BCL is available for all languages using the .NET Framework. The class library encapsulates a
number of common functions such as file reading and writing, network programming and graphic
rendering.

2.1.3 Common Type System and Common Language Specification

When different languages must cooperate with each other, some kind of agreement must exist
on how this is accomplished. Therefore, the Common Type System (CTS) is defined within the
CLR, making it a fundamental part of the CLR. It defines the entire set of types that can be used
with many different language syntaxes and makes it possible for two different .NET languages
to use each other’s objects. Language compilers targeting the CLR must generate code that is
conformant to the CTS. The CTS performs the following functions [16]:

• Establish a framework that helps enable cross-language integration, type safety, and high
performance code execution.

• Provide an object-oriented model that supports the complete implementation of many pro-
gramming languages.

2.1 Overview of .NET 11

• Define rules that languages must follow, which helps ensure that objects written in different
languages can interact with each other.

It is possible for one language to allow a construct supported by the CTS, while another
language does not. This can be a barrier for cross-language integration. Therefore, the Common
Language Specification (CLS) is developed, which is a subset of the CTS. The CLS is a set of
of basic language features needed by many languages[17]. It includes language constructs often
required by many software developers, but is small enough for most languages to be able to support
it.

CTS

C# VB.NET

J#

CLS

Figure 2.2: Common Type System and Common Language Specification

For more information about the CTS and the CLS, see [6].

2.1.4 Types

The CLR distinguishes between value types and reference types [6, 19, 26].

Value types are used to describe values. Values are instances of value types. They are directly
stored at the memory address on the method stack assigned by their variable, or inside an object
in case of a field of an object. Value types must always contain some data and thus cannot be
null. When passing value types as argument to a function, a copy of the value is made prior to
function execution. Thus, when executing the function, the copy of the value is used and can be
changed, but the original value persists.

Reference types contain references to heap-based objects and can be null. Reference types in-
clude classes, interfaces and arrays. When reference types are passed as an argument to a function,
the pointer to the object is passed (unlike in case of the value types where a copy of the object is
passed). Thus, passing by reference means that changes will be made to the original object.

In Figure 2.3 a diagram containing the different value and reference types is presented. Here
it is clear what the predefined value and reference types are and what kind of user-defined types
can be created. What we omitted up to now is that it is also possible to create a reference type
of a value type by a technique called boxing. For more information about boxing, we refer to [6].

The list of predefined types is shown in Table 2.1. The table contains a description of the type,
a mapping to the .NET class library and whether or not the type is supported by the CLS.

2.1.5 Portable Executables

Compiling a .NET program results in one or more files containing IL code and metadata. .NET
programs are stored in a binary format that is compatible with the Windows binary format PE

12 The .NET Framework

CLR Type System

Value Types Reference Types

Integer numbers

Floating-point numbers

Boolean values

Characters & Strings

Typed references

Records (structs)

Enumerations

Managed pointers

Unmanaged pointers

Method pointers

Interfaces

Classes

Arrays

Delegates

Predefined User-defined Predefined User-defined

Figure 2.3: Types supported by the CLR

Table 2.1: Predefined Types

CIL Name CLS
Type?

Name in BCL Description

bool X System.Boolean 1 byte: 0 (= false), 1-255 (= true)
char X System.Char 16-bit Unicode character
string X System.String Unicode character string
float32 X System.Single IEEE 32-bit floating-point number
float64 X System.Double IEEE 16-bit floating-point number
int8 System.SByte Signed 8-bit integer
int16 X System.Int16 Signed 16-bit integer
int32 X System.Int32 Signed 32-bit integer
int64 X System.Int64 Signed 64-bit integer
unsigned int8 X System.Byte Unsigned 8-bit integer
unsigned int16 System.UInt16 Unsigned 16-bit integer
unsigned int32 System.UInt32 Unsigned 32-bit integer
unsigned int64 System.UInt64 Unsigned 64-bit integer
native int X System.IntPtr Machine-dependent signed integer number

(2’s-complement)
native unsigned int X System.UIntPtr Machine-dependent unsigned integer number
object X System.Object Managed pointer to object on heap
typedref System.

TypedReference
Pointer plus exact type

PE/COFF Header

CLR Header

CLR Data

IL Code Metadata

Native Data and Code

PE File

Figure 2.4: Portable Execution File

(Portable Executable). A PE file is not executable by itself, it is the CLR that compiles PE files
into native code. The layout of a typical .NET PE file is shown in Figure 2.4.

The sections have the following meanings:

• The PE/COFF header is loaded by the operating system. It indicates the type of file:

2.1 Overview of .NET 13

Graphical User Interface (GUI), Character-based User Interface (CUI) or Dynamic-Link
Library (DLL). One of the components stored in the header is a timestamp indicating when
the file was built. Furthermore, the PE/COFF header contains references to other contents
within the PE file. For modules targeting the CLR there is information available allowing
the runtime to seize control.

• The CLR header indicates that the PE file is a .NET executable. The most important
components of the CLR header are the required version of the CLR, some flags, and possibly a
description of the entry point method of the executable. The runtime header, which contains
all of the runtime-specific data entries and other information, should reside in a read-only,
shareable section of the image file.

• The CLR data section contains metadata and IL code. The metadata section contains two
parts: tables that describe the types and members defined in the source code, and tables
that describe the types and members referenced by the source code. The Intermediate
Language code is created by the compiler that compiled the source language. This IL code
will eventually be compiled into native machine code by the CLR.

• The Native Data and Code section contains native code, for example precompiled C++ to
machine code.

Although the PE file contains different sections, we are only interested in the IL Code section.
The IL Code section contains the IL program that is eventually simulated.

2.1.6 Virtual Execution System

In the CLR, program execution is performed by a number of components interoperating under
the name Virtual Execution System (VES). The VES is also known as the Execution Engine. An
overview of the VES is presented in Figure 2.5. The VES is, among other things, responsible for
loading a PE file (containing the IL program), the translation from IL into machine code, and for
its execution.

.NET PE Files (Metadata and IL)

Class Loader

Verifier

JIT Compiler

Execution Support and Management

Garbage collector, security engine, code manager,

exception manager, thread support, etc.

JIT Compilation

Virtual Execution Engine

Figure 2.5: Overview of the Virtual Execution System (VES)

This thesis is restricted to the simulation of execution by the code manager. The rest of the
VES falls outside the scope of this project.

14 The .NET Framework

2.1.7 Code Management

Stack and Heap

A stack is a data structure that works according the Last In First Out (LIFO) principle. Values
can be respectively put on (pushed) and pulled from the top of the stack (popped). It is not
possible to store or retrieve values of the stack, other than the top value. Additionally it is not
possible to just read the top-of-stack value, without pulling it from the stack.

The Common Language Runtime is stack-based. This means that the CLR uses a stack to
store intermediate values on. This stack is not addressable by other methods and is initially empty
on each method call. On leaving a method, the stack only contains a return value (if available).

The heap is a dynamic storage area in which objects of classes and arrays can be stored.
References to objects in the heap are stored by means of pointers on the stack. It is also possible
that objects in the heap contain references to other objects.

An instance of a value type has its value stored on the stack (or in a containing object in the
heap), meaning that a piece of memory is reserved for their value. Instances of reference types
have a reference to heap-based objects allocated on the stack. Instances of reference types can be
null.

Memory Management

When a method is called, a method state (which contains the information captured in an invocation
stack frame) is created. A method state contains all information about the environment within
which a method executes. It contains an instruction pointer that points to the next IL instruction
to be executed within the current method. It also contains an evaluation stack that is entirely local
to the method, and thus cannot be accessed by other methods. The contents of the evaluation
stack are preserved across call-instructions.

Both Input parameters (i. e. the arguments of the method) and local variables are stored in
ordered lists that are addressable via an index. The values of both input parameters and local
variables are preserved across method calls.

The local memory pool is used for dynamic allocation of storage space which is not freed by
the garbage collector. The storage space will be reclaimed on method exit [19]. The local memory
pool is used to allocate objects which type or size is not known at compile time and which the
programmer does not wish to allocate in the managed heap [6].

Instr.

Pointer

Return-

state

Handle

Method Descriptor Security Marks

Evaluation Stack

Local Variables

Arguments

Local Memory Pool

Predecessor’s state

Current Instruction

Figure 2.6: Method state

When a method is called, the new method state is appended to the end of a list of method
states (method or procedure stack) and linked to its predecessor. The caller method is stored in
the return-state handle. When returning to the caller method, the results of the method that is
exited must be copied to the stack of the caller method and the method state must be removed
from the list of method states because it is no longer needed. The return-state handle is used
to restore the method state on return from the current method [6]. This corresponds with the
dynamic link compiler terminology.

2.1.8 Garbage Collection

Garbage collection is the process of identifying and cleaning up unused data in the managed heap
to reclaim memory. The garbage collector automatically detects and removes objects that are not
longer referenced.

2.2 The Intermediate Language 15

By default, garbage collection takes place when the system runs out of memory and no space
is available to create new objects. At such a moment the garbage collector starts running. The
garbage collector is responsible for suspending all active threads and marking all objects in the
heap as garbage. After that, the garbage collector builds a graph for all objects reachable from
the roots of the program. The roots of the program identify storage locations that refer to objects
on the heap or to objects that are set to null. Once all roots have been checked (the graph
contains only the objects reachable from the program’s roots), the objects not contained in the
graph are considered garbage. The memory space used by these objects now can be freed and
non-garbage objects are shifted down in memory to remove gaps in the heap. Because objects now
are positioned on other memory addresses, the pointers to these objects now become invalid and
must be updated by the garbage collector with the new memory address. Once these pointers are
updated, the suspended threads can be restarted and the garbage collection phase is finished.

In Figure 2.7 an example of the heap before and after garbage collection is presented. The heap
prior to garbage collection (Figure 2.7(a)) contains unreferenced objects (Object C and Object
E), which are deleted during garbage collection resulting in the heap displayed in Figure 2.7(b).

Object A

Object B

Object D

Object E

Object C

Object F

HeapRoots

(a) Before

Object A

Object B

Object D

Object F

HeapRoots

(b) After

Figure 2.7: Example representation of the heap before and after garbage collection

The advantage of garbage collection is that objects are cleaned up automatically and thus do
not have to be tidied up manually (which causes memory leaks when forgotten). The main disad-
vantage of garbage collection is that it introduces a performance hit and also that the execution
of all active threads must be suspended in order to apply garbage collection.

For more information about garbage collection we refer to [23, 19].

2.2 The Intermediate Language

The .NET Framework uses language compilers that target the Common Language Runtime. For
instance, Microsoft provides C#, J#, VB .Net, Jscript .Net, and C++ compilers. Furthermore,
there are third-party compilers that target the CLR, such as an Eiffel, Cobol or Perl compiler.

As mentioned before, the source code of a .NET supported language is compiled to an inter-
mediate format called the Intermediate Language (IL). The IL includes instructions for loading,
storing, initializing and calling methods on objects, as well as instructions for arithmetic and
logical operations, control flow, direct memory access, exception handling and other operations
[16].

Together with the produced IL, metadata is generated. Metadata contains, among other data,
a description of the types in the code, their members, and code references. The IL and metadata
are contained in a so called assembly. The assembly is constructed using the portable executable
(PE) file format that is based on and extends the published Microsoft PE and common object
file format (COFF) used for executable content. The PE filetype accommodates IL, native code
and metadata. The presence of metadata in the file, along with the IL, enables written code
to describe itself. The runtime locates and extracts the required metadata from the file during
execution [16, 18, 15].

16 The .NET Framework

2.2.1 Directives

Directives are bits of metadata representing the components which compose our program. They are
are not actual IL instructions representing code [5]. Directives can ask the runtime-environment
to perform some task and can be recognized in IL as productions starting with a period (.).
For example, a method containing directive .maxstack n means that at most n stack slots are
required. For a complete list of directives we refer to the CLI Specification [6].

2.2.2 Modules and Assemblies

Modules are single files (PE-files, see Section 2.1.5) that contain executable code targeting the
Virtual Execution System (VES). As stated above, a module contains type definitions and IL
code.

One or more modules can be embedded in an assembly. An assembly is a logical unit of
functionality, containing one or more modules. Thus, a .NET application can be packaged into
assemblies, which respectively are called a single-file assembly and a multi-file assembly. The latter
can also contain resources as images or sounds. In Figure 2.8 both a single-file assembly and a
multi-file assembly are represented.

.module SFA.exe

manifest

metadata

IL code

assembly SFA

(a) Single-file assembly

.module MFA.exe

manifest

metadata

assembly MFA

.module M1.netmodule

metadata

IL code

IL code

metadata

IL code

file snd.wav

file img.gif

.module M2.netmodule

(b) Multi-file assembly

Figure 2.8: Difference between a single and multi-file assemblies and its modules

Note that the multi-file assembly contains multiple modules (which are physical files) and that
one of these modules contains a manifest. The manifest contains information for finding all the
definitions of an assembly, which is important for loading and running the other modules within
the assembly. Also note that the multi-file assembly can contain images (file img.gif) and sounds
(file snd.wav).

To simplify this research project we only use single-file assemblies.

2.2.3 Namespaces

The namespace concept is used to group functionality within unique names. The name of the
namespace is often the same as the name of the file in which the code exists, but it is also possible
to have multiple namespaces in one single file or to have a namespace that spans over multiple
files. To prevent equally named namespaces colliding with each other, they are contained within
assemblies.

The Intermediate Language has no distinct concept of current namespace. A type is always
referred to by its full name, relative to the assembly in which it is defined.

2.2.4 Methods

Operations associated with a type or with instances of a type are called methods. There are
two types of methods, namely static methods (class methods) and instance methods. The major
difference is that static methods are not connected to an object and cannot access any object

2.2 The Intermediate Language 17

methods or attributes. A static method thus is only associated with the type itself, instead
of with an instance of that type. Static methods do not have an instance pointer (this). The
arguments of static methods are indexed, starting with 0.

Instance methods are methods that are associated with an instance of a reference type, and
can be virtual and nonvirtual. Virtual methods are those that can be replaced and overridden by
subclasses, whereas nonvirtual methods cannot. Instance methods have access to the this pointer
as unlisted first argument at index 0, which they can use to access public, private and protected
instance members of the enclosing type. When an instance method is called, the stack must
contain the arguments preceded by the instance pointer.

A method is identified by its name, class type, and signature. When calling a static method,
the type of the class is needed. And when calling an instance method, an instance of a class
type needs to be provided. The signature exists of the return-type of the method, the number of
arguments and the argument types. When a method is called, the CLR searches for a method
containing the same name, type and signature as provided in the call. As soon as a matching
method is found, the arguments (which should be placed on the stack prior to calling) are copied
from the stack to an array that holds the passed arguments.If the init directive is present, the
local variables are initialized to the type’s default value. For example a variable of value type
int32 is initialized to the value 0. If the init directive is not present, is deemed unverifiable in a
security check performed by the CLR [15]. After initialization of the local variables, the method’s
evaluation stack is empty and the execution of the first instruction can start.

When the method reaches the last instruction, which is the ret statement, the return value (if
available) needs to be on the evaluation stack, and the method state transfers control to its caller.

2.2.5 The IL Instruction Set

The IL instruction set provided in Partition III of the CLI Specification [6] is partitioned into two
sections, called base instructions (e. g. addition and subtraction) and object model instructions.
There are over 220 instructions. A full documentation of the IL instruction set can be found in
the CLI specification [6].

Most IL instructions perform their actions by using the evaluation stack that is associated to
each method state (see Figure 2.6). For example an add expression that adds two values value1
and value2 yields a result. What happens in IL is represented in Figure 2.9. The two values are
pushed on the stack by using the ldc instruction. Subsequently an arithmetic operation (add) is
executed, which pops the two values from the stack and replaces them with the resulting value.
Note that value1, value2, and result represent actual values.

value2

value1

...

value1

...

result

......

ldc.i4 value1 ldc.i4 value2 add

Figure 2.9: Execution of instructions on the stack

The .NET Intermediate Language contains instructions that are completely independent of
the type of their arguments [19]. For example, it is possible to use the same instruction to load a
value of a local variable on the stack for both an integer and a floating-point number. The reason
for this design decision is that Microsoft wanted the creation of source-to-IL compilers to be as
easy as possible, in order to extend multi-language support.

Sometimes IL instructions are used with an efficient encoding. For example, for loading an
argument onto the stack, it is possible to either use the instruction ldarg <num> (for which an
int16 number represents the index), or the instructions ldarg.0, ldarg.1, ldarg.2 and ldarg.3

which are encodings for the most often used arguments of a method. The first instruction needs
an extra two bytes of memory for the index, while the other instructions have the index encoded in

18 The .NET Framework

the instruction. Furthermore, the CLR does not need to read the instruction argument, resulting
in some performance gain. For indices 4 to 255 it is also possible to use ldarg.s followed by an
int8 number representing the index, which is called a short form.

The IL instruction set can be categorized further than the previously mentioned categories
base instructions and object model instructions, as presented in the following sections. For a full
and detailed list of instructions, we refer to [6].

Load and store instructions

These are instructions used to load values or references onto the stack and retrieve them from
the stack to store them at their home locations. Typical examples of such instructions are ldarg,
ldloc, ldobj and their counterpart instructions, being starg, stloc and stobj.

