
Master’s Thesis
in Computer Science

Performance Evaluation in an
Early Development Phase

I.J. ter Horst
February 2007

Committee

Dr. D.N. Jansen University of Twente
Drs. A.G. Kleppe University of Twente
Dr. M.I.A. Stoelinga University of Twente
Ir. M.H.J. Glandrup Thales Nederland
Dr. Ir. R.C. Scholte Thales Nederland

Performance Evaluation in an Early
Development Phase

I.J. ter Horst

February 2007

— unclassified —

Thales Nederland B.V.
Haaksbergerstraat 49
7554 PA Hengelo
The Netherlands

University of Twente
Drienerlolaan 5
7522 NB Enschede
The Netherlands

This thesis was typeset using LATEX 2ε.

Abstract

In the area of performance evaluation, a lot of research has been done on real-time con-
straints such as communication latencies and throughput requirements. However, almost
no research has been conducted on performance evaluation in a very early development
phase. The study presented in this thesis provides a method that can be applied to do per-
formance evaluation in an early development phase, even when the structure of software
and hardware are just being defined.

Performance evaluation of combat management systems at Thales Naval Nederland is
currently performed too late in the development process. Failure to meet performance goals
can be costly and should be avoided, so early discovery of problems is important. Instead
of the calculations in large Excel sheets which were used, this thesis presents a UML model
with which the structure and performance information of a system can clearly be defined.

To support an engineer in defining the structure of software and hardware, the well-
known modeling language UML is used. To specify the systems developed by Thales, we
have created number of stereotypes and grouped them in the new UML profile TProfile. The
stereotypes define default elements an engineer can use to define the structure of software
and hardware in a hierarchical way. Allocation relationships link software to hardware and
define which parts of the software run on which hardware parts.

Performance information can be added to all elements of the structural model of a system
in terms of budgets. A budget defines an amount of resources provided by the hardware
or required by the software system. We have defined a small expression-based language to
express budget values, which are either fixed, or can depend on other budgets. We thus
provide the possibility to express dependencies between different parts of the system.

Constraints are defined on allocation relationships, where the software meets the hard-
ware. A constraint relates the budget of a software element to the budget of a hardware
element and defines a restriction on that relationship. This allows engineers to express
whether the software system fits on the hardware system.

As the UML models of systems tend to grow large and a lot of budgets and constraints are
added, evaluation of the constraints becomes a hard task. Automatic constraint verification
is therefore provided by our System Verifier Tool, which integrates with Rational Software
Architect (RSA), the tool used within Thales to create UML models. We use RSA’s UML
modeling functionality of RSA and introduce the TProfile with our System Verifier Tool,
which recognizes the elements relevant to Thales by means of the stereotypes. Because of
the integration of the System Verifier Tool in RSA, verification of all constraints created for
a system can be done at the push of a button. Verification results are presented clearly to
the engineer.

The System Verifier Tool allows engineers to easily experiment with the structure of hard-
ware and software, budget values and constraints and thus supports system development
in an early phase.

i

“Computer Science is no more about computers
than astronomy is about telescopes.”

— E. W. Dijkstra

Contents

1 Introduction 1
1.1 Research Background . 1

1.1.1 System Definition . 1
1.1.2 Non-functional Requirements . 2
1.1.3 Performance Budgets . 3
1.1.4 Constraints . 4
1.1.5 Validation and Verification . 4

1.2 Problem Statement . 4
1.3 Approach . 5
1.4 Structure of this thesis . 5

2 Systems Modeling 7
2.1 Systems . 7
2.2 Models . 7
2.3 Metamodels . 8
2.4 Architectural Patterns . 10

2.4.1 Layers . 10
2.4.2 Composite . 11

3 UML, SysML and OCL 13
3.1 UML Extension Mechanisms . 13

3.1.1 Lightweight Extensions . 13
3.1.2 Heavyweight Extensions . 14

3.2 Systems Modeling Language (SysML) . 15
3.2.1 Diagram Elements . 16
3.2.2 Diagrams . 19
3.2.3 Allocation . 20

3.3 Object Constraint Language (OCL) . 21
3.4 Evaluation . 22

4 Example System 23
4.1 Structure . 23

4.1.1 Hardware . 23
4.1.2 Software . 23

4.2 Budgets . 24
4.3 Allocation . 25

5 Domain Viewpoint 27
5.1 Introduction . 27
5.2 Hardware . 27

5.2.1 Structural Decomposition . 28
5.2.2 Domain Model . 28

5.3 Software . 29
5.3.1 Structural Decomposition . 29
5.3.2 Domain Model . 29

v

5.4 Budgets . 30
5.4.1 Types . 30
5.4.2 Values . 32

5.5 Allocation . 32
5.5.1 Simple Allocation . 32
5.5.2 Complex Allocation . 33

5.6 Constraints . 35
5.7 Discussion . 36

6 System Model Viewpoint 37
6.1 Introduction . 37
6.2 TProfile Definition . 38
6.3 Hardware . 39

6.3.1 Mapping Domain Concepts into UML Equivalents 39
6.3.2 Example CMS Hardware Structure Model 40

6.4 Software . 40
6.4.1 Mapping Domain Concepts into UML Equivalents 40
6.4.2 Example CMS Software Structure Model 42

6.5 Budgets . 43
6.5.1 Mapping Domain Concepts into UML Equivalents 43
6.5.2 References . 44
6.5.3 Values . 45
6.5.4 Extra Budgets . 48
6.5.5 Example CMS Budgets . 48

6.6 Allocation . 48
6.6.1 Mapping domain concepts into UML equivalents 48
6.6.2 Example CMS Allocations . 49

6.7 Delegates . 49
6.7.1 Example CMS Delegates . 50

6.8 Packages . 50
6.9 Constraints . 51

6.9.1 Mapping domain concepts into UML equivalents 51
6.9.2 TProfile Extension . 52
6.9.3 Constraint Syntax . 52

6.10 Discussion . 52
6.10.1 Layers . 52
6.10.2 Delegates . 53
6.10.3 Objects . 53
6.10.4 Constraints . 54

7 Tool Support 55
7.1 Rational Software Architect . 55

7.1.1 UML Modeling . 55
7.2 Tool Purpose . 55
7.3 Requirements . 56
7.4 Use Cases . 57
7.5 Implementation . 57

7.5.1 ModelStructure plugin . 58
7.5.2 SystemVerifier plugin . 60

8 Conclusion 63
8.1 Evaluation . 63
8.2 Discussion . 64
8.3 Related Work . 65
8.4 Future Work . 65

Bibliography 69

vi

List of Figures 72

List of Tables 73

A Expression Syntax 75
A.1 Lexer Grammar . 75
A.2 Parser Grammar . 76
A.3 Interpreter Grammar . 78

B System Verifier User Guide 79
B.1 Structure . 79

B.1.1 Model Elements . 80
B.1.2 Delegates . 82
B.1.3 Packages . 83
B.1.4 UML Views . 85

B.2 Budgets . 86
B.2.1 Tags . 86
B.2.2 Attributes . 89
B.2.3 System Verifier View . 89
B.2.4 Dependencies . 91

B.3 Allocations . 92
B.3.1 Constraints . 93

B.4 Verification . 94

vii

Chapter 1

Introduction

This chapter provides information about the context of the research presented in this thesis
and defines the main research problem. Our approach is briefly discussed and an overview
of this thesis is given.

1.1 Research Background
Software always depends on some other system for its functionality. Such a system can
either be a hardware system or it can be another software system. Typically a system can
be represented by a number of layers, which all provide functionality at different levels
of abstraction. Any layer provides functionality to higher layers and conversely, a layer
cannot operate without the functionality provided by the layers below. The bottom layer in
layered architectures usually comprises hardware, while the top layer often consists of one
or more software applications. To have an application operate properly on the hardware,
intermediate layers such as an operating system are required.

As software is dependent on the hardware resources, it is preferable to have a way
to verify whether the quality provided by the resources is appropriate for the software to
operate properly. Testing is such a method, but can only be applied once the system has
already been built. Unsatisfactory test results require code modifications or, in worst case,
changes to the system architecture. Fixing problems afterward is costly and should be
avoided [35].

1.1.1 System Definition
The Thales Naval Nederland (TNNL) Systems Definition business unit develops and designs
Combat Management Systems (CMS). A CMS gets input from a number of sensors and
provides output to actuators, as illustrated in Figure 1.1.

The systems are designed by dividing them into a number of functional components.
For each component, functional flows are defined, describing the functionality offered by
the component as a sequence of (high level) actions. From the functional flow, a decompo-
sition into Computer Software Configuration Items (CSCIs) is derived, which all have their
own responsibilities within the component. For the CSCIs in turn this process is repeated,
producing even smaller, more specialized parts. Eventually the decomposition process re-
sults in parts that are small enough to be directly mapped onto software executables. The
decomposition approach is typically a kind of divide and conquer approach, in which a
complex system is split up into a number of less complex components [18].

