Permission-Based Separation Logic for
Multithreaded Java Programs”

Christian Haack®!, Maricke Huisman®?, Clément Hurlin®3*

% Aicas GmbH, Karslruhe, Germany
b University of Twente, The Netherlands
¢IRISA/Université de Rennes 1, France

Abstract

This paper presents a program logic for reasoning about multithreaded Java-
like programs with concurrency primitives such as dynamic thread creation,
thread joining and reentrant object monitors. The logic is based on concurrent
separation logic. It is the first detailed adaptation of concurrent separation logic
to a multithreaded Java-like language.

The program logic associates a unique static access permission with each
heap location, ensuring exclusive write accesses and ruling out data races. Con-
current reads are supported through fractional permissions. Permissions can be
transferred between threads upon thread starting, thread joining, initial mon-
itor entrancies and final monitor exits. In order to distinguish between initial
monitor entrancies and monitor reentrancies, auxiliary variables keep track of
multisets of currently held monitors. Data abstraction and behavioral subtyping
are facilitated through abstract predicates, which are also used to represent mon-
itor invariants, preconditions for thread starting and postconditions for thread
joining. Value-parametrized types allow to conveniently capture common strong
global invariants (i.e., invariants that are never invalid, not even temporarily),
like static object ownership relations.

The program logic is presented for a model language with Java-like classes
and interfaces, the soundness of the program logic is proven, and a number of
illustrative examples are presented.

UThis work was funded in part by the 6th Framework programme of the EC under the
MOBIUS project IST-FET-2005-015905.

*Corresponding author

1Part of the work done while the author was at Radboud University Nijmegen, Netherlands.

2Part of the work done while the author was at INRIA Sophia Antipolis — Méditerranée,
France.

3Part of the work done while the author was at INRIA Sophia Antipolis — Méditerranée,
France, and visiting the University of Twente, Netherlands; and then at INRIA — Bordeaux
Sud-Ouest, France and Microsoft R&D, France.

Preprint submitted to Elsevier August 30, 2010

1. Introduction

1.1. Motivation and Context

In the last decade, researchers have spent great efforts on developing advanced
program analysis tools for popular object-oriented programming languages, like
Java or C#. Such tools include software model-checkers [ll], static analysis
tools for data race and deadlock detection ﬂﬂ, E], type-and-effect systems for
atomicity M, E], and program verification tools based on interactive theorem
proving [fl]. A particularly successful line of research is concerned with static
contract checking tools based on Hoare logic. Examples include ESC/Java ﬁ]
— a highly automatic, but deliberately unsound, tool based on a weakest pre-
condition calculus and an SMT solver, the Key tool ﬂa} — a sound verification
tool for Java programs based on dynamic logic and symbolic execution, and
Spec# E] — a sound modular verification tool for C# programs that achieves
modular soundness by imposing a dynamic object ownership discipline. While
still primarily used in academics, these tools are mature and usable enough, so
that programmers other than the tool developers can employ them for construct-
ing realistic, verified programs. A restriction, however, is that their support for
concurrency is still limited. Because most real-world applications written in
Java or C# are multithreaded, this limitation is a serious obstacle for bring-
ing assertion-based verification to the real world. Support for concurrency is
therefore the most important next step.

What makes verification of shared-variable concurrent programs difficult is
the possibility of thread interference. Any assertion that has been established
by one thread can potentially be invalidated by any other thread at any time.
Some traditional program logics for shared-variable concurrency, e.g., Owicki-
Gries m] or Jones’s rely-guarantee method EI], account for thread interference
in the most general way. Unfortunately, the generality of these logics makes
them tedious to use, perhaps even unsuitable as a practical foundation for veri-
fying Java-like programs. In comparison to these logics, Hoare’s logics for con-
ditional critical regions ﬂﬁ] and monitors ﬂﬁ] are much simpler, because they
rely on syntactically enforceable synchronization disciplines that limit thread
interference to few synchronization points (see [14] for a survey).

Because Java’s main thread synchronization mechanism is based on moni-
tors, Hoare’s logic for monitors is a good basis for the verification of Java-like
programs. Unfortunately, however, a safe monitor synchronization discipline
cannot be enforced syntactically for Java. This is so, because Java threads
typically share heap memory including possibly aliased variables. Recently,
O’Hearn ﬂﬂ] has generalized Hoare’s logic to programming languages with heap.
To this end, he extended a new program logic, called separation logic ﬂE, ﬂ],
which had previously been used for reasoning about sequential pointer programs.
O’Hearn’s concurrent separation logic (CSL) enforces correct synchronization of
heap accesses logically, rather than syntactically. Logical enforcement of correct
synchronization has the desirable consequence that all CSL-verified programs
are guaranteed to be data-race free. In this paper, we adapt CSL to a Java-like
language.

Adapting CSL to Java requires a number of substantial extensions: Firstly,
while O’Hearn’s CSL assumes a static set of locks, in Java locks have the same
status as other objects that are dynamically allocated and stored on the heap,
and can be aliased. Secondly, while O’Hearn’s CSL assumes structured par-
allelisnﬂ, Java threads are based on thread identifiers (represented by thread
objects) that are dynamically allocated on the heap, can be stored on the heap
and can be aliased. A join-operation that is parametrized by a thread identi-
fier allows threads to wait for the termination of other threads. Thirdly, while
O’Hearn’s CSL assumes that programs go through a global initialization phase
to establish all invariants, this assumption is inappropriate for Java programs
where objects and locks are created dynamically and, consequently, initialize
their invariants dynamically. Fourthly, while O’Hearn considers classical mon-
itors that cannot be reentered, Java’s monitors are reentrant. Reentrant mon-
itors have the advantage of avoiding deadlocks due to attempted reentrancy.
Such deadlocks would, for instance, occur when synchronized methods call syn-
chronized methods on the current self: a very common call-pattern in Java.
Fifthly, O’Hearn’s CSL does not allow multiple threads to read the same loca-
tion simultaneously. This is more restrictive than necessary: to avoid data races
read-write and write-write conflicts must be avoided, but concurrent reads are
harmless.

CSL has since been extended in various directions to overcome some of
these limitations. For instance, Bornat and others have combined separation
logic with permission accounting in order to support concurrent reads ﬂE], or
Gotsman and others have generalized concurrent separation logic to cope with
Posix-style threads and locks m This paper takes the ideas from concurrent
separation logic into another direction, namely towards reasoning about multi-
threaded Java-like programs. The resulting proof system supports Java’s main
concurrency primitives: dynamically created threads and monitors that can be
stored on the heap, thread joining, and monitor reentrancy. Furthermore, the
proof system is carefully integrated into a Java-like type system, enriched with
value-parametrized types. The resulting formal system allows reasoning about
multithreaded programs written in Java. Since the use of Java is widespread
(e.g., internet applications, mobile phones and smart cards), this is an important
step towards reasoning about realistic software.

1.2. Separation Logic Informally

Before discussing our contribution in detail, we first informally present the fea-
tures of separation logic that are most important for this paper.

1.2.1. Formulas as Access Tickets
Separation logic ﬂﬂ] combines the usual logical operators with the points-to
predicate x.f — v and the resource conjunction F *G.

4For presentational reasons, O’Hearn’s paper m] assumes a fixed, static set of threads,
but remarks that this can be generalized to structured parallelism, as done by Brookes m]

The predicate z.f — v has a dual purpose: firstly, it asserts that the object
field z.f contains data value v and, secondly, it represents a ticket that grants
permission to access the field x.f. This is formalized by separation logic’s Hoare
rules for reading and writing fields (where z.f + _ is short for (Fv)(x.f +— v)):

{z.f— Ja.f=v{z.f— v} {z.fvly=a.fle.f—v *x v==y}

The crucial difference to standard Hoare logic is that both these rules have
a precondition of the form z.f — _: this formula functions as an access ticket
for x.f.

It is important that tickets are not forgeable: one ticket is not the same as
two tickets! For this reason, the resource conjunction * is not idempotent: F'
is not equivalent to F' * F'. Intuitively, the formula F * G represents two access
tickets F' and G to separate parts of the heap. In other words, the part of
the heap that F' permits to access is disjoint from the part of the heap that G
permits to access. As a consequence, separation logic’s * implicitly excludes
interfering heap accesses through aliases: this is why the Hoare rules shown
above are sound. It is noteworthy that given two objects a and b with field x,
the assertion a.x — _*Db.x — _ does not mean the same as a.x — _Ab.x — _
the first assertion implies that a and b are distinct, while the second assertion
can be satisfied even if a and b are aliases.

1.2.2. Local Reasoning

A crucial feature of separation logic is that it allows to reason locally about
methods. This means that, when calling a method, one can identify (1) the
(small) part of the heap accessed by that method and (2) the rest of the heap
that is left unaffected. Formally, this is expressed by the (Frame) rule:

{F}edF}
{F*G}c{F' *G}

(Frame)

This rule expresses that given a command ¢ which only accesses the part of
the heap described by F, one can reason locally about command ¢ ((Frame)’s
premise) and deduce something globally, i.e., in the context of a bigger heap
F* G ((Frame)’s conclusion). In this rule, G is called the frame and represents
the part of the heap unaffected by executing c. It is important that the (Frame)
rule can be added to our verification rules without harming soundness.

1.2.3. Abstraction

A good object-oriented programming practice is to consider objects ab-
stractly i.e., to hide implementation details from clients. To this end, Parkinson
introduced abstract predicates m Abstract predicates hide implementation
details from clients but allow class implementers to use them. In other words,
abstract predicates are opaque to clients but transparent to class implementers.

1.3. Contributions

Using the aspects of separation logic described above, we have developed a
program logic for a concurrent language with Java’s main concurrency primi-
tives. Our logic combines separation logic with fraction-based permissions. This
results in an expressive and flexible logic, which can be used to verify many real-
istic applications. The logic ensures the absence of data races, but is not overly
restrictive, as it allows concurrent reads. This subsection summarizes our sys-
tem and highlights our contributions; for a detailed comparison with existing
approaches, we refer to Section Gl

Because of the use of fraction-based permission permissions, as proposed by
Boyland m], our program logic prevents data races, but allows multiple threads
to read a location simultaneously. Permissions are fractions in the interval (0, 1].
Each access to the heap is associated with a permission. If a thread has full
permission (i.e., with value 1) to access a location, it can write this location,
because the thread is guaranteed to have exclusive access to it. If a thread
has a partial permission (less than 1), it can read a location. However, since
other threads might also have permission to read the same location, a partial
permission does not allow to write a location. Soundness of the approach is
ensured by the guarantee that the total permissions to access a location are
never more than 1.

Permissions can be transferred from one thread to another upon thread
creation and thread termination. If a new thread is forked, the parent thread
transfers the necessary permissions to this new thread (and thus the creating
thread abandons these permissions, to avoid permission duplication). Once a
thread terminates, its permissions can be transferred to the remaining threads.
The mechanism for doing this in Java is by joining a thread: if a thread ¢ joins
another thread wu, it blocks until v has terminated. After this, ¢ can take hold
of u’s permissions. In order to soundly account for permissions upon thread
joining, a special join-permission is used. Only threads that hold (a fraction
of) this join-permission can take hold of (the same fraction of) the permissions
that have been released by the terminating thread. Note that, contrary to
Posix threads, Java threads allow multiple joiners of the same thread. Our logic
supports multiple thread joiners. For example, the logic can verify programs
where multiple threads join the same thread ¢ in order to gain shared read-access
to the part of the heap that was previously owned by t¢.

Just as in O’Hearn’s approach ﬂﬁ], locks are associated with so-called re-
source invariants. If a thread acquires a lock, it may assume the lock’s resource
invariant and obtain access to the resource invariant’s footprint (i.e., to the
part of the heap that the resource invariant depends on). If a thread releases
a lock, it has to establish the lock’s resource invariant and transfers access to
the resource invariant’s footprint back to the lock. Previous variants of concur-
rent separation logic prohibit threads to acquire locks that they already hold.
In contrast, Java’s locks are reentrant. Our program logic supports reentrant
locks. To this end, the logic distinguishes between initial lock entries and lock
reentries. Permissions are transferred upon initial lock entries only, but not

upon reentries.

Unfortunately, distinguishing between initial lock entries and reentries is not
well-supported by separation logic. The problem is that this distinction requires
proving that, upon initial entry, a lock does not alias any currently held locks.
Separation logic, however, is designed to avoid depending on such global alias-
ing constraints, and consequently does not provide good support for reasoning
about such. Fortunately, our logic includes a rich type system that can be used
towards proving global aliasing constraints in many cases. The type system
features value-parametrized types, which naturally extend Java’s type system
that already includes generic types. Value parameters are used for static type
checking and static verification only, thus, do not change the dynamic semantics
of Java. Value-parametrized types can be useful in many ways. For instance,
in m] we use them to distinguish read-only iterators from read-write iterators.
Value-parametrized types can also express static object ownershlp relations, as
done in parametric ownership type systems (e.g., ﬂé . Similar ownership
type systems have been used in program verification Systems to control aliasing
(e.g, ﬂ%]) In Section BE62 we use type-based ownership towards proving the
correctness of a fine-grained lock-coupling algorithms with our verification rules
for reentrant locks. The type-based ownership relation serves to distinguish
initial lock entries from lock reentries.

To allow the inheritance of resource invariants, we use abstract predicates as
introduced in Parkinson’s object-oriented separation logic M] Abstract predi-
cates are highly appropriate to represent resource invariants: in class Object a
resource invariant with empty footprint is defined, and each subclass can extend
this resource invariant to depend on additional fields. We support modular ver-
ification of predicate extensions, by axiomatizing the so-called “stack of class

frames” [, .

1.4. Earlier Papers and Overview

This paper is based on several earlier papers, presenting parts of the proof
system. The logic to reason about dynamic threads was presented at AMAST
2008 @, the logic to reason about reentrant locks was presented at APLAS
2008 [29]. However, compared to these earlier papers, the system has been
unified and streamlined. In addition, novel specifications and implementations
of sequential and parallel merge sort illustrate the approach. The work as it is
presented here forms a part of Hurlin’s PhD thesis @]

The remainder of this paper is organized as follows. Section B presents the
Java-like language that we use for our formal development. Section Blintroduces
permission-based separation logic and basic proof rules for single-threaded pro-
grams. Section Bl extends this to multithreaded programs with dynamic thread
creation and termination, while Section Bl adds reentrant locks. Finally, Sec-
tions Bl and [discuss related work, future work and conclusions. The soundness
proof for the system can be found in Hurlin’s PhD thesis @]

2. The Java-like model language

This section presents the sequential Java-like language that forms the basis for
this paper. Later sections will extend the language with Java-like concurrency
primitives. The language models core features of Java: mutable fields, inheri-
tance and method overriding, and interfaces. It does not model, however, all
features of Java, omitting for instance static fields, super calls, inner classes and
reflection. Modulo minor syntactic differences for the sake of presentational
simplicity, the model language is a subset of Java. However, to simplify the pre-
sentation of the program logic, we assume that Java expressions are written in
a form so that all intermediate results are assigned to local read-only variables,

cf. e.g., ﬁl, E, E, @])
2.1. Syntax

The language distinguishes between read-only variables 1, read-write variables ¢,
and logical variables a. Method parameters (including this) are always read-
only, and local variables can be both read-only or read-write. Logical variables
can only occur in specifications and types. We treat read-only variables spe-
cially, because their use often avoids the need for syntactical side conditions in
the proof rules (see Section BZ). In concrete Java-syntax, read-only variables
can be represented by preceding their declarations with Java’s final-modifiers,
but we omit the final-modifiers here. The model language also includes class
identifiers, interface identifiers, field identifiers, method identifiers and predicate
identifiers. Object identifiers are used in the operational semantics, but must
not occur in source programs.

Identifier Domains:

1

C,D € Classld class identifiers (including Object)
1,J € Intld interface identifiers

s,t € Typeld = Classld U Intld type identifiers

0,p,q,r € Objld object identifiers (must not occur in source programs)
f € Fieldld field identifiers

m € Methld method identifiers

P € Predld predicate identifiers

v € RdVar read-only variables (including this)
¢ € RdWrVar read-write variables

a € LogVar logical variables

x,y,2 € Var = RdVar U RdWrVar U LogVar variables
L

(Open) values are integers, booleans, object identifiers, null, and read-only
variables. Closed values are values that are not variables. Initially, specifications
values range over logic variables and values; this will be extended in subsequent
sections.

n € Int w,v,weVal == mnull | n | b] o |
b€ Bool = {true,false} Clval = Val\ RdVar
m€SpecVal = a | w

Now we define the types used in our language. Since interfaces and classes
(defined next) can be parameterized with specification values, object types are
of the form t<7w>.

T,UV,W € Type == void | int | bool | ¢<7>

Expressions are built from values and variables using arithmetic and logical
operators. We introduce a special instanceof operator that is exactly Java’s
instanceof.

op 2 {==,1,& 1} U {C classof | C € Classld }
U {instanceof T | T € Type}

e€Exp == m | £ | op(e)

Next, class declarations are defined. As in Java, classes can ext(end) other
classes, and impl(ement) interfaces. Classes declare_fields, abstract predicates,
class axioms, and methods. Abstract predicates ﬁgl, @] and class axioms
are part of our specification language; they are explained in Section BTl
[Appendix A~T] defines syntactic functions to lookup fields (fld), axioms (axiom),
method types and bodies (mtype and mbody, respectively), and predicate types
and bodies (ptype and pbody, respectively). Methods have pre/postcondition
specifications, parameterized by logical variables. The meaning of a specifica-
tion is defined via a universal quantification over these parameters. In examples,
we usually leave the parameterization implicit, but it is treated explicitly in the
formal language.

Class Declarations:

I

F € Formula specification formulas (see Section BTl
spec ::= requires F';ensures [pre/postconditions

fd == Tf; field declarations

pd = pred P<T a>=F; predicate definitions (see Section BTl
ar = axiom F} class axioms (see Section BZIT))

md = <Ta>spec Um((V){ct methods (scope of &,7 is T, spec, U,V c)
cl € Class == class C<T a> ext U impl V {fd* pd* ax* md*}

class (scope of a is T, U, V, fd*, pd*, az*, md*)

Classes do not have constructors: fields are initialized to a default value when
objects are created. Later, for clarity, methods that act as constructors are
called init.

In a similar way, we define interfaces:

Interface Declarations:
I 1

pt == pred P<T &>; ~ predicate types ~ ~
mt == <T'a>spec U m(V7) _ method types (scope of a,7is T, spec, U, V')
int € Interface ::= interface I<T a>ext U {pt* az* mt*}

interfaces (scope of & is T, U, pt*, ax*, mt*)
L 1

Class and interface declarations define class tables: ct C Interface U Class.

We use the symbol <; for the order on type identifiers induced by class table

ct. We often leave the subscript c¢t implicit. We impose the following sanity
conditions on ct: (1) <. is antisymmetric, (2) if ¢ (except Object) occurs
anywhere in ct then t is declared in ct and (3) ¢t does not contain duplicate
declarations or a declaration of Object. These sanity conditions are the same as
in Featherweight Java [B]. We write dom(ct) for the set of all type identifiers
declared in ct.

Subtyping is inductively defined by the following rules:

Subtyping 7' <: T":
1

— 1
T<T T<UU<V = T<V s<Ta>extt<a’> = s<i> < i<’ [7/a]>

t<i> <:0Object ¢<Ta> impl I<n'> = t<i> < I<7'[7/a)>
L]

Commands are sequences of head commands hc and local variable declara-
tions, terminated by a return value:

Commands:
I 1
ceCmd == v | Tle | Tr=lc | heec
hc € HeadCmd == ¢=v | l=0p(v) | £=v.f | v.f=v | {=new C<T> |
L=v.m(®) | if (v){c}else{c} | while (e){c}

The meaning of the Java commands is exactly as in Java. To simplify later
developments, our grammar for writing programs imposes that (1) every inter-
mediate result is assigned to a local variable and (2) the right hand sides of
assignments contain no read-write variables. Hurlin’s thesis @] illustrates how
a Java program is written precisely in our language.

2.2. Semantics

This section describes the small-step operational semantics of our Java-like lan-
guage. This semantics is fairly standard, except that the state does not contain
a call stack, but only a single store to keep track of the current receiver. We
choose to model parameter-passing by substitution. Local read-write variables
are mapped to closed values by a single mathematical function (which we name
stack), relying on alpha-conversion to avoid naming conflicts. In this way, we
avoid modeling the details of a call stack.

Runtime structures. The small-step operational semantics operates on states,
consisting of a heap, a command, and a stack. Section Bl will extend the state, to
cope with multithreaded programs. As usual, a heap maps each object identifier
(1) to its dynamic type and (2) to a mapping from fields to closed values:

ObjStore = Fieldld — ClVal h € Heap = Objld — Type x ObjStore

Given a heap h and an object identifier o, we write h(o); to denote o’s
dynamic type and h(0), to denote o’s store.