Arithmetical, logical and type conversion instructions

To be able to support arithmetical operations, IL contains typical arithmetic instructions such as
add, sub, mul and div. IL also supports logical instructions (called bitwise instructions in the IL
specification[6]) like not, and and or. An example of a type conversion instruction is conv, which
is available to convert the value on top of the stack to the specified type.

Branching instructions

In IL there are a number of instructions that are used to control the flow of execution. We distin-
guish conditional and unconditional branch instructions. Conditional branch instructions either
take one value from the stack (and check whether a condition specified by the used instruction
is true) or they compare two values on the stack. Depending on the outcome of the condition a
branch follows. For example, the instruction brfalse adjusts the control flow if the value on the
stack is false. Another example is the instruction beq which stands for ‘branch on equal’. In this
case the control flow is adjusted to a target if the top two values on the stack are equal. In both
cases, the program does not branch and continues executing the next instruction if the condition
is not satisfied.

Unconditional instructions are instructions that do not depend on a condition. An example of
such an instruction is br, that unconditionally branches to a specified target.

Miscellaneous instructions

Beside previously mentioned instruction types, IL also contains instructions like calls and a return
instruction.

There are different types of call instructions in the IL. call is used for calls to static methods of
which the destination is fixed at compile-time, while callvirt uses the class of an object (known
at runtime) to determine the method to be called. The callvirt instruction is used for both
instance methods.

The return instruction ret, which is used to return from a method, is performed without any
condition. The value that is on the evaluation stack, if there is any, is copied to the evaluation
stack of the caller and control is transferred to the caller.

2.2.6 Generics

Generics allows defining a class or method without a specific type. The defined item can then be
reused with several types. Generics provides type safety at compile-time.

The generics concept is introduced in version 2.0 of the .NET Framework, but is not imple-
mented in our translator.

2.3 Our Work 19

2.2.7 Name Resolution

Names in the IL exist of a simple name or of a composition of simple names with connection
symbols such as a dot. For example, System and Object are simple names, while System.Object

is a composite name. A composite name is also called a dotted name.
The common prefixes of full class names are called namespaces. The full name of a class is a

dotted name. The last simple name of the dotted name is the class name. For example the dotted
name System.Object. Here Object is the class name and System is the namespace.

[Mscorlib]System.Object::ToString()

Assembly

Class

(namespace)
Class

MethodDotted name

Figure 2.10: A method call, referenced by its assembly and dotted name.

A class is scoped to a particular namespace, and a namespace is scoped to the provided
assembly. If no assembly is provided, the namespace is scoped to the current assembly.

2.3 Our Work

In the rest of this report – especially in Chapter 4 and Chapter 5 – we treat the .NET concepts
that we have implemented. These cover the implementation of a stack representation, support
for integer types and object types, and the ability to instantiate objects and call both static and
instance methods. The instructions we treat are involved with arithmetical operations as well as
instructions that do comparing and branching. We also implemented support for instructions that
are used to explicitly load and store values from and to arguments, fields, locals, and the stack.

2.4 Summary

In this chapter we have introduced the Microsoft .NET Framework. We have recalled what Mi-
crosoft’s objectives are for developing the .NET Framework, and which components the framework
consists of. We have explained that the Common Language Runtime is the environment in which
.NET applications are executed. It uses IL code as input and compiles this to native code, prior
to executing it. This process is called JIT compiling. Besides the execution of IL by the CLR, we
have introduced the Common Type System and Common Language Specification.

Furthermore, we told something about how IL is stored in a binary format in a so-called
Portable Executable file. This file is loaded by the Virtual Execution System, which is part of
the CLR. We also have introduced some aspects of code management, which covers the usage
of a stack and heap. The stack is used by the CLR to store intermediate values and references
on. The heap is a dynamic storage area in which objects of classes and arrays can be stored.
When executing a program, each method gets a method state assigned. A message state contains
information about the environment within which the method executes, like an instruction pointer
and lists of input arguments and local variables.

The Intermediate Language was also introduced in this chapter. We have told something about
directives, which are commands that ask the runtime-environment to perform a task, as well as
about modules and assemblies. Modules are physical files that can be embedded in an assembly,
which is a logical unit of functionality. The IL also uses namespaces, which can be used to group
functionality within unique names. We also mentioned methods, which are operations associated
with a type, and what happens when they are called. There are two type of methods, namely
instance methods and static methods.

The IL instruction set contains over 220 instructions that can, among others, be used to load
and store values or references on the stack, perform arithmetical or logical operations, do type
conversions, and adjust control flow. Furthermore we have also mentioned how names and name
resolution look like in IL.

Chapter 3

Graphs and Graph

Transformations

Graphical structures like charts and diagrams, are often used to represent complex data and
structures in an intuitive way. A graph is such a graphical structure, and is applied in different
areas like route planners, electric circuits, job scheduling and train-networks.

Groningen

Hengelo

Leeuwarden

Amersfoort

Den Haag

Haarlem

Utrecht

Roosendaal

Rotterdam

Maastricht

Vlissingen

Den Helder

Deventer

Eindhoven

Zwolle
Amsterdam

Arnhem

Figure 3.1: A graph representation example

Figure 3.1 is an example of a graph. It represents a number of road connections between cities
in The Netherlands, the nodes representing cities and the edges being the roads. The cities contain
labels with the name of the city. In this example we omitted the labels on the edges. However,
edges could be labelled with names (of the roads) or values (representing distance, fuel usage,
travel time, travel expenses, etcetera).

In this research project, we use graphs to model the compile-time and run-time structures of
a program. A compile-time structure can be a concrete or abstract syntax representation of an
arbitrary program. The run-time structures of a program are state snapshots of the program while
being executed. Graphs are useful for this because they have a formal background, are intuitive
and can be used for modelling many different application areas. We think that graphs are useful
for representing the compile-time structure of a program, as well as the run-time behaviour of a
program involving dynamic (de)allocation of storage space and dynamic method invocation. The
behaviour of software programs is simulated by (repeatedly) transforming one graph into another.
To transform one graph into another graph we use graph production rules. Production rules are
described in Section 3.2.

22 Graphs and Graph Transformations

Throughout this chapter we use Pacman examples to explain different concepts. These exam-
ples are based on the examples presented in [8].

3.1 Graphs

A graph is a mathematical structure. We use edge-labelled graphs defined over a set Lab of labels,
as follows [12]:

Definition 3.1 (Graph). A graph G is a tuple 〈Nod, Edg〉 where

• Nod is a finite set of nodes;

• Edg ⊆ Nod × Lab × Nod is a (finite) set of edges.

The graphs we use are directed graphs, i. e. for each edge we distinguish between its source and
target node. Furthermore, as follows from the definition, edges have a label and nodes can not.
It is possible to create an edge with the same source and target node, i. e. self-edges of a node.
Self-edges can be considered as a way of labelling nodes. A node can have multiple self-edges and
thus multiple labels. In this setting, it is not possible to have more than one edge with the same
source, target and label, i. e. parallel edges.

3.1.1 The Pacman Example

An example graph, bases on the Pacman game, is given in Figure 3.2. In the graph a number of
nodes are shown, namely the dots, and the figures of Pacman, the ghost and the apple. The grid
of dots and the edges between them represent the fields to which Pacman, the ghost and the apple
are bound. The normal behaviour would permit both Pacman and the ghost to be able to move
over the grid. To keep this example simple, we assume the ghosts to be fixed to a specific node in
the grid. For simplicity, we also omitted the labels on the edges.

Figure 3.2: Graph representation of Pacman

3.2 Graph Production Rules

To transform a graph (source graph) into another graph (target graph), we use graph transforma-
tion rules. Graph transformation rules are also called graph production rules.

A graph production rule p has the form p : L → R, in which L represents the left hand side
(LHS) graph and R the right hand side (RHS) graph.

A match for p : L → R in some graph G is a total morphism m : L → G, i. e. the occurrence
of p’s LHS in G. Applying rule p means finding a match of L in the source graph G and replacing

3.2 Graph Production Rules 23

L by R, leading to the target graph of the graph transformation[7, 8]. This replacement is not
complete, because the structure is preserved wherever the L and R overlap[13].

Application of a production rule can be written as G
p,m

→ H , meaning that graph G is trans-
formed into graph H by using production rule p at matching m. It is possible that p has multiple
matchings of its LHS in graph G, but also that multiple rules are applicable to the same graph.

Production rules can be extended with negative application conditions (NACs, see [7, 10]). A
negative application condition limits the applicability of a rule by extending the rule’s LHS. A
rule p will only be applied to a source graph G when the LHS matches G and if that matching
cannot be extended to a matching of any NAC of that rule.

3.2.1 The Pacman Example - Production rules

An example of a production rule in the context of the Pacman game is presented in Figure 3.3.
According to this rule, called move, Pacman moves to a new position by removing the edge between
Pacman and a node n (e. g. the left node in the rule below), and placing an arrow between Pacman
and the neighbour node of n.

move

Figure 3.3: Production rule to move Pacman

Of course it is also possible to simulate the behaviour of a ghost eating Pacman, or Pacman
eating an apple. See for example, Figure 3.4.

killkill

(a) Rule of Ghost killing Pacman

eat

(b) Rule of Pacman eating an apple

Figure 3.4: Two additional production rules

In Figure 3.5 the application of a production rule is displayed. For this example, we use the
already introduced production rule for moving Pacman and the graph representing Pacman and
the grid of nodes. (For space reduction, we have presented only a part of this graph.)

In this example, we have a production rule p consisting of left hand side L and a right hand
side R and a transition between L and R. There is a matching m between L and the source graph
G. This is indicated with the dashed and dotted arrows. Now that there is a matching m of
rule p, it is allowed to transform graph G by replacing the matched nodes of L by the nodes of
R, resulting in a graph H . Note that the arrow in graph G, denoting the position of Pacman, is
deleted and that in graph H a new arrow is constructed. Thus, Pacman has been moved from one
position to another.

As mentioned before, production rules can be extended with NACs. In Figure 3.6 we extended
the previously introduced rule to move Pacman from one node to another (see Figure 3.3) with a
NAC. In this example, Pacman may only move to a node when there is not a ghost positioned at
that same node.

To execute this rule, a matching m between the LHS of the rule and the source graph must
exist. Furthermore, the elements of the NAC must be excluded from the source graph. If this is

24 Graphs and Graph Transformations

Graph G Graph H

Matching m

G H

p: L R

p,m

Left Hand Side ()L Right Hand Side ()R

P
ro

d
u
c

tio
n
 R

u
le

A
p

p
lic

a
tio

n
 o

f
p

ro
d

u
c

tio
n
 r
u
le

... ...

...

...

... ...

...

...

Figure 3.5: Example application of production rule

move

Figure 3.6: Production rule to move Pacman, containing Negative Application Condition

the case, the NACs are satisfied and the rule can be applied by replacing the matched elements
of the LHS by the elements of the RHS of the rule.

3.3 Graph Production System

A graph production system (GPS) consists of a set of graph production rules R and a start graph
I. The GPS can be used to generate a (possibly infinite) state space by applying production
rules p ∈ R to the graphs, starting with graph I. All the resulting graphs can be seen as state
snapshots (states), and the application of the rules as transitions between the states. The set of
graphs and transitions between these graphs, we call a graph transition system (see also [14]). A
graph transition system always contains an initial state. Furthermore, it can have intermediate
states and a final state if the state space is finite.

3.3.1 The Pacman Example - Graph Transition System

In the context of the previously introduced Pacman example, we present an explanation of a
graph transition system. For this example, we have taken the graph presented in Figure 3.2
as start graph. When applying the rules from Figure 3.3 (move) and Figure 3.4 (kill and eat)
whenever possible, we get the graph transition system displayed in Figure 3.7.

Note that a state can have transitions from one state to another (and possibly back). Each
transition represents the application of a production rule (move, eat or kill). The two highlighted
states match with the source and target graph the move production rule as explained in Figure 3.5.
Furthermore, we can see that once the apple has been eaten, there is no way back to a state having
an apple positioned at the grid. Also, we can see that once Pacman has been killed by a ghost,
there are no applicable rules left.

3.4 Graph Transformation Tool 25

State

State State

State State

State

State

State

State State

StateState

State StateState

StateState

kill move move move move

move move move

kill eat movemovemove

kill move move move move

move move move

move

move

... ...

...

...

... ...

...

...

Start state

No actions
available

Figure 3.7: Transition system of Pacman example

3.4 Graph Transformation Tool

The tool we use for performing graph transformation is GROOVE [22]. GROOVE stands for
GRaphs for Object-Oriented VErification. With this tool it is possible to specify graphs and
production rules. It can also execute these production rules, which results in a graph transition
system.

In GROOVE, graphs are represented by blocks for nodes and arrows for edges. Self-edges are
represented as an arrow with the same start and end node, or as a label on a node (inside the
rectangle).

Furthermore, GROOVE offers the LHS, RHS, and the NACs of a production rule to be rep-
resented in a single graph. To accomplish this, the production rules used by GROOVE consist of
four different types of nodes and edges, each having different shapes and colours [21, 13]:

• reader -elements are elements that occur in both LHS and RHS. They have to be present in
the source graph to match the LHS and are preserved in the target graph. Reader-elements
are represented by thin solid black arrows and rectangles.

• eraser -elements are elements that occur in the LHS but not in the RHS. They have to be
present in the source graph to match the LHS, but are deleted in the target graph. Eraser-
elements are represented by thin dashed blue arrows and rectangles.

• creator -elements are elements that do not occur in the LHS but do occur in the RHS. They
have to be absent in the source graph in order to be introduced in the target graph. Creator-
elements are represented by thick solid green arrows and rectangles.

• embargo-elements are elements that prohibit the application of the rule when they exist in
the relating matching in G. Embargo-elements are making up the NACs and are represented
by thick red dashed arrows and rectangles.

3.4.1 The Pacman Example - GROOVE

An example production rule used in GROOVE is displayed in Figure 3.8. In this figure, which
is based on the rule presented in Figure 3.6, it can be seen that this rule only is applicable if
Pacman and two adjacent nodes are available in the source graph. Pacman also must be at the
node the eraser-element points to. If this is the case, the embargo-elements are checked. The
embargo element for this rule states that no Ghost may be positioned at the node adjacent to the
node Pacman is positioned at. If so, the rule can be executed; the eraser-element is deleted and
the creator-element is created.

26 Graphs and Graph Transformations

Figure 3.8: Example production rule in Groove

3.5 Summary

This chapter introduced the concepts of graphs and graph transformations. We have told that our
graphs contains nodes and labelled edges. Furthermore, we have mentioned that it is not possible
to have parallel edges. A (source) graph can be transformed into another graph (the target graph)
by using graph production rules. A graph production rule can be applied to a source graph when
the left hand side of the production rule has a matching in the source graph, but only when
negative application condition are satisfied.

Furthermore, we have provided a brief description of the graphical notation of graph transfor-
mations in the GROOVE tool set. There, we distinguish four types of nodes and edges, namely:
reader, eraser, creator, and embargo elements.

In this research project graphs are used to model compile-time and run-time structures of a
program, while graph transformations are used to represent the behaviour of the program.

Chapter 4

Translating IL Programs to

Graphs

Before introducing the developed graph production rules in the next chapter, we focus on the start
graph to which the graph production rules are applied. This start graph is an abstract model of
the IL program to be simulated. Because the .NET language compilers generate IL bytecode, and
the GROOVE tool set needs a graph as input, a translator is developed that translates arbitrary
IL programs into a graph representation of that program. Such a graph is called an Abstract
Syntax Graph (ASG).

This chapter starts with a description of the translator. We will introduce the structure of the
translator, what its input is and which operations are performed on this input. In Section 4.2 a
meta-model of the ASG is shown and discussed.

In Section 4.3, we propose a representation for namespaces. We also discuss how method
signatures are calculated, how they are represented in the graph, and how existing method signa-
tures are resolved. Additionally, Section 4.3 contains a description of the static analysis process
performed by the translator.

After discussing static analysis, we present an example in which we translate two equivalent
programs written in different .NET languages (i. e. C# and VB.NET) to the .NET IL. In this
example, we will show that both programs will result in two IL programs having comparable
semantics. Furthermore, we will provide an example of the translation of an IL program to an
ASG.

4.1 Translator

The translator uses a textual IL program as input. This textual IL program is obtained by
disassembling a Portable Executable file (see Section 2.1.5), using the disassembler called ildasm.
The tool ildasm is incorporated in the .NET Framework SDK 2.0, which is freely available from
the Microsoft website1. Because we are disassembling a program that has already been type
checked by the compiler that created the PE file, we can assume that the program is type correct.
Note that this only applies to type errors detectable at compile-time and not at run-time (such
as explicit type casting of objects). Because we assume that programs are correctly typed, we do
not perform any type checking in neither the translator nor the production rules.

During the translation phase, a textual IL program is read and transformed into a graph
representation of this program. To do this, we could implement our own translator from scratch
or use a compiler generation tool that creates one for us. Implementing a translator from scratch
would involve a lot of work. Therefore we have chosen to use a compiler generator tool called
ANTLR[2]. ANTLR uses grammar specifications as input and automatically generates a translator

1 Download .NET Framework SDK 2.0 from: http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx

http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx

28 Translating IL Programs to Graphs

according to this specification. We obtained a grammar for a .NET Intermediate Language parser
(written by Pascal Lacroix) from the ANTLR website, which had to be modified due to non-
determinism. The grammar file for the tree walker is our own implementation. The generated
translator consists of a lexer, a parser, and a tree walker.