The design of a system starts with the definition of functional requirements. These
requirements have to describe what the system should do, that is, what its functionality is.
In a layered architecture, the functionality a layer can expect from a lower layer is described

2 Research Background

CMS
ActuatorSensor

Domain

System

Figure 1.1 — The Combat Management System gets input
from sensors and provides output to actuators.

by the functional specification of the lower layer. Dependencies are only defined between a
layer and its lower layers, because usually a layer only depends on the layer which is right
below.

1.1.2 Non-functional Requirements
Besides the functional requirements, non-functional requirements can be defined for a sys-
tem. Instead of stating what the system should do, they impose constraints on the freedom
of software engineers as they design the system. Non-functional requirements limit the use
of resources and set bounds on aspects of the software’s quality, which is why they are
sometimes known as constraints or quality requirements [1].

Non-functional requirements for components have a direct impact on their decompo-
sition, because together the sub-components still need to satisfy those requirements. By
setting non-functional requirements for a component, assumptions on the quality of service
(QoS) provided by the component can be made by other components that depend on it. An
example QoS property is the speed at which a component can process a certain amount of
data. Quality requirements for components impose demands on the resources that are re-
quired by those components. Only if the resources are able to provide satisfactory QoS, the
non-functional requirements for the components can be met. Reversely, whether or not the
QoS can be considered good depends on the non-functional requirements of the component
using the resource.

Standardization

For standardization of these constraints, the International Organization for Standardiza-
tion (ISO) has defined the most common software quality characteristics in the ISO 9126
standard [16]. These characteristics and corresponding sub-characteristics are:

• reliability: maturity, fault tolerance, recoverability, availability, degradability

• usability: understandability, learnability, operability, explicitness, customisability,
attractivity, clarity, helpfulness, user-friendliness

• efficiency: time behavior, resource behavior

• maintainability: analysability, changeability, stability, testability, manageability, re-
usability

• portability: adaptability, installability, conformance, replaceability

Efficiency is the important characteristic for our research, as it is the ISO term for
performance related system characteristics. Both time behavior (attributes of software that
bear on response and processing times and on throughput rates in performing its function)
and resource behavior (attributes of software that bear on the amount of resource used and
the duration of such use in performing its function) are important issues in the context of

Introduction 3

the research we present here [16]. However, we only focused on resource behavior. System
behavior with respect to timing will be investigated in a subsequent study.

Verification

Not only the definition of non-functional requirements is important, but it is also vital
that these requirements can be verified [18]. Usually, the verification is performed once
the system, or part of it, has already been constructed. Failures which occur because of
flaws in the high level design require greater changes to the product in order to fix the
faults. We have therefore developed a method to eliminate such large design faults early
in the software development process. Testing will still remain necessary, but the impact of
discovered failures will not be as large as without the application of our method, resulting
in a reduction of both cost and time.

Performance Engineering

The non-functional characteristics considered in our research are mainly concerned with
performance. With performance of a component we denote the ‘degree to which it accom-
plishes its designated functions within given constraints’ [36]. Even though performance
is critical for a lot of software systems nowadays, many fail to meet the performance ob-
jectives once they are constructed. It is therefore preferable to have some way to evaluate
during, or at the end of an early development phase, whether the system still conforms to
the conditions imposed at the start of that phase. Our method therefore ensures that the
performance (non-functional) requirements can be verified, especially during early design
phases.

Performance engineering is a systematic approach to developing systems that meet per-
formance objectives. It begins early in the development lifecycle of a system, when changes
to the structure of the system have the greatest impact. As Smith et al. aptly state: ‘Per-
formance cannot be retrofitted; it must be designed into software from the beginning. The
“make it run, make it run right, make it run fast” approach is dangerous.’ [35]

To support performance engineering of new systems, a three-step method is being devel-
oped at TNNL. The three steps each support verification of the system under development
at different levels of abstraction. The steps are:

1. Components of the system are identified and organized. Budgets, in terms of resource
utilization, are set for components.

2. High-level functional flows are identified in the system. Activity diagrams of flows are
annotated with performance budgets.

3. The third step is a refinement of step 2. The annotated activity diagrams are further
refined.

At every step a CMS is specified at a different level of abstraction. Performance character-
istics are specified and verified at all three levels as well.

For the second step, a tool called DESIDE [14] has already been developed. The tool
takes activity diagrams, annotated with resource demands and timing information, as input
and can run a simulation to determine latencies and resource utilizations.

Before activity diagrams of high-level functional flows can be created, the high-level
components need to be identified and organized. This is done in the first step and should
give the engineer an initial idea about the resource utilization when a software system is
deployed by a hardware system. Our research deals with the first step.

1.1.3 Performance Budgets
To evaluate whether the design of a system conforms to the performance requirements,
we first required a way to express those performance requirements. A component imposes

4 Problem Statement

some load on the resources it uses and these resources have a limited capacity. To quantify
resource demands of software and resource supplies of the hardware, these are referred to
as performance budgets or simply budgets. Budgets of hardware and software are distin-
guished in the way that software requires resources and hardware provides resources. The
corresponding budgets are called required budget and provided budget respectively.

1.1.4 Constraints
It is only possible to verify the conformance of a system to the specified performance re-
quirements, when software can be related to hardware, or, required budgets can be related
to provided budgets. To express these relations we provide the possibility to express con-
straints on the budgets.

Intuitively, the most basic constraint for any software – hardware relationship is that
the required budget has to be less than the provided budget, because the software just
cannot work without the required resources. More complex constraints, can however be
expressed using our method as well. An example is the expression of a maximum load on
the hardware. For instance as a percentage of the provided budget.

1.1.5 Validation and Verification
Model validation and verification are activities that proceed in parallel with the construction
and evaluation of models [36]. Model verification is aimed at determining whether the model
predictions are an accurate reflection of the software’s performance. Model validation is
concerned with determining whether the model accurately reflects the system it is supposed
to describe [35].

Boehm has defined validation and verification in yet another way [2]:

Verification Are we building the model right?

Validation Are we building the right model?

The models created of a system naturally have to be validated, because they have to
accurately reflect the system. Validation is a task of the engineer and is not supported by
the results of our research. After successful validation, resulting in the conclusion that the
model does properly reflect the system, the model has to be verified. In the context of this
research, verification provides an answer to the question: ‘Are the resource requirements
that we have estimated reasonable?’. To support this decision, engineers can use the model
and tool presented in this thesis.

1.2 Problem Statement
The main objective of the research presented in this thesis was to develop a method for
specifying and verifying performance budgets in an early design phase for software intensive
systems. Performance estimations were not made until the integration phase, which is too
late.

Our research aims at moving performance estimations forward in the development pro-
cess, by providing a tool for verifying performance budgets in an early phase. The method
needs to be generic, such that a number of different systems can be specified with it. On
the other hand, the method should not be too complex. According to the Power Law of Data
Standards, the more systems that adopt a common standard, the simpler it must be [5].

The main problem has been divided into the following three sub-problems:

1. Definition of a method for the specification of performance budgets.

2. Creation of a system independent framework for the specification of constraints on
performance budgets.

Introduction 5

3. Development of an engine which calculates the resource utilization of a system.

As systems are specified using the Unified Modeling Language (UML) [25, 28], it is prefer-
able that performance budgets can be specified in the UML as well. This ensures a good
integration of system structure modeling and inclusion of performance properties. In the
future, UML may be replaced by the Systems Modeling Language (SysML) [27], which has
been developed for the modeling of complete systems rather than pure software systems.
We did therefore take SysML into close consideration as well.

The use of UML for system definition and budget specification allows for the use of the
Object Constraint Language (OCL) [23] to restrict the models. OCL is the obvious means
of restricting UML models and did therefore seem to be an interesting candidate for the
specification of constraints on budgets.

Verification of constraints results in an indication of resource usage by a system. The
tool used within Thales for systems modeling is Rational Software Architect (RSA) [15],
which is based on Eclipse [7]. It is preferred that specification of budgets and constraints,
as well as verification of constraints are well integrated in RSA. As Eclipse, and thus RSA,
can easily be extended by means of plug-ins, they are the preferred way of integrating the
performance modeling functionality.

Whereas other studies on performance engineering [34, 35, 36] focus on the dynamic
behavior of software systems, very little research has been conducted on static performance
engineering in earlier phases of the development lifecycle.

The added value of this research is that it provides a way to statically verify models of
systems with respect to resource demands in an early phase. Also, large and complex Excel
sheets are no longer required to do the early performance calculations, because that is all
covered by the study presented in this thesis.