Stacks map read/write variables to closed values. Their domains do not
include read-only variables, because our operational semantics instantiates those
by substitution:

s € Stack = RdWrVar — ClVal

Finally, a state consists of a heap, a command, and a stack:
st € State = Heap x Cmd x Stack

Initialization. To define initial states, we first define functions to initialize ob-
jects and programs.
Function df : Type — CIVal maps types to their default values:

df(C<7w>) = null df(void) = null df(int) =0 df(bool) = false

Function initStore : Type — ObjStore maps object types to their initial object
stores.
initStore(t<m>)(f) = df(T) iff (T f) € fld(C<n>)

Now, function init : Cmd — State maps programs to their initial state.
Initially, the heap is empty (hence the first {}) and the stack is empty (hence the
second 0):

init(c) = (0, ¢, 0)
Semantics of values. The semantics of read-only variables is left undefined,
because we deal with them by substitution. For values that are not read-only
variables, their semantics is simply identity:

Semantics of Values, [v] € CIVal:
I 1

[pull] £null [n]2n [B]2b [o] 20

Semantics of operators. We require that the built-in operators include reference
equality ==, boolean negation !, boolean conjunction &, and boolean disjunc-
tion |. Furthermore, we require that for each class C, there is an operator
'C'classof v’ that tests whether C' is v’s dynamic class. Note that this last
operator depends on object types, as stored on the heap. Another example
of an operator that depends on object types is our instanceof. The formal
semantics of the built-in operators are presented in

In addition to the above operators, we permit to use any further built-in
operator that satisfies the following two axioms:

(a) If [op]"(v) = w and h C R', then ﬂopﬂ’f/(z’)) =w.
(b) If B = hlo.f + u], then [op]" = Jop|" .

The first of these axioms ensures that operators are invariant under heap exten-
sions. The second axiom ensures that operators do no depend on values stored
on the heap. Thus, if operators depend on the heap at all, then they may only
depend on types (but not on values) stored on the heap. This is useful for the
operators classof and instanceof that depend on the type components of ob-
jects. Because it is fixed at object creation, these operators satisfy requirement

3

10

Semantics of specification values and expressions. Expressions contain spec-
ification values, read-write variables, and operators. Therefore, we give the
semantics of specification values and the semantics of expressions together. Let
SemVal be the semantic domain of specification values. For the moment, SemVal
is simply CIVal; but it will be extended in Sec. B4l as we extend specification
values. We range over SemVal with meta-variable .

Semantics of Specification Values and Expressions, [e] : Heap — Stack — SemVal:
T 1

(Sem SpecVal) (Sem Var) (Sem Op)
[l =n s(h)=v [wi]¢ =v1 - [wa] =0 [op]"(v1,...,00) =
| [[71']]2 =pu [[6]]}; =0 [[op(wl,...,wn)]]}; =

Note that, we do not have to define a semantics of logical variables «, because
we deal with them by substitution.

Auziliary syntax for method call and return. We introduce a derived form, ¢ «
¢; ¢’ that assigns the result of a computation ¢ to variable £. In its definition, we
write fv(c) for the set of free variables of ¢. Furthermore, we make use of a piece
of auxiliary syntax ¢=return(v); c. This construct is not meant to be used in
source programs. Its purpose is to mark method-return-points in intermediate
program states. Tracking method-return-points in this way will be needed to
show soundness of the proof system.

levic = fl=return(v);c
(= (Tl;e);¢d = TO Lecd if ¢/ ¢fv(c’) and ¢/ # ¢
(= (Ta1=l;c);d = Tau=ll;lecc ifigfv()
£~ (he; e); ¢ 2 helecd
¢ = ... | £=return(v);c |

Restriction: This clause must not occur in source programs.
We can now also define sequential composition of commands as follows:

e = voidl; l« ¢ ¢ where £ & fu(c,)
Small-step reduction. The state reduction relation —.; is given with respect
to a class table ct. Where it is clear from the context, we omit the subscript
ct. In the reduction rules, we use the following abbreviation for field updates:
Blo.f] = hlo > (A(0),, h(0)[f — v])].

State Reductions, st — . st':
I 1

(Red Dcl) £ ¢ dom(s) s' = s[l— df(T)]
b T ¢,5) — {h, o)

(Red Fin Dcl) s(f) =v ¢ =c[v/1
(h, Ta=t; c,s) — (h,c,s)

(Red Var Set) s = s[¢ —]
(hy L=v; ¢,5) — {h, ¢,

11

!

(Red Op) arity(op) = 5| [op]" (@) =w & = st — w)
(h, 0= 0p(2); ,5) — (b, ¢,5')
(Red Get) s" = s[l— h(0),(f)]
(h =01 e.5) — (h, c.s)
(Red Set) k' = hlo.f — v]
<h7 O'f=v; 67 S> - <h/7 C7 s>
(Red New) o ¢ dom(h) h' = hlo+ (C<7>,initStore(C<7>))] s = s[f — o]
(h, £=new C<7>; ¢c,s) — (h', ¢, s")
(Red Call) h(o)1 = C<7> mbody(m,C<7>) = (10;7).cm ¢ = cm[0/10,7/7]
(h, £=0.m(D); c,s) — (h, £« ;¢ s)
(Red Return)
(h, £=return(v); ¢,s) — (h, £=v; ¢, s)
(Red If True)
(h, if (true){ctelse{c'}; c",s) — (h,c; ", s)
(Red If False)
(h, if (false){c}telse{c'}; ¢",s) — (h,c’;c",s)
(Red While True) [e]” = true
(h, while (e){c};c,s) — (h, c; while (e){c};c,s)
(Red While False) [e]? = false
(h, while (e){c};c,s) — (h, c,s)

Remarks. In|(Red Dcl)] read-write variables are initialized to a default value.
In|(Red Fin Dcl)} declaration of read-only variables is handled by substituting

the right-hand side’s value for the newly declared variable in the continuation.
In the heap is extended to contain a new object. In 10
is the formal method receiver and 7 are the formal method parameters. Like
for declaration of read-only variables, both the formal method receiver and the
formal method parameters are substituted by the actual receiver and the actual
method parameters.

3. Separation Logic for a Java-like Language

This section shows how sequential programs written in the Java-like language
from Section Bl can be specified and verified with separation logic. The next two
sections will extend this to a multithreaded language. This section first presents
separation logic formally, then it presents the proof system and shows soundness
of the approach. As an example, we show the specification of a sequential merge
sort algorithm.

3.1. Separation Logic

3.1.1. Syntax

To write method contracts, we use intuitionistic separation logic m, ﬂ, |Zl|]
This is most suitable to reason about properties that are invariant under heap
extensions, and to reason about garbage-collected languages like Java. Contrary
to classical separation logic, intuitionistic separation logic admits weakening.

12

Informally, this means that one can “forget” a part of the state, which makes it
appropriate for garbage-collected languages.
Specification formulas F are defined by the following grammar:

lop € {x,—*,&, |} qt € {ex, fa} Kk € Pred = P | PeC
F € Formula ::= e | PointsTo(e.f,m e) | m.k<> | F lop F'| (¢t T) (F)

We now explain these formulas:

The points-to predicate PointsTo(e.f,m, v) is ASCII for e.f —— v ﬂE]
Superscript m must be a fractional permission [22] i.e., a fraction % in the
interval (0,1]. As explained earlier, formula PointsTo(e.f, 7, v) has a dual
meaning: firstly, it asserts that field e.f contains value v, and, secondly, it
represents access right 7 to e.f. Permission 7 = 1 grants write access while any
permission 7 grants read access.

The resource conjunction F* G (a.k.a separating conjunction) expresses
that resources F' and G are independently available: using either of these re-
sources leaves the other one intact. Resource conjunction is not idempotent: F
does not imply F' * F'. Because Java is a garbage-collected language, we allow
dropping assertions: F' * G implies F'.

The resource implication F-* G (aXk.a. linear implication or magic wand)
means “consume F yielding G”. Resource F -* G permits to trade resource
F' to receive resource GG in return. Resource conjunction and implication are
related by the modus ponens: F * (F -+ G) implies G. Most related work omit
the magic wand. We include it, because it can be added without any difficulties,
and we found it useful to specify some programming patterns. In particular our
previous work m] exemplifies contracts that make heavy use of it.

To avoid a proof theory with bunched contexts (see Section BZLH), we omit
the =-implication between heap formulas (and did not need it in later exam-
ples).

The predicate application w.x<7> applies abstract predicate x to its receiver
parameter m and the additional parameters 7. As explained above, predicate
definitions in classes map abstract predicates to concrete definitions. Predi-
cate definitions can be extended in subclasses to account for extended object
state. Semantically, P’s predicate extension in class C gets *-conjoined with P’s
predicate extensions in C’s superclasses. The qualified predicate w.PQC<7> rep-
resents the *-conjunction of P’s predicate extensions in C’s superclasses, up to
and including C. The unqualified predicate w.P<7> is equivalent to m.P@C<T>,
where C' is 7’s dynamic class. We allow predicates with missing parameters:
Semantically, missing parameters are existentially quantified.

For expressivity, it is crucial to allow parameterization of objects by permis-
sions. For this, we include a special type perm for fractional permissions:

T,U,V,WW € Type == ... | perm |

Because class parameters are instantiated by specification values (see Sec-
tion ZTI), we extend specification values with fractional permissions. Fractional

13

permissions are represented symbolically: 1 represents itself, and if symbolic
fraction 7 represents concrete fraction fr then split(m) represents % - fr.

m € SpecVal = oo | 1] split(m) |

Quantified formulas have the shape (gt T'a) (F'), where ¢t is a universal or
existential quantifier, « is a variable whose scope is formula F', and T is a’s type.
Because specification values 7 and expressions e may contain logical variables «
(see pages [and B), quantified variables can appear in many positions: as type
parameters; as the first, third, and fourth parameter in PointsTo predicates%;
as predicate parameters etc. This is important for expressiveness.

We define several convenient derived forms for specification formulas:

PointsTo(e.f,m,T) 2 (exTa)(PointsTo(e.f, m, a))
Perm(e.f,m) 2 (exTa)(PointsTo(e.f,m,a)) where T is e.f’s type
FxxG = (F-+xG)& (G-xF)

F assures G2 F - (F*Q)

F ispartof G = G —* (F* (F-+@G))

Intuitively, F' ispartof G says that F is a physical part of G: one can take
G apart into F' and its complement F'-* GG, and can put the two parts together
to obtain G back.

In our model language, specifications are expressed with method pre- and
postconditions. Preconditions are declared with keyword requires, while post-
conditions are declared with keyword ensures. In postconditions, the special
identifier result can be used to refer to the value returned. As defined in Sec-
tion Bl the syntax of a method declaration with pre- and postconditions is as
follows:

<T a>requires F;ensures F; U m(V2){c}

Interfaces may declare abstract predicates and classes may implement them
by providing concrete definitions as separation logic formulas.

interface I { ... pred P<T'z>; ... }
class C impl I { ... pred P<Tz>=F; ... }

Class axioms export facts about relations between abstract predicates, with-
out revealing the detailed predicate implementations. Class implementors have
to prove class axioms and class clients can use them.

class C { ... axiom F';... }

5Note that we forbid to quantify over the second parameter of PointsTo predicates, i.e.,
the field name. This is intentional, because this would complicate PointsTo’s semantics. We
found this not to be a restriction, because we did not need this kind of quantification in any
of our examples.

14

Predicate definitions can be preceded by an optional public modifier. The
role of the public modifier is to export the definition of a predicate in a given
class to clients (see e.g., the predicates in class List in the merge sort example in
Section BH). Formally, public desugars to an axiom (where C is the enclosing
class):

. o N pred P<T z>=F;
public pred P<T'z>=F = axiom PQCKZ>*—* I

Notice that public pred P<T Z> = F; is not equivalent to pred P<T > =
F; and axiom P<T 7> *—* F';. The latter axiom is more general than public’s
desugaring because it constrains extensions of P in C’s subclasses to satisfy this
axiom (whereas public’s desugaring simply exports P’s definition in class C').
For additional usage of public, we refer to @, §3.2.1] and Sections LA and B0

3.1.2. Resources

This paragraph defines resources i.e., models of our formulas. These will
be used below, in Section B4l when we define a forcing relation of the form
'k &R;s E F, where T is a type environment, £ is a predicate environment
(that maps predicate identifiers to concrete heap predicates), R is a resource,
and s is a stack. Intuitively, if I'F &; R; s = F holds, resource R is a state that
is described by F.

Resources R range over the set Resource with a binary relation # C Resourcex
Resource (the compatibility relation) and a partial binary operator * : # —
Resource (the resource joining operator) that is associative and commutative.
Concretely, resources are pairs R = (h, P) of a heap h and a permission table
P € Objld x Fieldld — [0,1]. We require that resources satisfy the following
axioms:

(a) P(o, f) > 0 for all 0 € dom(h) and f € dom(h(0),).
(b) P(o, f) =0 for all o & dom(h) and all f.

Axiom [(@]] ensures that the (partial) heap h only contains cells that are as-
sociated with strictly positive permissions. Technically, this condition is needed
to prove soundness of the verification rule for field updates. Axiom @ ensures
that all objects that are not yet allocated have minimal permissions (with re-
spect to the resource order presented below). This is needed to prove soundness
of the verification rule for allocating new objects.

Each of the two resource components carries itself a resource structure (#, *).
These structures are lifted to resources in a component-wise way. We now define
and * for the two components.

Heaps (which, as defined in Section ZA have type Objld — Type x (Fieldld —
ClVal)) are compatible if they agree on shared object types and memory content:

(Vo € dom(h) Nndom(h')) (
h#th’ iff h(o), = h'(0), and
(Vf € dom(h(0),) N dom(R'(0),))(h(0)y(f) = 1'(0)5(f)))

15

For example, given a class C with fields x and y, the heaps o — (C, (x — 0))
and o — (C, (x — 1)) are incompatible, because they contain different values in
field x of object 0. However, heap o +— (C,(x — 0)) and heap o — (C, (y — 1))
are compatible, because they contain different values in different fields of object
o. Note that in this example, the two heaps each contain a field of the single
object o: we allow partial objects.

To define heap joining, we lift set union to deal with undefinedness: fV g =
fUg, fVundef =undef vV f = f. Similarly for types: TV undef = undef V1T =
TVvT="T.

(h*h')(0), = h(o), V h'(0), (h * h')(0), = h(0)y V h'(0),

Joining permission tables is defined by point-wise addition, where compati-
bility ensures that the sums never exceed 1.

P#P' iff (Vo)(P(0) +P'(0) <1) (P*P')(0) = P(0) +P'(0)
For later convenience, we define projection operators n, and perm as follows:

Py =h (hP)pem =P

perm

We define an order on heaps, permission tables, and resources as follows:

h<k = (3W)(h*xh"=1)
P<P 2 (@P)(P*P' =7P)
R<R = (GR")(R*R"=TR)

Thus, a heap h is less than a heap b’ if h contains less memory cells than A/,
a permission table P is less than a permission table P’ if P’s permissions are
less than P’’s permissions, and a resource R is less than a resource R’ if R’s
components are all less than R'’s components.

3.1.8. Predicate Environments
The predicates that are declared in the class table define a predicate envi-
ronment that maps predicate symbols to relations.

Predicate domains. What is the domain of these relations? Roughly, the domain
consists of resources (including the heap) and tuples of specification values (rep-
resenting class parameters and predicate parameters). To define this formally,
first, let SpecVals be the set of all tuples of specification values:

SpecVals = U SpecVal™
n>0

Second, let Pred(ct) be the set of all qualified predicates P@C that are defined
in class table ct:

Pred(ct) = { PeC | C € dom(ct) and P is defined in C' }

16

For P@C in Pred(ct), its domain Dom(P@C') is defined as the subset of
SpecVals x Resources x Objld x SpecVals that consists of all tuples (7, R,r, 7")
that satisfy the following conditions:

(a) fst(Rnp) 1 : C<mfl.
(b) ptype(P, C<@>) = pred P<T &> and fst(Rnp) 7 : T for some T, .

Intuitively, if (7, R,r,7') € Dom(P@C), then 7 represents the class parameters
of r’s dynamic class C, resource R represents the model used in the semantics
relation (see Section BT, r represents the predicate receiver, and 7’ represents
P’s actual predicate parameters.

Predicate environments. We choose to represent relations as functions into the
two-element set: Let 2 be the two-element set {0, 1} equipped with the usual
order (i.e., 0 < 1). A predicate environment £ is a function of type [[x €
Pred(ct).Dom(x) — 2 such that the following axiom holds:

(a) If (7, R,r, @), (7, R,r,7") € Dom(x) and R < R/,
then &(k)(7, R,r, @) < E(K)(T, R/, r, 7).

Axiom says that predicates are monotone in the resources: if a predicate
is satisfied in resource R, then it is also satisfied in all larger resources R’. This
axiom is natural for a language with garbage collection. As we extend the set
of formulas in next chapters, we will extend the list of axioms that predicate
environments must satisfy.

The class table’s predicate environment. The class table ct defines a predicate
environment that maps each predicate in ct to its definition. Technically, this
predicate environment is defined as the least fixed point of the endofunctionl] F.;
on predicate environments. The definition of F.; refers to the Kripke resource
semantics |=, as defined in Section BTl

pbody(r.P<7’>, C<7>) = F ext D<7'>
C # 0bject and arity(P, D) =n = F’'=r.PeD<7, >
C =0bject or P is rooted in C' = F’ = true

- — ; (Sem Pred)
Fu(€)(PeC)(x, R, 1,7') = { T 1T fst(Rap) F & R;0 = F*F

0 otherwise

In this definition, 7, ,, denotes the tuple consisting of the first n entries of
7" (which may have more than n entries due to arity extension in subclasses).

Theorem 1 (Existence of Fixed Points). If ct : o, then there exists a predicate
environment € such that Fe(E) = E.

Proof. This is a consequence of Theorem 8 on fixed points in M] In the
proof of this theorem, it is crucial to remark that, by syntactic restriction,
cyclic predicate dependencies must be positive. O

6 All typing judgments are defined in

7An endofunction is a function whose range is a subset of its domain.

17

8.1.4. Semantics

Because expressions (that contain values and specification values) of type
bool are included in the domain of formulas, the semantics of formulas depends
on the semantics of expressions. We defined the semantics of expressions in
Sec. However, since we extended specification values with fractional per-
missions, we have to extend the semantics of specification values. Let interval
(0, 1] be the semantic domain of fractional permissions. The semantic domain
of specification values becomes SemVal = ClVal U (0, 1].

Semantics of Specification Values, [.] : SpecVal — SemVal:
1 1

] =1 [split(m)] = - [x]

Next, we define the semantics of formulas. Let (I' F R : ¢) whenever T'
Rhp : © and P(o, f) > 0 implies 0 € dom(I"). Furthermore, let (I' - &, R, s, F : o)
whenever F: () =, TFR:0,TFs:o,and T - F : . The relation
(T'F &, R;s | F) is the unique subset of (I' - &, R, s, F : o) that satisfies the
following clauses:

'k (h,P);s e iff [e]" = true

PointsTo(e.f,m,e’) iff { [e] = o, h(o)y(f) = [e']",

I+ & (h,P);s and [x] < P(o, f)

':
':
F'+&R;s E null.k<im> iff true
. _ . Rip(0); <: C<’> and
'+&R;s E oPeC<i> iff { £(PeC) (7, R, 0,7) = 1
= (37")(Rhp(0), = C<’> and
E(PeC)(7',R,o0,(m, 7)) =1)
(HRl,Rg)(R =R *Rg,
'F&ER;s E Fx*G iff ¢ TFHE&Ry;sEF and
T'k&Reys EG)
(VI Dnp T, R)(

I'EE&R;s

=

o0.P<7m> i

Fr-&R;s E F-+G iff R#R and T'FE;R;s EF

= T'FER*RsEG)
rc&R;s E F&G iff THFER;sEFandTTHER;sEG
rH&ER;s E FIG iff TEFER;sEForTHEER;sEG
IFERs | (exTa)(F) iff { (3m)(Trp - : T and

F'FE&ER;s | Flr/a])

(VI Dpp I', R > R, 7)(
(faT o) (F) iff l—‘f]pl—'RLp:O and Ff]pl—ﬂ':T
= I"F&ER s EFin/al)

'HER;s

0

8 All typing judgments are defined in

18

8.1.5. Proof Theory
As usual, Hoare triples will be based on a logical consequence judgment.

We define logical consequence proof-theoretically. The proof theory has two
judgments:

v, FEG G is a logical consequence of the *-conjunction of F
ok F F'is an axiom

In the former judgment, F is a multiset of formulas. The parameter v
represents the current receiver. The receiver parameter is needed to determine
the scope of predicate definitions: a receiver v knows the definitions of predicates
of the form v.P, but not the definitions of other predicates. In source code
verification, the receiver parameter is always this and can thus be omitted. We
explicitly include the receiver parameter in the general judgment, because we
want the proof theory to be closed under value substitutions.