Lexer The lexer scans the input file (i. e. an IL program) and chops it into pieces called tokens.
These tokens are sequenced into a stream – called a tokenstream – and sent to the parser.

Parser The tokenstream is used as input for the parser which creates an Abstract Syntax Tree
(AST). An Abstract Syntax Tree is a tree-shaped abstract representation of the program. The
AST can be used to transform and order program information. Furthermore, it is used to omit
syntactic information from the original program without losing its semantics. This makes it easier
to process it further by the tree walker.

Tree walker A tree walker is used to visit all nodes in the AST and to create a new structure
in the form of an Abstract Syntax Graph.

An overview of the translation process is presented in Figure 4.1. The rectangles represent the
input and output of the different parts of the translator. The labels on the edges denote the parts
of the translator that are responsible for translating an input into an output.

Textual

.NET Intermediate Language

Program

Token Stream

Lexer

Translator

Abstract Syntax Tree

Abstract Syntax Graph

Parser

Tree Walker

Figure 4.1: Overview of the translator

The result of the translator, the Abstract Syntax Graph, is used as GROOVE’s start graph
for simulation using graph transformations. This is explained in Chapter 5.

4.2 Meta-Model Abstract Syntax Graph

In order to formalize and give an overview of the structure of the ASG, a meta-model has been
designed. Because this meta-model is too large to fit in one figure, it is spread over multiple
figures, which are Figure 4.2 to Figure 4.5. Together, these figures describe the concepts that are
used in the ASG, and the relations between these concepts.

4.2.1 High-level structure

We start with a meta-model containing the overall structure of the ASG. This model is shown in
Figure 4.2.

4.2 Meta-Model Abstract Syntax Graph 29

Method

Type

MethodBody

methods*

Namespace

contains*

Program

contains*
contains

*

body1

Signature

has1

returnType

1

Parameter

parameters*

type 1
Instruction

instruction*

Local

locals

*

entrypoint

directive0..1

Class

Assembly

contains *

Field

fields

*

type1

Identifier

name

1 name

0..1

Identifier

name 1

Attribute

attribute

*

extends

0..1

attribute

*

attribute*

CallConv

callConv*

Init

init 0..1

next 0..1

next

0..1

next 0..1

next

0..1

next 0..1

Figure 4.2: Meta-model of the Abstract Syntax Graph

The rest of this section contains a description of the concepts presented in the meta-model
presented in Figure 4.2. Note that this contains two Identifier nodes. Both Identifier nodes represent
the same concept of an identifier and were put in the model for preventing too many crossing lines.

Program The Program concept is the root of the graph and represents a parsed IL program. A
Program can contain Namespaces, Types and Assemblys.

Namespace A Namespace represents the logical grouping of the names used within a program.
They can be nested in an IL program, but we choose to represent this in a non-nested man-
ner, because classes are always referenced by its fully qualified name. For more information see
Section 4.3.1. A Namespace can contain Types, in the form of Classes.

Assembly The Assembly concept represents a logical unit that can hold Classes and Namespaces.
Furthermore, an Assembly is identified by a name and can have Attributes. We use the Assembly

concept (at this moment) only to determine whether or not classes from the .NET Class Library
are called.

Type The Type concept represents types like classes and value types. See Section 4.2.2 for more
information.

Class The Class concept is a subtype of the Type concept and represents a class declaration. A
Class can extend another Class, has a name (which is identified by its Identifier) and can contain
Fields and Methods.

30 Translating IL Programs to Graphs

Signature The Signature node is used to represent method signatures. A method signature
contains the method’s return type, the calling convention, and the method’s parameter types in
an ordered way. The signature is determined by the parser; how this is done will be explained in
Section 4.3.2.

Method The Method node represents a method declaration. A method declaration always has
a Signature and must have a MethodBody.

MethodBody MethodBody represents the method’s implementation.

Instruction Instructions are denoted by the Instruction concept. Section 4.2.4 discusses the
individual instructions.

Identifier The Identifier node represents a name that is used to name an element.

CallConv CallConv represents the calling convention of a method. The calling convention de-
notes whether or not the call is to a static method.

Parameter The Parameter concept represents a formal parameter in a method signature and
describes variables which are accepted by a method. Parameters are of a certain Type, may have
a name (identified by the Identifier concept), and are contained in the method Signature.

Field The Field node represents the declaration of a field. A Field has a name (identified by
Identifier), attributes (denoted by Attribute), and has a type relationship to the Type to denote its
type.

Local The Local concept represents the declaration of a local variable. A Local can have a name

(identified by Identifier), and has a relationship to the Type to denote its type.

Init The Init concept is used to denote that the Local variables of a MethodBody must be ini-
tialized to their default values.

Attribute The Attribute concept represents available attributes. It is further explained in Sec-
tion 4.2.3.

Entrypoint The entrypoint concept denotes the start point of executing a Program.

4.2.2 Types

This meta-model (see Figure 4.3) describes the types that are available in the ASG. The following
types are supported in our ASG and production rules.

bool The bool concept represents the type bool (i. e. boolean) of which the values can be either
a true (non-zero) or false (zero).

char A value of type char can hold a single Unicode character.

string The string concept represents the type string. An instance of type string is a sequence of
characters.

4.2 Meta-Model Abstract Syntax Graph 31

int16

bool

string

int64

int8

int32

char

Type

float64

float32

Class

void

Figure 4.3: The types in the ASG meta-model.

float32, float64 The concepts float32 and float64 represent floating-point types (which describe
floating-point values). Note that this concept is not used (yet), because GROOVE does not
support floating point values.

int8, int16, int32, int64 These nodes represent integer types of different sizes (respectively
1, 2, 4, and 8 bytes). We do not distinguish between these types during run-time simulation using
production rules, because we do not have a notion of memory-sizes.

void The concept void is only used as a return type, indicating that a method does not return
a value.

Class The Class node represents a class type which can contain Fields and Methods. See Fig-
ure 4.2.

4.2.3 Attributes

The meta-model presented in Figure 4.4 contains a description of the different kinds of attributes
available. These attributes are at this moment not used in the production rules, but we have put
them in the graph for possible future extension.

Attribute

ImplAttribute MethodAttribute ClassAttribute AssemblyAttributeParamAttribute FieldAttribute

Figure 4.4: The attributes in the ASG meta-model.

Examples of well known attributes are private, public, static, and abstract. For all the
different types of attributes, we refer to the ECMA specification [6].

4.2.4 Instructions

The instructions denoted by this meta-model are the .NET IL instructions that a method body
can hold. The instructions we support are given in Figure 4.5.

Although we have presented all supported instructions in the meta-model, we do not discuss
all instructions individually. However, we would like to highlight a few important and interesting
instructions. Note that IL instructions have a strong resemblance to instructions in assembly
languages.

32 Translating IL Programs to Graphs

LabelInstruction

has

0..1

target 1

br

Identifier

name1

Constant

ldargindex 1

ldc

value

1

Signature

newobj

methodSignature

1

methodName

1

call

typeSpec

1

Type

add

beq

bgt

blt

bne

break

brfalse

brtrue

callvirt

ceq

cgt

clt

div

dup

ldloc

ldnull

ldstr

mul

nop

pop

rem

ret

stfld

stloc

sub

name 1

starg

string

1

ldfld

stsfld

ldsfld

type 1

Figure 4.5: The instructions in the ASG meta-model.

Instruction See Section 4.2.1.

Label The Label concept denotes a label that is used to tag an instruction, which can be used
as a target to branch to. In this project a label always is represented by an Identifier.

ceq, clt, cgt The ceq, clt, and cgt instructions stand for compare if equal, less than, and greater
than. When executing these instructions, two values on the stack are popped, compared, and
the result of this evaluation is pushed back on the stack. The result is 1 (of type integer) if the
evaluation yields true, otherwise 0.

add, sub, div, mul, rem These arithmetical nodes represent arithmetic instructions, namely
addition, subtraction, division, multiplication and remainder (modulo).

ldc The instruction ldc loads a Constant value on the stack.

call, callvirt, newobj The concepts call and callvirt represent static and dynamic calls, re-
spectively. The instruction newobj represents the creation of a new object. All three instructions
are related to the Signature node, representing the signature of the method to call. In case of
the newobj instruction this is the constructor’s Signature. Furthermore, the instructions use an
Identifier representing the name of the method to call. Also, they are related to a type which
represents the class of which the method must be called, or – in case of the newobj instruction –
of which an object must be instantiated.

4.3 Design Decisions 33

ret The ret instruction is used to return from a method to its caller. In this project we assume
that a method is always ended with a retinstruction. In IL there are other possibilities to terminate
a method, i. e. with throw or jmp, but these are not supported yet.

ldfld, stfld The ldfld instruction is used to load a value from an instance field to the stack, and
the stfld instruction is used to store a value from the stack to an instance field. Both the ldfld and
stfld instructions use an edge with label typeSpec to refer to the type of the instance of which the
field that the value that is loaded or stored is an instance. The name edge points to an identifier
representing the name of the field. Furthermore, the instructions have an edge called type to a
specific Type to indicate the type of the field.

ldarg, starg The instructions ldarg and starg are used to load the value of an argument on the
stack and store a value from the stack to an argument, respectively. The argument is indicated
by a Constant value representing the index of the argument.

ldloc, stloc The ldloc and stlog instructions are used to load a value from the stack to a local
variable, and vice versa. The used local variable is indicated by its Constant value representing
the index. The typeSpec edge indicates the type of which the object is an instance of. The name
of the field is referred to by an Identifier node.

br, bne, blt, bgt, beq, brfalse, brtrue These instructions represent branch operations.
The instruction br represents an unconditional branch to an instruction bound to a specific
Labelrepresenting its target. The other instructions depend on the evaluation of a condition.
If the evaluation yields true, then the control should branch to the target-instruction represented
by the Label. Otherwise, the control is transferred to the next instruction.

Type See Section 4.2.2.

Identifier See Section 4.2.1.

Signature The Signature concept represents a method signature and is used to locate a method
implementation.

Constant The Constant concept stands for GROOVE’s way of representing an actual value of
a specific type, which can only be integer, boolean or string.

4.3 Design Decisions

Implementing the translator came along with a number of problems. Decisions about the rep-
resentation of namespaces, classnames, signatures and identifiers had to be made. These design
decisions are discussed in this section.

Furthermore, we do not only discuss the representation of these concepts, but also describe
the process of static analysis in this chapter. During this static analysis phase, namespaces and
classnames are transformed in order to meet their specified representation to be able to use them in
graph production rules. We also describe how method signatures that are not explicitly available
in the program are computed and stored in the final graph. Furthermore, the process of resolving
identical string values of identifiers is part of static analysis.

34 Translating IL Programs to Graphs

4.3.1 Classnames and namespaces

In the IL it is possible to have nested namespaces, which we will explain on the basis of the
example code of Listing 4.1. We have left out the details in this pseudo code in order to emphasise
the namespace structure.

The example shows that it is possible to have a namespace A.B, which stands for a nested
namespace B in namespace A. Furthermore, a namespace E is nested in a namespace D to create
the nested namespace D.E. Also, classes can be declared in a namespace. Classes X, Y, and Z in
the example are declared in the namespaces D and D.F, respectively.

1 .namespace A {

2 // This i s namespace A
3 }

4

5 .namespace A.B {

6 // This i s namespace A.B
7 }

8

9 .namespace A.C {

10 // This i s namespace A.C
11 }

12

13 .namespace D {

14 // This i s namespace D
15

16 .class X {

17 // This i s a c l a s s wi th the f u l l name D.X
18 }

19

20 .namespace E {

21 // This i s namespace D.E
22 }

23

24 .namespace F {

25 // This i s namespace D.F
26

27 .class Y {

28 // This i s a c l a s s wi th the f u l l name D.F.Y
29 }

30

31 .class Z {

32 // This i s a c l a s s wi th the f u l l name D.F.Z
33 }

34 }

35 }

36

37 .namespace G.H.I {

38 // This i s namespace G.H. I
39 }

Listing 4.1: Namespace IL example

A useful namespace representation in the ASG is needed in order to use namespaces in pro-
duction rules. Therefore, we propose three alternatives.

Alternative I. Nested namespaces (Figure 4.6(a))

For the first alternative we use a real nested structure as one can encounter in a program. Each
namespace node represents one single name of the full namespace. Thus, as present in our example,
the namespace A.B would consist of a namespace node A as child from Program, and a namespace
node B as child from namespace node A. The advantage of this representation is that we maintain
the nesting structure. On the other hand, using this representation, it is quite hard to directly

4.3 Design Decisions 35

resolve a nested namespace by its full name. For example, in this representation resolving the
namespace A.B by using production rules would involve multiple production rules to resolve each
(sub)namespace.

Alternative II. Flat nested namespaces (Figure 4.6(b))

This representation also uses a nested structure of namespace nodes, but this time with dotted
name. This has as advantage that it preserves the nested structure, and that it is possible to resolve
namespaces directly by their full name. For example, in Listing 4.1 we declare a namespace G.H.I,
without using the namespaces G and G.H.

Alternative III. Flat namespaces (Figure 4.6(c))

This representation uses dotted names for the namespaces, and relates them directly to the Program

node. Thus, nesting information is not explicitly available. This is not a problem because in IL
no relative names are used without using a fully qualified name. This representation is easier to
implement, because every namespace node can simply be attached to the Program node.

B C E F

A D

Program

H

G

I

(a) Single names, nested

Program

A.B A.C D.E D.F

A D G.H.I

(b) Dotted namespaces, nested

Program

A A.C D.E D.FA.B D G.H.I

(c) Dotted namespaces, attached to Program

Figure 4.6: Namespace representation proposals.

We have chosen for the third alternative and will represent namespaces in the ASG by using
dotted names, attached to the Program node. To get this result in the ASG for an arbitrary
program, the translator must transform the namespaces and classes to this representation into full
names (in case these names are not already in this representation).

The translation of the namespaces and classes is performed in the parsing phase (Section 4.1).
When the translator encounters a namespace declaration, it looks if a higher-level namespace
was already declared (i. e. if the namespace is nested within another namespace) and stores a
combination of the higher-level namespace (if available) and the new one both in memory and
in the Abstract Syntax Tree. The same holds for classnames. When the parser encounters a
classname, it looks if a namespace was already declared for this scope. This means that the
classname is nested within a namespace and that the classname has to be combined with the
namespace.

36 Translating IL Programs to Graphs

Transforming the code of Listing 4.1, results in the graph represented in Figure 4.7. Note that
this still is a stripped down graph, merely to explain what the namespace structure looks like.

Figure 4.7: ASG of Listing 4.1.

What we did not mention up to now is that classnames and namespaces are stored in the
Abstract Syntax Tree in order to be able to create method signatures (as described in the next
section). Method signatures are used for resolving method calls during the simulation phase.

4.3.2 Method signatures

A signature of a method is defined by its calling convention, its return type, and the number, order,
and types of the parameters. Note that a method signature in IL does not contain the name of
the method. This is for example in contrast to Java, where the signature contains the name of
the method along with the number and types of the parameters (and their order). Methods are
compatible when they share the same signature. But when a method is called, the method lookup
is performed by using the method name combined with the corresponding signature as specified
in the call.

Our solution is to create unique method signature nodes, and references to these nodes, by the
translator. After determining the signature, a lookup is performed on a set containing references
to existing signatures. If the signature already exists, an edge is created to the node representing
this signature. If the signature does not exist, we create the nodes representing the signature,
store it in the set of signatures, and create an edge to the node representing the signature.

Figure 4.8: Graph representation of a referenced signature.

4.4 Translating C# and VB.NET to IL 37

Figure 4.8 contains an example of how signatures look like and how they are referred by method
calls. The class, named CallExample, contains a method with the name print. For this method, a
signature is created with void as return type. Furthermore, the signature shows that the method
print accepts a string as parameter. The figure also contains a call instruction that calls the
method print of class CallExample with a specific signature, namely the method with return
type void and a parameter of type string. Now that the signatures are resolved, it is possible to
find the correct method implementation during simulation.

4.3.3 Identifiers

Identifiers values, such as names, are represented by one node for each unique denotation. Thus
when two labels have the same name, this is represented by two label nodes both pointing to one
single node with the identifier name as its label. This is accomplished by generating a key from
the identifier name and determining if, according to this key, the identifier is already known. If it
is unknown, the node representing the identifier is created. Otherwise the existing node is used.

For example, instructions can contain labels (which are equivalent to identifiers) and can
target to labels. When these labels have the same name, they must point to the same node (see
Figure 4.9).

Figure 4.9: Relation of labels to identifiers

The idea of this representation is that in the code of the program physically two labels are
present, but they both contain the same name. Thus, in our representation we use two label
nodes, but only one single name node. During static analysis with production rules, these labels
are resolved. Off course, it is possible to identify the labels (instead of their identifiers) in the
translator, but we have chosen to use graph production rules in order to provide more intuition in
what happens during this process.