1.3 Approach
Understanding the structure of the systems developed at Thales was not a very easy task.
Available documentation consisted of an Excel sheet, which contains budget information
for an example system. Consultation of ir. M.H.J. Glandrup and dr. ir. R.C. Scholte was
required to clearly understand the structure of systems and the values and dependencies
of budgets. No UML models of the systems were available to support this process of un-
derstanding. It is mainly from the Excel containing an example system sheet where the
domain model of Chapter 6 has been derived. Initially, it could only be used to describe the
example system, but now the model can be used to describe a wide range of systems.

For the implementation of the domain model, SysML did seem a good candidate, because
it supports not only software, but hardware as well. A lack of tool support for SysML by
RSA, compelled us to use the UML instead. The same problem existed for OCL, which did
seem a good candidate to use for the expression of constraints. However, because of a lack
of support for OCL by RSA we implemented our own, expression-based language to replace
OCL.

1.4 Structure of this thesis
Chapter 2 introduces the basic concepts of modeling. Models and metamodels are described
and some interesting architectural patterns are introduced.

Models of software are generally defined using the Unified Modeling Language (UML),
which is described in Chapter 3. SysML, a new modeling language is described as well and
a description is given about the Object Constraint Language in that chapter.

To illustrate various parts of this thesis, an example system is introduced in Chapter 4.
Chapter 5 corresponds to the first and second of the three requirements presented in the

problem statement. It presents a model that captures the structural features of a system
and provides the possibility to add budget information and constraints on the budgets.

6 Structure of this thesis

The concrete implementation of the model in UML is presented in Chapter 6. This
chapter corresponds to the third requirement of the problem statement.

A tool has been built which takes UML models with budget information and constraints
as input and evaluates the constraints. A description of this tool is provided in Chapter 7.

Appendix A contains a precise description of the syntax of budget values and con-
straints. Finally, Appendix B can be used as a guideline to using the developed System
Verifier Tool.

Chapter 2

Systems Modeling

This chapter provides an introduction to the concept of systems modeling as used in the
context of this study. The terms system, model and metamodel are defined and explained.

2.1 Systems
In the field of computer science, people speak of systems in a number of contexts. Some-
times they refer to the hardware, sometimes to the software, to combinations of both and
even to people. The International Council on Systems Engineering (INCOSE) [13] defines a
system as “a combination of interacting elements organized to achieve one or more stated
purposes”. Kleppe et al. [17] define a system as “something that exists in reality”. Both
definitions can be applied to a variety of domains, for example to business process model-
ing (in case of which the business itself is the system). When talking about a system in the
context of this research, we mainly refer to hardware and software. We therefore apply the
following, more specific definition of a system, which is derived from the INCOSE definition:

Definition 2.1 A system is the collection of all hardware and software parts, organized to
achieve one or more stated purposes.

Hardware includes anything from specific components such as a single processor, to com-
plete computer systems and federations of computer systems. Software includes all exe-
cutable code which is or can be deployed on the hardware. When referring specifically to
hardware or software, the terms hardware system and software system are used.

2.2 Models
Before a system is developed, it is first designed using models. In general, a model is
an abstraction of something that exists in reality. Details are stripped away and only the
elements that are relevant from a particular perspective remain [10].

A model can thus be seen as a simplification of reality, as it factors out any details that
are irrelevant to the concepts which are presented in that model. In this sense, the model
differs from the thing it models, because it contains less information. Furthermore, a model
can be used as a blueprint to create something that does exist in reality, that is, a system
[17].

From the very large number of diverse definitions of a model, we employ a definition
which is based on the definition of a model as provided in [21]:

Definition 2.2 A model is the formal specification of the function and structure of a system.

8 Metamodels

This definition can be extended by taking the definition of a model as provided by the
metamodeling community into account: “An attempt at describing the world around us
for a particular purpose” [33]. The word purpose is especially important here, as it would
be pointless to include properties of the real world in the model that are not relevant to
the intended goal of the model. For instance, the inclusion of climate information in the
model of a software system defeats the object. This so-called abstraction is one of four
requirements a good model should fulfill [18].

Requirement 1 A model should lead software engineers to gain insights about the system;
they should be able to analyze the model to discover problems and other properties of it.

In the context of this research, this requirement is the most important one for models. The
aim of this research is to aid engineers in the design of a system and discover properties with
respect to resource utilization. Besides having engineers analyze the model themselves,
automated analysis of the model can provide even more insights to the engineers. The use of
UML or SysML as a specification language for the model provides for all these requirements.

More about UML and SysML can be found in Chapter 3.

Requirement 2 The model should provide abstraction, such that not all details are always
visible at once.

UML and SysML allow the engineer to show as much detail as required. SysML even has
a notion of views and supports the creation of models from different views in this way.
Stakeholders involved in the design of a system focus on different concerns within that sys-
tem. Hence different abstractions of a system are required in a single project. A view is an
abstraction technique, which uses a selected set of architectural concepts and structuring
rules, in order to focus on particular concerns [21].

Abstraction ensures that only the required details are visible to the engineer. Other,
distracting details are kept out of the model, thus providing the engineer with a clearer
picture of the system with respect to the concerns being treated.

Requirement 3 A model should be, as much as possible, understandable by all stakehold-
ers such as clients and users, so they can participate in the development process.

The third requirement has to be mainly fulfilled by the person who designs the model. He
has to ensure that it remains clear enough for other stakeholders to understand. Clarity
can be accomplished by defining multiple views on the model (see Requirement 2). The use
of a well-known modeling language such as UML does also contribute to the understanding
of the model, as many people are already familiar with its notation.

Requirement 4 A model should use a standard notation, so that it is interpreted in the same
way by everybody who looks at it.

According to Kleppe et al. [17], a model should be written in a well-defined language. The
Unified Modeling Language (UML) [25, 28] and the Systems Modeling Language (SysML) [27]
are both notations that have been standardized by the Object Management Group (OMG)
[19] and are well-defined, which means they are suitable for automated interpretation by a
computer. Using either of them fulfills this requirement.

2.3 Metamodels
Metamodels are closely related to models. Whereas models are abstractions of reality and
aim at describing real-world phenomena, metamodels are abstractions of models and de-
fine constructs and rules needed to create those models. A metamodel can therefore be
considered a language for the construction of models.

Systems Modeling 9

M2: Metamodel

M3: Meta-metamodel

M1: Model

M0: System

MOF Class

 name:String

UML Class

 name:String

Computer

 name:String

UML Attribute

 name:String

Monitor

 brand:String

Computer

 name="pc1"

Computer

 name="pc2"

Monitor

 brand="someBrand"

<<instance of>> <<instance of>> <<instance of>>

<<instance of>><<instance of>> <<instance of>>

<<instance of>> <<instance of>>

Figure 2.1 — Overview of the OMG four-layer metamodel
hierarchy

A model defines the elements that can exist in a system. If we have a model element
node, then the instances of this model element, such as an RT-node exist in the system.
A language, or, in this case, a metamodel defines what elements can exist in a model. For
example, the UML language defines that the concepts of class and package can be used in
a UML model [17]. In general three layers need always be taken into account when dealing
with meta-layers to define languages [28]:

• the language specification, or the metamodel

• the user specification, or the model

• objects of the model

In theory it is possible to have an infinite number of metamodels, because every meta-
model is written in a language which in turn can be described using some higher language.
The language describing a metamodel is then referred to as a meta-metamodel. Instead of
pursuing this further, we stick to the four-layer metamodel hierarchy of the OMG [28]. This
metamodel hierarchy is illustrated in Figure 2.1. It shows an overview of the four layers M0
to M3, with examples of what can be present in those layers.

M0 The lowest layer contains the instances of a running system, or UML objects. An
example is the specific Computer with the name ‘pc1’.

10 Architectural Patterns

M1 Layer M1 contains models, such as a UML model. The UML classes of this layer are
the classifications of the instances at level M0. For example, the class ‘Computer’ is
the classification of the two Computer instances ‘pc1’ and ‘pc2’ at level M0.

M2 Layer M2 is a model of the model at level M1. Elements at this level are classifications
of the elements at level M1. It contains the concepts needed to reason about concepts
from layer M1. The model of this layer is called a metamodel. Every UML model at
layer M1 is an instance of the UML metamodel, which resides at this layer.

M3 This layer contains, just as the other layers, elements that define the elements at a
lower layer. For the UML, this layer is called the Meta Object Facility (MOF) [26]. All
modeling languages, including the UML, are instances of the MOF.

Instead of defining ever more layers, which is reasonably possible, the OMG defined that
all elements of layer M3 must be defined as instances of concepts of layer M3 itself. As long
as every element has a classifying metaelement through which metadata can be accessed,
any model can be built and any system can be described [17]. Elements of the MOF can
be described by elements of the MOF itself. Therefore, even without extra higher layers, all
models can be described.

2.4 Architectural Patterns
Recurring design problems are best solved using well-known solutions from previous, sim-
ilar design problems. This prevents the engineer from ‘reinventing the wheel’ every time a
similar problem occurs. Whether or not the problem can actually be considered similar to
a previous problem depends on a number of factors.