Semantic Validity of Boolean Fxpressions. The proof theory depends on the
relation I' |= e (“e is valid in all well-typed heaps”), which we do not axiomatize
(in an implementation, we would use external and dedicated theorem provers
to decide this relation). To define this relation, let o range over closing substi-
tutions, i.e, elements of Var — ClVal.

dom(o) = dom(I") NVar (Vz € dom(o))(T'np F o(x) : T'(z)[o])
I'kFo:o
ClosingSubst(T) = { ¢ | TFo:0}

We say that a heap h is total iff for all 0 in dom(h) and all f € dom(fld(h(o),))
it is the case that f € dom(h(0),) (remember that heaps were defined on page[).

Heap(I) = { h | Thp - h : o and h is total }
Now, we define T |= e as follows:

I'e:bool and
ke iff (VIY Dpp I', h € Heap(I), o € ClosingSubst(I”))
([[e[a]]]g = true)

Natural Deduction Rules. The logical consequence judgment of our Hoare logic
is based on the natural deduction calculus of (affine) linear logic @], which
coincides with BI’s natural deduction calculus [39] on our restricted set of logical
operators.

Logical Consequence, I';v; F - G:

(1d) (Ax)

I'Fov, F,G: Object, o I'ivo-G T'Ewo,F,G: 0bject, o
v, F,GHG ;o FEG

(* Intro) (* Elim)

o, F-Hy Tv;GE Hs o FEGixGe Thyo, E,Gi1,GaF H
;v F,GF Hi* Hy 0yu,F,EFH

19

(=* Intro) (-* Elim)

;v F,G1 F Gs T:v; F+ Hy—* Hs F;U;GFH1

T;v; F - G —+Go ;v F,G+ Ho

(& Intro) (& Elim 1) (& Elim 2)

F;U;FFG1 v, F - Go T;v; FFGL&Ga F;v;FFGl&Gz
;v F -G & Ge ;v F -Gy ;v F + G

(I Intro 1) (I Intro 2) (I Elim) T;v;FF Gl G
o F-Gh v F -G v E,Gi-H Tiv,E,GoFH

F;v;FFGlle F;v;FFGlng I;v;F,E+ H

(Ex Intro) Da:THG:o (Ex Elim) ag F H -

Pkm:T Ty FEGr/a Tiv;EF(exTa)(G) T,a:T;v;F,G+FH
Lo FE (ex T o) (G) ;v E,FFH

(Fa Intro) - (Fa Elim)

ag¢lF Ta:T,v;FFEG oy FEEaTa)(G) T'Exa:T

Lo FE(faTa) (G) ;v F - Glr/a]

Azioms. In addition to the logical consequence defined above, sound azioms
capture additional properties of our model. By axioms, we mean that they can
be added to our logical consequence judgment without harming soundness, as is
shown by Theorem B below. Table [l presents the different axioms that we use.

The axiom [(Split/Merge)| regulates permission accounting (where v denotes
the current receiver and I abbreviates split(m)).

Next, axiom |(Open/Close)|allows predicate receivers to toggle between pred-
icate names and predicate definitions (where — as defined in -
pbody(0.P<7t'>, C<7>) looks up o0.P<7’>’s definition in the type C<7> and re-
turns its body F' together with C<7>’s direct superclass D<7”>): Note that the
current receiver, as represented on the left of the -, has to match the predicate
receiver on the right. This rule is the only reason why our logical consequence
judgment tracks the current receiver. Note also that PQC' may have more pa-
rameters than P@D: following Parkinson Hﬂ] we allow subclasses to extend
predicate arities. Missing predicate parameters are existentially quantified, as
expressed by following axiom [(Missing Parameters)}

The axiom |(Dynamic Type)| states that a predicate at a receiver’s dynamic
type (i.e., without @-selector) is stronger than the predicate at its static type.

In combination with [(Open/Close)} this allows to open and close predicates at

the receiver’s static type. The [(ispartof Monotonic)| axiom is similar. The
axiom allows to drop the class modifier C from w.PeC if we
know that C' is 7’s dynamic class.

The next axioms define the semantics of predicates with null-receiver, and
of true and false. The[[Substitutivity)] axiom allows to replace expressions by
equal expressions, while [(Semantic Validity)| lifts semantic validity of boolean
expressions to the proof theory.

The axiom |(Unique Value)| captures that fields point to a unique value.

20

PointsTo(e.f, §,e’)
I';v b PointsTo(e. f, m,e) *—* * (Split/Merge)
PointsTo(e.f, 5, e’)

I'Fw: C<w”> A pbody(v.P<7, 7'>, C<7"'>) = F ext D<7’"’">
(= ok v.PCZé<7_T,7_T'> *—k (F*U.)P@D<7_T>) : (Open/Close)
v m.P<7> =% (ex T @) (7. P<7, &>) (Missing Parameters)
;v b 7. PeC<7> ispartof w.P<7> (Dynamic Type)
C <D = T;vt n.PeD<7> ispartof w.PeC<7, 7> (ispartof Monotonic)
T;v b (m.PRC<7> * C classof 7) —* 7w.P<w> (Known Type)
;v F null.k<w> (Null Receiver)
;o true (True) T;v b false—* F (False)

Thee:T ANT,2:TEHF:0)

= Tyvk (Fle/z]*e==¢') - Fle /] (Substitutivity)

TE'terltea | €) = Tyuk (e1%eg) —x¢ (Semantic Validity)

(PointsTo(e.f,m, ') & PointsTo(e.f, @', €e"))

ok assures ¢ —= o (Unique Value)
Trke:T) = ok (exTa) (e==a) (Well-typed)
Dok (F&e)—* (Fx*e) (Copyable)

Table 1: Overview of axioms

21

Recall that we write “F assures G” to abbreviate “F —* (F *G)” (see Sec-
tion BZITT)). Then, the axiom |(Well-typed)| captures that all well-typed closed

expressions represent a value (because built-in operations are total). And finally,
expresses copyability of boolean expressions.
Soundness of the proof theory. We define semantic entailment I' - &; F |= G-

FEERsEF,.. F ff TEER s Fi*---xF,
THEEFEG iff (VI,R,s)THERs=F = TF&R:s = G)

Now, we can express the proof theory’s soundness:

Theorem 2 (Soundness of Logical Consequence). If Foi(€) = € and (I;0; F +
G), then (TF & F = G).

Proof. The proof is by induction on (I'; 0; F' = G)’s proof tree. The pen and
paper proof can be found in m, 8R]. O

3.2. Hoare Triples

In this section, we present Hoare rules to verify programs written in Section EXII's
language. Appendix B of Hurlin’s PhD thesis @] lists the complete collection
of Hoare rules, presented in this and the next sections.

Hoare triples for head commands have the following form:

;v B {F}he{G}

First, we present the rule for field writing . The rule’s preconditiorﬂ requires
that the heap contains at least the object dereferenced and the field mentioned.
In addition, it requires permission 1 to this object’s field, i.e., write-permission.
The rule’s postcondition simply ensures that the heap has been updated with
the value assigned. It should be noted that this rule is small m : it does not
require anything more than a single PointsTo predicate. The rule
(discussed below) is used to build proofs in bigger contexts.

Thuw:UW WfefldU)
;v F {PointsTo(u.f,1,W) }u.f =w{PointsTo(u.f,1,w)}

(F1d Set)

The rule for field reading requires a PointsTo predicate with any permission

F'Fu,mw:Uperm, W W fefldlU) W <:T(¥)

Get
;v F {PointsTo(u.f, m, w) }=u.f{PointsTo(u.f, m, w) *{ == w} (Get)

The rule for creating new objects has precondition true, because we do
not check for out of memory errors. After creating an object, all its fields are

writable: the £.init predicate (formally defined in *-conjoins
the predicates PointsTo({.f,1,df(T")) for all fields T f in ¢’s class:

9Where PointsTo(u.f,1, W) abbreviates (ex W w) (PointsTo (u.f,1,w)), as defined in
Section LIl

22

C<Ta>cct Thr:T[r/a] C<a><:T(¥)
;o b {true}{=new C<7>{l.init * C classof (}

(New)

The rule for method calls is verbose, but standard:

mtype(m, t<7>) = <T @> requires G; ensures (ex U o') (G');

U m (t<7> 19W7)
o= (u/iw, 7 /a,w/7) T Fu7 w:t<w> Tlo],W[o] Ulo] <: T(¥) (Call)
Tio b {ut=null* Glo|=um@@){(ex Ulo] o) (a/ ==L * G'[o]}

Figure [lists the remaining standard rules, including rules for commands.
Our judgment for commands combines typing and Hoare triples:

T;v b {F}c: T{G}

where T is the type of the return value (possibly a supertype of the return
value’s dynamic type). G is the postcondition, which is always of the form
G = (ex U) (G') with U <: T, where the existentially quantified o represents
the return value.

The last two rules in Figure [l deserve some attention. The first is a rule for
a specification-only assert statement, that will be formally defined on page B
Intuitively, assert (G) expresses that G should hold at that point in the execu-
tion. It will be used to express a corollary about partial correctness of a verified
program. The second rule is for the auxiliary return statement, defined in
Section As explained, source code programs do not contain this statement,
but we need the rule to prove soundness of the proof system.

Importantly, our system includes the rule, which allows to reason
locally about methods. To understand this rule, note that fv(F) is the set of free
variables of F' and that we write x ¢ F' to abbreviate z ¢ fv(F'). Furthermore,
we write writes(hc) for the set of read-write variables ¢ that occur freely on the
left-hand-side of an assignment in hc. S side condition on variables is
standard [18, R1). Bornat showed how to get rid of this side condition [41] by
treating variable as resources.

3.3. Verified Interfaces and Classes

Before defining a judgment for verified programs, we need to define judgments
for verified interfaces and classes. To do this, we first define method subtyping
and predicate subtyping.

Method Subtyping. First, recall that method types are of the following form:
<T a>requires F; ensures G; U m(Vy10; V 7)

The self-parameter (19) is explicit, separated from the other formal parame-
ters by a comma. Before presenting the method subtyping rule in full generality,
we present its instance for method types without logical parameters:

Ua VOaV/ <t U/aV()/vf/
T,10: Vo,7: V': 19; true - F/ —x (F x (fa U result) (G -+ G'))
I'F requires F;ensures G; U m(Vy 19, V' 7)
<:requires F';ensures G'; U' m (V] 19, V' %)

23

o FEGw/a) TRw:U<:T T,a:UFG:o

(Val)
Tiob{F}lw:T{(exUa) (G}
(g F,G T,0:T;vk {F*{==df(T)}c: U{G}
Lok {FYT 0; c: U{G} (Del)
1€ F,Gyoo THL:T To:TioE{F*1==/(}c: U{G}
Lok {F}T1=0; c: U{G} (Fin Del)
T;ob {F}he{F'} T;vb{F'}c: T{G} (Seq)
T;vo b {F}he;e: T{G} a
T;ob{F}he{G} TFH:o fv(H)Nwrites(hc) =0 (Frame)
T {F*HYhe{G*H}
Lok {F'}he{G'}
Lo FEF Tyu,G'HG
(Consequence)
T;v F{F}hc{G}
Iya:T;vkE {F}he{G} (Exists)

Lot {(ex T a) (F) }he{(ex T a) (G)}
ThHw:T¥)
Lok {truepl=w{l == w}
'k op(w) : T'(¢)
;v b {true}l=op(w){l == op(w)}

F'Fw:bool Tyuk {F*w}c:void{G} T;vk {Fx!lw}d :void{G}

(Var Set)

(Op)

Tyo - {F}if (w){crelse{’}{G} (If)
ke F:bool,e Tjuk{F&e}c:void{F}

(While)
;v {F}invariant F; while(e){c} : void{F & 'e}
LuFrG (Assert)
;o b {F}assert(G){F}
FFo:T T;0;FFGv/al T<:U
Ll:Upk{(exTa)(a=={* G)}c: V{H} (Return)

I, 0:Us;oF {FH{=return(v); c: V{H}

Figure 1: Hoare triples

24

To understand this rule, we invite the reader to consider the following two
derived rules (where types are elided):

FF-+xF FG-*G

F requires F'; ensures G <: requires F’; ensures G’

F requires F; ensures G <:requires F'* H; ensures G* H

The first of these derived rules is standard behavioral subtyping, the second
one abstracts separation logic’s frame rule. In order to see that these two rules
follow from the above rule, note that the following two formulas are tautologies
(as can be easily proven by natural deduction):

(F'-*F)x H-* F'-« Fx H Fx H-x Fx(faUx)(G-+Gx H)
The general method subtyping rule also accounts for logical parameters:

[, 10 : Voiao; true F (fFaT’ &) (faV' 7) (F' —*
(ex W &) (F * (fa U result) (G-+xG")))
'k <Ta,Wa'>requires F;ensures G; U m(Vy1o; V' 7)
<: <T’" a>requires F';ensures G'; U’ m (V] 10; V')

Note that the subtype may have more logical parameters than the supertype.
For instance, we obtain the following derived rule:

F <T'a>requires F; ensures G
<:requires (ex T'a) (F); ensures (ex T) (G)

This derived rule is an abstraction of separation logic’s auxiliary variable

rule (see page Zl). Tt follows from the method subtyping rule by the
following tautology:

(exT o) (F) —*(exT o) (F*(faUux) (G- (exT) (G)))

Predicate Subtyping. Predicate type pt is a subtype of pt’, if pt and pt’ have the
same name and pt’s parameter signature “extends” pt’’s parameter signature:

pred P<T &,T'&'> <: pred P<T a>

Class Axioms. Recall that we use axioms to export useful relations between
predicates to clients. For this to be sound, programmers have to prove axioms
sound. We require that class axioms are proven sound with a restricted logical
consequence judgment:

F 2 F without class axioms

25

We disallow the application of class axioms for proving class axioms in order
to avoid circularities. A class is sound if all its axioms are sound (the lookup

function for axioms (axiom) is defined in [Appendix A)):

C<T &> sound
B iff
axiom(C<a>) = F = a:T,this: C<a>; this; C classof thisH' F

Class Extensions and Interface Implementations. To define sanity conditions on
classes and interfaces, we define some lookup functions. Let classes be of the
form class C<T a> ext U impl V {fd* pd* az* md*} and interfaces of the
form interface I<T a>ext U {pt* az* mt*}. Then:

methods(C) = dom(md*) preds(C) = dom(pd*)
methods(I) = dom(mt¥*) preds(I) = dom(pt*)
declared(C') = dom(fd*)

Now, we define sanity conditions on classes and interfaces. These conditions
are later used to ensure that we only verify sane programs.

In the definitions below, we conceive the partial functions mtype and ptype
(which are formally defined in as total functions that map el-
ements outside their domains to the special element undef. Furthermore, we
extend the subtyping relation: <: = {(T,U)|T <: U} U {(undef, undef)}.

Judgment O<T &> ext U expresses that: (1) class C extends another class U,
(2) class C' does not redeclare inherited fields, and (3) methods and predicates
overridden in class C' are subtypes of the corresponding methods and predicates
implemented in class U:

U is a parameterized class
B R fedom(fld(U)) = f & declared(C)
C<Ta>extU = (Ym, mt)(mtype(m,U) = MT =
a: T mtype(m, C<a>) <: MT)
(VP, pt)(ptype(P,U) = pt = ptype(P,C<a>) <: pt)

Judgment I<T &> type-extends U expresses that: (1) interface I extends
another interface U and (2) methods and predicates overridden in interface I
are subtypes of the corresponding methods and predicates declared in U.

U is a (parameterized) interface
(Vm, mt)(mtype(m,U) = MT =
I<T &> type-extends U = a: T F mtype(m, I<a>) <: MT)
(VP, pt)(ptype(P,U) = pt =
ptype(P, I<a>) <: pt)

I<T a> type-extends U = (VU € U)(I<T @> type-extends U)

Judgment C<T a> impl U expresses that: (1) class C implements an interface U,
(2) methods and predicates declared in interface U are implemented in C, and

26

(3) methods and predicates implemented in C' are subtypes of the corresponding
methods and predicates declared in U:

U is a (parameterized) interface
(Vm, mt)(mtype(m,U) = MT =
B R mtype(m, C<a>) # undef)
C<T a> impl U =< (VP pt)(ptype(P,U) = pt = ptype(P,C<a>) # undef)
(Ym, mt)(mtype(m,U) = MT =
a: T+ mtype(m,C<a>) <: MT)
(VP, pt)(ptype(P,U) = pt = ptype(P,C<a>) <: pt)

C<Ta>impl U = (YU € U)(C<T a> impl U)

Verified Interfaces and Classes. In this paragraph, we define what are verified
interfaces and classes. Later, when we verify a user-provided program, we will
assume that the class table (i.e., a set of interfaces and classes) is verified.

‘Well-formed Predicate Types, '+ pt : o, and Method Types, I' - mt : o:

(Pred Type)

'ET:o
'k pred P<T &> : o

(Mth Type) - - -
Ta:T2:VET,F,UV:o TI'a:T,7:V,result :UFG:¢

I' - <T a>requires F;ensures G; U m(V7) : o
L 1

Verified Interfaces, int : o:
1 1

(Ax) (Int) I<T a> type-extends U init ¢ dom(pt*)
T'EF:o a:THT, U pt*:0 a:T,this: I<a> F az, mt* : o
I'Faxiom F: ¢ interface I<T a>ext U {pt* az* mt*} : o

Below, we write cfv(c) for the set of variables that occur freely in an object
creation command in c¢. Formally:

cfv(c) = {a € fv(c) | a occurs in an object creation command ¢=new C<7> }

Rule below is the main judgment for verifying classes. Premises
C<Ta>ext U and C<T a>impl V enforce class C' to be sane. Premise
C<T &> sound enforces C’s axioms to be sound. Premise & : T, this : C<a> -
fd*, ax*, md* : o enforces C’s methods (md*) to be verified.

Rule below verifies methods. In this rule, we prohibit object creation
commands to contain logical method parameters because our operational se-
mantics does not keep track of logical method parameters (while it does keep

track of class parameters).

Verified Classes, cl : o:
I 1

(Cls) C<Ta>extU C<Ta>impl V. C<T'a>sound init & dom(pd*)
a:THT,UV:o a:Tkpd*:0inC<a> a:T,this: C<a>F fd*, az*, md* : o

class C<T a> ext U impl V {fd* pd* az* md*}: o

27

(F1d) (Pred)

I'HT:o I'kpred P<T'a>:o I',this:U,a:TkFF:o
THETf:o I'Fpred P<Ta>=F :0inU
(Mth)
FF<f&>{equiresF;ensuresG; UmV2):0o civie)na=10
I"'=T,a:T,z:V T'thist {F* this #null}c: U{(ex U result) (G)}

F <T a>requires F;ensures G; U m(V){c}: o

3.4. Verified Programs

We now have all the machinery to define what is a verified program. To do so,
we extend our verification rules to runtime states. Of course, the extended rules
are never used in verification, but instead define a global state invariant, st : ¢,
that is preserved by the small-step rules of our operational semantics.

Our forcing relation = from Section BIT Al assumes formulas without logical
variables: we deal with those by substitution, ranged over by o € LogVar —
SpecVal. We let (I' F o : T) whenever dom(o) = dom(I') and (T'[o] F o(«) :
I"(«)[o]) for all @ in dom(o).

Now, we extend the Hoare triple judgment to states:

ko T’ dom(T") Ncfv(c) =0 T'Es:o
Llo]F &;R;s E Flo] I, TV;r - {F}c:void{G}
(h,c, s): 0

(State)

The rule for states ensures that there exists a resource R to satisfy the
state’s command. The object identifier r in the Hoare triple (last premise)
is the current receiver, needed to determine the scope of abstract predicates.
Rule [(State)| enforces the current command to be verified with precondition F
and postcondition G. No condition is required on F and G, but note that,
by the semantics of Hoare triples, I’ represents the state’s allocated memory
before executing ¢: if ¢ is not a top level program (i.e., some memory should
be allocated for ¢ to execute correctly), choosing a trivial F' such as true is
incorrect. Similarly, GG represents the state’s memory after executing c.

The judgment (ct : ¢) is the top-level judgment of our source code verification
system, to be read as “class table ct is verified”. We have shown the following
theorem:

Theorem 3 (Preservation). If (¢t : o), (st: o) and st — st’, then (st’ :¢).
Proof. Sce 30, Chap. 6). O

The proof of Theorem Bl means soundness of all rules presented so far. In
particular, in this proof, we show that the Hoare rules from Section are
sound.