4.4 Translating C# and VB.NET to IL

In the introduction we claimed that when we cover semantics of the IL instructions, it should be
possible to simulate programs written in every .NET language. To support this idea, we have
written two simple programs. The first is written in C#, the second in VB.NET. Both programs
were compiled to an executable and disassembled. For the C# program, we used the following
command line options:

csc /t:exe /optimize+ program_name.cs

ildasm /text /out=program_name_cs.il program_name.exe

And for the VB.NET program we used:

vbc /t:exe /optimize+ program_name.vb

ildasm /text /out=program_name_vb.il program_name.exe

38 Translating IL Programs to Graphs

We expect to get two IL files having comparable semantics, but with slightly differences in
the used instructions. The C# and VB.NET programs that we have used as input are shown
in Listing 4.2 and Listing 4.3. Because the output of the created IL code is relative large, two
excerpts are provided that are used to compare with each other. For the interested reader we
disposed the IL code of the metadata and provided the methods in Appendix A.

1 class Example {

2 static int theResult ;

3 static int Fibonacci (int x) {

4 if (x == 0 || x == 1) {

5 return x;

6 }

7 return Fibonacci (x-1) + Fibonacci (x -2);

8 }

9

10 public static void Main() {

11 theResult = Fibonacci (4);

12 }

13 }

Listing 4.2: Fibonacci Example in C#

1 Module Example

2 Dim theResult As Integer

3 Function Fibonacci (ByVal x As Integer) As Integer

4 If (x = 0 Or x = 1) Then

5 Return x

6 End If

7 Return Fibonacci (x-1) + Fibonacci (x -2)

8 End Function

9

10 Sub Main()

11 theResult = Fibonacci (4)

12 End Sub

13 End Module

Listing 4.3: Fibonacci Example in VB.Net

In this example we use the series of Fibonacci2. From the generated IL code, we can see that
the body of both the Fibonacci instructions are identical to a large extent. There are a few
differences that depend on the used compiler. One difference is for example the usage of different
comparison strategies for the evaluation part in the if-statement of the body of the Fibonacci

method. The if-statement in line 4 of Listing 4.2 is compiled to the code presented in Listing 4.4,
while the if-statement in line 4 of Listing 4.3 is compiled to the IL code presented in Listing 4.5.
The C# compiler generates IL code that is slightly more optimized than the IL code generated
by the VB.NET code.

Although we mentioned that different .NET languages are compilable to IL, we must emphasise
that for this research project only C# programs were compiled and disassembled to IL.

2 The nth number of Fibonacci is calculated according to:

F ib(0) = 0

F ib(1) = 1

F ib(n) = F ib(n − 2) + F ib(n − 1), for n > 1

Thus the series is: 0, 1, 1, 2, 3, 5, 8, ...

4.5 Example: IL to ASG 39

10 IL_0000 : ldarg .0 // Load x
11 IL_0001 : brfalse .s IL_0007 // Return x i f x == 0
12

13 IL_0003 : ldarg .0 // Load x
14 IL_0004 : ldc.i4.1 // Load 1
15 IL_0005 : bne.un.s IL_0009 // Do not return x i f x != 1 ,
16 ‘ // otherwi se return x
17 IL_0007 : ldarg .0

18 IL_0008 : ret

Listing 4.4: IL excerpt obtained from C# compiler

11 IL_0000 : ldarg .0 // Load x
12 IL_0001 : ldc.i4.0 // Load 0
13 IL_0002 : ceq // Push 1 i f x==0, otherwi se push 0
14 IL_0004 : ldarg .0 // Load x
15 IL_0005 : ldc.i4.1 // Load 1
16 IL_0006 : ceq // Push 1 i f x==0, otherwi se push 0
17 IL_0008 : or // Perform b i t w i s e or on two pushed va lues
18 IL_0009 : brfalse .s IL_000d

19

20 IL_000b : ldarg .0

21 IL_000c : ret

Listing 4.5: IL Excerpt obtained from VB.NET compiler

4.5 Example: IL to ASG

Now that we explained what an ASG is, how it looks like (using a meta-model), and what our
translator does, we present an example of translating an IL program to an Abstract Syntax Graph.
We have taken the IL program presented in Listing A.3 of Appendix A. Translation of this IL
code yields the Abstract Syntax Graph presented in Figure 4.10.

In general cases, we are not interested in the entire ASG but in particular in the simulation
results. That is, the executed production rules (presented in the LTS) and the simulation elements
of the generated graphs. This is the topic in the next chapter.

4.6 Summary

This chapter started with an introduction of the translator that is implemented to generate an Ab-
stract Syntax Graph from arbitrary IL programs. We have described the different parts (i. e. lexer,
parser, and tree walker) of the translator and their purpose. Furthermore, a description of the
ASG is presented in the form of meta-models. All nodes and their relationships to other nodes
are described.

Also, the design and representation decisions are presented in this chapter. These are decisions
with respect to the representation of classnames and namespaces, calculation and representation
of method signatures, and representation of identifiers.

We have closed this chapter with a small example of a translation from C# and VB.NET to
the Intermediate Language. In this example we show that the used instructions of the resulting IL
code are identical to a large extent. Furthermore, we have presented an Abstract Syntax Graph
of this IL code to demonstrate how such a graph looks like.

40 Translating IL Programs to Graphs

Figure 4.10: ASG of Fibonacci example.

Chapter 5

Specifying IL Semantics with

Graph Transformations

This chapter describes how we use graph transformations (explained in Chapter 3) to specify the
IL semantics. In order to be able to perform graph transformations, we need a start graph. This
graph is generated by the translator described in Chapter 4 and is the Abstract Syntax Graph
(ASG) of an arbitrary IL program.

We start this chapter by describing how static analysis is performed by using graph production
rules. Furthermore, the ASG implicitly contains control flow information. This control flow
information can be made explicit by performing control flow analysis. Then, production rules
for control flow analysis should enrich the graph with specific control flow nodes and edges. The
decision whether or not to make this control flow information explicit is discussed in Section 5.2.

Section 5.3 introduces what we call the Frame Graph (FG). The FG is used to decorate the
start graph with runtime concepts for being able to simulate the execution of a program. In this
section we provide a meta-model to describe the FG and discuss implementation alternatives and
decisions for some of the concepts present in the Frame Graph. In this section we also describe
the Value Graph (VG). The VG describes the relation between the Frame Graph and values.

The production rules describing the semantics for IL instructions are presented in Section 5.4.
In general, we use one or two production rules for each instruction. However, this is not always
possible because some instructions start a sequence of actions which must be put into effect.

Then, having production rules describing the semantics of a number of IL instructions, it is
possible to simulate a program using the GROOVE Simulator. In Section 5.5 we will show this
by simulating two example programs.

5.1 Static Analysis

In Chapter 4 we explained that static analysis is partly performed by the translator. There, we
have explained that identical string values of identifiers are represented by one single Identifier

node. We have chosen to resolve identifiers having identical string values in the translator because
comparing two strings by using production rules is more difficult. For example, matching two
Identifier nodes (having a pointer to one single node containing a string) is easier than comparing
two string nodes for an equal string value. Furthermore, it is hard and costly to use production
rules to, for example, determine the signature of a method containing a number of parameters –
which can differ per signature – and create a unique node for this. Creating the unique signature
node in the translator phase is easier.

Although most of the static analysis is performed in the translator, a (small) part of the static
analysis is done with graph transformations. At the moment, this only involves resolving different
labels with the same identifier in order to be able to branch to an instruction with the same label

42 Specifying IL Semantics with Graph Transformations

within the same method body. By using a graph production rule the user may get more intuition
of what is happening during static analysis.

Labels were already uniquely matched by the string representation of the label names during
the translation from IL to graph (see Section 4.3.3). However, in the graph there can be two (or
more) labels with the same identifier. In this case, these labels need to be identified, respecting
their scope. This means that labels are only resolved to one single label node when the labels are
both within the same method body.

The production rule that is used for this is displayed in Figure 5.1.

Figure 5.1: Label identification

This production rule acts as follows: a matching of this rule can be found if the graph has a
MethodBody containing at least two Instructions of which one Instructionhas a Label and the other
targets another (i. e. distinct) Label, while both have the same Identifier. If a matching of this rule
is found in the graph, the target Label must be merged with the Label of the target instruction.
The old target Label and its edge are removed. This way, we represent that target Labels can be
resolved to one node, just as it is done during static analysis in a compiler.

5.2 Control Flow Analysis

Because flow control information is implicitly available in the program, there are two possibilities
to handle control flow: making it explicit by performing control flow analysis, or using the im-
plicit control flow information during simulation and determine where control should go to after
executing an instruction.

Separating control flow from simulation has advantages, such as that the production rules for
simulation are becoming slightly smaller. This can make the production rules for both control
flow analysis and simulation easier to specify and debug. However, separating control flow from
simulation means that for each instruction at least one additional production rule must be defined.

In Figure 5.2 two production rules for the ldarg instruction are presented in order to demon-
strate the possible differences between having implicit versus explicit control flow information in
the graph. This example represents executing an instruction for which the control flow is trans-
ferred to syntactically the next instruction, which is the case for the majority of the IL instructions.
In Figure 5.2(a) no explicit control flow is available in the graph. If the ldarg instruction is exe-
cuted, the instruction pointer simply needs to be moved to the next instruction which happens to
be syntactically the next. When having explicit control flow information – for which an example
is presented in Figure 5.2(b) – the rule has to match a flowNext edge in order to know to what
node the instruction pointer needs to be moved. In this case, adding the flowNext edge offers no
benefit because the semantics of this edge is already represented by the next edge from the ASG.
Thus, for these kind of instructions, adding explicit control information involves extra work which
does not pay off.

5.2 Control Flow Analysis 43

(a) Implicit control flow information (b) Explicit control flow information

Figure 5.2: Implicit versus explicit control flow for the ldarg instruction

For an instruction containing non-trivial control flow behaviour, such as the “branch on equal”
instruction presented in Figure 5.3, one may expect more gain of having explicit control flow. But
when comparing the two rules in the figure, we can see that this is not the case. In Figure 5.3(a) the
production rule containing implicit control flow is presented. This rule determines the instruction
to branch to on basis of the target label. When making the control flow explicit, the target
instruction is determined by performing control flow analysis. Then, the production rule for
the beq instruction could be as presented in Figure 5.3(b). In our opinion, adding control flow
information involves more work – for both specifying the rules and applying the rules to the graph
– than simply resolve the target instruction by matching one extra node.

(a) Implicit control flow information (b) Explicit control flow information

Figure 5.3: Implicit versus explicit control flow for the beq instruction

Based on the existence of these typical comparisons and the knowledge that most instructions
considered in this work are similar to these, we have chosen not to have a separate production
system for the generation of a control flow graph because the IL instructions are of such a format
that the flow of control can easily be determined at run-time. Besides, we believe that defining
additional production rules in order to specify the control flow for each instruction is not worth
the extra work. Nevertheless, we are convinced that performing separate control flow analysis
provides more insight and intuition.

44 Specifying IL Semantics with Graph Transformations

5.3 Modelling the runtime environment

In order to be able to simulate the run-time behaviour using production rules, the Abstract Syntax
Graph will at run-time be enriched with additional elements describing run-time concepts. The
Frame Graph contains concepts such as a stack (which is used to store intermediate values) and
method frames (holds context information about the methods being executed). We also describe
the Value Graph (VG) which represents the objects with their instance fields and data values.
The VG also describes the relation between values and arguments, local variables, and cells in the
stack. The Frame Graph together with the Value Graph form an Execution Graph (see Section 1.2)
representing a run-time state of the system.

This section starts with a formalization and overview of the FG in the form of a meta-model.
We also present a meta-model and description of the Value Graph. After that, we describe the
decisions and representation of how the stack and method frames are being modelled.

5.3.1 Meta-model of the Frame Graph

Here, we present the meta-model describing the Frame Graph. Each subsection contains a part of
the model because presenting the meta-model as a whole would be disorderly.

5.3.1.1 High-level structure

Figure 5.4 contains the overall structure of the FG. Each concept present in the meta-model is
discussed by providing a short description.

Frame

Instruction

MethodFrame ProgramFrame Instantiator

ip 0..1

calledFrom

0..1

caller

1

Program

executes

1

Stack

has

1

Cell

next

0..1

top 1

calledFrom

1

caller

1

From ASG

Figure 5.4: Meta-model of the frame graph

The concepts Program and Instruction come from the ASG and are discussed in respectively
Section 4.2.1 and Section 4.2.4. The other nodes in the model have the following meaning:

Frame The concept Frame is used for context awareness. There are three different kind of
Frames, namely ProgramFrame, MethodFrame, and Instantiator.

ProgramFrame The ProgramFrame holds context information of the program being executed.
This Frame is created at the moment the simulation of the program is started and indicates that
the program represented by the ASG is being simulated. A ProgramFrame can have different
self-loops as represented in Figure 5.5.

These self-loops are used to control the different phases such frames can be in. The meaning
of the edges is:

• locateEntrypoint: indicates that the entrypoint (see Section 4.2.1) needs to be located to start
execution.

5.3 Modelling the runtime environment 45

ProgramFrame

locateEntrypoint

executes

finished

0..1

Figure 5.5: Self-loops containing status information

• executes: used to indicate that the program is being executed.

• finished: indicates that program execution has been finished.

Stack The Stack node represents an evaluation stack, which is a run-time concept used to store
intermediate values. The Stack contains Cells, of which only the top Cell is referenced. This is
indicated by the top pointer. In Section 5.3.3 we discuss the representation of the stack in more
detail.

Cell The concept Cell represents a cell of the run-time stack. Each Cell can have a relation (next)
to another Cell, making it a stacked representation. Furthermore, a Cell may hold a Value (see
Section 5.3.2).

MethodFrame MethodFrame contains information about a method being executed. See Sec-
tion 5.3.1.2.

Instantiator The Instantiator concept guides the instantiation of new objects (ObjectVal), prior
to executing the body of the constructor. See Section 5.3.1.3.

5.3.1.2 MethodFrame

This section provides a description of the MethodFrame and its related concepts.

MethodFrame Method

method

0..1

Local

Constant

index 1

Argument

has

* MethodBody

executes

0..1

Signature

signature

1

Parameter

parameters *

create

0..1

init0..1

nextIndex0..1

targetIndex

0..1

has

*

Identifier

name 0..1

Class

lookup

0..1

type 1 name

0..1

class0..1

From ASG

Figure 5.6: Meta-model of the methodFrame

The concepts Method, MethodBody, Signature, Parameter, Identifier, Constant and Class come
from the ASG and are discussed in Section 4.2.1.

46 Specifying IL Semantics with Graph Transformations

MethodFrame This node represents a method frame (also known as method state in IL-
terminology). A method frame contains context information for a method being executed. As
presented in the model of Figure 5.4, MethodFrame has a caller edge to another Frame representing
the Frame from which a the MethodFrame is called. MethodFrame can have a calledFrom edge
indicating which Instruction caused the creation of this frame. The caller and calledFrom edges
are used to transfer control back to the caller Frame and Instruction, when the current frame has
finished execution. MethodFrames may have an instruction pointer (ip, see Figure 5.4) pointing to
the Instruction to be executed. The MethodFrame does not have a calledFrom edge to an Instruction

in case it was created by a ProgramFrame, because the ProgramFrame creates the MethodFrame

directly and not by executing an Instruction.

The relations to other nodes depend on the type of call. In case of a call instruction, the
method frame has a relation with the called Method because this method is already resolved
statically (i. e. at compile-time). In case of a callvirt instruction, the Method needs to be
resolved on the basis of the signature, name, and class of the called method. Performing this
method lookup procedure results in a relation of the MethodFramewith the called Method.

In Figure 5.4 we could see that a MethodFrame also has a relation with the Stack to perform its
operations on, the caller Frame and the Instruction the method is called from. The MethodFrame

always has a relation to the Signature node to be able to determine if there are Arguments that
need to be transferred, or to perform a method lookup. The mechanics behind a method frame
and transferring arguments is explained in detail in Section 5.3.4 and Section 5.4.3.

Local Local represents a local variable of a Method. A Local has an index, a type, a name.
Furthermore, a Local can have a value, which will be further explained in Section 5.3.2.

Argument The Argument concept represents an argument of a method. Argument nodes are
created according to the number of Parameter nodes attached to Signature. This process is ex-
plained in Section 5.3.4. Argument also has an index, a name in the form of an Identifier, and a
type. Also, Arguments are assigned a value (see Section 5.3.2) during the simulation of a method
call by production rules. This is further explained in Section 5.3.4.

Constant Although the Constant concept originates from the ASG, it needs some further expla-
nation for its use in the Frame Graph where it represents a constant value used for indexing the
Locals and Arguments contained in a MethodFrame. We use the Constant concept in the Frame
Graph to make it possible to directly address Locals and Arguments. The edges nextIndexand
targetIndexare used to direct the creation of argument nodes – and their unique index value –
attached to the MethodFrame node.

The meta-model also contains a create edge to Parameter which is used to create the Argument

nodes according to the number of parameters. This process is further explained in Section 5.3.4.
The init edge pointing to Local is used to initialize the local variables of a method.