A pattern for software architecture describes a particular recurring design problem that
arises in specific design contexts, and presents a well-proven generic scheme for its so-
lution. The solution scheme is specified by describing its constituent components, their
responsibilities and relationships, and the ways in which they collaborate [4].

This section presents the two architectural patterns that are relevant for the combat
management systems of Thales. The Layers pattern and the Composite pattern are both
incorporated in the model we created to describe CMS’s. The descriptions of both patterns
are derived from Buschmann et al. ([4]) and described according to the method they provide.
A pattern provides a solution to a general problem in a certain context. The description of
a pattern according to Buschmann et al. thus defines the context, a general problem and
the provided solution.

2.4.1 Layers
The Layers architectural pattern helps to structure applications that can be decomposed
into groups of subtasks in which each group of subtasks is at a particular level of abstrac-
tion.

Context A large system that requires decomposition.

Problem Designing a complex system which contains both low- and high level operations.
Low level operations provide functionality to high level operations and, vice versa, the
operations at a higher level rely on the operations at a lower level. A clear decomposi-
tion of the system is essential and interfaces between components need to be defined
properly.

Solution Structure the system into a number of layers and place them on top of each
other. Start with the lowest layer (layer 1) of abstraction and place higher layers on
top of it (with layer N being the highest). Most of the services that layer J provides are
composed of services provided by layer J-1. Layer J’s services may depend on other
services in layer J.

Systems Modeling 11

Operating System

Middleware

Applications

Figure 2.2 — An example of the layers pattern. This partic-
ular implementation consists of three layers, the OS, mid-
dleware and applications.

2.4.2 Composite
A Composite is an object designed as a composition of one or more similar objects that all
exhibit similar functionality. The composite pattern allows a client to treat single compo-
nents and collections of components identically. The pattern is illustrated in Figure 2.3.

Context A group of slightly different objects need to be treated in a similar fashion.

Problem Multiple objects are used in the same way and all have nearly identical code.
Moreover, groups of objects are to be treated similarly to single instances.

Solution Create a Composite class, which is composed of abstract Components. The com-
posite class inherits from this component class. Concrete implementations of the
component class are the Leaves, which are not compositions of other components.

Component

Leaf Composite

Client

Figure 2.3 — The composite pattern

Chapter 3

UML, SysML and OCL

This chapter provides background information about the UML and SysML modeling lan-
guages and about the Object Constraint Language and its possibilities. Also, we present
extension mechanisms which can be used to customize the UML.

3.1 UML Extension Mechanisms

The graphical modeling elements and relationships defined for UML diagrams are some-
times too limited for certain modeling tasks. It is then desirable that the precision of the
UML models can be increased, to provide information for automated analysis or to specify
the intent of a diagram more precisely. Moreover, it is often preferred that the UML can be
extended to create new domain-specific modeling notations [32].

Currently, the two extension mechanisms that exist for UML 2.1 are profiling, also called
a lightweight extension mechanism, and a heavyweight mechanism, as defined by the spec-
ification of the Meta Object Facility (MOF) [26, 30]. Both mechanisms provide extra pos-
sibilities to the user, but have rather different implications. Both extension mechanisms
are described in Section 3.1. For the modeling of complete systems, the Systems Model-
ing Language (SysML) has been developed as a lightweight extension to the UML. SysML is
described in Section 3.2.

3.1.1 Lightweight Extensions

The lightweight extension mechanism uses profiles to extend the UML. It consists of three
main constructs: stereotypes, tagged values and constraints, of which the stereotypes are
most important. It is called a lightweight extension mechanism, because it provides pure
additions to the UML and does not change anything to the semantics of the metamodel
elements, nor changes its structure nor adds new elements [30].

Whether or not to choose a lightweight metamodel extension technique depends on a
number of factors. According to Desfray [6], a profile based technique should be chosen
when:

• The domain is not subject to consensus, many variations and points of view exist.

• Many changes and evolutions may occur.

• The domain may be combined with other domains in an unpredictable way.

• Models defined in the domain may be interchanged with other domains.

14 UML Extension Mechanisms

Profiles

Since version 2.0 of the UML, a lightweight extension is generally defined as a UML profile
(earlier versions of the UML did not contain the notion of a profile [28]). A profile is a special
kind of package, which combines a set of stereotypes and tagged values. By applying the
profile to a model (in the form of a package), the elements defined in the profile can be used
in the model, thus providing an extension to the model.

Stereotypes

A stereotype defines how an existing metaclass may be extended. It is a metaclass itself,
but can only be used in conjunction with the metaclasses it extends. This enables the use
of specific terminology or notation for the extended metaclasses. Depending on whether
the extension is required or not, the terminology or notation is either an addition or a
replacement for the extended metaclass [28]. It is important to note that the semantics of
the extended class cannot be changed by the stereotype.

Definition of a stereotype can be accomplished via the extension relation, as shown in
Figure 3.1. A {required} constraint can be added to the extension relationship, denoting
that every instance of the metaclass must be stereotyped.

<<metaclass>>

Class

<<stereotype>>

TLayer

+memValue: String

Figure 3.1 — Definition of stereotype TLayer as an exten-
sion of the UML metaclass Class. The TLayer stereotype
can thus be applied to any UML Class. The ‘memValue’ is
a tagged value of the stereotype. Absence of the {required}
constraint at the extension relationship specifies that appli-
cation of the stereotype is not compulsory.

Tagged Values

Just like a class has attributes, a stereotype may have properties, which are referred to
as tag definitions. Once the stereotype is applied to a model element, the values of these
properties are referred to as tagged values.

In UML 1.3, tagged values could still extend a model element without the presence of a
stereotype. Since UML 1.4 this behavior is deprecated and tagged values are only supposed
to extend model elements as attributes of stereotypes [28].

An example of a tagged value is the memValue attribute of the TLayer stereotype in
Figure 3.1.

Constraints

Besides tagged values, a stereotype may contain constraints with which the extended model
can be restricted semantically. They are specified between braces { and } and can be ex-
pressed in any kind of language (e.g. English, OCL). A constraint is an assertion and is
therefore not executable. An example of a predefined constraint is the {required} con-
straint on the extension relationship for stereotypes.

3.1.2 Heavyweight Extensions
Whereas lightweight extensions can only provide pure additions to the UML, heavyweight
extensions can also change the semantics of the UML. This is done by explicitly adding new

UML, SysML and OCL 15

metaclasses and other metaconstructors which can introduce new behaviour [30]. This is
in contrast with the lightweight stereotypes, which can only extend existing metaclasses
and do nothing by themselves. A heavyweight extension technique should be applied when
[6]:

• The domain is well defined and has a unique well accepted set of main concepts.

• A model realized under the domain is not subject to be transferred into other domains.

• There is no need to combine the domain with other domains.

Because of the fact that a heavyweight extension not just extends the language, but is also
capable of changing it, it can be discussed whether the designation ‘extension’ is appropri-
ate here. A heavyweight ‘extension’ can even change the complete syntax and semantics of
a language and thus essentially defines a new language.

It is for this reason that it is very hard to combine multiple heavyweight extensions in
a single model. Different languages do not combine very well. Furthermore, it is very hard
for a tool to provide support for heavyweight extensions.

3.2 Systems Modeling Language (SysML)

The UML is widely used to create models of software systems. Both structural and be-
havioral properties of a system can be specified, using a variety of diagrams. For systems
engineering however, the UML does not suffice. It has therefore been customized for sys-
tems engineering applications, which resulted in the OMG Systems Modeling Language
(OMG SysML™), from now on referred to as SysML. Whereas UML unified the different
modeling languages used in the software industry, systems engineers still use a wide range
of modeling languages. SysML aims at unifying those languages [27].

SysML supports the specification, design, analysis, verification and validation of a broad
range of complex systems. These systems may include hardware, software, information,
processes, personnel and facilities. SysML reuses a subset of UML 2.1 and provides a
number of extensions. The reuse of UML 2.1 elements allows software engineers and system
engineers to easily collaborate on software-intensive systems. Whereas everything about
systems used to be specified in a set of documents, SysML aims at providing a model
centric approach, where the integrated models address multiple aspects of a system.

SysML extensions are defined using the following three extension mechanisms [27]:

• UML stereotypes define new modeling constructs by extending existing UML 2.1 con-
structs with new properties and constraints.

• UML diagram extensions define new diagram notations that supplement diagram no-
tations reused from UML 2.1.

• Model libraries describe specialized model elements that are available for reuse.

No true metamodel changes are introduced by SysML, which can thus be considered a
lightweight extension to UML 2.1.

The tree in Figure 3.2 shows the diagrams that have been taken from the UML, the
modified UML diagrams and the new diagram types. Not all SysML diagrams are relevant
for this research. The next sections describe the diagram elements and diagrams that
are. They are mainly concerned with the definition of structural properties of a system
(blocks and block diagrams) and with constraining parameter values (constraint blocks and
parametric diagrams). Finally, Section 3.2.3 summarizes the allocation possibilities within
SysML.