From the preservation theorem, we can draw two corollaries: verified pro-
grams never dereference null and verified programs satisfy partial correctness.
To formally state these theorems, we say that a class table ct together with
a “main” program c are sound (written (ct,c) : o) iff (¢t : ¢ and null;() +

28

{true}c: void{true}). In the latter judgment, () represents that the type envi-
ronment is initially empty, null represents that the receiver is initially vacuous,
and true represents that the top level program has true both as a precondition
and as a postcondition. true is a correct precondition for top level programs
(Java’s main), because when a top level program starts to execute, the heap is
initially empty.

We can now state the first corollary (no null dereference) of the preservation
theorem. A head command hc is called a null error iff he = (£=null.f) or
he = (null.f=v) or he = ({=null.m<7>(0)) for some ¢, f,v, m, 7, v.

Theorem 4 (Verified Programs are Null Error Free). If (¢t,c) : ¢ and init(c) —%,
(h, he; ', s), then he is not a null error.

Proof. Sce 30, Chap. 6]. O

To state the second corollary (partial correctness) of the preservation the-
orem, we extend head commands with specification commands. Specification
commands sc are used by the proof system, but are ignored at runtime. The
specification command assert (F) makes the proof system check that F' holds
at this program point:

hc € HeadCmd == ... | sc |
sc € SpecCmd = assert(F)

We update Section EE's operational semantics to deal with specification
commands. Operationally, specification commands are no-ops:

State Reductions, st —. st':
I 1

(Red No Op)
<h7 SC; C7 S> - <h7 C7 S>

Now, we can state the partial correctness theorem. It expresses that if a
verified program contains a specification command assert(F'), then F holds
whenever the assertion is reached at runtime:

Theorem 5 (Partial Correctness).
If (¢t,c) : o and init(c) —%, (h,assert(F); ¢, s), then (T +&;(h,P);s = Flo])
for some T',E = Foi(E),P and o € LogVar — SpecVal.

Proof. Sece B, Chapter 6]. O

3.5. Example: Sequential mergesort

To show how the verification system works, we use it to verify a (sequential)
implementation of mergesort. In the next section, when we add multithreading,
we illustrate this by extending this example to parallel mergesort.

Since our model language has no arrays, we use linked lists. For simplicity,
we use integers as values. Alternatively, as in the Java library, values could be
objects that implement the Comparable interface.

29

class List extends Object{
int val;
List next;

void init(val v){ val = v; }

void append(int v){
List rec; rec = this;
while(rec.next!=null){ rec = rec.next; }
List novel = new List; novel.init(v);

rec.next = novel;

}

void concatenate(List 1,int i){
List rec; rec = this;
while(rec.next!=null){ rec = rec.next; }
while(i>0){ List node = new List; node.init(l.val);
rec.next = node; 1 = 1l.next;

rec = rec.next; i = i-1; }

}

List get(int i){
List res;
if (i==0) res = this;
if(i > 0) res = next.get(i-1);
res;
}
}

Figure 2: Implementation of class List

Our example contains two classes: List and MergeSort, defined in Figure
and Bl respectively@.

Class List This class contains three methods: method append adds a value
to the tail of the list, method concatenate(1l,i) concatenates the i-th first
elements of list 1 to the receiver list, and method get returns the sub-tail of the
receiver starting at the i-th element. It should be noted that these methods
use iteration in different ways. In method append’s loop, iteration is used to
reach the tail of the receiver list, while in method concatenate’s second loop,
iteration is used to reach elements up to a certain length of list 1. In the first
case, this means that the executing method should have permission to access
the whole list. In the second case, however, it suffices to have access access to
the inspected list up to a certain length.

10For simplicity of presentation, these classes are written using a more flexible language
than Section Bf's language. E.g. we allow reading of fields in conditionals and write chains of
fields dereferencing.

30

To specify class List, we define the following two predicates.

class List extends Object{

public pred state<nat n> = (n==0 -* True) *
(n==1 -* [ex List 1. PointsTo(next,1,1) * Perm(val,1)]) *
(n>1 -* [ex List 1. PointsTo(next,1,1) * Perm(val,1) *
1!'=null * l.state<n-1>]);

public pred state<nat n,List 1> = (n==0 -* True) *
(n==1 -* [PointsTo(next,1,1) * Perm(val,1)]) *
(n>1 -* [ex List 1b. PointsTo(next,1,1b) * Perm(val,l) *
1b!=null * 1lb.state<n-1,1>]);

Both predicates are public, because their definitions are necessary to prove
class MergeSort correct.

Predicate state<n> gives access to the first n elements of the receiver list.
Predicate state<n,1> has the same meaning as state<n>, but it also requires
the successor of the n-th element to point to list 1. Both predicates ensure
that the receiver list is at least of length n, because of the test for non-nullness
of the next element (1!'=null and lb!=null). As a consequence, predicate
state<n,null> represents a list of exact length n.

Equipped with these two predicates, we can specify class List as follows:

class List extends Object{

requires init; ensures state@List<1,null>;

List init(val v)

requires state<i,null> * i>0; ensures state<i+1l,null>;
void append(int v)

requires state<j,null> * j>0 * l.state<k> * k>=i;
ensures state<j+1,null> * 1.state<k>;

void concatenate(List 1,int i)

requires state<j> * j>=i * i>=0;

ensures state<i,result> * result.state<j-i>;

List get(int i)

Method init’s postcondition refers to the List class. This might look like
breaking the abstraction provided by subtyping. However, because method
init is meant to be called right after object creation (new List), init’s post-
condition can be converted into a form that does not mention the List class.
E.g. after calling [= new List and [.init (), the caller knows that List is
I’s dynamic class (recall that s postcondition includes an classof pred-
icate) and can therefore convert the access ticket [.state@List<1,null> to
l.state<1,null> (using axiom.

Because they are standard, we do not detail the proofs of the methods in
class List.

31

Class MergeSort This class (defined in Figure @ on page [Fd) implements the
mergesort algorithm. The implementation is distributed over its sort method
and its merge method. Class MergeSort has two fields: a pointer to the list so
that it can be inspected, and an integer indicating how many nodes to inspect.
Method sort distinguishes three cases: (i) if there is only one node to inspect,
nothing is done; (ii) if there are only two nodes to inspect, the value of the two
nodes are compared and swapped if necessary; and (iii) if the list’s length is
greater than 2, two recursive calls are made to sort the left and the right parts
of the list. While method sort sorts the list in place, method merge allocates
a new list res that is assigned to field list.

We prove that mergesort is memory safe and that the length of the sorted
list is the same as the input list’s length. We do not prove, however, that sorting
is actually performed. This would require heavier machinery, because we would
have to include mathematical lists in our specification language to mimic Java’s
lists.

To perform the proofs, we specify class MergeSort as shown below. Instances
of class MergeSort are parameterized by the number of nodes they have to
inspect. This is required to show that the input list’s length is preserved by the
algorithm after the two recursive calls in method sort ().

class MergeSort<int length> extends Thread{

pred state = PointsTo(list,1,1) * PointsTo(num,1,n) *
1!=null * n >= 1 * n==length * 1l.state<length>;

requires init * l.state<length> * i>=1 * i==length * 1!=null;

ensures state@MergeSort;

init(List 1, int i)

requires state; ensures result.state<length>;

List sort()

requires 1ll.state<lenleft> * rl.state<lenright> *
lenleft+lenright==length;

ensures result.state<length>;

List merge(List 11,int lenleft,List rl,int lenright)

In our proofs, we use a split axiom stating that a list of length n can be
split into a list of length m1 and a list of length m2 if (1) m1+m2==n and (2) m1’s
tail points to m2’s head. This axiom is proved by induction over n:

(m1+m2==n * state<n>) *-* (ex List 1. state<ml,1> * l.state<m2>);

We have another axiom, named forget-tail that relates the two versions
of predicate state:

state<n,l1> —-* state<n>

Axiom forget-tail allows - for example - to obtain the access ticket state<1>

after a call to init (in combination with axiom [(Known Type))).

32

class MergeSort extends Thread{

List list; int num;
void init(List 1, int i){ list = 1; num = i; }
List sort(){

if (qum == 1){ 1list;}

elseq{

if (num == 2){

if(list.val > list.next.val){
int lval = list.val;

list.val = list.next.val;
list.next.val = lval;
}
list;
}
elseq{

int lenleft; int lenright;

if(num % 2 == 0){ lenleft = num / 2; lenright = lenleft; }
else { lenleft = (num - 1) / 2; lenright = lenleft + 1; }

List tail = list.get(lenleft);

MergeSort left = new MergeSort; left.init(list,lenleft);
MergeSort right = new MergeSort;
right.init(list.get(lenleft),lenright);

List res = merge(left.sort(),lenleft,right.sort(),lenright);
res;
}
}

List merge(List 11, int lenleft, List rl, int lenright){
List res;

// This conditional avoids testing for nullity of res
// inside the loop.
if(11l.val <= rl.val){ res = new List; res.init(1l.val);
11 = 1l.next; lenleft-=1; }
else{ res = new List; res.init(rl.val,null);
rl = rl.next; lenright-=1; }

while(lenleft > 0 && lenright > 0){
if(11l.val <= rl.val){ res.append(1ll.val);
11 = 11.next; lenleft-=1; }

else{ res.append(rl.val); rl = rl.next; lenright-=1; }
}

if (lenleft > 0) res.append(ll,lenleft);
else { if(lenright > 0) res.append(rl,lenright); }
res;

Figure 3: Implementation of the sequential mergesort algorithm

33

4. Separation Logic for dynamic threads

In this section, we extend Section B's language with multiple threads with fork
and join primitives, a la Java. In addition, the assertion language and verifica-
tion rules are extended to deal with these primitives. The rules allow to transfer
permissions between threads upon thread creation and termination. We show
that the resulting program logic is still sound, and we illustrate its use on a
concurrent implementation of the merge sort algorithm.

Convention: In formal material, we use grey background to highlight what are
the changes compared to previous sections.

4.1. A Java-like Language with fork/join

First, we extend the syntax and semantics of Section EIf's language with fork
and join primitives.

Syntaz. We assume that class tables always contain the declaration of class
Thread, where class Thread contains methods fork, join, and run:

class Thread extends Object{
final void fork();
final void join();

void run() { null }

}

The methods fork and join are not implemented. As in Java, they are
assumed to be implemented natively and their behavior is specified in the op-
erational semantics as follows:

e o.fork() creates a new thread, whose thread identifier is o, and executes
o.run() in this thread. Method fork should not be called more than once
on o: any subsequent call results in blocking of the calling thread.

e 0.join() blocks until thread o has terminated.

The run-method is meant to be overridden while methods join and fork cannot
be overridden (as indicated by the final modifiers). In Java, fork and join
are not final, because in combination with super calls, this is useful for custom
Thread classes. However, we leave the study of overrideable fork and join
method together with super calls as future work, and stick to our setting for
simplicity.

Runtime Structures. In Section Z2 our operational semantics —.; was defined
to operate on states consisting of a heap, a command, and a stack. To account
for multiple threads, states are modified to contain a heap and a thread pool.
A thread pool maps object identifiers (representing Thread objects) to threads.
Threads consist of a thread-local stack s and a continuation c¢. For better

readability, we write “sin ¢” for threads ¢t = (s,c¢), and “oyisty | -+ | op isty”
for thread pools ts = {01 — t1,...,0, — t,}:
t € Thread = Stack x Cmd n= sinc
ts € ThreadPool = Objld — Thread == o1isty| -+ | onist,
st € State = Heap x ThreadPool

34

Initialization. We modify Section EZZ's definition of the initial state of a pro-
gram. Below, main is some distinguished object identifier for the main thread.
The main thread has an empty set of fields (hence the first 0), and its stack is
initially empty (hence the second 0):

init(c) = ({main — (Thread,)}, mainis (§ in c))

The operational semantics defined in Section is straightforwardly modified
to deal with multiple threads. In each case, one thread proceeds, while the other
threads remain untouched. In addition, to model fork and join, we change the
reduction step to model that it does not apply to fork and join.
Instead, fork and join are modeled by two new reductions steps

and [(Red Jomn))):

State Reductions, st — . st':
I 1

(Red Call) m & {fork, join}

h(o)1 = C<&> mbody(m,C<7>) = (20;7).cm ¢ = cm[0/10,0/7]

(h, ts | pis (sinf=0m(®); c)) — (h, ts|pis(sinl«c’;c))
h(o)1 = C<m> o ¢ (dom(ts) U{p})
(Red Fork) mbody(run, C<7>) = (1).cr o = ¢r[0/1]

(h, ts | pis (sin£=0.fork(); ¢)) — (h, ts |pis (sin£=null;c) | ois (0 inc,))

(Red Join)

(h, ts | pis (sinf=0.join(); c) | ois (s’ inv)) —

(h, ts | pis (sin £=null; c) | ois (s" in v))

Remarks. In a new thread o is forked. Thread o’s state consists
of an empty stack () and command c¢y. Command ¢, is the body of method
run in o’s dynamic type where the formal receiver this and the formal class
parameters have been substituted by the actual receiver and the actual class
parameters. In thread p joins the terminated thread o. Our rule
checks whether thread o is terminated because its command consists of a single
value v.

4.2. Separation Logic for fork/join

In this section, we extend our assertion language to deal with fork and join
primitives. We introduce (1) a Join predicate that controls how threads access
postconditions of terminated threads and (2) groups which are a restricted class
of predicates. Groups are needed to allow multiple threads to join a terminated
thread.

4.2.1. The Join predicate

To model join’s behavior, we add a new formula to the assertion language
defined in Section Bl This formula will be used (see Section E3) to govern

35

exchange of permissions from terminated threads to alive threads:
F == ... | Join(e,m) | ...

The intuitive meaning of Join (e, 7) is as follows: it allows to pick up fraction
7 of thread e’s postcondition after e terminated. As a specific case, if 7 is 1,
the thread in which the Join predicate appears can pick up thread e’s entire
postcondition when e terminates.

When a new thread is created, a Join predicate is emitted for it. To model
this, we redefine the init predicate (recall that init appears in S post-
condition) for subclasses of Thread and for other classes. We do that by (1)
adding the following clause to the definition of predicate lookup:

plkup(init, Thread) = pred init=Join(this, 1) ext Object

and (2) adding C # Thread as a premise to the original definition |[(Plkup init)

Intuitively, when an object o inheriting from Thread is created, a Join(o,1)
ticket is issued.

Resources. To express the semantics of the Join predicate, we need to change
our definition of models (resources). Recall that, in Section BIT, resources were
pairs of a heap and a permission table of type Objld x Fieldld — [0, 1]. Now, we
modify permission tables so that they have type Objld x (Fieldld x {join}) —
[0,1]. The additional element in the domain of permission tables keeps track
of how much a thread can pick up of another thread’s postcondition. In other
words, in the previous chapter, the meaning of resources was to regulate access
(write access, readonly access, or no access) to field of objects; now resources
still have this meaning, and they regulate access of threads to other threads’s
postconditions. Obviously, we forbid join to be a valid field identifier to avoid
confusion between join’s special meaning and programmer-declared fields.

In addition, we add an additional element to resources; they become triples
of a heap, a permission table, and a join table J € Objld — [0, 1]. Intuitively,
for a thread o, J(0) keeps track of how much of o’s postcondition has been
picked up by other threads: when a thread gets joined, its entry in J drops.
The compatibility and joining operations on join tables are defined as follows:

J#I 8T =09 T*xT =T

Because # is equality, join tables are “global”: in the preservation proof, all
resources will have the same join tabldL].
Now, we require resources to satisfy these axioms (in addition to the axioms

of Section BT2):
(a) For all o € dom(h) and all f (including join), P(o, f) = 0 and J (o) = 1.

HThis suggests that join tables could be avoided all together in resources. It is unclear,
however, if an alternative approach would be cleaner because rules [(State)l [(Cons Pool)}
and |(Thread)| would need extra machinery.

36

(b) Ao.P(o,join) < J.

Axiom @ ensures that all objects that are not yet allocated have mini-
mal permissions. This is needed to prove soundness of the verification rule for
allocating new objects. Axiom @ is a technical condition needed to prove
soundness of the verification rule for joining threads.

As usual, we define a projection operator:

(h,P, j)join é \7

Predicate Environments. For technical reasons, we need to update the definition
of predicate environments given in Section (see page[[d). Specifically, we
need predicate environments to satisfy the following additional axiom:

(b) It (7, (h,P,T),r,7), (7,(h,P,T"),r,@) € Dom(k), o € dom(h),
P(o,join) <z < J(0), and J' = J[o +— x|, then:
Er)(m, (h,P,T),r,7") < E(r)(7, (b, P, T'), 1, 7")

Axiom@ is used to update the global join table, because, when a thread is
joined, its corresponding entry drops in all join tables.

Semantics. The semantics of the Join predicate is as follows:
'+ (h,P,J);s [Join(e,7) iff [e]? =0 and [r] < P(0, join)

Aziom. In analogy with the PointsTo predicate, we have a split/merge axiom
for the Join predicate:

[;v - Join(e,m) *=* (Join(e,5) * Join(e, §)) (Split/Merge Join)

4.2.2. Groups

In order to express that multiple threads can join a terminated thread, we
introduce the notion of groups. Groups are special predicates, denoted with
keyword group that satisfy an additional split/merge axiom (whereas many
predicates do not satisfy this axiom, see @, 4.6.2]). Formally, group desugars
to a predicate and an axiom:

5 oL a pred P<TZ>=F; - -
group P<I'z>=F = axiom P<Z>*-* (P<split(T,Z)>* P<split(T,z)>)

where split is extended to pairs of type and parameter, so that it splits pa-
rameters of type perm and leaves other parameters unchanged:

. a [split(z) iff T = perm
split(T,z) = { x otherwise

The meaning of the axiom for groups is as follows: (1) splitting (reading *-*
from left to right) P’s parameters splits P predicates and (2) merging (reading
— from right to left) P’s parameters merges P predicates.

37

4.3. Contracts for fork and join

Next, we discuss how the verification logic for the sequential language, presented
in Section is adapted to cater for the multithreaded setting with fork and
join primitives. Since we can specify contracts in the program logic for fork
and join in class Thread, we do not need to give new Hoare rules for them
(in contrast to the operational semantics). Instead, rules for fork and join
are simply instances of the rule for method call The contracts for fork
and join model how permissions to access the heap are exchanged between
threads. Intuitively, newly created threads obtain a part of the heap from their
parent thread. Dually, when a terminated thread is joined, (a part of) its heap
is transferred to the joining threads.

Class Thread. In Section EEIl we introduced class Thread but did not give any
specifications. Class Thread is specified as follows:

class Thread extends Object{

pred preFork = true;
group postJoin<perm p> = true;

requires preFork; ensures true;
final void fork();

requires Join(this,p); ensures postJoin<p>;
final void join();

final requires preFork; ensures postJoin<1>;
void run() { null }

Predicates preFork and postJoin describe the pre- and postcondition of
run, respectively. Notice that the contracts of fork, join, and run are tightly
related: (1) fork’s precondition is similar to run’s precondition and (2) run’s
postcondition includes predicate postJoin<1> while join’s postcondition is
postJoin<p>. Point (1) models that when a thread is forked, its run method is
executed: part of the parent thread’s state is transferred to the forked thread.
Point (2) models that join returns after run terminates. Further, (2) repre-
sents that threads joining a thread might pick up a part of the joined thread’s
state. The fact that permission p appears both as an argument to Join and to
postJoin (in join’s contract) models that joining threads pick up a part of the
terminated thread’s state which is proportional to Join’s argument. Because
one Join(o, 1) predicate is issued per thread o, and this cannot be duplicated,
our system enforces that threads joining o do not pick up more than thread o’s
postcondition.

Notice that soundness of the approach required to define postJoin as a
group. Intuitively, this is needed because join’s postcondition (i.e., postJoin)
is split among several threads, and by declaring it as a group, we make sure
that this splitting is sound.

Although method run is meant to be overridden, we require that method
run’s contract cannot be modified in subclasses of Thread (as indicated by

38

a final modifier). Enforcing run’s contract to be fixed allows to express that
join’s postcondition is proportional to the second parameter of Join’s predicate
in an easy way (because we can assume that run’s postcondition is always
postJoin<1>). Fixing run’s contract in class Thread means that programmers
have to specify run by adapting the predicates preFork and postJoin. In
our examples, this proved to be convenient, however we have not investigated
consequences of this choice on more intricate examples.