The MethodFrame concept also contains a number of self-edges – similar to ProgramFrame –
that are used to control the different phases a MethodFrame can be in. Only one of these edges can
be attached to a MethodFrame at the same time. These self-edges are represented in Figure 5.7
and have the following meaning:

• locateArg: The locateArg edge is used to locate if there are any arguments to be transferred.
This is done according to the number of parameters in the method’s Signature.

• createArgs: If the Signature contains Parameter nodes, then the createArgs edge is created in
order to create Argument nodes attached to the MethodFrame.

• transferArgs: When all Argument nodes are created, the actual argument values must be
transferred from the Stack. This is accomplished by creating the transferArgs edge.

5.3 Modelling the runtime environment 47

MethodFrame

0..1

locateArg

createArgs

transferArgs

lookup

locateLocals

initLocals

execute

Figure 5.7: Self-loops containing status information

• lookup: The lookup edge is used to indicate that the implementation of a method must be
resolved by traversing the class hierarchy.

• locateLocals: locateLocals is used to indicate that the frame has to locate the first local
variable (if available).

• initLocals: If locals are available, initLocals indicates that these need to be initialized.

• execute: The execute edge indicates that the method’s body is executed.

5.3.1.3 Instantiator

The Instantiator part of the meta-model is responsible for the allocation of new objects and the
initialization of its InstanceFields (see Section 5.3.2). The related concepts of Instantiator are shown
in Figure 5.8.

Value

Instantiator

self1

Field

init

0..1

Class

ascendedFrom0..1

class

1

value

0..1

fields*

From ASG

Figure 5.8: Meta-model of the instantiator

The concepts Class and Field come from the ASG and are discussed in Section 4.2.1.

Instantiator The Instantiator concept is used for context awareness and guides the process of
instantiating a new object (ObjectVal). The selfedge to the abstract concept Value is during
simulation always an edge to ObjectVal, which represents an instance of Class. This is further
explained in Section 5.3.2. For convenience, we have added a class-edge to the Class of which
ObjectVal is an instance. This edge is used to easily ascend in the class hierarchy to initialize the
fields (called InstanceFields) of ObjectVal. The init edge to the Field concept is used during the
initialization process of these fields. In case of ascending the class hierarchy, the ascendedFrom-edge
indicates from which Class is being ascended and caller (see Figure 5.4) indicates the Instantiator

node which calls for ascending. The Instantiator also contains a caller and calledFrom edge (see
Figure 5.4) to indicate from which Frame and Instruction the object has been created.

Value The abstract Value concept comes from the Value Graph and can be either a Constant or
an ObjectVal. This concept will be explained further in Section 5.3.2.

48 Specifying IL Semantics with Graph Transformations

Instantiator

0..1

ascend

descend

locateField

initFields

Figure 5.9: Self-loops containing status information

Furthermore, Figure 5.9 shows self-loops – similar to ProgramFrame and MethodFrame – that
are used to control the different phases an Instantiator can be in. Such an edge has one of the
following labels:

• ascend: During object instantiation, the ascend edge is used to ascend to the top of the class
hierarchy in order to locate the fields of a class.

• locateField: The locateField edge is used to indicate that the frame has to locate the first
field (if available).

• initFields: If fields are available, initFields indicates that these need to be initialized.

• descend: When no (more) fields are available, descend is used to descend one class in the
class hierarchy in order to locate other fields.

5.3.2 Meta-model of the Value Graph

During simulation nodes representing values are created. The sub-graph containing these nodes
is called the Value Graph (VG). This section describes the concepts used in the VG by using a
meta-model.

Value

Constant

ObjectVal

Cell

value0..1

Class

instanceOf

1

InstanceField

has*

value

0..1

Identifier

name

1

Type

type

1

From ASG

Local Argument

init

0..1

From FG

Figure 5.10: Meta-model of the value graph

The concepts Identifier, Type, and Class come from the ASG and are discussed in Section 4.2.1.
The concept Constant also comes from the ASG and is discussed in Section 4.2.4. The other nodes
in the model have the following meaning:

Value Value is an abstract concept which is used to denote a value, which can be either a
Constant or an ObjectVal.

5.3 Modelling the runtime environment 49

ObjectVal The concept ObjectVal represents an object, which is an instance of a Class. An
ObjectVal may contain InstanceFields.

InstanceField An InstanceField represents a field of a class instance (ObjectVal), and has a name

and a type. The init self-edge may be used to denote that the InstanceField must be initialized to
its default value. Furthermore, an InstanceField may contain a Value, which can be a Constant or
an ObjectVal.

The concepts Local and Argument come from the Frame Graph (Section 5.3.1.2). Cell also is
discussed in the Frame Graph (Section 5.3.1.1) and can contain a Value. Note that Cell does not
require to contain a Value. This is a design decision and will be further discussed in Section 5.3.3.

5.3.3 Stack

During the execution of a method, an evaluation stack is needed on which instructions can store
their (intermediate) values. This section discusses decisions with respect to the representation and
implementation of this stack.

5.3.3.1 Representation

Normally, the stack contains a pointer to the top element on the stack. This pointer is increased
when new items are pushed on the stack, and decreased when items are popped, i. e. removed from
the stack.

(a)
Empty
stack

(b) Stack containing one element (c) Stack containing two elements

Figure 5.11: Example stacks containing zero, one and two item(s).

Figure 5.11 contains a possible representation for the straightforward implementation of an
evaluation stack. What can be seen here is that we could use a Stack node without a top-pointer
to represent an empty stack. A Stack node can point to a Cell node that may contain a value
(i. e. can have a Value edge to a node) and can have a relation with another Cell node. However,
this representation introduces several problems.

The most important problem is that there is no top-pointer available when the stack is empty
(Figure 5.11(a)) and there is a top-pointer if at least one item is placed on the stack (Fig-
ure 5.11(b)). This means that for every instruction that pushes values on the stack, at least
two rules should be needed: one for the case the stack is empty and there is no top-pointer – then
the top-pointer and the cell containing a value must be created – and another for the case that the
stack is not empty. In the latter case, the top-pointer needs to be moved to the next cell, which
a value is assigned to. The same is valid for instructions that pop values from the stack. These
kind of instructions need to check whether the value to be popped from the stack is the last value
or not. Because if it is, the combination of value, Cell, and the top-pointer must be removed. If
it is not the last value, then both the value and the cell must be removed, and the top-pointer
must be moved. This means that the number of production rules for simulating instructions that
perform actions on the stack are at least doubled.

In the remainder of this section we propose two solutions to this problem and explain our
choices.

50 Specifying IL Semantics with Graph Transformations

Alternative I: Top pointer to empty cell One way of solving this problem is that each
method frame has its own evaluation stack for which the top-pointer always points to the first
empty cell. When a value is pushed to the stack, a new empty cell is created and the top-pointer
targets that new cell. When a value is popped from the stack, the value is removed from the
secondmost top node, which then becomes empty. After that, the top cell (i. e. the first empty
cell) is removed and the top-pointer is positioned to the cell below the old top cell.

Figure 5.12: Alternative I – Top-pointer points to empty cell.

In this approach, no additional production rules are necessary in order to create a stack of a
specific size. However, the production rules for simulating instruction behaviour become a little
bit more complex, because they need to add or remove the additional empty cell. The major
disadvantage of this approach is that always having an empty cell at top of the stack may be
misleading and unintuitive.

Alternative II: Top pointer to cell holding a value Another approach, which resembles
the previous alternative, is that each method frame has its own evaluation stack for which the
top-pointer points to the last non-empty cell.

A problem now arises when having an empty stack. What should we do with the top-pointer
at that moment? In Figure 5.13 we propose two possible solutions for having a stack containing no
values. The first alternative is to have the top-pointer point to the stack itself, contradicting with
the fact that the top-pointer always should point to a cell. Since this is semantically incorrect,
this is not a realistic possibility.

(a) Top-pointer
to self

(b) Top-pointer to
empty cell

Figure 5.13: Example stacks containing no items.

The second alternative we discuss is that we let the top-pointer point to an empty cell, and
create new cells containing values on top of this empty cell. Although this may not be com-
pletely semantically correct, we think this is a reasonable solution. If we apply this approach, the
representation of a stack containing two values then would look like represented in Figure 5.14.

The advantage of this representation is that the top-pointer always points to the last non-empty
cell, when the stack contains values. Therefore, the production rules use normal stack represen-
tations, having a top-pointer to a cell having a value. This is in contrast to the representation
proposed in alternative I. A disadvantage of this representation is again, that there is always an
empty cell at the bottom of the stack, which is not entirely according the semantics. We prefer this
representation of a stack over alternative II because this representation results in more intuitive
production rules.

5.3 Modelling the runtime environment 51

Figure 5.14: Alternative II – Top-pointer points to non-empty cell.

5.3.3.2 Shared Stack

In the previous section we proposed two alternatives for the representation of the stack, for which
we preferred the second alternative of having a top-pointer pointing to a non-empty cell in case
the stack is not empty. Using this representation of the stack would involve creating a stack (with
an empty cell and top-pointer) for each method frame. This has several consequences: arguments
need to be transferred from one stack to the other when a method is called, and – for each method
call – additional empty cells are created in the graph. Also, when returning from a method, the
return value(s) must be transferred back from one stack to the other.

As simplification, we propose to use one single stack for all (nested) methods frames. When
sharing a stack, no additional empty cells are created and no additional rules are needed to
deal with transferring arguments or return values from one stack to the other. There is only
one production rule responsible for creating the stack, namely the production rule for starting
execution of the method containing the entrypoint-directive.

Figure 5.15: Two method frames sharing one stack

We have to mention that when having parallel processes, multiple stacks are needed. In this
case, each process should have its own stack. This is not taken into account in this research
project.

Based on the advantages described above, we have chosen to use this representation, because
then we can keep the production rules as simple as possible, while having few overhead in the
graph.

5.3.4 Method Frame Representation and Transferring Arguments

This section discusses the method frame, which is our representation of what in the .NET Frame-
work is called method state. Method state is an abstract model that contains information about
the environment in which an IL method executes. It consists of information about the method’s
arguments, local variables, local allocation, and operand stack. The implementation of the method
state can be different as long as it preserves its semantics.

52 Specifying IL Semantics with Graph Transformations

In the MS .NET CLR implementation, there is only one continuous stack, containing all this
information. If we display this by using a method frame, we get the representation as shown in
Figure 5.16. This solution uses one large stack containing sections where the arguments, local
variables, and local allocations (omitted in Figure 5.16) are stored. It also contains a section for
the operand stack, where the intermediate values of operands and the return value (if any) is
stored. The operand stack can grow and shrink when executing instructions. The advantage of
this approach is that it gets as close as possible to the actual implementation used in the CLR.
A major drawback of this representation is that it is not possible to access the arguments and
local variables by its index in one single production rule. This means that additional production
rules need to be created to find the argument or local variable corresponding to an index. These
production rules must be executed every time we access an argument or local variable. Thus, in a
graph transformation setting, this way of addressing the arguments introduces a lot of overhead.

Arguments

Locals

Operand Stack

Figure 5.16: Representation with locals and arguments on continuous stack

We choose a representation as presented in Figure 5.17. This solution uses a model of the
method state, as proposed by the CLI specification [6]. In this solution, the method frame contains
links to arguments and local variables. Each argument and local variable is directly addressable
by its index. The disadvantage of this approach is that the values of the arguments need to be
transferred from the stack to the method frame. On the other hand, this only needs to be done
one single time after each creation of the method frame. After that, both the arguments and local
variables are directly addressable by their indices.

Locals

Arguments

Operand Stack

Figure 5.17: Representation with indexed locals and arguments separated from stack

Transferring the values of the arguments from the stack to the method frame, requires more
than just one or two production rules, because the arguments are placed on the stack in a low-to-
high order. The last argument (say arg n) is placed on top. To transfer this last argument and
give this argument an index value, we must know how many arguments there are. This however is
not known at that moment. So, we first create the argument nodes and their indices. After that,
we walk backwards along the arguments while transferring the values from the stack.

This approach will now be explained with an example. Imagine that a method with 3 formal
parameters is called. Prior to the method call, the values of the arguments are placed on the stack.
We have depicted three integer values 2, 14 and 42 for respectively argument 0, argument 1 and

5.3 Modelling the runtime environment 53

argument 2. Furthermore, we assume that a frame has been created that knows the signature of
the method and has a pointer to the top element of the stack containing the arguments. This is
represented in Figure 5.18.

Frame

...

Arg. 0 = 2

Arg. 1 = 14

Arg. 2 = 43

Signature

Stack

values
top

Parameter

Parameter

Parameter

next

next

Figure 5.18: Start situation prior to transfer of arguments

The problem is that the values of the arguments must be addressed directly by an index (for
example by using the instruction ldarg 1). At this moment this is not possible by a simple
production rule. In order to make the arguments directly addressable, we need to give them an
index. Furthermore, we want to transfer the values of the arguments from the evaluation stack to
the MethodFrame node. This is not directly possible, because the last argument is on top of the
stack and we do not know the index of the last argument (yet). Therefore, we identify the number
of arguments by visiting the parameters described by the signature. The arrows in the figure
represent the direction in which the parameters are visited and for which arguments are created.
Each time we encounter a Parameter, we create a new Argument node related to the MethodFrame

node and give this new node an index. This is represented in Figure 5.19.

Frame

...

Arg. 0 = 2

Arg. 1 = 14

Arg. 2 = 43

Signature

Stack

values
top

Argument

Argument

Argument

Parameter

Parameter

Parameter

0

1

2

index

index

index

next

next

Figure 5.19: Create indexed argument nodes without a value

At the moment that all arguments of the signature have been visited, and thus all arguments
are assigned an index value, we can assign values to the arguments. This is done by traversing the
arguments of the MethodFrame in a backwards manner and transferring the values from the stack
to the arguments. Figure 5.20 represents how this is done. The arrows in the figure represent
the direction in which values are removed and assigned. First, the value of the last argument is
transferred from the stack to the argument node with index 2. After that, the next argument
(with value 14) will be assigned to the argument node with index 1. And finally the last argument
value will be assigned to the argument node with index 0.

Now we have achieved that the values of the arguments are directly accessible by addressing
them using an index. For example, when using the earlier mentioned instruction ldarg 1, a
reference will be placed on top of the stack to the value of the argument with index 1. Furthermore,
we have omitted information about the local variables in this example. Local variables have
a representation similar to the representation of the arguments. However, initializing the local
variables works in a different, less complex way.

In our opinion, the solution with having the arguments and local variables separated from the

54 Specifying IL Semantics with Graph Transformations

Frame

...

Arg. 0 = 2

Arg. 1 = 14

Signature

Stack
values

top

Argument

Argument

Argument

Parameter

Parameter

Parameter

0

1

2

index

index

index

next

next

43
value

Figure 5.20: Transferring values from stack to argument nodes

stack is more clear than having one continuous stack containing a frame holding the arguments and
local variables. In spite of the fact that we need more production rules to transfer the argument
values, we think this approach has advantages that justify the use of it for the rest of the production
rules, because both the arguments and the stack are now easier to address.

5.4 Production rules

The main goal of this research project is the construction of a set of production rules that describe
the semantics of IL instructions in a formal graph-based formalism. In general, we have developed
one or two rules for each instruction. However, in some cases this was not doable and additional
rules were needed to specify the behaviour. For example, calling a method involves more than
just transferring control to the method and executing the method’s body: arguments need to
be transferred, and in case of dynamic method calls, the method needs to be resolved and local
variables must be created and initialized.

This section starts with a description of production rules used for the simulation of starting
the execution of a program, creating a new object, and calling a method. After that, a number of
common instructions are presented.

5.4.1 Starting Execution

The process of starting the execution of a program is represented in Figure 5.21. The rectangle
in this figure represents an intermediate state. The edges represent the application of the rule
corresponding to the label of that edge.

methodframe_entrypoint

program

locate

entrypoint

Figure 5.21: Starting program execution with production rules.

As shown in Figure 5.21, the execution of a program starts by applying the program rule (see
Figure 5.22(a)). This rule creates a ProgramFrame having a locateEntrypoint edge.

Locate Entrypoint When the ProgramFrame containing a locateEntrypoint self-loop is present
in the graph, this indicates that the body of the method containing the entrypoint must be located
in order to start the execution of that method. This happens only one time during the simulation
of a program and is accomplished by the rule methodframe entrypoint. By applying this rule,

5.4 Production rules 55

(a) program (b) methodframe entrypoint

Figure 5.22: Starting execution

further execution is achieved by creating a MethodFrame to represent and control the execution of
a method. Furthermore, as described in Section 5.3.3, also a Stack with the initial configuration
needs to be constructed to perform stack operations on.

5.4.2 Object Creation

The process of object creation is represented in Figure 5.23. Again, as in Figure 5.21, the rectangles
in this figure represent intermediate states, while the edges represent the application of a rule.

ascend

locate

field

instr_newobj class_ascend

class_initialize

descend

init

fields

init_fields_none

init_fields_locate_first

init_fields_next

init_fields_lastclass_descend

instantiator_constr

Figure 5.23: Creating a new object with production rules.