16 Systems Modeling Language (SysML)

SysML
Diagram

Requirement
Diagram

Parametric
Diagram

Behavior
Diagram

Structure
Diagram

Sequence
Diagram

State Machine
Diagram

Use Case
Diagram

Package
Diagram

Activity
Diagram

Block Definition
Diagram

Internal Block
Diagram

Same as UML 2

Modified from UML 2

New diagram type

Figure 3.2 — SysML diagram taxonomy [27]

3.2.1 Diagram Elements

This section contains a description of the SysML diagram elements which are relevant for
this thesis.

Blocks

A Block is a basic structural model element, based on the UML class. It is a unifying
concept which can be used to describe the structure of an element or a system. Blocks are
meant to represent as many different kinds of elements as possible, such as hardware and
software, but also data, procedures, facilities and even persons.

An example of a block is shown in Figure 3.3. A block can contain a number of compart-
ments, such as constraints, operations, parts, references and values.1 It is even possible to
define custom compartments when necessary.

<<block>>
Block1

constraints
 { x > y }

operations
 operation1(p1: Type1): Type2

parts
 property1: Block1

reference
 property2: Block2 [0..*] {ordered}

values
 property3: Integer = 99 {readOnly}
 property4: Real = 10.0

Figure 3.3 — SysML block [27]

The parts compartment can be used to show the internal parts of the component rep-
resented by the block. Internal parts are also represented as blocks. They can either be

1More standard compartments are available. For a complete list please refer to [27].

UML, SysML and OCL 17

added to the parts compartment or linked to the block by means of a composition relation.
This is illustrated in Figure 3.4, where Block2 is a part of Block1. Using this convention,
the structure of a complex system can be modeled in a hierarchical way.

Block1 Block2
 part1

 bdd Namespace1

Figure 3.4 — Block definition diagram (bdd) containing
Block2 as a part of Block1 [27]

Ports and flows

In SysML, flows between blocks can be specified by defining ports for those blocks and
interconnecting them. A port is an interaction point between a block or part and its envi-
ronment that is connected with other ports via connectors [27]. Whereas in the UML only
flows of data could be specified, SysML allows for the definition of any kind of flows, such
as the flow of liquids.

SysML defines two kinds of ports: standard ports and flow ports.

Standard ports define provided and required interfaces for the offered and expected ser-
vices. Standard ports are also present in the UML (defined as ports) and are most
used in the context of service-oriented architectures [27]. Standard ports are used
for synchronous communication between blocks, though it is also possible to specify
asynchronous communication by defining a service for signal reception. Figure 3.5
shows an example of a block with a standard port.

Flow ports are new to SysML and define the input and output items that may flow between
a block and its environment [27]. The things that can flow in and out the FlowPort
are defined by typing the FlowPort with those items. For an atomic FlowPort, this
is only one type of item, but more types can be specified using a flow specification.
FlowPorts are typically meant to be used for asynchronous interaction between blocks.
Figure 3.6 shows blocks with example flow ports. The example shows three flowports
p1, p2 and p3.

<<block>>
Block1

p1

Provided IFace

Required IFace

Figure 3.5 — Standard Port with required and provided in-
terfaces [27]

Whereas FlowPorts define what can flow through the ports, Item flows define what does
flow through the ports. Consider a FlowPort which defines that it supports the flow of
liquids. The Item flow could then specify that the liquid flowing through those FlowPorts is

18 Systems Modeling Language (SysML)

<<block>>
Block1p1:IFace1

Atomic Flow ports

p2:IFace2

 p3:IFace3

Figure 3.6 — Flow Ports with interfaces [27]

water. Item flows can be related to FlowPorts by means of allocation. An example of Item
flow is shown in Figure 3.7. Block2 has an association b1 with Block1 and Item flows from
Block1 to Block2.

<<block>>
Block1

<<block>>
Block2Item

b1
1

Figure 3.7 — Item flow specification [27]

ValueTypes

The properties of blocks need to be typed properly. For this purpose, new value types
can be defined using a block definition diagram which contains blocks, stereotyped as
<<valueType>>. Figure 3.8 shows an example of the definition of three new ValueTypes:
temp, area and efficiency. All ValueTypes need to have a unit and a dimension specified.
Specialized operations and properties can optionally be added to the available operations
and properties compartments of the ValueType block.

<<valueType>>
Real

<<valueType>>
temp

unit = °C
dimension =
temperature

<<valueType>>
area

unit = m²
dimension =
area

<<valueType>>
efficiency

unit = null
dimension =
efficiency

 bdd [package] ValueTypes

Figure 3.8 — ValueType definition (based on [11])

Constraint blocks

A constraint block is a special kind of block, stereotyped as <<constraint>>, which can
be used to define generic constraints. It has two compartments, one defining the constraint
itself and the other defining the parameters. Constraints can be specified using plain text,

UML, SysML and OCL 19

but also formal languages such as OCL or MathML can be used [27]. An example of a
constraint block is shown in Figure 3.9.

<<constraint>>
Constraint1

constraints
 { x = 2 * y }

parameters
 x:Real
 y:Real

Figure 3.9 — Constraint block [27]

When the generic constraint is applied, it is represented by a rounded rectangle with
a handle for each parameter. The handles can be used to bind the parameters to values,
which can be done in the parametric diagram. The usage of a constraint block is illustrated
in Figure 3.11, in which the property length of Block1 is bound to the parameter x of
constraint block C1.

3.2.2 Diagrams

The diagram elements of the previous section can be applied in a number of SysML dia-
grams. The relevant ones are contained in this section.

Block Definition Diagram

From the taxonomy of Figure 3.2, it is clear that the block definition diagram (bdd) can be
used to describe structural properties of a system. Figure 3.4 showed an example of a bdd,
containing blocks in a part relationship.

Internal Block Diagram

The internal structure of a single block can be defined using an internal block diagram (ibd).
An ibd is a special kind of block diagram, which is based on the UML composite structure
diagram. Internal parts of a block are defined in the ibd, along with their interrelationships.
A part is essentially a kind of block which resides in the part compartment of another block.
Such a relation is already shown in Figure 3.4, where Block2 is a part of Block1.

p1:Type1 p2:Type2

 ibd Block1

c1:a1 +e1
1

Figure 3.10 — Internal block diagram (ibd) [27]

The example in Figure 3.10 shows the internal structure of block Block1, which consists
of two parts: p1 and p2. The association relation shows that p1 has p2 associated to it.

20 Systems Modeling Language (SysML)

Parametric Diagram

Parameters of constraint blocks can be bound to values in a parametric diagram (par).
These are the values specified in the values compartments of blocks. Figure 3.11 shows
an example of a parametric diagram. The formal parameters x and y of constraint block C1
are bound to the values of Block1 length and width.

 par Block1

 C1: Constraint1
 x:

 y:

length: Real

width: Real

Figure 3.11 — Parametric diagram [27]. The parameters of
constraint block C1 are bound to the values of Block1.

3.2.3 Allocation
SysML supports the allocation of diagram elements to other diagram elements and even
the allocation of entire diagrams to diagram elements. This allows the engineer to make
connections between different diagrams and construct a coherent model of a system. This
section shows two different ways to specify allocations.

Tabular format

The allocation of one diagram (element) to some other diagram element can be seen as a
mapping between a number of diagrams and diagram elements. Using a table to represent
this mapping is a rather straightforward way of doing this. An example is shown in Ta-
ble 3.1. It shows the mapping of software components (components 1 to 3) to hardware
nodes (node 1 to 3).

type name end relation end name type

block component 1 from allocate to node 1 block
block component 1 from allocate to node 3 block
block component 2 from allocate to node 1 block
block component 2 from allocate to node 2 block
block component 2 from allocate to node 3 block
block component 3 from allocate to node 2 block

Table 3.1 — Simple allocation using a tabular format.

The same can be accomplished using a matrix style, as shown in Table 3.2.

Graphical format

Instead of providing a separate allocation specification, the allocation relationship can be
used to define an allocation. Figure 3.12 shows this graphical representation.

UML, SysML and OCL 21

Target
Source node 1 node 2 node 3

component 1 allocate allocate
component 2 allocate allocate allocate
component 3 allocate

Table 3.2 — Allocation using a matrix format.

Client Supplier
<<allocate>>

Figure 3.12 — Allocation relation [27]

Alternatively, allocation can be defined in the special predefined <<allocatedFrom>>
and <<allocatedTo>> compartments of blocks.

3.3 Object Constraint Language (OCL)
The Object Constraint Language (OCL) is a formal language used to describe expressions
on UML models. The expressions typically specify invariants that must hold for the system
being modeled or queries over objects described in the model. OCL expressions do not have
side effects when they are evaluated [23].