Since run’s contract is fixed, run’s contract cannot be parameterized by log-
ical parameters. One could consider that this reduces expressiveness. But this
is wrong, in fact it would be unsound to allow logical parameters for method
run. As run’s pre and postconditions are interpreted in different threads, one
cannot guarantee that logical parameters are instantiated in a similar way be-
tween callers to fork and callers to join. Hence, logical parameters have to be
forbidden for run.

We highlight that method run can also be called directly, without forking
a new thread. Our system allows such behavior which is used in practice to
flexibly control concurrency (cf Java’s Executors [49]).

Alternative Solutions. Alternatively, we could allow arbitrary contracts for run,
as we did in our earlier AMAST paper m} This solution, however, has the
disadvantage that we need to introduce a new derived form for formulas (called
scalar multiplication) at the level of method’s contracts. With this paper’s so-
lution, we can “hide” scalar multiplication “under the carpet” (see Section EE4),
i.e., we avoid scalar multiplication to spread in method contracts and in proofs
of programs (even if we need it to prove our verification system sound). An
additional advantage of this approach is that it does not break subtyping. In
our earlier work, to start a thread, one had to know the static type of the thread
considered one level (in the class hierarchy) below class Thread.

Yet another solution would be to combine (1) our approach of specifying
fork, join, and run with predicates in class Thread and (2) to use scalar
multiplication as a new constructor for formulas (i.e., not a derived form) to
express that run’s postcondition can be split among joiner threads. This solu-
tion, however, requires a thorough study, because having scalar multiplication
as a new constructor for formulas may raise semantical issues (as studied by

Boyland [4)).

4.4. Verified Programs

To extend the definition of a verified program to the multithreaded setting, we
have to update Section B's rules for verified programs to account for multiple
threads. First, we craft rules for thread pools:

: / :
(Empty Pool) REL:o Ribis:o (Cons Pool)

RED:o R*R' bEt|ts:o

For sequential programs, the core rule extended Hoare triple judgments to
states. In the multithreaded setting, this is done in two steps: (1) the rule for
states ensures that there exists a resource R to satisfy the thread pool ts, and
(2) a rule for individual thread states corresponds to the original state rule for

39

sequential programs (as defined in Section BZl). The new state rule looks as
follows.

h = TRnp REts:o
(h, ts) : o
In addition to BA's state rule, the rule for individual threads has to model

that threads have a fraction of postJoin<1> as postcondition. Therefore, we
introduce symbolic binary fractions that represent numbers of the forms 1 or

bit € {0,1} bits € Bits =:= 1 | bit,bits fr € BinFrac =:= all | fr() | fr(bits)

(State)

Intuitively, we use symbolic binary fractions to speak about finite formu-
las of the form r.P<1> *T.P<%> * r.P<%> x Formally, we define the scalar
multiplication fr - r.P<m> as follows:

all - r.P<> = r.P<m>
fr() -
fr(1) - r.P<m> = r.P<split(m)>
fr(0, bits) - r.P<m> = fr(bits) - r.P<split(m)>
fr(1, bits) -

r.P<m> = true

r.P<m> = r.P<split(m)>*fr(bits) - r.P<split(m)>

For instance, fr(1,0,1)-r.P<1> *=* (r.P<3>#*7.P<3>). Themap [-] : BinFrac
— Q interprets symbolic binary fractions as concrete rationals:

@I 21 [FO]20 [Fr()] 21

[fr (0, bits)] = LIfr(bits)] [fr(1, bits)] = 2+ L[fr(bits)]

Now, the rule for individual threads is as follows:

Rioin(0) < [fr] TrHo:I" T,I'Fs:o cfv(c)ndom(I”) =0
Lol &R;s = Flo] T,IV;rk {F}c:void{ fr - o.postJoin<1> }
RiEois(sinc):o

(Thread)

In rule fr should be bigger than the thread considered’s entry in
the global join table (condition Rjsin(0) < [fr]). This forces joining threads to
take back a part of a terminated thread’s postcondition which is smaller than the
terminated thread’s “remaining” postcondition. This comes from the semantics
of the Join predicate and the semantics of join tables: T' F (h,P,J);s
Join(e,) holds iff [e]? = o and [7] < P(0,join). Moreover, by P < J (see
axiom [[b)] on page BZ), we have that P(o, join) < (o).

As in Section Bl we have shown that the preservation theorem (Theorem B))
holds, and we have shown that verified programs satisfy the following properties:
null error freeness and partial correctness.

40

In addition, verified programs are data race free. A pair (he, he') of head
commands is called a data race iff he = (o.f =v) and either he' = (0.f=v") or
he' = (£=o0.f) for some o, f,v,v’, /.

Theorem 6 (Verified Programs are Data Race Free). If (ct,c) : ¢ andinit(c) —%,
(h, ts | 01 is (s1in heyser) | o2 is (2 in hea;c2)), then (hey, heg) is not a data
race.

Proof. See 3, Chapter 6]. O

4.5. Example of reasoning: parallel mergesort

To show how the verification system works in a multithreaded setting, we use
it to verify a parallel implementation of mergesort. In the previous chapter,
we verified a sequential mergesort algorithm, so we concentrate on the changes
in specification and verification because of the use of multiple threads. The
multithreaded algorithm is a perfect example of disjoint parallelism, because
the different threads all modify the same list simultaneously. This is sound,
because the threads mutate the list in different places.

Our example reuses class List from Section B which we do not repeat
here.

The changes to class MergeSort are shown in Figure @l Class MergeSort
now extends class Thread. The implementation of the mergesort algorithm is
distributed over its run methods and its merge method. As in Section BH the
class has two fields: a pointer to the list so that it can be inspected, and an
integer indicating how many nodes to inspect. Again, method run distinguishes
three cases: (i) if there is only one node to inspect, or (ii) if there are only
two nodes to inspect, or (iii) if the list’s length is greater than 2. Contrary to
Section B3, however, in the third case, two new threads are created to sort the
left and the right parts of the list. Then, the parent threads waits for the two
new threads and merges their results. To perform the proofs, we specify class
MergeSort as in Figure @

Figure Bl shows part of the correctness proof of method run. This proof
illustrates how in the recursive case, the two child threads both receive access to
part of the parent thread’s list. We use the split axiom (defined in Section BH)
to mimic this behavior in the proof. This requires some arithmetic reasoning,
because threads all have access to the same global list, but then we can conclude
that each thread’s access is confined to a limited number of nodes of this list.

5. Separation Logic for Reentrant Locks

In this section, we present verification rules for Java’s reentrant locks. Together
with fork and join, reentrant locks are a crucial feature of Java for multi-
threaded programs. Generally speaking, locks serve to synchronize threads and
to control exclusive access to resources that cannot be shared.

Reentrant locks can be acquired more than once by the same thread. This
differs from Posix threads that block if they acquire a lock twice. On one hand,
reentrant locks are a convenient tool for programmers because code does not
need to check if a lock is already acquired before trying to acquire it. This is

41

class MergeSort<int length> extends Thread{

List list; int num;
void init(List 1, int i){ list = 1; num = i; }
void run(){

if (num == 1{}

elseq{

if (num == 2){

if(list.val > list.next.val){
int lval = list.val;

list.val = list.next.val;
list.next.val = lval;
}
}
elseq{
if (num > 2){
int lenleft; int lenright;

if(num % 2 == 0){ lenleft = num / 2; lenright = lenleft; }
else { lenleft = (num - 1) / 2; lenright = lenleft + 1; }

List tail = list.get(lenleft);
MergeSort<lenleft> left = new MergeSort;
left.init(list,lenleft); left.start();

MergeSort<lenright> right = new MergeSort;
right.init(tail,lenright); right.start();
left.join();

right.join();

merge (left,right);

}
}
}
// very similar to the sequential version
void merge(MergeSort left, MergeSort right){ ... }

}

Figure 4: Implementation of parallel mergesort algorithm

42

class MergeSort<int length> extends Thread{
pred preFork = PointsTo(list,1,1) * PointsTo(num,1,n) *
1!=null * n >= 1 * n==length * 1l.state<length>;
pred postJoin<perm p> = preFork;
requires init * l.state<length> * length>=1 * i==length * 1!=null;
ensures Join(this,1) * preFork@MergeSort;
void init(List 1, int i) {...}

requires preFork; ensures postJoin<i1>;

void run() {...}

requires Perm(list,1) * left.postJoin<1> *
right.postJoin<1> * nl+nr==length;

ensures PointsTo(list,1,1) * 1l.state<length>;

void merge(MergeSort<nl> left, MergeSort<nr> right) {...}

Figure 5: Specification of class MergeSort (parallel version)

particularly useful for developing easy to use libraries, as illustrated e.g., by
the example in Section BEEGIl On the other hand, reentrant locks require extra
machinery in the verification system, because initial acquirements have to be
distinguished from reentrant acquirements.

After a short background discussion on modeling single-entrant locks in sep-
aration logic, we discuss how syntax and semantics are extended to model reen-
trant locks. We develop appropriate verification rules, and discuss how their
soundness can be proven. We illustrate the approach on some examples.

5.1. Background on Separation Logic and Locks

Separation logic for programming language with locks as a concurrency primitive
has been first explored by O’Hearn ﬂ%} O’Hearn elegantly adapted an old idea
from concurrent programs with shared variables mﬁ}? Each lock is associated
with a resource invariant which describes the part of the heap that the lock
guards. When a lock is acquired, it lends its resource invariant to the acquiring
thread. Dually, when a lock is released, it takes back its resource invariant from
the releasing thread. This is formally expressed by the following Hoare rules:

I is x’s resource invariant I is x’s resource invariant
{true}x.lock O {I} {I}x.unlock() {true}

While these rules are sound for single-entrant locks, they are unsound for
reentrant locks, because they allow to “duplicate” a lock’s resource invariant:

{ true }

x.lock(); // I is x’s resource invariant
{7}

x.lock();
{I*xI } <« wrong!

43

{ PointsTo(list,1,1) * PointsTo(num,1,n) * 1l'!=null * n >= 1 *
1l.state<n> * n==length }
(Let F be the abbreviation of PointsTo(list,1,1) * PointsTo(num,1,n))
{ F * 1!=null * n >= 1 * 1l.state<n> * n==length }
if (num > 2){
int lenleft; int lenright;
if(num % 2 == 0){
lenleft = num / 2; lenright = lenleft;
("split" aztom with ml == m2 == n/2 == lenleft == lenright)
{F *n > 2 x n==length *
1.state<lenleft,f> * f.state<lenright> * lenleft+lenright==length }
} else { lenleft = (num - 1) / 2; lenright = lenleft + 1;
("split" aziom with ml == (n-1)/2 and m2==[(n-1)/2]+1)
{F *xn > 2 % n==length *
1.state<lenleft,f> * f.state<lenright> * lenleft+lenright==length }

(In both cases, we have:)
{F *xn > 2 % n==length *
1l.state<lenleft,f> * f.state<lenright> * lenleft+lenright==length }
("split" aztom from right to left)
{F *xn > 2 % n==length *
1l.state<n> * lenleft+lenright==length }
(This matches get’s precondition, because 1/ n>=lenleft follows from
lenleft+lenright==1ength and 2/ lenleft>=0 follows from
num==length and length>=0 (not shown in this proof outline).)
List tail = list.get(lenleft);
(Let G be the abbreviation of n>2 * lenleft+lenright==length * n==length)
{F * G *x 1.state<lenleft,tail> * tail.state<n-lenleft> }
(aziom forget-tail and arithmetic (m-lenleft==lenright))
{ F x G x 1.state<lenleft> * tail.state<lenright> }
MergeSort<lenleft> left = new MergeSort; left.init(list,lenleft);
{ F x G x tail.state<lenright> * left.preFork * Join(left,1) }
left.start();
{ F x G x tail.state<lenright> * Join(left,1) }
MergeSort<lenright> right = new MergeSort; right.init(tail,lenright);
right.start();
{ F x G x Join(left,1) * Join(right,1) }
left.join();
{ F x G x left.postJoin<1> * Join(right,1) }
right.join();
{ F % G x left.postJoin<1> * right.postJoin<1> }
(This matches merge’s precondition because (1) the type system
tells us: left : MergeSort<lenleft> and right : MergeSort<lenright>
(2) F entails Perm(list,1), and
(3) G entails lenleft+lenright==length)
merge (left,right);
{ F * G x 1.state<length> }
(Close)
{ postJoin<i> }

Figure 6: Correctness proof of method run in class MergeSort

44

To recover soundness in the presence of reentrant locks, we design proof rules
that distinguish between initial acquirement and reentrant acquirement of locks.
This allows to transfer a lock’s resource invariant to an acquiring thread only
at initial acquirement. In contrast to existing work that studies simple while
languages and C-like languages ﬂﬁ, @, m], we also handle inheritance.

5.2. A Java-like Language with Reentrant Locks

First we modify the syntax and the semantics of Section EIf's language to model
reentrant locks.

Syntax. We extend the list of head commands defined in Section BX1l as follows:
he € HeadCmd == ... | v.lock() | wv.unlock() |

We use lock and unlock primitives, because they are more expressive than
Java’s synchronized blocks. First, synchronized blocks forbid to lock and
unlock an object in different methods. Second, synchronized blocks enforce
proper nesting of lock and unlock commands. For example the behavior of
0.lock(); q.lock(); o.unlock(); g.unlock(); cannot be reproduced with
synchronized blocks. Moreover, Java 5 provides lock objects that provide a
behavior similar to our lock and unlock primitives.

Like class invariants must be initialized before method calls, resource in-
variants must be initialized before the associated locks can be acquired. In
O’Hearn’s simple concurrent language ﬂﬁ], the set of locks is static and initial-
ization of resource invariants is achieved in a global initialization phase. This is
not possible when locks are created dynamically. Conceivably, we could tie the
initialization of resource invariants to the end of object constructors. However,
this is problematic because Java’s object constructors are free to leak references
to partially constructed objects (e.g., by passing this to other methods). Thus,
in practice we have to distinguish between initialized and uninitialized objects
semantically. Furthermore, a semantic distinction enables late initialization of
resource invariants, which can be useful for objects that remain thread-local for
some time before getting shared among threads.

We distinguish between fresh locks and initialized locks. A fresh lock does
not yet guard its resource invariant: a fresh lock is not ready to be acquired yet.
An initialized lock, however, is ready to be acquired. Initially, locks are fresh
and they might become initialized later. We require programmers to explicitly
change the state of locks (from fresh to initialized) with a commit command:

sc € SpecCmd == ... | m.commit | ...

Operationally, 7.commit is a no-op; semantically it checks that 7 is fresh and
changes 7’s state to initialized. For expressiveness purposes, commit’s receiver
ranges over specification variables, which include both program variables and
logical variables (such as class parameters). In real-world Java programs, a
possible default would be to add a commit command at the end of constructors.
Another possibility would be to infer commit commands automatically.

45

Like in Java, we assume that class tables always contain the following class
declaration:

class Object {
pred inv = true;
final void wait();
final void notify();
}

The distinguished inv predicate assigns to each lock a resource invariant.
The definition true is a default and objects meant to be used as locks should
extend inv’s definition in subclasses of Object. As usual ﬂﬁ], the resource
invariant o.inv can be assumed when o’s lock is acquired non-reentrantly and
must be established when o0’s lock is released with its reentrancy level dropping
to 0. Regarding the interaction with subclassing, there is nothing special about
inv. It is treated just like any other abstract predicate.

The methods wait and notify do not have Java implementations, but are
implemented natively. To model this, our operational semantics specifies their
behavior explicitly (see —’s definition on page EX). Intuitively, these methods
behave as follows:

o If o.wait () is called when object o is locked at reentrancy level n, then
0’s lock is released and the executing thread temporarily stops executing.
e If o.notify() is called, one thread that is stopped (because this thread
called o.wait () before) resumes and starts competing for o’s lock. When a
resumed thread reacquires o’s lock, its previous reentrancy level is restored.

Since we can specify method contracts for wait and notify, we do not put
them in our set of commands. Their specification will be given in Section B4l In
contrast, lock, unlock, and commit are put in our set of commands, because the
Hoare rules for these methods cannot be expressed with the syntax of contracts
available to programmers: we need extra expressivity (see Section BA).

In addition to wait and notify, Java provides method notifyAll to notify
all threads waiting on an object. We do not include notifyAll in our verification
system, however it can be treated exactly like notify.

Runtime Structures. To represent locks in the operational semantics, we use
a lock table. Lock tables map objects o to either the symbol free, or to the
thread object that currently holds o’s lock and a number that counts how often
it currently holds this lock:

I € LockTable = Objld — {free} W (Objld x N)

Compared to Section Bl states are extended to include a heap, a lock table,
and a thread pool:

st € State = Heap x LockTable x ThreadPool

46

Initialization. We modify Section EEI's definition of the initial state of a pro-
gram. Initially, the lock table of a program is empty (hence the second 0)):

init(c) = ({main — (Thread,?)}, @, mainis (#in c))

We modify the operational semantics defined in Section Bl to deal with locks.
Except that a lock table is added, most of the existing cases of the operational
semantics are left untouched.

To represent states in which threads are waiting to be notified, we could
associate each object with a set of waiting threads (the “wait set”). However,
we prefer to avoid introducing yet another runtime structure, and therefore
represent waiting states syntactically:

he == ... | owaiting(n) | o.resume(n) |
Restriction: These clauses must not occur in source programs.

Here are the intuitive semantics of these head commands:

e owaiting(n): If thread p’s head command is o.waiting(n), then p is
waiting to be notified to resume competition for o’s lock at reentrancy
level n.

e o.resume(n): If thread p’s head command is o.resume(n), then p has
been notified to resume competition for o’s lock at reentrancy level n, and
is now competing for this lock.

Below we list:

e the existing cases of the operational semantics that are slightly modified:
[(Red New)| and [(Red Call)l and
e the cases that are added: [(Red Lock)} [(Red Unlock)} [(Red Wait)} [(Red Notify)}

[[Red Skip Notify)] and [[Red Resume)]

State Reductions, st — . st':
I 1

iN o & dom(h) h' = hlo+— (C<7>,initStore(C<7>))]
(Red New) s =s[l—o] ' =l[owr free]
(h, 1,ts|pis(sinf=new C<7>; c)) — (h', I', ts|pis (s’ inc))
(Red Call) m ¢ {fork, join, wait,notify }
h(o)1 = C<&> mbody(m,C<7>) = (20,7).cm ¢ = cm[0/10,0/7]
(hy, 1,ts|pis(sinf=0m(®);c)) — (h, I, ts|pis(sinf« ;c))
(Red Lock) (i(o) = free, I' =llo+ (1,p)]) or (I(0) = (n,p), I’ =lo— (n+1,p)])
(h, 1, ts | pis (sin 0.1ock(); c)) — (h, ', ts | pis (sinc))
l(o)=(n,p) n=1=1 =l[o+ free]
n>1=10=lo~ (n—1,p)]
(h, 1, ts | pis (sin o.unlock(); ¢)) — (h, I', ts| pis (sinc))
(Red Wait) I(0) = (n,p) 1" = l[o > free]
(h, I, ts | pis (sin £=0.wait (); c))
— (h, I', ts | pis (s in o.waiting(n); o.resume (n); c))

(Red Unlock)

47

(Red Notify) (o) = (n,p)
{(h, 1, ts | pis (sin £=0mnotify); c) | ¢ is (s" in o.waiting(n'); ¢))

— (h, I, ts|pis(sinc)|qis (s inc))

(Red Skip Notify) (o) = (n,p)

(h, I, ts | pis (sin £=0notify O; ¢)) — (h, [, ts | pis (sinc))
(Red Resume) [(0) =free ' =l[o+— (n,p)]

(h, 1, ts | pis (sin o.resume(n); c)) — (h, ', ts| pis (sinc))

Remarks.

Rule distinguishes two cases: (1) lock o is acquired for the first
time (I(0) = free) and (2) lock o is acquired reentrantly (I(o) = (n,p)).
Similarly, rule distinguishes two cases: (1) lock o’s reen-
trancy level decreases but o remains acquired (I(o) = (n,p) and n > 1)
and (2) lock o is released (I1(0) = (1,p)).

Rule fires only if the thread considered previously acquired
wait’s receiver. In this case, wait’s receiver is released and the thread en-
ters the waitingstate. The thread’s reentrancy level is stored in waiting’s
argument.

Like rule the rules |(Red Notity)| and |(Red Skip Notity)| fire

only if the thread considered previously acquired notify’s receiver. The
rule fires if there is a thread waiting on notify’s receiver.
In this case, the waiting thread is resumed. If there is no thread waiting
on notify’s receiver, rule |(Red Skip Notify)| fires. In this case, the call to
notify has no effect on other threads.