Object creation starts with the execution of the newobj instruction, which results in the allo-
cation of a new object and execution of the body of the constructor. First, we are going to explain
the creation and initialisation of new objects. We start with the execution of the production
rule presented in Figure 5.24(a) (instr newobj). This rule ensures that a new instance of the
class referenced by the newobj Instruction is created. Furthermore, a node called Instantiator is
created, which is used to ascend and descend in the class hierarchy, initializing the Fields. The

56 Specifying IL Semantics with Graph Transformations

production rules used for object creation, class initialization, and class ascending and descending,
are displayed in Figure 5.24.

(a) Creation of new object (b) Ascend class

(c) Initialize class (d) Descend class

Figure 5.24: Object Creation

We will now describe the different states and possibilities.

ascend This state is used during the process of ascending the class hierarchy of an object. As
long as we are not at the root of the class hierarchy, the rule class ascend (Figure 5.24(b)) is
applied. When reaching the top of the class hierarchy the rule class initialize (Figure 5.24(c))
is applied, meaning that we can start with the initialization of fields. Therefore, the first field (if
available) must be located.

locate field At the moment a Class contains Fields, these must be initialized. If a Class contains
a Field, the rule init fields locate first (Figure 5.25(b)) is applied which causes initialization
of the available Fields. If a Class does not contain a Field, the rule init fields none (Fig-
ure 5.25(a)) is applied, causing the Instantiator to descend in the class hierarchy or to call the
objects constructor.

init fields The initialization of the Fields is processed by another set of rules which is presented
in Figure 5.25. The rule shown in Figure 5.25(a) is used when a Class does not have any Fields,
and thus no Fields have to be assigned to the object. If this is the case, it is necessary to descend
further (if possible) in the class hierarchy. However, when there is a Field available, as displayed
in Figure 5.25(b), it is necessary to initialize that Field.

The actual initialization is started by applying the rules presented in Figure 5.25(c) and Fig-
ure 5.25(d). The first rule is used when there are other fields that must be initialized and the
second rule is used when this is the last field to be initialized. Initializing the fields with a value
is accomplished by adding an init edge to that Field and delegate the actual initialization of the
Field to another rule (see Appendix C, Figure C.1) having a higher priority.

5.4 Production rules 57

(a) No fields (b) Locate first field

(c) Init field and locate next (d) Init last field

Figure 5.25: Initialization of fields

descend If possible, i. e. there is an ascendedFrom edge, the Instantiator must descend further
in the class hierarchy so that other available Fields are initialized. This is accomplished by the
rule class descend (Figure 5.25(b)). When the Instantiator returns from ascending the class
hierarchy and cannot descend further, all the Fields of the object are initialized and the constructor
must be called. The Instantiator cannot descend further when there is no ascendedFrom edge. A
lookup for the constructor’s method implementation is not necessary, because the .NET compilers
automatically provide such an implementation. In order to call the constructor, a MethodFrame

is created to which the created object is assigned as the 0th Argument. The rule that is used to
accomplish this is instantiator constr and is presented in Figure 5.26.

Figure 5.26: Calling the constructor after allocating and initializing an object

Note that a MethodFrame is created. Calling and executing the constructor of an object works
according to the same principle as calling a regular method. The rules that are responsible for

58 Specifying IL Semantics with Graph Transformations

this are shown and discussed in Section 5.4.3.

When returning from the newobj instruction, i. e. after executing the constructor, a pointer
to the new initialized object must be pushed back on the stack. The problem is that this new
initialized object is not on the stack of the constructor and thus can not be returned by the ret

instruction.
Also, because the new initialized object is the 0th argument, connected to the MethodFrame of

the constructor, cleaning up this MethodFrame causes the pointer to the new initialized object to
be lost. Therefore, we must transfer the pointer to the object before cleaning up the MethodFrame.

It is impossible to solve this problem by simply adding an extra pointer to the newly created
object prior to calling the constructor and immediate after allocating the object, because then the
pointer to this object may be placed on top of the arguments for the constructor.

The solution we propose is that we have a special rule for the ret instruction when the calling
instruction is newobj. This rule is presented in Figure 5.27 and is responsible for placing the
object reference on top of the Stack and removing the MethodFrame.

Figure 5.27: Return new object from constructor

5.4.3 Calling methods

In IL, it is possible to have statically and dynamically bound calls. Statically bound calls use the
call instruction and the corresponding implementation is bound at compile time. We implemented
the production rules for the call instruction in such a way that we use the method provided by
the call instruction. Dynamically bound calls, on the other hand, use the callvirt instruction,
The implementation of the method that is called is determined at run-time by performing a lookup
starting from the run-time type of the provided object. If the class provides an implementation of
a non-static method that matches the method that is searched, the lookup is finished. Otherwise,
the lookup process continues searching by checking other base classes in the class-hierarchy.

For both call and callvirt instructions, the attribute instance can be provided. If the
attribute instance is provided, a pointer to an object must be available on the stack prior to
assigning it to the method frame as the 0th argument. In case of a constructor call, the pointer to
the newly allocated object is already attached to the method frame by the rules that take care of
the allocation and initialization of the new object.

In Figure 5.28 the process of calling different kinds of methods is presented. Each rectangle
describes an intermediate state for which one of the different rules is enabled. We describe the
different states and possibilities. The graph production rules can be found in Appendix C.

Locate arguments This state describes the point in time, after creating a MethodFrame. That
is the moment at which parameters, if available, must be located from the Signature. In this state

5.4 Production rules 59

locate

arguments

create

arguments

transfer

arguments

lookup

execute

method

locate_args_first

locate_args_instance

locate_args_none

create_args_next

create_args_last

transfer_args_previous

transfer_args_last_static

transfer_args_last_dynamic

transfer_args_newobj

callvirt_propagate

callvirt_resolve

Figure 5.28: Processing a method call with production rules.

there are three possibilities:

1. The Signature of the method contains Parameters, meaning that additional locations for
Arguments need to be created at the MethodFrame. This results in the execution of rule
locate args first, and can be the case for both static and object methods (calling con-
vention contains the instance attribute).

2. The signature of the method does not contain parameters, but the call is to an object
method (instance attribute). In this case, the MethodFrame already contains a location for
an Argument for the 0th index, but the object needs to be transferred from the stack. The
production rule locate args instance is used for this.

3. The Signature of the method does not contain parameters and the called method is declared
static. Then, the method to be called is known and no arguments need to be transferred.
The rule locate args none is executed.

Create arguments At the moment the Signature contains Parameters, the MethodFrame must
be prepared by adding empty Argument nodes and edges to them. The rule create args next

creates new Argument nodes until the last Parameter is reached in the Signature, in which case the
rule create args last is executed. Each Argument node that is created has its own index value,
meaning that these Argument nodes are directly addressable by the ldarg and starg instructions.
In Section 5.3.4 we have discussed the process of creating and transferring Arguments in more
detail.

Transfer arguments When all Argument nodes attached to the MethodFrame are created, the
values of the arguments need to be transferred from the Stack to these Argument nodes. The
number of arguments to transfer, determine the rule that is executed next: if there is more than

60 Specifying IL Semantics with Graph Transformations

one argument that needs to be transferred from the stack, the rule transfer args previous is
executed. This is repeated until a pointer reaches the 0th Argument attached to the MethodFrame,
after which either one of three rules is executed.

1. In case of a constructor call, the 0th argument already contains a value. This value is the
object instantiated by the newobj instruction. When the 0th argument already contains a
value, no arguments are left to be transferred and the transfer args newobj is applied.

2. When performing a statically bound method call (call instruction), the method to be called
is already known. If the 0th Argument does not contain a value yet – which is the case for
methods calls using the instance attribute – the last value for the last Argument must be
transferred from the stack. This is accomplished with the transfer args last static rule.
Immediately after applying this rule, we can proceed with the statically bound method call.

3. If the 0th argument does not contain a value, and the method to be called is not yet known
(used instruction for the method is callvirt), the transfer args last dynamic rule is
executed. This rule is responsible for transferring the value of the last argument from the
stack to the Argument node. After applying the transfer args last dynamic rule a lookup
for the implementation of the called method is performed.

Lookup When a dynamically bound call to a method is done, the call to the method needs
to be resolved. This is accomplished by matching the name and Signature of the Method to the
type of the specified object. If a Method with a matching name and Signature is found in the
Class, the rule callvirt resolve is executed. Otherwise, we must ascend the class hierarchy and
check again for a matching name and Signature. This is done by the rule callvirt propagate.
Notice that looking up Method suffices, because a Method always has a MethodBody containing
the implementation of the method.

Execute method This represents the concept of executing a method and is followed by creating
local variables and executing the method’s body. We have omitted explaining these rules by the
figure, because these rules are related with executing a method rather than calling a method. The
rules can be found in Appendix C.

5.4.4 Common Instructions

This section discusses a number of common instructions used for branching and arithmetic oper-
ations.

Branch Instructions

Branch operations are used to direct control flow. As mentioned before, IL contains conditional and
unconditional branch operations. Conditional branch operations only branch when an evaluation
yields true, and continue to the next instruction if the evaluation yields false. Unconditional
branch operations always branch.

A branch operation always refers to a target, which in IL can be a label or an offset from
the beginning of the instruction. If we want to use an offset, the sizes of the other instructions
must be known in order to be able to branch to instruction corresponding to the specified offset.
Furthermore, in our graph formalism there is no notion of memory, let alone memory addresses,
which is why it is impossible to use the offset as a target. Therefore, we are only using labels
to branch to. These labels are resolved during static analysis, which means that it is possible to
adjust control flow to an instruction with that particular label.

In Figure 5.29 the production rule for an unconditional branch is presented. It is easy to see
that the instruction pointer is adjusted to the instruction containing the same label as the target of
the instruction br, meaning that the control flow is adjusted to the target of the branch operation.

5.4 Production rules 61

Figure 5.29: Unconditional branch instruction

A conditional branch operation has similar behaviour as an unconditional branch operation but
depends on the result of an evaluation. If the evaluation yields true, control flow is adjusted to
the target of the branch operation. If the evaluation yields false, the control flow simply branches
to the next instruction. Therefore, two production rules are needed to specify the semantics of
the conditional branch. Take, for example, the production rules for the instruction blt (“branch
on less than”) which is presented in Figure 5.30. When assuming that there are two comparable
values on the stack and an instruction pointer pointing to the instruction blt, one of these rules
can be applied. Therefore, the two values from the top of the stack are compared and removed.
If the second most top value is less than the topmost value, the comparison yields the boolean
value true and the rule of Figure 5.30(a) is applicable. This results in having a branch (changing
of the instruction pointer) to the instruction having the same label as the target label of the blt

instruction. If however, this comparison yields false, the rule of Figure 5.30(b) is applicable and
the instruction pointer is changed to the next instruction.

(a) blt yielding true (b) blt yielding false

Figure 5.30: Conditional branch instruction

Other conditional branch instructions (beq, bne, bgt, brtrue and brfalse) are specified anal-
ogously and can be found in Appendix C.

Arithmetic Operations

The implemented arithmetic instructions are add, sub, mul, div and rem. In Figure 5.31 the
production rule for the add instructions is presented. The other arithmetic instructions work
according to the same principle and can be found in Appendix C. The add production rule works
as follows. When the instruction pointer points to the add instruction, the two top values on the
stack are both removed and the result of the operation is placed on the stack.

5.4.5 Limitations

The Intermediate Language contains instructions that perform operations on integers for which
an overflow may occur. These instructions contain the term .ovf (e. g. add.ovf). It is however,
impossible to implement these instructions because the GROOVE tool set cannot perform these
kinds of operations (yet). For the same reason, we cannot offer support for bitwise instructions
(and, or, xor, and not).

62 Specifying IL Semantics with Graph Transformations

Figure 5.31: Add instruction

5.5 Simulation Examples

This section provides two examples of using an ASG together with the set of production rules in
order to simulate the program modelled by the ASG. We do not cover all available production
rules during these examples, but we will demonstrate different concepts.

In the first example, the ASG of the Fibonacci IL program (see Section 4.5) is used and
simulated by using production rules. This demonstrates the way static calls are processed.

The second example is based on a program of which the building blocks (i. e. the classes) are
structured using inheritance. When simulating that program we have to deal with object creation,
method resolving, parameter passing, etcetera. For this example a simple C# program is written,
compiled and disassembled to IL, which on its turn is translated to an ASG by our translator. This
ASG is used as starting point for our simulation. The results of this simulation will be discussed.

Simulating a program yields a Labelled Transition System (LTS), which was already briefly
introduced in Section 3.2. A LTS is a graph containing nodes and edges. Each edge stands for the
application of a production rule and each node represents a graph. Such a graph can be seen as a
state – or snapshot – of the system at run-time.

5.5.1 Example: Fibonacci

For this example, we have taken the ASG of Figure 4.10 as the start graph and applied our
production rules to this graph repeatedly. The resulting LTS is presented in Figure 5.32.

According to the IL code (shown in Appendix A, Listing A.3) and the ASG (Section 4.5),
executing this program would involve a method call to the Fibonacci method, which may result
in a number of recursive method calls. The call to the Fibonacci method is indicated in the
LTS with the dashed rectangle with number 1. An example of a recursive call and returning from
that recursive call is indicated with numbers 3 and 4, respectively. The execution of a series of
instructions in a method body is indicated with number 5, and returning from the first method
call to the Fibonacci method is indicated with number 2.

Recall from Section 4.4 that the Fibonacci series looks as follows:

0, 1, 1, 2, 3, 5, 8, 13, . . . , starting at index 0

According to the IL code, we asked for the 4th number of the Fibonacci series, which is the
number 3.

Now, will the end result be as expected? The graph presented in Figure 5.33 shows the final
state of the LTS (i. e. the node in the LTS containing the label final). If we look at the highlighted
part in this graph, the Field with name TheResult contains this value, which indicates that the
end result indeed is what we expected.

5.5 Simulation Examples 63

M
e

th
o

d
C

a
ll

R
e

c
u

rs
iv

e

M
e

th
o

d
C

a
ll

R
e

tu
rn

fr
o

m

M
e

th
o

d
C

a
ll

E
xe

c
u

ti
o

n
o

f
In

st
ru

c
ti
o

n
s

in
M

e
th

o
d

B
o

d
y

R
e

tu
rn

fr
o

m

M
e

th
o

d
C

a
ll

R
e

c
u

rs
iv

e
1

3

4

5

2

Figure 5.32: LTS of the Fibonacci Example

64 Specifying IL Semantics with Graph Transformations

Figure 5.33: Result of the Fibonacci Example

5.5.2 Example: Calculator

In this example we demonstrate a simple calculator program that has to deal with object creation,
method-lookups, method overriding, and parameter passing. The class-diagram in Figure 5.34
shows the structure of the program. In this model we show that three different classes (CalcAdd,
CalcDiv, and CalcMean) inherit from the base class Calc. The base class contains a virtual
(i. e. overwritable) method apply, which provides a default implementation. Class CalcAdd does
not overwrite this method, but the classes CalcDiv and CalcMean do.

+apply(in a : int, in b : int) : int

Calc

CalcAdd

+apply(in a : int, in b : int) : int

CalcDiv

+apply(in a : int, in b : int) : int

CalcMean

return a + b;

return a / b;
Calc tmpCalc = new CalcDiv;

return (tmpCalc.apply(base.apply(a,b),2));

Figure 5.34: UML model of the Calculator Example

The C# program displayed in Listing 5.1 is an implementation based on the presented model.
In the main method of class Test three instances are created, one of each child-class. For each
instance, we call the apply method and store the return value of the method in a global field.

Compiling and disassembling this C# program yields IL code, which is translated to an ASG.
Both the IL code and the ASG are not presented here, but the interested reader can find them in
Appendix B.

The ASG is used as start graph for our production system. Applying the production rules
yields the LTS presented in Figure 5.35.