OCL is a pure specification language, not a programming language. Expressions can
therefore only be evaluated, not executed, and control flow cannot be specified using OCL.

The main purposes where OCL can be used are the following [23]. Bold items are rele-
vant for this research.

• As a query language

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• To specify target (sets) for messages and actions

• To specify constraints on operations

• To specify derivation rules for attributes for any expression over a UML model.

Using OCL as a query language allows the engineer to query the values of attributes.
For instance, when class Class1 has attributes attr1 and attr2, the value of attr1 can be
retrieved by the OCL expression:

Class1 . attr1

Invariants can be used to constrain those values or relate values to each other. The
value of attr1 can be constrained (for instance, the value has to be less than 50) by the OCL
expression:

Context Class1 inv :
s e l f . attr1 < 50

22 Evaluation

Finally, the initial and derived values of attributes can be specified using the init and
derive language constructs respectively. For instance, to define that the value of attr2 is
twice the value of attr1, the OCL expression reads:

Context Class1 : : attr1 : Integer
i n i t : attr2 * 2

3.4 Evaluation
The models we present in Chapters 5 and 6 aid engineers in the modeling of domain con-
cepts. An extension mechanism can provide the additions required to express these domain
concepts. The choice of an extension mechanism is heavily dependent on the support pro-
vided by tools.

SysML seems to be the perfect candidate for defining the models of this research. Es-
pecially because of the steps following this research (see Section 1.1.2, specification of
functional flows, etc.) SysML can very well be applied. The models created in the first of the
three steps can easily be extended to suit the following steps. Hence, the model created in
the first step can be ported to the second and third and only this single model is required
to describe all levels of detail.

The tool used within Thales to create UML models, Rational Software Architect (RSA
[15]) does support the lightweight extension mechanism, but provides no support at all for
heavyweight extensions. Support for SysML, which is defined as a UML profile, is provided
as an RSA plugin by a third-party company, called EmbeddedPlus Engineering [9]. Exper-
iments with this plugin proved that its performance did not meet the expectations. Mainly
because SysML is still in an early stadium, tool support for the language is poor. Despite its
promising features, SysML is therefore not used as a modeling language in this research.

Due to the facts that heavyweight extensions do not combine easily and that tools gen-
erally do not provide support for heavyweight extensions, the lightweight extension mech-
anism best fits our situation. Support for SysML is still poor, so a custom profile has been
created (presented in Chapter 6) which provides all the support to engineers in creating the
models described in this thesis.

OCL seems a good candidate for the specification of attribute values and the definition
of constraints on UML models. However, just as with SysML, the support for OCL is poor in
RSA. Constraints can only be evaluated for elements of the metamodel (see level M1 of the
OMG four-layer metamodel hierarchy in Figure 2.1), but not for the user model (layer M1).

Other OCL implementations (such as OCTOPUS [20]) do not combine well with RSA,
because of the data structures they use to store UML models. Using such a different imple-
mentation would require the UML models produced by RSA to be translated into another
structures. This, however, would take far too much time to complete and would not be a
valuable contribution to this research.

Chapter 4

Example System

This chapter introduces an example Combat Management System and its most important
parts. This example is derived from the example Excel sheet and used throughout the thesis
for illustration purposes.

4.1 Structure
The Combat Management System, or CMS, consists of a hardware part and a software part.
The hardware provides a number of resources such as processing power (CPU) and mem-
ory to the software. The software on the other hand requires these resources to properly
perform its functions.

4.1.1 Hardware
The hardware system (the hardware) is composed of a number of subsystems, called nodes,
which are interconnected by a network. This particular CMS consists of 8 console nodes, 1
real-time (RT) server and 1 non-real-time (NRT) server.

Console A console is used to present information to an operator and allows the opera-
tor to interact with the CMS. The execution of Human Computer Interaction (HCI)
applications is an important task of the console nodes. Besides HCI applications,
other applications which provide processing functionality are also executed by con-
sole nodes.

RT server A server dedicated to running real-time applications.

NRT server A server for the processing of non real-time applications. The NRT server
contains a database for data storage and deploys Commercial-Off-The-Shelf (COTS)
software.

4.1.2 Software
A software system (the software) is organized using a layered architecture [4] and, as usual
for the software systems built by Thales, consists of three layers:

Computer Software Configuration Items The applications in the top layer are the Com-
puter Software Configuration Items (CSCIs). A single CSCI has a certain task, such
as processing radar data or providing information to an operator. CSCIs are loosely
coupled and share data by means of the publish-subscribe mechanism of the SPLICE
middleware.

24 Budgets

Basic Operating
Environment

Middleware

Computer Software
Configuration Items

 Layer 1

 Layer 2

 Layer 3

Figure 4.1 — The three layers of the example CMS software
system

Middleware The middleware for the CMS is called SPLICE-DDS and is based on the OMG’s
Data Distribution Service for Real-Time Systems Specification [22]. The SPLICE ar-
chitecture is characterized by autonomous applications with minimal dependencies
where function and interaction are clearly separated and SPLICE agents act as real-
time information brokers [12].

To support both legacy and recent applications, a special software library called S142
(SPLICE 1 for 2) is included in the middleware. S142 provides SPLICE-1 legacy sup-
port to applications which cannot make use of SPLICE-2 (SPLICE-DDS) directly. S142
is a vital part of this example CMS.

Basic Operating Environment The Basic Operating Environment (BOE) is present on al-
most every hardware node in the system. It includes a number of components, such
as the Operating System (OS) and other supporting applications.

Each layer is composed of a number of components, which together make up the function-
ality of that layer. Depending on the type of node, components are or are not present on
that node. The components of the BOE are almost always available on every node deploying
Thales’ own software, because of their basic, supporting functions. The CSCIs layer on a
node only contains the components necessary for that node.

4.2 Budgets
The Console nodes of the hardware system do all provide the same types and amounts of
resources. The example CMS consists of eight Console nodes, thus providing eight times
the amount of resources of one Console node. The RT node has a different purpose and
provides a different amount of resources.

As described above, the software system of the example CMS consists of three layers.
The components of each layer have their own required budgets, which consists of a fixed
part and a part that depends on other budgets. For example, some components of the CSCIs
layer can use the SPLICE-DDS middleware directly. Other, legacy components require the
functionality of the S142 component of the middleware layer to make use of SPLICE-DDS.
Depending on the amount of data a legacy component exchanges with SPLICE-DDS, the
overhead introduced by the S142 component will increase. The budget of a component in
the CSCIs layer is therefore sometimes dependent on the budget of a middleware compo-
nent.

Example System 25

4.3 Allocation
Not all software parts are allocated to all hardware nodes. The software parts that impose
real-time constraints on the hardware are deployed by the RT server. On the other hand,
the software parts that are deployed by the NRT server do not require the functionality
provided by the complete BOE and thus does not deploy the BOE, which is present on all
other nodes of the CMS.

Due to the early stage in the development process, the exact allocation of the CSCIs to
the hardware is not known. Estimations are however made. For instance, engineers have
estimated that 25% of all CSCIs of the example system will run on only 40% of the available
nodes:

• 20% of the CSCIs is allocated to 100% of the nodes

• 25% of the CSCIs is allocated to 40% of the nodes

• 55% of the CSCIs is allocated to 20% of the nodes

Even though not specified for each CSCI individually, they are all allocated to the hardware.
Some nodes deploy all CSCIs, while others only deploy a subset.

Chapter 5

Domain Viewpoint

This chapter describes the domain viewpoint, which is a conceptual model of a system. The
contents of this chapter corresponds to the first and second requirement of the problem
statement of Section 1.2 and defines a method to specify performance budgets and con-
straints. The main concepts of the structure of hardware and software, budgets, allocation
and constraints are discussed in order. We derived the model presented in this chapter
from an Excel sheet describing the example system of Chapter 4.

5.1 Introduction

As described in Chapter 4, the example CMS consists of a hardware part and a software
part. Generally, any CMS consists of both hardware and software. In this chapter, a model
is created by which both the hardware and the software can be described. Furthermore, the
model describes how to link the software to the hardware, to denote which software parts
are allocated to which hardware parts. Finally, restrictions are imposed on the provided
and required budgets, thereby relating them to each other.

We derived the model presented in this chapter from the Excel sheet containing the
example system and modified it to describe not only that system, but combat management
systems in general.

Figure 5.1 shows an overview of the domain. A CMS consists of a software system and
a hardware system, which both have a hierarchical structure. Any part of the software
system can be allocated to any part of the hardware system, expressing that the software
part is executed by the hardware part. All software parts can have required budgets, which
are related to the provided budgets of the hardware in constraints. The constraints reside
on the allocation relationships.

The following sections discuss the structure of the hardware and software, the defini-
tion of budgets, allocation relationships and constraints. This results in the model of the
structure of a CMS, which includes the possibility to specify budgets. Budgets are related
by defining allocation relationships and adding constraints. The complete model satisfies
the first and second part of the problem statement.