In Java, if o.wait () and o.notify () are called by a thread that does not
hold o, an IllegalMonitorState exception is raised. In our semantics,
this is modeled by being stuck. In Section B4l we will give contracts
for wait and notify that ensure verified programs are never stuck when
calling wait or notify. In another words, verified programs would never
throw an IllegalMonitorState exception in Java’s semantics.

Rule|(Red Resume)|resumes a thread that previously waited on some lock.

The thread’s reentrancy level is restored.

5.3. Separation Logic for Reentrant Locks

In this section, we describe the new formulas that we add to the specification
language of Section

In separation logic for single-entrant locks ﬂﬂ], locks can be acquired uncon-
ditionally. For reentrant locks, on the other hand, it seems unavoidable that the
proof rule for acquiring a lock distinguishes between initial acquires and reac-
quires. This is needed because it is quite obviously unsound to simply assume
the resource invariant after a re-acquire. Thus, a proof system for reentrant
locks must keep track of the locks that the current thread holds. To this end,
we enrich our specification language:

m€SpecVal = ... | nil | -7 |
F € Formula == ... | Lockset(w) | w containse

48

Here is the informal semantics of the new specification values and formulas:

e nil: the empty multiset.

e 7 -7': the multiset union of multisets 7 and 7'.

e Lockset(m): 7 is the multiset of locks held by the current thread. Mul-

tiplicities record the current reentrancy level. (non-copyable)

e 7 contains e: multiset 7 contains object e. (copyable)

We classify the new formulas (of which there will be two more) into copyable
and non-copyable ones. Copyable formulas represent persistent state proper-
ties (i.e., properties that hold forever, once established), whereas non-copyable
formulas represent transient state properties (i.e., properties that hold temporar-
ily). For copyable F', we postulate the axiom (G & F) = (G * F), whereas for
non-copyable formulas we postulate no such axiom. Note that this axiom implies
F —x (F'* F), hence the term “copyable”. As indicated above, m contains e is
copyable, whereas Lockset () is not.

Initial Locksets. When verifying the body of Thread.run(), we assume
Lockset(nil) as a precondition.

Initializing Resource Invariants. As explained before, resource invariants must
be initialized before the associated locks can be acquired. We use the specifica-
tion command commit to indicate where a lock changes from the fresh state to
the initialized state. Because we do not tie initialization to a specific program
point (such as the end of constructors), we also have to keep track of the state of
locks in our verification system. To this end, we introduce two more formulas:

F € Formula == ... | efresh | e.initialized |
Restriction: e.initialized must not occur in negative positions.

e c.fresh: e’s resource invariant is not yet initialized. (non-copyable)
e c.initialized: e’s resource invariant has been initialized. (copyable)

Because e.initialized is copyable, initialized formulas can “spread” to
all threads, allowing all threads to try to acquire locks (in Section B4l we will
see that initialized appears in the precondition of the Hoare rules for (initial)
lock acquirement).

Types. We add a type to represent locksets:
T = ... |lockset| ...

It is convenient to allow using objects as singleton locksets (rather than
introducing explicit syntax for converting from objects to singleton locksets).
Hence, we postulate Object <: lockset.

Because we allow arbitrary specification values (including locksets) as type
parameters, we consider that types with semantically equal type parameters
are type-equivalent. Technically, we let ~ be the least equivalence relation on
specification values that satisfies the standard multiset axioms:

Equivalence of Specification Values: © ~ 7

1 1
nil-w~m R (m-m")y 7’ ~n- (" -7")

L 1

Then we postulate that ¢t<7> <: t<7’> when 7 ~ 7.

49

Resources. To express the semantics of the new formulas, we need to extend
resources with three new components. From now on, resources are 6-tuples of
a heap, a permission table, a join table, an abstract lock table £ € Objld —
Bag(Objld), a fresh set F C Objld, and an initialized set T C Objld.

Abstract lock tables map thread identifiers to locksets. Just as permission
tables are an abstraction of heaps, abstract lock tables are an abstraction of
lock tables. The compatibility relation captures that distinct threads cannot
hold the same lock (we use M to denote bag intersection, Ll for bag union, and
[] for the empty bag):

dom(L) Ndom(L') =0

L if { (Vo € dom(L),p € dom(L))(L(o) N L'(p) = [)) EFE ZLUL

Fresh sets F keep track of allocated but not yet initialized objects, while
initialized sets T keep track of initialized objects. We define # for fresh sets as
disjointness to mirror that o.fresh is non-copyable, and for initialized sets as
equality to mirror that o.initialized is copyable:

FUF
I(=T)

FH#F i FnF =0 FxF =
I#T it IT=T I*x7 =

We require resources to satisfy the following axioms (in addition to Sec-
tion EE's axioms):

(a) FNZ =0.
(b) If o € L(p) then o € 7.

Axiom @ ensures that our interpretation of fresh sets and initialized sets
makes sense: an object can never be both fresh and initialized. Axiom @
ensures that locked objects are initialized.

As usual, we define projection operators:

(h P, T Ly F D)y =L (WP, T L F Do = F (WP, T, L,FI) =T

init
Predicate Environments. In addition to Section EEX's axioms, we require predi-
cate environments to satisfy the following axiom:

(a) If (7, (h, P, T, L, F,I),r,7") € Dom(k),
then E(I{)(/ﬁ-’ (h7 737 ‘77 ﬁ? f’ Z)’ T’ ﬁ/) S E(I{)(/ﬁ-7 (h’ P’ \7’ L’ F? IU{O})’ T’ 7_1-/)

This is a technical condition used to update the global initialized set when
an object (here o) is committed.

Semantics of Values. Before defining the semantics of formulas, we need to
extend the semantics of values to locksets. Recall that SemVal is the set of
semantic values (defined in Section BTl). Formally, SemVal = {null} U Objld U
Int U Bool U (0,1]. We extend this set to include semantic domains for locksets.
The resulting set of semantic values is defined as follows:

1€ SemVal = ({null} U Objld U Int U Bool U (0,1] U Bag(Objld))/ =

50

;v F ! (nil contains e) (Member Nil)
T;vb (r-7') containsex—* (e==7m | 7' containse) (Member Rec)
r~n = Divkr==7 (Eq Bag)
Tiobr==m (Eq Refl)
Tivbkr==7" = vt a'==71 (Eq Sym)
Divbr=qn'&n ==7" = T;okn==xn" (Eq Trans)

G € {e, mcontainse, e.initialized }

i (Copyable)
Dok (F&G) —* (FxG)

Table 2: Axioms to reasons about bags and copyable formulas

where = is the least equivalence relation on SemVal such that o = [o] for all
object ids 0. That is, = is the least equivalence relation that identifies object
identifiers with singleton bags.

Let WellTypClSpecVal be the set of well-typed, closed specification valuedd:

WellTypCISpecVal 2 { 7 | (3T, T)(dom(I") C Objld and T+ 7 : T) }

To define the semantics of well-typed, closed specification values, we simply
define the semantics of the two new specification values:

[.] : WellTypCISpecVal — SemVal [nil] = [] [7-7'] = [7] U [~']

Semantics of Formulas. We now state the semantics of formulas introduced to
deal with reentrant locks:
r=&h,PJ,LFI);s

(Lockset () ift L(o) = [r] for some o
& hP.J,LF.I);s

(

(

7 containse iff [e]* € []
e.fresh iff [e]teF
e.initialized iff [e]t €T

r=&h,PJ,LFI);s
r=&hP.J,LFI);s

m T T

These clauses are self-explanatory, except perhaps the existential quantifica-
tion in the clause for Lockset (7). Intuitively, this clause says that there exists
a thread identifier o in £’s domain such that 7 denotes the current lockset
associated with o.

Axioms. Table A lists the new axioms. These axiomatize bag membership
[(Member Nil)| and [[(Member Rec)); bag equality ; equality between
specification values ((Eq Refl)] [[Eq Sym)] and and copyability.
Axiom updates Section B-T s axiom about copyability

of formulas.

12Recall that typing rules are defined in

o1

5.4. Hoare Triples

In this section, we modify the Hoare triple for allocating new objects and
we show Hoare triples for the new commands of our language.
We modify rule so that it emits the fresh predicate in its postcondi-
tion:
C<Ta>ecct TF#R:T[7/a] CO<m><:T(f)
{true}
vk {=new C<7>
{€.init* C classof {* ®p(u)<:opjectl '=u * (.fresh }

(New)

In addition to the usual init and classof predicates, s postcondition
records that the newly created object is distinct from all other objects that are
in scope. This postcondition is usually omitted in separation logic, because
separation logic gets around explicit reasoning about the absence of aliasing.
Unfortunately, we cannot entirely avoid this kind of reasoning when establishing
the precondition for the rule below, which requires that the lock is not
already held by the current thread.

The specification command 7.commit triggers 7’s transition from the fresh
to the initialized state, provided 7’s resource invariant is established:

'k 7, 7" : Object, lockset
{Lockset(n’) * w.inv * wr.fresh}
ok m.commit
{Lockset(n’) * ! (7’ contains 7) *m.initialized}

Intuitively, the fact that 7. inv appears in S precondition but does
not appear in s postcondition indicates that after being committed,
lock 7 begins to guard its resource invariant: the resource invariant . inv has
been given to lock 7 and 7. inv is not available anymore to the executing thread.
Furthermore, because w.fresh only holds if 7 !=null, this rule ensures that only
non-null locks can become initialized.

The rule ensures that monitor invariants cannot mention Lockset
predicates. This is important because Lockset predicates are interpreted w.r.t.
to the current thread: having Lockset predicates inside monitor invariants does
not make sense. The fact that monitor invariants cannot mention Lockset
predicates is enforced by s precondition: because it mentions both a
Lockset predicate and the lock’s monitor invariant inv, inv cannot include a
Lockset predicate. This follows from the semantics of the Lockset predicate
and the semantics of the * operator: two Lockset predicates cannot be *-
conjoined. Hence, if inv includes a Lockset predicate, s precondition
cannot be established.

There are two rules each for locking and unlocking, depending on whether
or not the lock/unlock is associated with an initial entry or a reentry.

First, we present the two rules for locking:

(Commit)

92

I'Fwu,7:0bject,lockset

T;vF {Lockset(m) * ! (7 contains u) *u.initialized} (Lock)
u.lock()
{Lockset(u - m) *u.inv}
I'Fwu.m: Object,lockset (Re-Lock)

;v {Lockset(u - m) }u.lock(){Lockset(u-u-m)}

The rule applies when lock u is acquired non-reentrantly, as ex-
pressed by the precondition Lockset () * ! (7 contains u). The precondition
u.initialized makes sure that (1) threads only acquire locks whose resource
invariant is initialized, and (2) no null-error can happen (because initialized
values are non-null). The postcondition adds u to the current thread’s lockset,
and assumes u’s resource invariant. The resource invariant obtained is u.inv
(without @ selector). In proofs, the “visible” resource invariant is opened at u’s
static type using axioms [(Open/Close)| and [(Dynamic Type)| (see page EII).

Proving s precondition requires reasoning about aliases because one
has to prove ! (w contains u). In practice, this assertion is proven by showing
that v is different from all elements of lockset 7. Such a reasoning is a form
of alias analysis. On one hand this is unfortunate, because separation logic’s
power comes from the fact that it does not need to reason about aliases. On
the other hand, this seems unavoidable. Whether this is problematic in practice
needs to be investigated on large case studies. In Section E8 the lock coupling
example illustrates a possible solution to the problem.

The rule [(Re-Lock)| applies when a lock is acquired reentrantly. The pre-
condition of [(Re-Lock)} contrary to does not require w.initialized,
because this follows from Lockset(u - 7) (locksets contain only initialized val-
ues).

To provide more useful feedback to programmers, we present a derived rule

of |(Re-Lock)| that could be used in program checkers instead of [(Re-Lock)

I'+wu,7:0bject,lockset
{Lockset(u -) *u.inv}
ok u.lock()
{Lockset(u-u-m) *u.inv}

(Re-Lock-Accurate)

requires Initialized * Lockset(S); ensures ...;
void syncCallToMth(){
lock();
mth(); // requires inv
unlock();
}

Figure 7: Example showing [(Re-Lock-Accurate)fs usefulness

Figure [illustrates why this rule provides more accurate feedback. Con-
sider method syncCallToMth. To verify this method, a possible strategy for

93

a program checker is to make a case distinction on (!S contains this | S
contains this) when reaching lock(). When verifying the the case where
S contains this holds (i.e., this is acquired reentrantly), a program checker
that uses |(Re-Lock-Accurate)| would fail at the call to lock (), because it would
require w.inv when lock() is called. In contrast, a program checker that
uses would fail at the call to mth(), because it does not fulfill its
precondition. Thus, since the problem is actually due to the usage of locks,
rule|(Re-Lock-Accurate)| provides more accurate feedback. In other words, upon
lock reentrance, one expects this lock’s resource invariant to hold, and this is
what rule [(Re-Lock-Accurate)| enforces. Thus, rule|(Re-Lock)|is appropriate for
the theory but rule |(Re-Lock-Accurate)| is more convenient in practice.
Next, we present the two rules for unlocking:

I'Fwu,7:0bject, lockset

(Re-Unlock)
;0 F {Lockset(u - u-m) }u.unlock() {Lockset(u - m)}

I'Fu,7:0bject,lockset
I';o b {Lockset(u - m) *u.inv}u.unlock() {Lockset(m) }

The rule [(Re-Unlock)| applies when u’s current reentrancy level is at least 2
and |(Unlock)| applies when w’s resource invariant holds in the precondition.

Other Hoare Rules that Do Not Work. One might wish to avoid the disequalities
in s postcondition. Several approaches for this come to mind. First, one
could drop the disequalities in [(New)[s postcondition, and rely on s
postcondition ! (7’ contains 7) to establish s precondition. While this
would be sound, in general it is too weak, as we are unable to lock 7 if we first
lock some other object = (because from ! (7' contains m) we cannot derive ! (z-
7’ contains) unless we know 7 !'=x). Second, the Lockset predicate could be
abandoned altogether, using a predicate w.Held(n) instead, that specifies that
the current thread holds lock 7 with reentrancy level n. In particular, 7.He1d (0)
means that the current thread does not hold 7’s lock at all. We could reformulate
the rules for locking and unlocking using the Held-predicate, and introduce
{.Held(0) as the postcondition of replacing the disequalities. However,
this approach does not work, because it grants only the object creator permission
to lock the created object! While it is possible that a clever program logic could
somehow introduce m.Held (0)-predicates in other ways (besides introducing it in
the postcondition of , we have not been able to come up with a workable
solution along these lines.

Wait and notify. Recall that in Section 22 we added methods wait and notify
in class Object without specifying their contracts. Now we specify those as
follows.

(Unlock)

class 0Objectq{
pred inv = true;

requires Lockset(S) * S contains this * inv;
ensures Lockset(S) * inv;

54

final void wait();

requires Lockset(S) * S contains this;
ensures Lockset(S);
final void notify();

The preconditions for wait and notify require that the receiver is locked.
These requirements statically prevent I1legalMonitorStateExceptions, which
are the runtime exceptions that Java throws when o.wait() or o.notify() are
called without holding o’s lock. The postcondition of o.wait () ensures o.inv,
because o is locked just before o.wait () terminates.

Auziliary Syntaz. Recall that in Section 2, we added two new head commands
waiting and resume to represent waiting states. The Hoare rules for these
commands are as follows:

I'F7m,0:1lockset,Object

{Lockset(7) *o.initialized] (Waiting)
Lir owaiting(n)

{Lockset (m) *0.initialized}

I'Fo,7:0bject, lockset (Resume)

{Lockset(w) *o0.initialized}
Tir o.resume(n)
{Lockset (o™ -) *0.inv) }

In o™ denotes the multiset with n occurrences of 0. More precisely:
0% = nil and 0" = o-0" "' if n > 1. Of course, the rules and
(Resume)| are never used in source code verification, because source programs
do not contain the auxiliary syntax. Instead, the rules [(Waiting)| and |(Resume)|
are used to state and prove the preservation theorem.

5.5. Verified Programs

In this section, we show how to modify class Thread and top level rules of
Section H's verification system to handle reentrant locks.

The Thread class. To handle reentrant locks, we modify class Thread’s method
contracts as shown in Figure@ Intuitively, we forbid fork and join’s contracts
(i.e., preFork and postJoin) to depend on the caller’s lockset. This would
not make sense since Lockset predicates are interpreted w.r.t. to the current
thread. Obviously, a thread calling fork differs from the newly created thread,
while a thread calling join differs from the joined thread. We forbid fork and
join’s contracts to depend on the caller’s lockset by (1) adding Lockset (8) in
fork’s precondition: because callers of fork have to establish fork’s precondi-
tion, this forbids preFork to depend on a Lockset predicate (recall that two
Lockset predicates cannot be *-combined) and (2) by adding Lockset(S) in
run’s postcondition: this forbids postJoin to depend on a Lockset predicate:

95

class Thread ext Object{
pred preFork = true;
group postJoin<perm p> = true;
requires Lockset(S) * preFork; ensures Lockset(S) ;
final void fork();
requires Join(this,p); ensures postJoin<p>;
final void join();
final requires Lockset(nil) =* preFork;

ensures (ex Lockset S) (Lockset(S)) * postJoin<i>;
void run() { null }

Figure 8: Class Thread

Top Level Rules. We need to update Section EEA's rules for runtime states to
account for reentrant locks.

There are two changes to rule [(Thread)t (1) premise dom(Rioek) = {0} is
added to ensure that a thread’s resource only tracks the locks held by this thread

and (2) the thread’s postcondition is modified to reflect the change in join’s
postcondition in class Thread.

(Thread)
Rijoin(0) <[fr] THo:T" I'T"Fs:0
cfv(c) Ndom(I") =0 dom(Rioek) = {0} Do)+ E;R;s | Flo]
D, I;r+ {F}c:void{ (ex lockset S) (Lockset(S)) * fr-o.postJoin<l>}

REois(sinc):o

We define the set ready(R) of all initialized objects whose locks are not held,
and the function conc that maps abstract lock tables to concrete lock tables:

ready(R) = Rinie \ {0 | (3p)(0 € L(p)) }

conc(£) (o) 2 { (p. L(p)(0)) iff 0 € L(p)

free otherwise

In conc’s definition, we let £(p)(o) stand for the multiplicity of o in L(p).
Note that conc is well-defined, by axiom @ for resources (see page Bl). The
new rule for states ensures that there exists a resource R to satisfy the thread
pool ts and a resource R’ to satisfy the resource invariants of the locks that
are ready to be acquired. In addition, function conc relates the program’s lock
table to the top level resource’s abstract lock table:

o6

h = ('R,* R’)hp
I = conc(Riock) Rbts:o RH#R Rig=0
fst(Ry,) Cfst(h) =T T+ &R0 | @ocready(ryo-inv (State)
(h, L, ts):o
Like in Section EE4L we have shown the preservation Theorem Bl and we have

shown that verified programs satisfy the following properties: null error freeness,
partial correctness, and data race freeness.

5.6. Examples of Reasoning with Reentrant Locks

In this section, we show examples of reasoning with our verification system. We
provide two examples: Section LG l's class Set shows a typical use of reentrant
locks as it often occurs in the Java library and Section shows an advanced
lock coupling example.

5.6.1. A Typical Use of Reentrant Locks: class Set

In the Java library, lock reentrancy is useful because container classes often
feature client methods that are also helper methods. This happens if there is
(1) a method which synchronizes on the receiver and is meant to be called by
clients, but (2) this method can also be called by other methods of the same
class. Because the other methods can also be synchronized on the receiver,
lock reentrancy avoids to duplicate method implementation in two versions: a
synchronized one (to be called by clients) and a lock free one (to be called by
other methods of the class).

We present an example of the behavior described above for a class Set that
represents mathematical sets. Internally, class Set is backed up by a list. Class
Set contains a method has that should be used by clients to check if some
element belongs to the receiver set. In addition, class Set contains method add
which adds an element to the receiver set if this element is not already present.
Both method has and method add lock the receiver set. Hence, as method add
calls has, reentrant locks are crucial for class Set’s implementation.

First, we provide class List that backs up class Set. Class List is a shallow
container: lists do not have permission to access their values. Values must be
accessed by synchronizing on them. That is why lists ensure that they only
contain initialized values (see predicate state’s implementation):

class List extends Object{

Object element;
List next;

pred state = PointsTo(element,1,v) * v.initialized *
PointsTo(next,1,n) * n.state;

requires init * o.initialized; ensures state@List;
void init(Object o, List n){ element = o; next = n; }

requires state; ensures state;
bool has(Object o){

o7

bool result;

if (element == o0){ result = true; }

else{
if (next '= null){ result = next.has(o); }
else{ result = false; }

}

result;

}

requires state * o.initialized; ensures state;
void add(Object o){ List 1 = new List; l.init(o,this); }

We explain the meaning of class List’s predicate state. Predicate state
gives access to field next of the list’s first node (see PointsTo(next,1,n)) and
to all next fields of subsequent nodes (because state is recursive, see n.state).
In addition, predicate state (1) provides references to the values stored in the
list (see PointsTo(element,1,v) and n.state) and (2) ensures that values are
initialized (see v.initialized and n.state). It is crucial to ensure that values
inside lists are initialized because predicate state does not give access to the
values, it only provides references.