In this LTS a number of things are worth mentioning. One of these things is object creation.
From the code, the Main method instantiates three objects (CalcAdd, CalcDiv, and CalcMean)
and the apply method in class CalcMean also creates an object of type CalcDiv. Object creation
is indicated in the LTS by the execution of the instr newobj rule. For example, see the dashed
rectangles numbered 1 and 8 (the first rule) which represents the creation of the objects of CalcAdd
and CalcDiv, respectively. The object creation of number 1 is followed by the object instantiation
(2), which involves ascending and descending in the class hierarchy in order to initialize the fields
of the parent classes, if available. After object instantiation is finished, the constructor of the
instantiated object is executed (indicated with 3). During execution of the constructor of the class

5.5 Simulation Examples 65

O
b

je
c

t
C

re
a

ti
o

n

1

O
b

je
c

t
In

s
ta

n
ti
a

ti
o

n

2

C
o

n
s
tr

u
c

to
r

C
a

ll 3

P
a

re
n

t
C

o
n

s
tr

u
c

to
r

C
a

ll

4

R
e

tu
rn

fr
o

m
P
a

re
n

t
C

o
n

s
tr

u
c

to
r

5

In
s
ta

n
ti
a

ti
o

n
C

o
m

p
le

te
d 6

R
e

s
o

lv
e

M
e

th
o

d

7

In
s
ta

n
ti
a

ti
o

n
C

a
lc

D
iv

o
b

je
c

t
a

n
d

e
x
e

c
u

ti
o

n
o

f
c

o
n

s
tr

u
c

to
r

8

S
ta

ti
c

B
o

u
n

d
M

e
th

o
d

C
a

ll
to

C
a

lc
.a

p
p

ly

9

Figure 5.35: LTS of the Calculator Example

66 Specifying IL Semantics with Graph Transformations

1 class Calc {

2 public virtual int apply(int a, int b) {

3 return a + b;

4 }

5 }

6

7 class CalcAdd : Calc {

8 }

9

10 class CalcDiv : Calc {

11 public override int apply (int a, int b) {

12 return a / b;

13 }

14 }

15

16

17 class CalcMean : Calc {

18 public override int apply (int a, int b) {

19 Calc tmpCalc = new CalcDiv ();

20 return (tmpCalc .apply(base.apply (a,b) ,2));

21 }

22 }

23

24 class Test {

25 private static int x = 0;

26 private static int y = 0;

27 private static int z = 0;

28

29 public static void Main() {

30 int a = 10;

31 int b = 2;

32

33 Calc calc = new CalcAdd ();

34 x=calc.apply(a, b);

35 // x == 12
36

37 calc = new CalcDiv ();

38 y=calc.apply(a, b);

39 // y == 5
40

41 calc = new CalcMean ();

42 z=calc.apply(a, b);

43 // z == 6;
44 }

45 }

Listing 5.1: Calculator Example in C#

CalcAdd, the constructor of its parent-class is called. This is indicated with number 4. After the
parent’ s constructor has been executed, control flow is transferred to the constructor of CalcAdd
(5). Immediately after the return from the parent-class, the constructor of CalcAdd has finished
executing and returns (6), leaving the new instantiated object of type CalcAdd on the stack. From
this object, the method apply is called, which propagates the method call to its base class. This
is displayed by the rules executed in the rectangle with the number 7.

As mentioned earlier, number 8 also indicates the creation of an object. In fact, it represents
the allocation of the tmpCalc object – of type CalcDiv – as part of the method body of the apply

method of class CalcMean. The rectangle with number 8 visualizes the initialization of an object
(i. e. the resolving of fields) and that the execution of the constructor. The last production rule
represents the return instruction at the end of the constructor, which causes the new created object
to be left on the stack. The execution of the production rules indicated by 9 represent a method
call to the apply method of the class CalcDiv. This method is statically bounded (i. e. call
instruction) and overrides the virtual apply method of class Calc.

5.6 Performance 67

Figure 5.36: Final Graph of the Calculator Example

Now that we have seen which production rules are applied, we want to make sure that the
result of our simulation is the same as expected. That is, the fields x, y, and z should yield 12,
5, and 6, respectively. In contrast to the previous example, we present only the part of the final
graph containing these fields and their values in Figure 5.36. Again, we can see that the values
indeed correspond with what we expected.

5.6 Performance

Although we have not performed any explicit performance testing during this research project, a
few words must be said about our experiences during simulation of the examples. In the program
used for the Fibonacci example we requested the 4th number of the Fibonacci series. Simulating
this example with a linear exploration strategy was not a problem for the simulator, which came
up with a LTS consisting of 136 states and 135 transitions within a few seconds. When calculating
the 8th number of the series, the LTS consists of 973 states and 972 transitions. However, when
trying to look at the graph representing the last state, a list of errors with respect to the layout
algorithm appeared. Thus, it was impossible to check whether or not the simulation yields the
correct result.

When performing the same test (i. e. calculating the 8th number of the Fibonacci series) with
the generator tool, we obtain the following output:

Statistics: States: 972

Explored: 1

Transitions: 971

Time (ms): 19485

Matching: 610 3.1%

Transforming: 3718 19.1%

Iso checking: 14986 76.9%

Building GTS: 77 0.4%

Measuring: 62 0.3%

Space (kB): 270513

From this output we can read the number of yielded states and transitions. It also contains
the distribution of the time over the different performed tasks during the simulation.

However, when trying to have the generator output the LTS to a file, it crashes with a null-
pointer exception and the resulting LTS was never written. This means that we were still not

68 Specifying IL Semantics with Graph Transformations

able to determine if this simulation was performed correctly. Furthermore, the fact that we have
1 state and 1 transition less than we had in the simulator is confusing. The exact reason for this
is unknown.

Simulating the Calculator example by using the simulator did not cause any problems and
resulted in a LTS consisting of 184 states and 183 edges within a few seconds. When performing
the same test with the generator, this yields the following output:

Statistics: States: 184

Explored: 1

Transitions: 183

Time (ms): 2640

Matching: 45 1.7%

Transforming: 1938 73.4%

Iso checking: 626 23.7%

Building GTS: 16 0.6%

Measuring: 0 0.0%

Space (kB): 68731

Trying to output the LTS to a file yields the same problem as described for the Fibonacci
example.

5.7 Summary

Although static analysis is partly performed by our translator, we have developed one production
rule that is responsible for static analysis with production rules. This production rule involves
resolving target Labels to the Label of an Instruction.

Furthermore, we have discussed whether or not to perform flow graph analysis, and concluded
that introducing a separate flow graph analysis phase does not pay off. The reason for this is
that the syntactic order of appearance of instructions is in most cases equal to the semantic order
of execution. Performing separate flow graph analysis would involve specifying extra production
rules, while there is almost no added value.

A meta-model of the Frame Graph (FG) is presented and discussed in Section 5.3.1. The FG
is the ASG extended with run-time information, such as a stack and method frames. We also
provided a meta-model of the Value Graph (VG) which describes values and their relation to the
FG and ASG. This is discussed in Section 5.3.2.

We have discussed decisions about modelling the runtime environment in Section 5.3. This
involved an approach of representing the stack and the method state, but also discusses transferring
arguments from stack to method frame.

Finally, after discussing implementation decisions, we presented and explained a number of the
developed production rules in Section 5.4. We concluded this chapter by simulating two example
programs. This is accomplished by applying a set of production rules to the ASG of each program,
resulting in a Labelled Transition System (LTS). Such a LTS represents the (intermediate) graphs
as nodes and applied production rules as edges between these nodes. For these two examples, we
have provided a few comments on the performance of the GROOVE tool set.

Chapter 6

Conclusion

Using graphs and graph transformations to specify the IL semantics offers advantages. First,
representing the semantics in a graphical way is both intuitive and non-ambiguous. And second,
the formal background of graph transformations opens the possibility to use formal verification
techniques.

In this project we aimed at a graph-based representation of the semantics of the .NET Inter-
mediate Language. This resulted in a tool and a set of production rules describing IL semantics.
The tool is a translator that is able to transform an arbitrary IL program into an Abstract Syntax
Graph, which is used as start graph to which the production rules are applied. By applying the
production rules we can simulate the behaviour of the original IL program.

The graph transformations that we developed describe the semantics of the IL instructions,
meaning that each instruction needs to be specified only once. Changes to an IL program only
influences the start graph (ASG), but not the production rules themselves. The production rules
that we have constructed cover techniques such as object creation, method calling, and inheri-
tance. Furthermore, we have constructed production rules that are able to perform arithmetical
operations, branching operations, and load and store operations.

At the end of this project we have presented the simulation of two example programs containing
different (object-oriented) language concepts. The applied production rules are presented in the
generated Labelled Transition Systems of these simulations. Furthermore, we have shown that
simulating the programs yields correct results.

We have demonstrated some encouraging results and believe that we have provided a solid
base for future research on using graph transformations to specify the semantics of the .NET
Intermediate Language, and possibly other languages too.

6.1 Discussion

In this section we will evaluate choices and decisions with respect to our implementation. Fur-
thermore, we will briefly discuss our experiences with the GROOVE tool set and give our opinion
about the used approach.

6.1.1 Implementation

Method signatures are dealt with in the translator; the translator is responsible for matching and
merging identical signatures. An alternative of doing this in the translator would be doing it
by using graph production rules. However, using graph production rules for signature creation
and signature matching is difficult. This is because determining the method signature would
involve determining the parameters (and their order) of a method. After determining the method’s
signature, a check must be performed if this signature does not already exist. If so, the two
signatures must be merged to one single (and unique) signature. The last step of comparing and

70 Conclusion

merging two signatures with production rules may prove to be very difficult, because comparing
structures is quite hard.

Furthermore, we have mentioned that when a call instruction is used, we call the method
provided by that instruction. This is not entirely according to the IL semantics. Normally a
lookup to the implementation of the called method should be performed by traversing the class-
hierarchy, but in our rules we assume that the implementation of the called method can always be
found at the destination provided with the call instruction. We do this because we are almost
certain that IL programs obtained from the C# compiler always refer to the implementation of a
method in case of a call instruction.

6.1.2 GROOVE

During this project we have intensively worked with the editor, simulator and imager of the
GROOVE tool set. Installing the tool set is easy, and working with the tools is very intuitive.

While GROOVE provides us a nice set of tools, the development of these tools went on during
our project. Although this resulted in a quick response to bugs that were found, it also resulted
in the introduction of new bugs. Due to this, every now and then we had to determine whether
or not a problem concerned our production rules, or if it was a mere bug in the GROOVE tool
set. Sometimes, this was very time consuming.

6.1.3 Approach

Designing and implementing the translator proved to be more difficult than expected. For creating
the translator with ANTLR we used an existing parser grammar file1 that turned out to contain
some non-deterministic rules. These had to be corrected. With hindsight, we must say that it
would have been better to determine a subset of the Intermediate Language and write a translator
for this subset only. This would have considerably decreased the complexity of the language to be
translated.

With respect to the approach of using graphs and graph transformations in order to specify the
semantics of a dynamic language, we would like to state that we believe that using this approach
has proved to be working. We were able to specify the operational semantics of a number of IL
instructions by using graph production rules. Furthermore, we were able to represent run-time
state snapshots by using a graph, while transitions between two graphs – which are obtained by
applying production rules – represent run-time changes during simulation. Although graphs and
graph transformations are very useful for representing the semantics, we think it also has some
shortcomings. One of these is that it is (at this moment) impossible to implement instructions
that depend on memory locations (for example loading the address of a local variable). Another
shortcoming is that sometimes a trick had to be applied in order to get something working. An
example of such a trick is our used representation of the stack.

6.2 Related Work

Work that is related to ours is by Corradini et al.[4]. They use graph transformations to formalize
a large fragment of Java. In their proposal, one rule is generated for each method, making the
rules dependent on the program. Our work is more general than theirs, because we are able to
simulate the behaviour of the individual instructions, instead of just the result of the execution of
a method.

Kastenberg et al.[13] present operational semantics of a self-defined imperative, object-oriented
language (called TAAL). They use graph transformation rules to extend a flat abstract syntax
graph with control flow information, which again is used as the start graph for simulation. In our
solution, we do not extend our abstract syntax graph with explicit control flow information, but
instead use the implicit control flow information that is already available.

1 The grammar file was written by Pascal Lacroix and can be obtained from http://www.antlr.org

http://www.antlr.org

6.3 Future Work 71

Arends[3] presents work that involved the implementation of a translator that produces graph
production rules from Java bytecode. Templates with variable labels are used to build a production
rule for each situation by inserting the right labels. This differs from our approach, because we use
generic production rules which do not have to be generated according to the executed program.

6.3 Future Work

Both the translator and the created production rules need further extension. At this moment we
are only able to process single-file assemblies. This should be expanded to multi-file assemblies.
Also, not implemented are the concepts that deal with – among others things – exception handling,
threads, boxing and unboxing, generics, and type conversion. Furthermore, bitwise instructions,
the switch statement, and instructions directly addressing memory locations are not implemented.
This is all left for future work.

It may be interesting to research if it is possible to execute graph transformation rules controlled
by some other means, for example the CLR. The start graph then does not have to represent the
program to be simulated (as in case of the ASG), but only a few runtime concepts such as a stack.
Simulation then may be achieved by executing a program step by step and call a production
rule for each instruction, rather than first create an Abstract Syntax Graph and perform graph
transformations to this ASG. If this works, translating an IL program is not necessary any more
and it is sufficient to just have a set of graph production rules describing the semantics of the IL
instructions.

With respect to GROOVE we must mention that not all of the instructions are represented by
graph transformation rules because the GROOVE tool set does not provide support for all kinds
of operations and types. For example, GROOVE does not support the bitwise operations, floating
point types and unsigned integers. To support these instructions, adjustments to the GROOVE
tool set are necessary.

What we miss in the simulator and editor is a good layouting algorithm. Especially when
graphs are becoming large, layouting this graph – which mostly must be performed by hand –
is a time-consuming and unpleasant process. Furthermore, when applying a production rule to
a graph with hidden nodes and edges, the whole graph becomes visible again. It would be very
helpful if only the part of the graph that was not hidden would stay visible, along with the newly
added nodes and edges. It might also be good to give the user the possibility of colouring nodes
and edges in a graph, so that they can be quickly found during simulation. Another suggestion
is to introduce some way of grouping nodes and edges in order to make the graph more orderly.
Also, the larger a graph gets, the slower the user interface is going to work. We suggest that this
is a problem that should be dealt with.

Furthermore, we would like to emphasise that we have mainly used the simulator in order to
test and debug our production rules, which proved to be very helpful. However, as mentioned in
Section 5.6, we accounted problems with layouting a large LTS. Furthermore, the generator was
not able to export the LTS to a file. In our opinion, these problems need to be solved.

Bibliography

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics, 1999.

[2] ANTLR website. http://www.antlr.org/.

[3] Mark Arends. A simulation of the java virtual machine using graph grammars. Master’s
thesis, University of Twente, November 2003.

[4] Andrea Corradini, Fernando Lúıs Dotti, Luciana Foss, and Leila Ribeiro. Translating java
code to graph transformation systems. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-
Presicce, and Grzegorz Rozenberg, editors, ICGT, volume 3256 of Lecture Notes in Computer
Science, pages 383–398. Springer, 2004.

[5] Joe Duffy. Professional .NET Framework 2.0. Wiley Publishing, Inc., April 2006.

[6] ECMA International. Ecma international, Common Language Infrastructure (CLI), Standard
ECMA-335. http://www.ecma-international.org/publications/standards/Ecma-335.htm, June
2005.

[7] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of
Algebraic Graph Transformation. Springer-Verlag, 2006.

[8] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika Wagner,
and Andrea Corradini. Algebraic approaches to graph transformation - part ii: Single pushout
approach and comparison with double pushout approach. In Rozenberg [25], pages 247–312.

[9] GROOVE website. http://groove.sourceforge.net/.

[10] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with negative appli-
cation conditions. Fundam. Inform., 26(3/4):287–313, 1996.

[11] Java technology website. http://java.sun.com/.

[12] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Defining object-oriented execution
semantics using graph transformations. In R. Gorrieri and H. Wehrheim, editors, Proceedings
of the 8th IFIP International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’06), volume 4037 of Lecture Notes in Computer Science, pages
186–201. Springer-Verlag, 2006.

[13] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Engineering object-oriented se-
mantics using graph transformations. CTIT Technical Report 06-12, University of Twente,
March 2006.

[14] Harmen Kastenberg and Arend Rensink. Model checking dynamic states in GROOVE. In
A. Valmari, editor, Model Checking Software (SPIN), volume 3925 of Lecture Notes in Com-
puter Science, pages 299–305. Springer-Verlag, April 2006.

[15] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press, Redmond, WA, USA,
2002.

http://www.antlr.org/
http://groove.sourceforge.net/
http://java.sun.com/

74 BIBLIOGRAPHY

[16] Microsoft Corporation. Overview of the .net framework. Retrieved June 28, 2006, from
http://msdn2.microsoft.com/en-us/library/a4t23ktk.aspx, 2003.

[17] Microsoft Corporation. Common language specification. Retrieved December 24, 2006, from
http://msdn2.microsoft.com/en-us/library/12a7a7h3.aspx, 2006.

[18] Microsoft Corporation. Microsoft Portable Executable and Com-
mon Object File Format Specification. Retrieved July 4, 2006, from
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx, May 2006.

[19] Hanspeter Mössenböck, Wolfgang Beer, Dietrich Birngruber, and Albrecht Woess. .NET
Application Development: With C#, ASP.NET, ADO.NET, and Web Services. Pearson
Addison Wesley, 2004.

[20] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN–19, Computer Science Department, Aarhus University, Aarhus, Denmark, September
1981.

[21] Arend Rensink. The GROOVE simulator: A tool for state space generation. In John L.
Pfaltz, Manfred Nagl, and Boris Böhlen, editors, AGTIVE, volume 3062 of Lecture Notes in
Computer Science, pages 479–485. Springer, 2003.

[22] Arend Rensink and Harmen Kastenberg. GRaphs for Object-Oriented VErification (groove).
Retrieved Apr 1, 2006, from http://groove.sourceforge.net, April 2006.

[23] Jeffrey Richter. Garbage collection: Automatic memory management in the microsoft .net
framework. MSDN Magazine, November 2000.

[24] Jeffrey Richter. Applied Microsoft .NET Framework Programming. Microsoft Press, Red-
mond, WA, USA, 2002.

[25] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

[26] Thuan Thai and Hoang Q. Lam. .NET Framework Essentials. O’Reilly, 2nd edition, February
2002.