5.2 Hardware

Several types of nodes may exist in a single hardware system. For example, the CMS
example system in Chapter 4 consists nodes of three types. In general, a hardware system
can consist of an arbitrary number of nodes which all have a certain type.

28 Hardware

Software Hardware
allocation

allocation

CMS

Figure 5.1 — Domain overview. A CMS consists of software,
hardware and allocation relationships relating them.

5.2.1 Structural Decomposition

A hardware system is organized in a hierarchical way. In general, two different model
elements can be distinguished for any hardware system: a Node and a top-level Hard-
wareSystem. The HardwareSystem is defined by the nodes it consists of. This is illustrated
in Figure 5.2.

Changing the number of nodes in a hardware system results in a new configuration.
For instance, the example CMS consists of eight Console nodes, one RT node and one NRT
node. A different hardware system can consist of not eight, but twelve Console nodes. The
functionality of such a configuration is the same as the example CMS, but provides more
resources.

5.2.2 Domain Model

The domain model of the hardware system is shown in Figure 5.2. A composition relation-
ship defines that all nodes together make up the hardware system. Budget information can
be added to the Nodes as well as to the top-level HardwareSystem.

HardwareSystem

+budgets

Node

+budgets

+nodes

*

Figure 5.2 — Hardware system domain model

Domain Viewpoint 29

5.3 Software

Besides the hardware, software is the other main part of a system. The model describes
how a software system is decomposed in a hierarchical way.

5.3.1 Structural Decomposition

The highest conceptual level is the software system itself, which, when completely decom-
posed, consists of a number of components. Each component has some predefined function
or service to fulfill and is responsible for the execution of that specific task. Even though
some components are completely independent of other components to fulfill their tasks,
most rely on the services of other components. This behavior is reflected in the structural
decomposition of a software system in layers.

In general, three model elements can be distinguished in the domain model of the soft-
ware system: the top-level SoftwareSystem, the Layer and the Component. This is illus-
trated in Figure 5.3.

5.3.2 Domain Model

The layers pattern and the composite pattern which were described in Section 2.4 are
applied to the software system domain model. Recall that in the example CMS three layers
have been identified (the BOE, the middleware and CSCIs). Because a layered pattern can
be identified in any CMS, it is included in the domain model. The layers together make up
the SoftwareSystem, as illustrated by the composition relationship in Figure 5.3.

A layer groups a number of components. Figure 5.3 illustrates this, by the composi-
tion relationship between the Layer model element and the Component model element. A
single component fulfills some task, which can be divided into sub-tasks, performed by
sub-components. The composite pattern is applied to components and allows them to be
specified at any level of decomposition.

SoftwareSystem

+budgets

Layer

+budgets

Component

+budgets

+layers

*

+components

*
+parts

*

BasicComponent CompositeComponent

Figure 5.3 — Software system domain model

30 Budgets

Essentially, real-world instances only exist for the BasicComponent model elements.
The functionality a component provides is realized by a piece of code. The complete col-
lection of all code is called the software system, which itself is merely a mental grouping
concept. The software system only exists by grace of the components of which it is com-
posed.

A layer is even more special. Just as the software system it is a grouping concept, be-
cause no real-world instance of a layer ever exists. A layer groups a number of components
providing functionality at a similar level of abstraction and thus provides a way to hide
implementation details.

In reality, the existence of layers can only be derived from the interactions between
components. The boundaries of layers are formed by interfaces, defining the communica-
tion possibilities for components. A reflection of a real-world system should therefore not
contain layer entities.

For modeling purposes however, the layer is important to include in the model. Systems
are explicitly designed in layers, because of the many advantages a layered architecture
possesses [4]. So even though a layer does not explicitly exist in a system, it does exist in
the mental model of the engineer. It is therefore a logical consequence to include the layer
in the mental model of Figure 5.3. Furthermore, engineers need to add budget information
to entire layers. This is only possible if the layer is included in the domain model of the
system.

5.4 Budgets

The amount of resources required by software depends on a number of factors, such as
the type of resource and the implementation of the software. To express the amounts
of resources demanded by a software program and offered by a hardware node, Thales
employs the following definition of a budget.

Definition 5.1 A budget is the representation of an amount of resources.

Budget information is specified for both hardware and software. The provided and required
budgets are only distinguished by by the parts of the system (hardware or software) on
which they reside. Budgets can be defined for all parts of the system. The model element
containing the budget is referred to as the owner of the budget.

5.4.1 Types

Different types of resources demand different types of budgets to be described. The budget
value of a specific CPU in a computer system will have a completely different meaning than
the budget of the memory in that same computer system. To make the distinction between
types of resources, type information is added to the budgets.

For each type of resource, a corresponding budget type is required. Four basic budget
types are used often and made available by default for all model elements. The text between
brackets is to be used when referring to the budget. For instance, a reference to the memory
budget of the model element BOE is: BOE.mem.

• CPU (cpu)

• Memory (mem)

• Storage (stor)

• Networking (net)

Domain Viewpoint 31

CPU

The processing power required by software is highly dependent on the type of CPU, the
used compiler and other factors for which it was designed. A good representation of the
CPU budget should abstract away from these dependencies and define a universal mea-
sure for processing power. Unfortunately, this is very difficult to realize. Two example
representations of processing power are shown below.

MIPS MIPS is an acronym for Million Instructions Per Second. It defines the number of
instructions a CPU can execute within a time unit of one second (e.g. a MIPS value of
2 means the CPU can execute 2× 106 instructions per second).

SPECint The Standard Performance Evaluation Corporation (SPEC) [37] is a non-profit or-
ganization whose goal is to establish, maintain and endorse a standardized set of rele-
vant benchmarks for computer systems. SPECint is one of those benchmarks, aimed
at measuring and comparing compute-intensive integer performance. By avoiding
loads on other components in the computer system such as I/O and networking, the
benchmark is as accurate as possible.

The SPEC maintains a list of benchmark results for a variety of computer systems
and test programs (e.g. data compression with gzip and compilation with gcc). These
results, expressed as a single value per benchmark, can be used to derive an indica-
tion of the performance of some new system, or a benchmark can be performed on
the system to get a more accurate result.

The best way to represent processing power is by means of the SPECint benchmark,
as it allows a comparison of one software system on different types of hardware. However,
the option to use MIPS needs to remain available too. SPECint benchmarks are not always
available for just any kind of system and performing a benchmark is a costly and time
consuming activity. Moreover, a running system is required to do the actual benchmark,
rendering it unsuitable for systems under development. The speed in MIPS is generally
available for most CPU types, making it a more suitable measurement in some cases. It
is easier to make an estimation of processing power in terms of MIPS, which is why both
approaches remain available.

Memory

Data stored in memory is transient, so after the application has halted it is no longer
available. Memory demands are measured in terms of the size of data. General data types
such as an integer can be assigned different sizes, depending on the compiler used to
translate the program. Despite this dependency, memory usage is measured in Bytes.
Multiples of 1024 (i.e KByte, MByte and GByte) are used to define large data sizes.

Storage

Data storage is measured similarly to memory usage. In contrast to memory, data storage
makes the data persistent, so it does remain available after the program has halted. De-
pending on the way the data is stored (for example directly to a disk or in a database), the
storage size of the data can vary, because some storage ways introduce more overhead than
others.

Data storage is represented in the same way as memory; in Bytes. Again, to represent
large amounts of data, the units KByte, MByte and GByte can be used.

Networking

Components can communicate with each other using a network connection. A connection
can only process a certain amount of data, measured in bits per second (bps). Provided and
required budgets are also measured in bits per second, but since values tend to get very

32 Allocation

large using only this unit, the Kbps, Mbps and Gbps units are also available. Just as with
memory and storage, these units differ a factor 1024 from each other.

5.4.2 Values
Budget values are not always known a priori. Application of the layers architectural pattern
implies the existence of dependencies between components. These dependencies exist at
least between components in adjacent layers, but dependencies between components within
the same layer are also a possibility. Consequently, budgets of independent components
usually have fixed values, whereas budgets of dependent components can have their own
dependencies. Budgets of composite components (and of layers and a software system) are,
if not explicitly defined, dependent on the budgets of the children.

Fixed Some budgets simply have a value that does not change under the influence of other
budgets or other factors. Such a budget has a fixed value for the lifetime of the owner
of the budget.

Dependent Some budgets do not have a fixed value, but have a value that changes depend-
ing on the values of other budgets. The value of such a budget is not known until the
value of the budget it depends on is known. Determining the value of a budget might
require some calculations to be made.

Sum The structural hierarchies of both hardware and software systems introduce yet an-
other way to derive the value of a budget. For high-level model elements in a decom-
position hierarchy (HardwareSystem, SoftwareSystem, Layer and CompositeCompo-
nents), budget values depend on the values of the contained model elements (the
children).