Second, we provide class Set. Class Set ensures that an object cannot
appear twice in the underlying list. For simplicity, we identify two objects if
they have the same address in the heap (i.e., we use Java's ==

class Set extends Object{
List rep;
pred inv = PointsTo(rep,l,r) * r.state;

requires Lockset(S) * init * fresh *
Set classof this * o.initialized;

ensures Lockset(S) * !(S contains this) * initialized;
void init(Object o){

rep = new List;

rep.init(o,null);

commit;
}
requires Lockset(S) * (S contains this -* inv) * initialized;
ensures Lockset(S) * (S contains this -* inv);
bool has(Object o){

lock();

bool result = rep.has(o);
unlock();
result;

}

13 Alternatively, we could put Java’s equals in class Object and use it here.

o8

requires Lockset(S) * !(S contains this) *
initialized * o.initialized;
ensures Lockset(S) * ! (S contains this);
void add(Object o){
lock();
if(thas(o)){ // lock-reentrant call
rep.add(o);
}
unlock();
}

}

Remarks. The resource invariant of a Set consists of (1) the field rep and
(2) the list pointed to by the field rep. This is specified in predicate inv’s
implementation. A Set owns its underlying list rep: while the receiver set is
locked when clients call has or add, the underlying list is never locked. Access
rights to the underlying list are packed into the resource invariant of the set
(see inv’s definition). As a result, lists do not need to be initialized (no commit
statement in class List).

Elements of sets should be accessed by synchronizing on them. Although
there is no get method in class Set’s implementation, we make sure that el-
ements of sets are initialized (see state’s implementation in class List
and o.initialized in various contracts). Hence, a get method would have
result.initialized as a postcondition, allowing clients to lock returned ele-
ments. this case, returned

Method init both (1) initializes field rep and (2) initializes the set’s resource
invariant (with the commit command). Point (2) is formalized by having fresh
in init’s precondition and having initialized in init’s postcondition. In
addition, init’s precondition includes Set classof this. This is required to
verify that commit is sound i.e., that the monitor invariant is established before
commit (see init’s proof outline below).

The contract of method has in class Set allows lock-reentrant calls. If a
lock-reentrant call is performed, however, inv is required (as expressed by (S
contains this —-* inv)). Method add in class Set could be specified similarly.

A simpler implementation of method add in class Set would call has on the
underlying list. In this way, the lock-reentrant call would be avoided. However,
our implementation is safer: if method has is overridden in subclasses of Set
(but not method add), our implementation is still correct; while the simpler
implementation could exhibit unexpected behaviors.

Discussion. Class Set exemplifies a typical use of lock reentrancy in the Java
library. We believe that our verification system fits well to verify such classes.
In addition, this example shows how our system supports programs that include
objects that must be locked before access and objects that are accessed without
synchronization. Importantly, the addition of locks does not force programmers
to indicate Lockset predicates everywhere in contracts: class List which backs
up class Set does not mention any Lockset predicates.

99

5.6.2. Lock Coupling
In this section, we illustrate how our verification system handles lock cou-
pling. We use the following convenient abbreviations:

m.locked (') £ Lockset (- 7')

m.unlocked(n’) = Lockset (') * ! («/ contains 7)

Suppose we want to implement a sorted linked list with repetitions. For
simplicity, assume that the list has only two methods: insert() and size().
The former inserts an integer into the list, and the latter returns the cur-
rent size of the list. To support a constant-time size()-method, each node
stores the size of its tail in a count-field. Each node n maintains the invariant
n.count == n.next.count + 1.

In order to allow multiple threads inserting simultaneously, we want to avoid
using a single lock for the whole list. We have to be careful, though: a naive
locking policy that simply locks one node at a time would be unsafe, because
several threads trying to simultaneously insert the same integer can cause a
semantic data race, so that some integers get lost and the count-fields get out of
sync with the list size. The lock coupling technique avoids this by simultaneously
holding locks of two neighboring nodes at critical times.

Lock coupling has been used as an example by Gotsman et al. m] for single-
entrant locks. The additional problem with reentrant locks is that insert()’s
precondition must require that none of the list nodes is in the lockset of the
current thread. This is necessary to ensure that on method entry the current
thread is capable of acquiring all nodes’s resource invariants:

requires this.unlocked(S) * no list node ts in S;
ensures Lockset(S);
void insert(int x);

The question is how to formally represent the informal condition written in
italic. Our solution makes use of class parameters. We require that nodes of
a lock-coupled list are statically owned by the list object, i.e., they have type
Node<o>, where o is the list object. Then we can approximate the above contract
as follows:

requires this.unlocked(S) * no this-owned object is in S;
ensures Lockset(S);
void insert(int x);

To express this formally, we define a marker interface, i.e., an interface with
no content, for owned objects:
interface Owned<Object owner> { /* a marker interface */ }

Next we define an auxiliary predicate m.traversable(n’) (read as “if the

current thread’s lockset is 7/, then the aggregate owned by object 7 is traversable”).
Concretely, this predicate says that no object owned by = is contained in 7’:

m.traversable(n’) =

(fa Object owner, Owned<owner> x) (! (7' contains x) | owner !=7)

60

Note that in our definition of w.traversable(sn’), we quantify over a type
parameter (namely the owner-parameter of the Owned-type). Here we are taking
advantage of the fact that program logic and type system are inter-dependent.

Now, we can formally define an interface for sorted integer lists:

interface SortedIntList {
pred inv<int c>; // ¢ is the number of list nodes

requires this.inv<c>; ensures this.inv<c> * result==c;
int size();

requires this.unlocked(S) * this.traversable(S);
ensures Lockset(S);

void insert(int x);

Figurefshows a tail-recursive lock-coupling implementation of SortedIntList.
The auxiliary predicate n.couple<c, >, as defined in the Node class, holds in
states where n.count == ¢ and n.next.count == ¢/. Figure [@I's implementation
has been verified in our system.

But how can clients of lock-coupling lists establish insert ()’s precondition?
The answer is that client code needs to track the types of locks held by the cur-
rent thread. For instance, if C' is not a subclass of Owned, then 1ist.insert()’s
precondition is implied by the following assertion, which is satisfied when the
current thread has locked only objects of types C' and Owned</¢>.

list.unlocked(S) * (!=list *
(fa Object z) (! (S contains z) | z instanceof C | z instanceof Owned</(>)

Discussion. This example demonstrates that we can handle fine-grained con-
currency despite the technical difficulties raised by lock reentrancy (i.e., lock’s
precondition is harder to prove). However, we have to fall back on the type
system to verify this example. Consequently, ownership becomes static: with
our specifications, nodes cannot be transferred from a list to another, because
the nodes’s owner would have to change. As a result, our solution works for a
limited set of programs and further work is needed to handle all uses of fine-
grained concurrency. In addition, because we use that our type system and our
verification system are inter-dependent, automatically proving such a program
would require a tool that combines reasoning about types and reasoning about
separation logic formulas.

6. Related Work

The work that is closed related to our work is Parkinson’s thesis M] This
formalizes a subset of singlethreaded Java to specify and verify such programs
with separation logic. There are, however, a few differences: we feature value-
parameterized classes, we do not include casts (but it would be straightforward
to add them, as we did in our earlier work m]), we do not model constructors,
we do not provide block scoping, and, contrary to Parkinson, programs written
in our model language are not valid Java programs. While Parkinson introduced

61

class LockCouplinglist implements SortedIntList{
Node<this> head;

pred inv<int c> = (ex Node<this> n)(
PointsTo(head, 1, n) * n.initialized * PointsTo(n.count, 1/2, c));

requires this.inv<c>; ensures this.inv<c> * result==c;
int size() { return head.count; }

requires Lockset(S) * !(S contains this) * this.traversable(S);
ensures Lockset(S);
void insert(int x) {
lock(); Node<this> n = head;
if (n!=null) {
n.lock();
if (x <= n.val) {
n.unlock(); head = new Node<this>(x,head); head.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }
} else { head = new Node<this>(x,null); unlock(); } } }

class Node<Object owner> implements Owned<owner>{
int count; int val; Node<owner> next;

public pred couple<int count_this, int count_next> =
(ex Node<owner> n) (
PointsTo(this.count, 1/2, count_this) * PointsTo(this.val, 1,int)
* PointsTo(this.next, 1, n) * n!=this * n.initialized
* (n!'=null -* PointsTo(n.count, 1/2, count_next))
* (n==null -* count_this==1));
public pred inv<int c> = couple<c,c-1>;
requires PointsTo(next.count, 1/2, c);
ensures PointsTo(next.count, 1/2, c)
* (next!=null -* PointsTo(this.count, 1, c+1))
* (next==null -* PointsTo(this.count, 1, 1))
* PointsTo(this.val, 1, val) * PointsTo(this.next, 1, next);
Node(int val, Node<owner> next) {
if (nmext!=null) { this.count = next.count+1; } else { this.count = 1; }
this.val = val; this.next = next; }

requires Lockset(this-S) * owner.traversable(S) * this.couple<c+l,c-1>;
ensures Lockset(S);
void insert(int x) {
Node<owner> n = next;
if (n'!'=null) {
n.lock();
if (x <= n.val) {
n.unlock(); next = new Node<owner>(x,n); next.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }
} else { next = new Node<owner>(x, null); unlock(); } } }

Figure 9: A lock-coupling list

62

abstract predicates and permissions, he does not combine them as we do. Later,
both Parkinson and Bierman m and Chin et al. M] provided a flexible way
to handle subclassing.

Separation-logic-based approaches for parallel programs ﬂﬁ, @] focused on
a theoretically elegant, but unrealistic, parallel operator. Notable exceptions
are Hobor et al. [44] and Gotsman et al. 20] who studied (concurrently to us)
Posix threads for C-like programs. Contrary to us, Hobor et al. do not model
join as a native method, instead they require programmers to model join with
locks. For verification purposes, this means that Hobor et al. would need extra
facilities to make reasoning about fork/join as simple as we do. Gotsman et
al.’s work is very similar to Hobor et al.’s work.

There are a number of similarities between our work and Gotsman et al. m] ’s
work, for instance the treatment of initialization of dynamically created locks.
Our initialized predicate corresponds to what Gotsman calls lock handles
(with his lock handle parameters corresponding to our class parameters). Since
Gotsman’s language supports deallocation of locks, he scales lock handles by
fractional permissions in order to keep track of sharing. This is not necessary
in a garbage-collected language. In addition to single-entrant locks, Gotsman
also treats thread joining. We cover thread joining in a simpler and more pow-
erful way, because we allow multiple readonly joining. The essential differences
between Gotsman’s and our paper are (1) that we treat reentrant locks, which
are a different synchronization primitive than single-entrant locks, and (2) that
we treat subclassing and extension of resource invariants in subclasses. Hobor
et al.’s work [44] is very similar to ().

A different approach is pursued by Vafeiadis, Parkinson et al. m, @, @]
This work combines rely /guarantee with separation logic. On one hand, this is
both powerful and flexible: fine-grained concurrent algorithms can be specified
and verified. On the other hand, their verification system is more complex
than ours; because they handle a larger class of problems. They do not treat
reentrant locks.

Another related line of work is by Jacobs et al. F] who extend the Boogie
methodology for reasoning about object invariants [d] to a multithreaded Java-
like language. While their system is based on classical logic (without operators
like * and —*), it includes built-in notions of ownership and access control. Their
system deliberately enforces a certain programming discipline (like concurrent
separation logic and our variant of it also do) rather than aiming for a com-
plete program logic. In this approach, objects can be in two states: unshared or
shared. Unshared objects can only be accessed by the thread that created them;
while shared objects can be accessed by all threads, provided these threads syn-
chronize on this object. This partially correspond to our method: Jacobs et al.’s
shared objects (objects that are shared between threads) directly correspond
to our initialized objects (objects whose resource invariants are initialized).
While Jacobs et al.’s policy is simple, it is too restrictive: an object cannot be
passed by one thread to another thread without requiring the latter thread to
synchronize on this object. Jacobs et al.’s system prevents deadlocks, by impos-
ing a partial order on locks. As a consequence of their order-based deadlock pre-

63

vention, their programming discipline statically prevents reentrancy, although
it may not be too hard to relax this at the cost of additional complexity. On the
upside, Jacobs et al.’s verification system uses automatic standard SMT solvers,
while — for automatic verification — we would require dedicated separation logic
based provers.

Smans et al. ﬂﬂ, E] automatically verify sequential programs using im-
plicit dynamic frames. While their approach uses first-order logic, it is close
to separation logic, because their verification algorithm approximates the set of
locations accessed by methods (like specifications in separation logic). On the
upside, Smans et al.’s approach alleviates the burden of specifying the set of
locations accessed by methods, because such sets are inferred from functional
specifications. Furthermore, (1) like other first-order logic based approaches;
they can use off-the-shelf theorem provers and (2) they implemented their ap-
proach. On the downside, solving the verification conditions generated by Smans
et al.’s tool is much slower than using symbolic execution and separation logic
(like [53]). Another drawback is that they cannot write specifications that mir-
rors separation logic’s magic wand —*. The magic wand is crucial to specify
data structures that temporarily “lend” a part of their representation to clients,
like iterators [23].

Like Smans et al., Leino and Miiller @] presented a verification system for
multithreaded programs that uses implicit dynamic frames and SMT solvers.
Contrary to their previous work @] they do not impose a programming model:
they use fractional permissions to handle concurrency. They do not support
multiple readonly joiner threads but they prevent deadlock. Consequently, even
if they do not handle reentrant locks, these locks could be handled without a
major effort.

In a more traditional approach, Abréham, De Boer et al. @, @] apply
assume-guarantee reasoning to a multithreaded Java-like language.

7. Conclusion

In this paper, we have presented a variant of permission-based separation logic
that allows to reason about object-oriented concurrent programs with dynamic
threads and reentrant locks. The main selling point of this logic is that it
combines several existing specification techniques, and that it is not developed
for an idealized programming language. Together this makes it powerful and
practical enough to reason about real-life concurrent Java programs, as has been
demonstrated on several examples, both in a sequential and in a concurrent
setting.

An essential ingredient of the logic is the use of permissions. These ensure
that in a verified program, data races cannot occur, while multiple simultaneous
reads are allowed. Thus concurrent execution of the program is restricted as
little as possible. Further, the logic also contains abstract predicates, as pro-
posed by Parkinson, which are suitable to reason about inheritance, and class
parameters. This paper is the first to combine these three different features
in a single specification language, and to apply it on a realistic programming
language.

64

A first point for future work is to develop tool support for the existing
logic. This involves several topics: (1) improving readability of the specification
language, for example by extending an existing specification language such as
JML [51]; (2) development of appropriate proof theories to automatically dis-
charge proof obligations; and (3) development of techniques to reason about the
absence of aliasing in the context of lock-reentrancy. The first topic has been
investigated both by Tuerk @] and Smans et al. E], while the second topic has
been investigated by Parkinson et al. [53]. However, in both cases the results
have to be extended to fit in our framework, in particular because they do not
consider the magic wand.

Concerning the third topic, the lock-coupling example (Section BG2), uses
class parameters to to model ownership. We will investigate how this can be
done more systematically. We also plan to study whether permission annota-
tions can be generated, instead of being written by the programmer.

In the longer term, we plan to study how the logic can be used in a more
flexible way for concurrent data structures. In particular, specifications should
be split into a functional and a concurrency part, in such a way that changing
the locking policy or concurrency or synchronization primitives of an implemen-
tation would only affect validity of the concurrency specification, and not of
the functional specification. Thus, if correctness of a program depends only on
the functional specification of the data structure, then the change in the data
structure’s concurrency mechanism does not change correctness of the program.
Eventually, this should also lead to a technique to reason about lock-free data
structures, where some benign data races may be explicitly allowed by the logic.

Acknowledgments

We thank Ronald Burgman for working out a first version of the specification
of the sequential and parallel mergesort algorithms.

[1] W. Visser, K. Havelund, G. P. Brat, S. Park, F. Lerda, Model checking
programs, Automated Software Engineering 10 (2) (2003) 203-232.

[2] M. Naik, A. Aiken, J. Whaley, Effective static race detection for Java, in:
Programming Languages Design and Implementation, ACM Press, 2006,
pp. 308-319.

[3] M. Naik, C. Park, K. Sen, D. Gay, Effective static deadlock detection, in:
ICSE, 2009, pp. 336 396.

[4] C. Flanagan, S. Qadeer, A type and effect system for atomicity, in: Pro-
gramming Languages Design and Implementation, Vol. 38 of ACM SIG-
PLAN Notices, ACM Press, 2003, pp. 338-349.

[5] M. Abadi, C. Flanagan, S. Freund, Types for safe locking: Static race
detection for Java, ACM Transactions on Programming Languages and
Systems 28 (2) (2006) 207-255.

65

[6]

18]

[19]

M. Huisman, Reasoning about Java programs in higher order logic using
PVS and Isabelle, Ph.D. thesis, Computing Science Institute, University of
Nijmegen (2001).

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata,
Extended static checking for Java, in: Programming Languages Design and
Implementation, Vol. 37, 2002, pp. 234-245.

URL citeseer.ist.psu.edu/flanagan02extended.html

B. Beckert, R. Hahnle, P. H. Schmitt (Eds.), Verification of Object-Oriented
Software: The KeY Approach, No. 4334 in Lecture Notes in Computer
Science, Springer-Verlag, 2007.

M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, W. Schulte, Ver-
ification of object-oriented programs with invariants, Journal of Object
Technology 3 (6) (2004) 27-56.

S. Owicki, D. Gries, An axiomatic proof technique for parallel programs,
Acta Informatica Journal 6 (1975) 319-340.

C. B. Jones, Tentative steps toward a development method for interfering
programs, ACM Transactions on Programming Languages and Systems
5 (4) (1983) 596-619.

C. A. R. Hoare, Towards a theory of parallel programming, in: Operating
Systems Techniques, Academic Press, New York, NY, USA, 1972, pp. 61—
71.

C. A. R. Hoare, Monitors: an operating system structuring concept, Com-
munications of the ACM 17 (10) (1974) 549-557.

G. Andrews, Concurrent Programming: Principles and Practice, Ben-
jamin/Cummings, 1991.

P. W. O’Hearn, Resources, concurrency and local reasoning, Theoretical
Computer Science 375 (1-3) (2007) 271-307.

S. Ishtiaq, P. O’'Hearn, BI as an assertion language for mutable data struc-
tures, in: Principles of Programming Languages, 2001, pp. 14-26.

J. C. Reynolds, Separation logic: A logic for shared mutable data struc-
tures, in: Logic in Computer Science, IEEE Computer Society, 2002, pp.
55-74.

S. Brookes, A semantics for concurrent separation logic., in: Conference
on Concurrency Theory, Vol. 3170 of Lecture Notes in Computer Science,
Springer-Verlag, 2004, pp. 16-34.

R. Bornat, P. W. O’Hearn, C. Calcagno, M. Parkinson, Permission ac-
counting in separation logic, in: J. Palsberg, M. Abadi (Eds.), Principles
of Programming Languages, ACM Press, 2005, pp. 259-270.

66

citeseer.ist.psu.edu/flanagan02extended.html

[20]

[25]

A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, M. Sagiv, Local reasoning
for storable locks and threads, in: Z. Shao (Ed.), Asian Programming Lan-
guages and Systems Symposium, Vol. 4807 of Lecture Notes in Computer
Science, Springer-Verlag, 2007, pp. 19-37.

M. Parkinson, Local reasoning for Java, Ph.D. thesis, University of Cam-
bridge (2005).

J. Boyland, Checking interference with fractional permissions, in:
R. Cousot (Ed.), Static Analysis Symposium, Vol. 2694 of Lecture Notes
in Computer Science, Springer-Verlag, 2003, pp. 55-72.

C. Haack, C. Hurlin, Resource usage protocols for iterators, Journal of
Object Technology 8 (4) (2009) 55-83.

D. G. Clarke, J. M. Potter, J. Noble, Ownership types for flexible alias pro-
tection, in: ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, Vol. 33:10 of ACM SIGPLAN Notices, ACM
Press, New York, 1998, pp. 48—64.

URL citeseer.ist.psu.edu/clarke98ownership.html

D. G. Clarke, S. Drossopoulou, Ownership, encapsulation and the disjoint-
ness of type and effect, in: ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, ACM Press, 2002, pp. 292—
310.