[27] G. Winskel. The formal semantics of programming languages. The MIT Press, 1993.

http://msdn2.microsoft.com/en-us/library/a4t23ktk.aspx
http://msdn2.microsoft.com/en-us/library/12a7a7h3.aspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://groove.sourceforge.net

Appendices

Appendix A

IL programs side to side

This appendix contains the resulting IL code after compiling two identical programs to the Inter-
mediate Language. The two input programs are written in the .NET languages C# and VB.NET
and are presented in Listing A.1 and Listing A.2.

Compiling (and disassembling) these two programs yields two files containing IL code. We
only present the most interesting part of the IL files. That is, metadata and other superfluous
methods are omitted. The resulting IL code can be found in Listing A.3 and Listing A.4.

1 class Example {

2 static int theResult ;

3 static int Fibonacci (int x) {

4 if (x == 0 || x == 1) {

5 return x;

6 }

7 return Fibonacci (x-1) + Fibonacci (x -2);

8 }

9

10 public static void Main() {

11 theResult = Fibonacci (4);

12 }

13 }

Listing A.1: Fibonacci Example in C#

1 Module Example

2 Dim theResult As Integer

3 Function Fibonacci (ByVal x As Integer) As Integer

4 If (x = 0 Or x = 1) Then

5 Return x

6 End If

7 Return Fibonacci (x-1) + Fibonacci (x -2)

8 End Function

9

10

11 Sub Main()

12 theResult = Fibonacci (4)

13 End Sub

14 End Module

Listing A.2: Fibonacci Example in VB.Net

78 IL programs side to side

1 .class private auto ansi beforefieldinit Example

2 extends [mscorlib]System .Object

3 {

4 .field private static int32 theResult

5 .method private hidebysig static int32

6 Fibonacci (int32 x) cil managed

7 {

8 // Code s i z e 27 (0 x1b)
9 .maxstack 8

10 IL_0000 : ldarg .0

11 IL_0001 : brfalse .s IL_0007

12

13 IL_0003 : ldarg .0

14 IL_0004 : ldc.i4.1

15 IL_0005 : bne.un.s IL_0009

16

17 IL_0007 : ldarg .0

18 IL_0008 : ret

19

20 IL_0009 : ldarg .0

21 IL_000a : ldc.i4.1

22 IL_000b : sub

23 IL_000c : call int32 Example :: Fibonacci (int32)

24 IL_0011 : ldarg .0

25 IL_0012 : ldc.i4.2

26 IL_0013 : sub

27 IL_0014 : call int32 Example :: Fibonacci (int32)

28 IL_0019 : add

29 IL_001a : ret

30 } // end of method Example : : Fibonacci
31

32 .method public hidebysig static void Main () cil managed

33 {

34 .entrypoint

35 // Code s i z e 12 (0 xc)
36 .maxstack 8

37 IL_0000 : ldc.i4.4

38 IL_0001 : call int32 Example :: Fibonacci (int32)

39 IL_0006 : stsfld int32 Example :: theResult

40 IL_000b : ret

41 } // end of method Example : : Main
42

43 .method public hidebysig specialname rtspecialname

44 instance void .ctor() cil managed

45 {

46 // Code s i z e 7 (0 x7)
47 .maxstack 8

48 IL_0000 : ldarg .0

49 IL_0001 : call instance void [mscorlib]System .Object ::. ctor()

50 IL_0006 : ret

51 } // end of method Example : : . c tor
52

53 } // end of c l a s s Example

Listing A.3: Fibonacci C# Example in IL

79

1 .class private auto ansi sealed Example

2 extends [mscorlib]System .Object

3 {

4 .custom instance void [Microsoft .VisualBasic]Microsoft .VisualBasic .

CompilerServices.StandardModuleAttribute ::. ctor () = (01 00 00 00)

5 .field private static int32 theResult

6 .method public static int32 Fibonacci (int32 x) cil managed

7 {

8 // Code s i z e 31 (0 x1 f)
9 .maxstack 3

10 .locals init (int32 V_0)

11 IL_0000 : ldarg .0

12 IL_0001 : ldc.i4.0

13 IL_0002 : ceq

14 IL_0004 : ldarg .0

15 IL_0005 : ldc.i4.1

16 IL_0006 : ceq

17 IL_0008 : or

18 IL_0009 : brfalse .s IL_000d

19

20 IL_000b : ldarg .0

21 IL_000c : ret

22

23 IL_000d : ldarg .0

24 IL_000e : ldc.i4.1

25 IL_000f : sub.ovf

26 IL_0010 : call int32 Example :: Fibonacci (int32)

27 IL_0015 : ldarg .0

28 IL_0016 : ldc.i4.2

29 IL_0017 : sub.ovf

30 IL_0018 : call int32 Example :: Fibonacci (int32)

31 IL_001d : add.ovf

32 IL_001e : ret

33 } // end of method Example : : Fibonacci
34

35 .method public static void Main() cil managed

36 {

37 .entrypoint

38 .custom instance void [mscorlib]System .STAThreadAttribute ::. ctor() = (01 00 00

00)

39 // Code s i z e 12 (0 xc)
40 .maxstack 8

41 IL_0000 : ldc.i4.4

42 IL_0001 : call int32 Example :: Fibonacci (int32)

43 IL_0006 : stsfld int32 Example :: theResult

44 IL_000b : ret

45 } // end of method Example : : Main
46

47 } // end of c l a s s Example

Listing A.4: Fibonacci VB.NET Example in IL

Appendix B

Calculator Example: IL Code and

ASG

1 // Microsof t (R) .NET Framework IL Disassembler . Version 2.0 .50727.42
2 // Copyright (c) Microsof t Corporation . A l l r i g h t s re served .
3

4 // Metadata vers ion : v2 .0.50727
5 .assembly extern mscorlib

6 {

7 . publickeytoken = (B7 7A 5C 56 19 34 E0 89) // . z\V. 4 . .
8 .ver 2:0:0:0

9 }

10 .assembly calc_inheritance

11 {

12 .custom instance void [mscorlib]System .Runtime .CompilerServices.

CompilationRelaxationsAttribute ::. ctor(int32) = (01 00 08 00 00 00 00 00)

13 .custom instance void [mscorlib]System .Runtime .CompilerServices.

RuntimeCompatibilityAttribute ::. ctor () = (01 00 01 00 54 02 16 57 72 61 70 4

E 6F 6E 45 78 // T . . WrapNonEx 63
65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows .

14 .hash algorithm 0x00008004

15 .ver 0:0:0:0

16 }

17 .module calc_inheritance.exe

18 // MVID: {A3A6DEF5−33D0−4757−B3EB−4E3A503588D2}
19 .imagebase 0x00400000

20 .file alignment 0x00000200

21 .stackreserve 0x00100000

22 .subsystem 0x0003 // WINDOWS CUI
23 .corflags 0x00000001 // ILONLY
24 // Image base : 0x02E90000
25

26 // =============== CLASS MEMBERS DECLARATION ===================
27

28 .class private auto ansi beforefieldinit Calc

29 extends [mscorlib]System .Object

30 {

31 .method public hidebysig newslot virtual

32 instance int32 apply(int32 a,

33 int32 b) cil managed

34 {

35 // Code s i z e 4 (0 x4)
36 .maxstack 8

37 IL_0000 : ldarg .1

38 IL_0001 : ldarg .2

39 IL_0002 : add

40 IL_0003 : ret

41 } // end of method Calc : : apply
42

82 Calculator Example: IL Code and ASG

43 .method public hidebysig specialname rtspecialname

44 instance void .ctor() cil managed

45 {

46 // Code s i z e 7 (0 x7)
47 .maxstack 8

48 IL_0000 : ldarg .0

49 IL_0001 : call instance void [mscorlib]System .Object ::. ctor()

50 IL_0006 : ret

51 } // end of method Calc : : . c tor
52

53 } // end of c l a s s Calc
54

55 .class private auto ansi beforefieldinit CalcAdd

56 extends Calc

57 {

58 .method public hidebysig specialname rtspecialname

59 instance void .ctor() cil managed

60 {

61 // Code s i z e 7 (0 x7)
62 .maxstack 8

63 IL_0000 : ldarg .0

64 IL_0001 : call instance void Calc ::. ctor ()

65 IL_0006 : ret

66 } // end of method CalcAdd : : . c tor
67

68 } // end of c l a s s CalcAdd
69

70 .class private auto ansi beforefieldinit CalcDiv

71 extends Calc

72 {

73 .method public hidebysig virtual instance int32

74 apply (int32 a,

75 int32 b) cil managed

76 {

77 // Code s i z e 4 (0 x4)
78 .maxstack 8

79 IL_0000 : ldarg .1

80 IL_0001 : ldarg .2

81 IL_0002 : div

82 IL_0003 : ret

83 } // end of method CalcDiv : : apply
84

85 .method public hidebysig specialname rtspecialname

86 instance void .ctor() cil managed

87 {

88 // Code s i z e 7 (0 x7)
89 .maxstack 8

90 IL_0000 : ldarg .0

91 IL_0001 : call instance void Calc ::. ctor ()

92 IL_0006 : ret

93 } // end of method CalcDiv : : . c tor
94

95 } // end of c l a s s CalcDiv
96

97 .class private auto ansi beforefieldinit CalcMean

98 extends Calc

99 {

100 .method public hidebysig virtual instance int32

101 apply (int32 a,

102 int32 b) cil managed

103 {

104 // Code s i z e 22 (0 x16)
105 .maxstack 4

106 .locals init (class Calc V_0)

107 IL_0000 : newobj instance void CalcDiv ::. ctor ()

108 IL_0005 : stloc .0

109 IL_0006 : ldloc .0

83

110 IL_0007 : ldarg .0

111 IL_0008 : ldarg .1

112 IL_0009 : ldarg .2

113 IL_000a : call instance int32 Calc :: apply(int32 ,

114 int32)

115 IL_000f : ldc.i4.2

116 IL_0010 : callvirt instance int32 Calc :: apply(int32 ,

117 int32)

118 IL_0015 : ret

119 } // end of method CalcMean : : apply
120

121 .method public hidebysig specialname rtspecialname

122 instance void .ctor() cil managed

123 {

124 // Code s i z e 7 (0 x7)
125 .maxstack 8

126 IL_0000 : ldarg .0

127 IL_0001 : call instance void Calc ::. ctor ()

128 IL_0006 : ret

129 } // end of method CalcMean : : . c tor
130

131 } // end of c l a s s CalcMean
132

133 .class private auto ansi beforefieldinit Test

134 extends [mscorlib]System .Object

135 {

136 .field private static int32 x

137 .field private static int32 y

138 .field private static int32 z

139 .method public hidebysig static void Main () cil managed

140 {

141 .entrypoint

142 // Code s i z e 63 (0 x3 f)
143 .maxstack 3

144 .locals init (int32 V_0 ,

145 int32 V_1 ,

146 class Calc V_2)

147 IL_0000 : ldc.i4.s 10

148 IL_0002 : stloc .0

149 IL_0003 : ldc.i4.2

150 IL_0004 : stloc .1

151 IL_0005 : newobj instance void CalcAdd ::. ctor ()

152 IL_000a : stloc .2

153 IL_000b : ldloc .2

154 IL_000c : ldloc .0

155 IL_000d : ldloc .1

156 IL_000e : callvirt instance int32 Calc :: apply(int32 ,

157 int32)

158 IL_0013 : stsfld int32 CalcMain ::x

159 IL_0018 : newobj instance void CalcDiv ::. ctor ()

160 IL_001d : stloc .2

161 IL_001e : ldloc .2

162 IL_001f : ldloc .0

163 IL_0020 : ldloc .1

164 IL_0021 : callvirt instance int32 Calc :: apply(int32 ,

165 int32)

166 IL_0026 : stsfld int32 CalcMain ::y

167 IL_002b : newobj instance void CalcMean ::. ctor()

168 IL_0030 : stloc .2

169 IL_0031 : ldloc .2

170 IL_0032 : ldloc .0

171 IL_0033 : ldloc .1

172 IL_0034 : callvirt instance int32 Calc :: apply(int32 ,

173 int32)

174 IL_0039 : stsfld int32 CalcMain ::z

175 IL_003e : ret

176 } // end of method CalcMain : : Main

84 Calculator Example: IL Code and ASG

177

178 .method public hidebysig specialname rtspecialname

179 instance void .ctor() cil managed

180 {

181 // Code s i z e 7 (0 x7)
182 .maxstack 8

183 IL_0000 : ldarg .0

184 IL_0001 : call instance void [mscorlib]System .Object ::. ctor()

185 IL_0006 : ret

186 } // end of method CalcMain : : . c tor
187

188 } // end of c l a s s CalcMain

Listing B.1: IL code for Calculator Example

85

Figure B.1: ASG Calculator Example

Appendix C

Production Rules - Simulation

Figure C.1: 1.init field int

Figure C.2: 1.instr call system object

88 Production Rules - Simulation

Figure C.3: 1.instr ret newobj

Figure C.4: callvirt propagate

Figure C.5: callvirt resolve

89

Figure C.6: class ascend

Figure C.7: class descend

Figure C.8: class initialize

Figure C.9: create args last

90 Production Rules - Simulation

Figure C.10: create args next

Figure C.11: init fields last

Figure C.12: init fields locate first

91

Figure C.13: init fields next

Figure C.14: init fields none

Figure C.15: init locals last

Figure C.16: init locals locate first

92 Production Rules - Simulation

Figure C.17: init locals next

Figure C.18: init locals locate none

93

Figure C.19: instantiator constr

Figure C.20: instr add

Figure C.21: instr beq false

94 Production Rules - Simulation

Figure C.22: instr beq true

Figure C.23: instr bgt false

Figure C.24: instr bgt true

95

Figure C.25: instr blt false

Figure C.26: instr blt true

Figure C.27: instr bne false

96 Production Rules - Simulation

Figure C.28: instr bne true

Figure C.29: instr br

Figure C.30: instr break

Figure C.31: instr brfalse false

97

Figure C.32: instr brfalse true

Figure C.33: instr brtrue false

Figure C.34: instr brtrue true

98 Production Rules - Simulation

Figure C.35: instr call

Figure C.36: instr call instance

99

Figure C.37: instr callvirt

Figure C.38: instr ceq false

Figure C.39: instr ceq true

100 Production Rules - Simulation

Figure C.40: instr cgt false

Figure C.41: instr cgt true

Figure C.42: instr clt false

101

Figure C.43: instr clt true

Figure C.44: instr div

Figure C.45: instr dup

102 Production Rules - Simulation

Figure C.46: instr ldarg

Figure C.47: instr ldc

Figure C.48: instr ldfld

103

Figure C.49: instr ldloc

Figure C.50: instr ldsfld

104 Production Rules - Simulation

Figure C.51: instr ldstr

Figure C.52: instr mul

Figure C.53: instr newobj

105

Figure C.54: instr nop

Figure C.55: instr pop

Figure C.56: instr rem

106 Production Rules - Simulation

Figure C.57: instr ret

Figure C.58: instr ret program

Figure C.59: instr starg

107

Figure C.60: instr starg new value

Figure C.61: instr stfld

108 Production Rules - Simulation

Figure C.62: instr stfld new value

Figure C.63: instr stloc

109

Figure C.64: instr stloc new value

Figure C.65: instr stsfld

110 Production Rules - Simulation

Figure C.66: instr stsfld new value

Figure C.67: instr sub

Figure C.68: locate args first

Figure C.69: locate args instance

111

Figure C.70: locate args none

Figure C.71: methodframe entrypoint

112 Production Rules - Simulation

Figure C.72: program

Figure C.73: transfer args last dynamic

Figure C.74: transfer args last newobj

113

Figure C.75: transfer args last static

Figure C.76: transfer args previous

	Introduction
	Problem Statement
	Approach
	Overview

	The .NET Framework
	Overview of .NET
	Common Language Runtime
	Base Class Library
	Common Type System and Common Language Specification
	Types
	Portable Executables
	Virtual Execution System
	Code Management
	Garbage Collection

	The Intermediate Language
	Directives
	Modules and Assemblies
	Namespaces
	Methods
	The IL Instruction Set
	Generics
	Name Resolution

	Our Work
	Summary

	Graphs and Graph Transformations
	Graphs
	The Pacman Example

	Graph Production Rules
	The Pacman Example - Production rules

	Graph Production System
	The Pacman Example - Graph Transition System

	Graph Transformation Tool
	The Pacman Example - GROOVE

	Summary

	Translating IL Programs to Graphs
	Translator
	Meta-Model Abstract Syntax Graph
	High-level structure
	Types
	Attributes
	Instructions

	Design Decisions
	Classnames and namespaces
	Method signatures
	Identifiers

	Translating C# and VB.NET to IL
	Example: IL to ASG
	Summary

	Specifying IL Semantics with Graph Transformations
	Static Analysis
	Control Flow Analysis
	Modelling the runtime environment
	Meta-model of the Frame Graph
	Meta-model of the Value Graph
	Stack
	Method Frame Representation and Transferring Arguments

	Production rules
	Starting Execution
	Object Creation
	Calling methods
	Common Instructions
	Limitations

	Simulation Examples
	Example: Fibonacci
	Example: Calculator

	Performance
	Summary

	Conclusion
	Discussion
	Implementation
	GROOVE
	Approach

	Related Work
	Future Work

	Appendices
	IL programs side to side
	Calculator Example: IL Code and ASG
	Production Rules - Simulation