P. Miiller, Modular Specification and Verification of Object-Oriented Pro-
grams, Vol. 2262 of Lecture Notes in Computer Science, Springer-Verlag,
2002.

R. DeLine, M. Fahndrich, Enforcing high-level protocols in low-level soft-
ware, in: Programming Languages Design and Implementation, 2001, pp.
59-69.

C. Haack, C. Hurlin, Separation logic contracts for a Java-like language
with fork/join, in: J. Meseguer, G. Rosu (Eds.), Algebraic Methodology
and Software Technology, Vol. 5140 of Lecture Notes in Computer Science,
Springer-Verlag, 2008, pp. 199-215.

C. Haack, M. Huisman, C. Hurlin, Reasoning about Java’s reentrant locks,
in: G. Ramalingam (Ed.), Asian Programming Languages and Systems
Symposium, Vol. 5356 of Lecture Notes in Computer Science, Springer-
Verlag, 2008, pp. 171-187.

C. Hurlin, Specification and verification of multithreaded object-oriented
programs with separation logic, Ph.D. thesis, Université Nice Sophia An-
tipolis (2009).

67

citeseer.ist.psu.edu/clarke98ownership.html

[31]

K. Crary, D. Walker, G. Morrisett, Typed memory management in a cal-
culus of capabilities, in: Principles of Programming Languages, 1999, pp.
262-275.

F. Smith, D. Walker, G. Morrisett, Alias types, in: G. Smolka (Ed.), Euro-
pean Symposium on Programming, Vol. 1782 of Lecture Notes in Computer
Science, Springer-Verlag, 2000, pp. 366-381.

L. Jia, D. Walker, ILC: A foundation for automated reasoning about pointer
programs, in: European Symposium on Programming, 2006, pp. 131-145.

M. Parkinson, G. Bierman, Separation logic, abstraction and inheritance,
in: Principles of Programming Languages, ACM Press, 2008, pp. 75—86.

M. Parkinson, G. Bierman, Separation logic and abstraction, in: J. Pals-
berg, M. Abadi (Eds.), Principles of Programming Languages, ACM Press,
2005, pp. 247-258.

A. Tgarashi, B. Pierce, P. Wadler, Featherweight Java: a minimal core
calculus for Java and GJ, ACM Trans. Program. Lang. Syst. 23 (3) (2001)
396-450.

C. Haack, C. Hurlin, Separation logic contracts for a Java-like language
with fork/join, Tech. Rep. 6430, INRIA (Jan. 2008).

P. Wadler, A taste of linear logic., in: Mathematical Foundations of Com-
puter Science, 1993, pp. 185-210.

P. W. O’Hearn, D. J. Pym, The logic of bunched implications, Bulletin of
Symbolic Logic 5 (2) (1999) 215-244.

P. W. O’Hearn, J. Reynolds, H. Yang, Local reasoning about programs
that alter data structures, in: L. Fribourg (Ed.), Computer Science Logic,
Vol. 2142 of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp.
1-19, invited paper.

R. Bornat, C. Calcagno, H. Yang, Variables as resource in separation logic,
in: Mathematical Foundations of Programming Semantics, Vol. 155 of Elec-
tronic Notes in Theoretical Computer Science, Elsevier, 2005, pp. 247-276.

S. Microsystems, Java’s documentation: http://java.sun.com/.

J. Boyland, Semantics of fractional permissions with nesting, Tech. rep.,
University of Wisconsin at Milwaukee (Dec. 2007).

A. Hobor, A. Appel, F. Nardelli, Oracle semantics for concurrent separation
logic, in: S. Drossopoulou (Ed.), Programming Languages and Systems:
Proceedings of the 17th European Symposium on Programming, ESOP
2008, Vol. 4960 of Lecture Notes in Computer Science, Springer-Verlag,
2008, pp. 353-367.

68

http://java.sun.com/

[45]

[48]

[49]

W. Chin, C. David, H. Nguyen, S. Qin, Enhancing modular OO verification
with separation logic, in: G. C. Necula, P. Wadler (Eds.), Principles of
Programming Languages, ACM Press, 2008, pp. 87-99.

J. Berdine, C. Calcagno, P. W. O’Hearn, Smallfoot: Modular automatic
assertion checking with separation logic, in: F. S. de Boer, M. M. Bon-
sangue, S. Graf, W.-P. de Roever (Eds.), Formal Methods for Components
and Objects, Vol. 4111 of Lecture Notes in Computer Science, Springer-
Verlag, 2005, pp. 115-137.

V. Vafeiadis, M. J. Parkinson, A marriage of rely/guarantee and separation
logic, in: L. Caires, V. T. Vasconcelos (Eds.), Conference on Concurrency
Theory, Vol. 4703 of Lecture Notes in Computer Science, Springer-Verlag,
2007, pp. 256-271.

M. Dodds, X. Feng, M. Parkinson, V. Vafeiadis, Deny-guarantee reasoning,
in: European Symposium on Programming, Lecture Notes in Computer
Science, Springer-Verlag, 2009, pp. 363-377.

J. Wickerson, M. Dodds, M. J. Parkinson, Explicit stabilisation for modular
rely-guarantee reasoning, in: A. D. Gordon (Ed.), European Symposium on
Programming, Vol. 6012 of Lecture Notes in Computer Science, Springer-
Verlag, 2010, pp. 610-629.

B. Jacobs, J. Smans, F. Piessens, W. Schulte, A statically verifiable pro-
gramming model for concurrent object-oriented programs., in: Interna-
tional Conference on Formal Engineering Methods, 2006, pp. 420—439.

J. Smans, B. Jacobs, F. Piessens, W. Schulte, An automatic verifier for
Java-like programs based on dynamic frames, in: J. L. Fiadeiro, P. Inverardi
(Eds.), Fundamental Approaches to Software Engineering, Vol. 4961 of
Lecture Notes in Computer Science, Springer-Verlag, 2008, pp. 261-275.

J. Smans, B. Jacobs, F. Piessens, Implicit dynamic frames: Combining
dynamic frames and separation logic, in: S. Drossopoulou (Ed.), European
Conference on Object-Oriented Programming, Vol. 5653 of Lecture Notes
in Computer Science, Springer-Verlag, 2009, pp. 148-172.

D. DiStefano, M. Parkinson, jStar: Towards practical verification for Java,
in: ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, ACM Press, 2008, pp. 213-226.

K. R. M. Leino, P. Miiller, A basis for verifying multi-threaded programs,
in: G. Castagna (Ed.), European Symposium on Programming, Vol. 5502
of Lecture Notes in Computer Science, Springer-Verlag, 2009, pp. 378-393.

E. Abrahém, F. S. de Boer, W.-P. de Roever, M. Steffen, Tool-supported
proof system for multithreaded Java, in: F. S. de Boer, M. M. Bonsangue,
S. Graf, W.-P. de Roever (Eds.), Formal Methods for Components and

69

Objects, No. 2852 in Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 1-32.

[56] F. S. de Boer, A sound and complete shared-variable concurrency model
for multi-threaded Java programs, in: International Conference on Formal
Methods for Open Object-based Distributed Systems, 2007, pp. 252-268.

[57] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Miiller,
J. Kiniry, P. Chalin, JML Reference Manual, department of Computer
Science, lowa State University. Available from http://www. jmlspecs.org
(Feb. 2007).

[68] T. Tuerk, A formalisation of smallfoot in HOL, in: S. Berghofer, T. Nipkow,
C. Urban, M. Wenzel (Eds.), Theorem Proving in Higher-Order Logics,
Vol. 5674 of Lecture Notes in Computer Science, Springer-Verlag, 2009,
pp. 469-484.

[59] J. Smans, B. Jacobs, F. Piessens, Heap-dependent expressions in separation

logic, submitted.

Appendix A. Auxiliary Definitions

Appendix A.1l. Definitions of lookup functions
Field Lookup, fld(C<7>) =T f:
I

(Fields Base) (Fields Ind) fld(D<7'[x/a)>) =T" [’
class C<T a> ext D<a'> impl U {T f pd* ax* md*}
fld(Object) = 0 fid(C<n>) = (T f)[z/a), T' f'

Axiom Lookup, axiom(t<7>) = F:
1 1

axiom(az*) = true if a2 = ()
F *axiom(az*) if az* = (axiom F, az*)
. A true if T = () or T = (Object)
axiom(T’) = { axiom(U) * axiom(V) if T = (U, V)
(Ax Class)

class O<T a> ext U impl V {fd* pd* az* md*}
axiom(C<7>) = axiom(az*[7/a]) * axiom((U, V)[7/a])

(Ax Interface) B B
interface I<T a>ext U {pt* az* mt*}

axiom(I<7>) = axiom(az*[7/a]) * axiom(U[7/a])

Remarks on method lookup (defined below):

e In mbody and mtype, we replace the implicit self-parameter this by an
explicit method parameter (separated from the other method parameters
by a semicolon). This is technically convenient for the theory.

70

http://www.jmlspecs.org

e In mtype, we replace the implicit result-parameter result by an explicit
existential quantifier over the postcondition. This is technically convenient
for the theory.

Method Lookup, mtype(m,t<7>) = mt and mbody(m,C<7>) = (7).c:

(Mlkup Object) - -
class Object {... <T"a>spec U m(V){c} ...}
mlkup(m, Object) = <T a> spec U m(V 1) {c}

(Mlkup Defn) - - -
class C<T" &> ext U impl V' {... <T a>spec U m(V){c} ...}
mlkup(m, C<7>) = (<T &> spec U m(V) {c})[7/&']

(Mlkup Inherit) — m ¢ dom(md*)
class C<T a> ext D<a’> impl U {fd* pd* md*} mlkup(m, D<7'[7/a]>) = md’
mlkup(m, C<7>) = md’

If mlkup(m, C<7>) = <T @>requires F; ensures G; U m(V 2){c}, then:
mbody(m, C<7>) = (this;7).c
mtype(m, C<7>) 2 Ja> requires F; ensures (ex U result) (G); U m(C<w> this; V 7)

(Mtype Interface) - - - -
interface I<T a>ext U{... <T'a'>requires F;ensures G; U' m(V'7); ...}

mtype(m, I<7>) = (<T' &@'>requires F; ensures (ex U’ result) (G); U’ m(I<7>this; V'2))[7/a]

(Mtype Interface Inherit) _ interface I<T a>ext U, V,U' {pt* ax* mt*}
m & dom(mt*) (YU € U,U’)(mtype(m,U[7/a]) = undef) mtype(m, V[7/a]) = mt
mtype(m, I<7>) = mt

(Mtype Interface Inherit Object) interface I<T a>ext U {pt* ac* mt*}
m & dom(mt*) (YU € U)(mtype(m,U[7/a]) = undef) mtype(m,Object) = mi

mtype(m, I<7>) = mt
L]

Remarks on predicate lookup:

e The “ext Object” in plkup(init, Object) and [(Plkup Object)|is included
to match the format of the relation. There is nothing more to this.
e Each class implicitly defines the init-predicate, which gives write permis-

sion to all fields of the class frame. In df(T) is the default
value of type T (df is formally defined in Section 2Z2)).

Predicate Lookup, ptype(P, t<7>) = pt and pbody(w.P<7'> C<7"'>) = F ext T

I 1
plkup(init,Object) = pred init =true ext Object
(Plkup Object) -
class Object {... pred P<T'a>=F ...}
plkup(P, Object) = pred P<T @>=F ext Object

(Plkup Defn) - -
class C<T" @'>ext U impl V {... pred P<T'a>=F; ...}

plkup(P, C<7>) = (pred P<T a>=F ext Object)[7/&’]

71

(Plkup init) -
class C<T" &> ext U impl V {fd* pd* md*} F = ®Tf€fd*PointsTo(this.f, 1,df(T))

plkup(init, C<7>) = (pred init=F ext U)[7/a’]
(Plkup Inherit) P ¢ dom(pd*)
class C<T’" &> ext U impl V {fd* pd* md*} plkup(P,U) = pred P<T a>=F ext U’
plkup(P, C<7>) = (pred P<T &> =true ext U)[7/d']

If plkup(P, C<7>) = pred P<T a>=Fext V, then:
pbody (7. P<7t’'>, C<7>) (F ext V)[r/this, #’/a]
ptype(P, O<7>) pred P<T a>

1> 1>

(Ptype Interface)
interface I<T a>ext U{... pred P<T'a&’'>; ...}

ptype(P, I<7>) = (pred P<T'a'>)[7/a]

(Ptype Interface Inherit) — interface I<T a>ext U, VU’ {pt* az* mt*}
P ¢ dom(S) (YU € U,U")(ptype(P,U[x/a)) = undef) ptype(P, V[7/a]) = pt
ptype(P, I<7>) = pt

(Ptype Interface Inherit Object) interface I<T a>ext U {pt* az* mt*}
P ¢ dom(pt*) (YU € U)(ptype(P,U[w/a]) = undef) ptype(P,0bject) = pt
ptype(P, I<7>) = pt

The partial function ptype(P,t<7>) is extended to predicate selectors PQC' as
follows: ()
_ a ptype(P, t<w>) ift=C
ptype(PeC, t<7>) = { undef otherwise
Appendix A.2. Semantics of operators

To define the semantics of the command assigning the result of an operation
(case £=op(v) of our command language), we define the semantics of operators.
Let arity be a function that assigns to each operator its arity. We define:

arity(==) = 2 arity(&) = 2 arity(1) =2
arity(1) =1 arity(C classof) =1 arity(instanceof T) = 1
Let type be a function that maps each operator op to a partial function
type(op) of type {int,bool,0bject, perm}*(°P) — fint bool, perm}. We de-
fine:
type(==) = { ((T,T),bool) | T € {int,bool,Object, perm, lockset} }
type(!) = { (bool,bool) } type(&) = type(l) = { ((bool,bool),bool) }
type(C classof) = { (Object,bool) }
type(instanceof T') = { (Object,bool) }

We assume that each operator op is interpreted by a function of the following
type:
[opl € Heaap— |J [7]—[U]
(T,U) € type(op)

72

For the logical operators !, | and &, we assume the usual interpretations.
Operator == is interpreted as the identity relation. The semantics of isclassof
and instanceof is as follows:

true if 0 # null and h(o); = C<@> for some 7
a false if 0 # null, h(o), = D<w>, and D # C
N false if o =null

undef o ¢ dom(h)

[C classof]" (o)

true if 0 #null and h(o0), <:
a false if 0 #null and h(o), #:
a false if o=null

undef if o & dom(h)

T
. . T
o instanceof T

Formally, the semantics of operators is expressed as follows:

Semantics of Operators: [op(?)] : Heap — Stack — ClVal:

(Sem Op)
[l =vi - [wa]? =vn [op]"(v1,...,00) =0

Hop(w17 ce 7w7l)]]}SL =v
L]

Appendix A.3. Typing rules

Rules for Section [Because the semantics of formulas depends on a typing
judgment, we need to define typing rules before giving the formulas’ semantics.
A type environment is a partial function of type Objld UVar — Type. We use
the meta-variable I' to range over type environments. I'y, denotes the restriction
of I' to Objld:
vy = {(0,7)€T | o€ Objld}

A type environment is good when objects within its domain are well-typed:

Good Environments, I' F ¢:
I 1

(Env)
(Vz € dom(I))(I'FT'(z) : 0) (Yo € dom(I"))(I'(0) <: Object and I'np - T'(0) : ©)
o

We define a sanity condition on types: primitive types are always sane, while
user-defined types must be such that (1) type identifiers are in the class table
and (2) type parameters are well-typed. Below, the existential quantification

in [(Ty Ref)|'s second premise enforces typing derivations to be finite.
Good Types, I' T : ¢:
I

(Ty Primitive) (Ty Ref) t<Ta> € ct
T € {void, int, bool, perm} A c) (' Fo T'F7:T[7/a))
I'ET:o I'Etm>:0

73

We define a heap extension order on well-formed type environments:
I" O iff TMFo, ko, IV DT and FiVar = T'var
As models of formulas are tuples that contain a heap and a stack (see Sec-
tion BT2), we define a well-typedness judgment for objects, heaps, and stacks:
Well-typed Objects, I' - 0bj : o:
1

(Obj) dom(os) C dom(fld(C<7>))
Pk C<m>:0 (Vfedom(os))(T f €fld(C<a>) = 'k os(f):T)
' (C<7t>,08) 1 ¢

dom(fld(C<m>)). Thus, we allow partial objects. This is needed, because * joins
heaps on a per-field basis. This will be needed for fine-grained concurrency.

Below, we use function fst : Heap — (Objld — Type) to extract the function
that maps object identifiers to their dynamic types from a heap:

Note that we require dom(os) C dom(fld(C<7>)), not dom(os) =

h(o) = (T,_) = fst(h)(0) = T

We now define well-typed heaps and stacks:
Well-typed Heaps and Stacks, 'Fh:cand I'Fs:9¢:
I

(Heap)
I'to TI'Cfst(h) (Yoe&dom(h))(I'F k(o) : o)
I'kFh:o

(Stack)
I'to (Vo edom(s))(I'F s(z): I'(z))
I'ks:o

Because formulas include expressions, we define a well-typedness judgment
for values, specification values, and expressions (recall that expressions include
specification values of type bool).

Well-typed Values and Specification Values, 'v:T and I'+7:T:
I

(Val Var) (Val Oid) (Val Sub) (Val Null)
ko T(z)=T I'ko I'(o)=T 'krn:T T<:U D t<m> o
I'kFa:T I'ko:T I'tn:U I' F null : t<7>
(Val Int) (Val Bool) (Val Full) (Val Split)
I'Ho I'o I'o I'F7: perm
T'Fn:int I'b:bool I'1:perm 't split(w) : perm

‘Well-typed Expressions, I'e: T

(Exp Sub) (Exp Var) (Exp Op)
I'kte:T T<:U 'ko TW)=T I'e:U type(op)(U)=T
'ke:U rHe:T7 I'top(e): T

74

We now have all the machinery to define well-typed formulas. Below, the

partial function ptype(P, C<7>) (formally defined in [Appendix A]) looks up the
type of predicate P in the least supertype of C<7> that defines or extends P.

Well-typed Formulas, '+ F': o:
1

(Form Bool) (Form Points To)

I' e :bool 'te:U Thra:perm TfefldU) Tke:T
F'ke:o I' - PointsTo(e.f,m,e') : o

(Form Log Op) (Form Pred) B B
I'FF :o F'kn:U ptype(k,U) =pred P<Ta> T+#":T

I'FFlop F':0o I mr<’>:0

(Form Quant)
I'ET:o INa:THF:¢

TH@Ta)(F):o

Rules for Section[g To cover Section Bs Join formula, we extend the judgment
for well-typed formulas as follows:

Well-typed Formulas, '+ F': o:
1

(Form Join)
I'e:Thread 'l 7 :perm

' Join(e,m) : ¢

Rules for Section[d To accommodate Section s lockset’s type, we update
the previous typing rule for good types:

Good Types, I' =T : ¢:
1
(Ty Primitive)
T € {void, int,bool, perm, lockset }
I'ET:o

The following typing rule extends typing to values representing locksets:
u € Bag(Objld)
T't p: lockset

To cover formulas about locksets and the state of locks, we extend the judg-
ment for well-typed formulas:

Well-typed Formulas, I' - F': ¢:
1

(Form Lockset) (Form Contains) (Form Fresh)
I' 7 : lockset I' 7, e:lockset,Object I'Fe:0bject
I' - Lockset (7) : ¢ I' 7 contains e : ¢ I'kefresh:o

(Form Initialized)
I'Fe:0bject

I'F e.initialized : ¢
L]

0]

	Introduction
	Motivation and Context
	Separation Logic Informally
	Formulas as Access Tickets
	Local Reasoning
	Abstraction

	Contributions
	Earlier Papers and Overview

	The Java-like model language
	Syntax
	Semantics

	Separation Logic for a Java-like Language
	Separation Logic
	Syntax
	Resources
	Predicate Environments
	Semantics
	Proof Theory

	Hoare Triples
	Verified Interfaces and Classes
	Verified Programs
	Example: Sequential mergesort

	Separation Logic for dynamic threads
	A Java-like Language with fork/join
	Separation Logic for fork/join
	The Join predicate
	Groups

	Contracts for fork and join
	Verified Programs
	Example of reasoning: parallel mergesort

	Separation Logic for Reentrant Locks
	Background on Separation Logic and Locks
	A Java-like Language with Reentrant Locks
	Separation Logic for Reentrant Locks
	Hoare Triples
	Verified Programs
	Examples of Reasoning with Reentrant Locks
	A Typical Use of Reentrant Locks: class Set
	Lock Coupling

	Related Work
	Conclusion
	Auxiliary Definitions
	Definitions of lookup functions
	Semantics of operators
	Typing rules