If no value has been defined for a budget with some specific name, then its value is
defined as the sum of the budgets with that name of the owner’s children. In the
case where both values are present, the largest of the two is taken as the value. The
engineer thus has the freedom to first create a high-level design and extend and refine
it afterwards.

5.5 Allocation
After both the models of the software and the hardware have been created, they need to be
connected. All parts of the software system have to be allocated to the hardware nodes on
which they can operate. This is done by the allocation specification. For each combination
of a software configuration and a hardware configuration, an allocation specification needs
to be available to connect the both.

To define that a software part runs on some hardware node, an allocation relationship
is created between the two. Besides this main purpose, an allocation relationships defines
which software and hardware parts of a system can take part in the verification process as
well. Whether or not they actually do, depends on the constraints (Section 5.6). Allocating
a software model element to a hardware model element means that the software element is
deployed by the hardware element and, subsequently, that the software element uses the
resources provided by that hardware element.

5.5.1 Simple Allocation
Software parts (software system, layer, component) can all be allocated to hardware parts
(hardware system, node) in any possible combination. Including a composite part (i.e.
software system, layer, hardware system or composite component) in an allocation relation
means that in fact all contained parts take place in the allocation. Allocating a layer to a

Domain Viewpoint 33

node thus means allocating all components in that layer to the node. Figure 5.4 shows the
allocation of BOE to all Console nodes. BOE consists of a number of components, which
are all allocated to all Console nodes.

BOE

OS+X

SPLICE-DDS

ShMem

Sigma+S142

InfraLib

HPS

Console<<allocate>>1 1

HardwareSystem

8

Figure 5.4 — Example allocation of the BOE layer, consist-
ing of components to all Console nodes of the example CMS.

Whereas the BOE of Figure 5.4 is only allocated to the Console nodes, it can easily be
allocated to all nodes of the hardware system, by allocating it to the HardwareSystem itself.
This is illustrated in Figure 5.5, where the layer BOE is allocated to all nodes of the example
CMS hardware system, consisting of eight Console nodes, one RT and one NRT node.

BOE HardwareSystem

RT NRT

<<allocate>>1 1

Console

8

Figure 5.5 — Allocation of one layer (BOE) to all nodes of
the HardwareSystem.

Any part of the software system can be allocated to any part of the hardware system.
Allocating a composite element (such as a layer) to a node means that all its components
run on that node. Also, allocating a software part to the top-level HardwareSystem node
means that the software part runs on all nodes of the hardware.

5.5.2 Complex Allocation
Instead of allocating a complete layer to a set of nodes, it is also possible to allocate a
part of the layer to some of the nodes of the hardware system. Complex allocation allows

34 Allocation

BOE HardwareSystem

HPS

OS+X

.

.

.

NRT

Console8

<<allocate>>x y RT

Figure 5.6 — Allocation of ratio x of layer BOE to ratio y of
the HardwareSystem.

the allocation of all parts of a composite model element, either at the software or at the
hardware side, without having to specify the allocation for each of the parts individually.

A complex allocation relationship is illustrated in Figure 5.6. The values of x and y are
called ratios.

Whereas the UML only allows integer values for the multiplicities at the association
relationships, ratios can have all values > 0 and ≤ 1. Even though RSA claims to implement
the UML, allowing real numbers as multiplicities is a deviation from the UML standard.

The interpretation of the allocation relation of Figure 5.6 is that ratio x of the layer BOE
is allocated to ratio y of the hardware system. In practice, it is not possible to exactly
represent an exact ratio of a layer or of a hardware system. Instead, the values of x and y
are used to calculate the contribution of the required budget in the allocation relationship
to the final required budget of the software system.

Suppose the required memory budget of each child components of the BOE is 100 MByte
and all 10 nodes of the hardware system have a provided budget of 1 GByte. Furthermore,
ratio x has the value 0.75 and ratio y has the value 0.5. This has to be interpreted as: 75%
of the budget of BOE is allocated to 50% of the nodes of the hardware system.

Generally, the contribution of the required budget of any software part can be calculated
as follows, with x being the ratio at the software side of the allocation relationship and y the
ratio at the hardware side:

contribution =

{
budget SW ∗ #children of HW ∗ x ∗ y if HW has children
budget SW ∗ x ∗ y if HW has no children

Excluding the budget of the software results in a factor that can be calculated for each
allocation relationship, independent of the required budget of the software part:

factor =

{
#children of HW ∗ x ∗ y if HW has children
x ∗ y if HW has no children

Using this kind of allocation specification, it is also possible to specify that some software
parts have to be allocated to a set of nodes, while other software parts need to be allocated
to other nodes. This is illustrated in Figure 5.7. One allocation relationship defines ratios
x1 and y1, while the other defines x2 and y2. In case of n allocation relationships, the factor
is calculated as follows:

factor =

{
#children of HW ∗

∑n
i=1 xi ∗ yi if HW has children∑n

i=1 xi ∗ yi if HW has no children

For x1 = 0.75, y1 = 0.5, x2 = 0.25, y2 = 1.0 and a required budget of 100 MByte per

Domain Viewpoint 35

component of the BOE, the contribution of the software is calculated:

contribution = 6 ∗ 100 MByte ∗ factor

= 600 MByte ∗ (10 ∗ ((0.75 ∗ 0.5) + (0.25 ∗ 1.0)))

= 600 MByte ∗ 6.25

= 3750 MByte

BOE HardwareSystem

HPS

OS+X

.

.

.

NRT

Console8

<<allocate>>x1 y1

<<allocate>>x2 y2
RT

Figure 5.7 — Multiple allocation relationships between two
model elements.

5.6 Constraints

After the allocation has been defined for a system, budgets can be restricted by means of
constraints. A constraint relates two or more budgets, usually at least one required and one
provided budget, to each other. This way, budgets of software and hardware can be com-
pared. Constraints are specified as boolean expressions and are evaluated automatically.
In the context of Thales’ combat management systems, we define a constraint as follows:

Definition 5.2 A constraint is a rule, that relates budgets of software to budgets of hardware
and can automatically be verified. Evaluation of the constraint always results in either the
outcome true or false.

Because constraints are always defined over the boundary between software and hard-
ware, they depend on the allocation specification for the system. Only budgets of model
elements included in an allocation relationship can be related in a constraint. The alloca-
tion specification thus defines the possibilities for defining constraints.

Constraints are always specified as boolean expressions, which contain references to
budgets. A basic example is shown below. The constraint defines that the memory budget
of the BOE has to be less than 25% of the memory budget of the hardware system.

BOE.mem < 0.25 ∗HardwareSystem.mem

Evaluation of this constraint takes the allocation specification into account and uses
it to determine the value of BOE.mem. The calculation at the end of Section 5.5.2 shows
how the value of BOE.mem is determined with the provided specification allocation. The
resulting value of 3750 MByte is only relevant when applied in a constraint on the particular
allocation relationship. In all other cases, the value is simply the original budget of the
BOE: 6 ∗ 100 = 600 MByte.

36 Discussion

For this example, the result is:

result = BOE.mem < 0.25 ∗HardwareSystem.mem

= 3750 MByte < 0.25 ∗ (10 ∗ 1 GByte)

= 3750 MByte < 2.5 GByte

= 3750 MByte < 2.5 ∗ 1024 MByte

= 3750 MByte < 2560 MByte

= false

With the current budget values of 100 MByte per BOE component, 1 GByte per hardware
node and the two allocation relationships, the memory budget of the BOE is not less than
a quarter of the total budget of the hardware system.

5.7 Discussion
A distinction is made between the structure of hardware and software. A hardware system
only consists of two decomposition levels; the complete hardware system and its nodes.
The domain model is based on the example CMS, of which the hardware is simply specified
as a number of nodes. A more fine-grained decomposition is not required for performance
verification at this level, for which only the number and types of nodes are necessary.

For a software system, an arbitrary number of decomposition levels can be specified.
The high decomposition levels are included as specific domain elements (the layer and
component), but further decomposition is accomplished by the application of the composite
pattern. Layers have a special function in the structural hierarchy of a software system,
because they group components depending on he level of abstraction of their functionality.

Resource amounts are defined in terms of budgets. A budget represents an amount of a
resource of a specific type and has a unit. When related to software, a budget is required,
when related to hardware the budget is a provided budget. Four basic budget types are
distinguished and referred to by the names cpu, mem, stor and net. The values of these
budgets either have a fixed value, or they depend on the values of other budgets. If the
budget of a parent model element (with no children) has not been specified, it gets assigned
the sum of the values of its children.

The allocation specification relates software model elements to hardware model elements.
Furthermore, it defines which budgets may take part in a constraint. Model elements can
take part in an allocation relationship as a whole, but parts of model elements can also be
allocated. The ratios defining the parts, as well as the number of children of the hardware
model element, define the allocation factor. When including the software element budget in
a constraint, its value is multiplied by the allocation factor.

Constraints define relations between required and provided budgets. They provide a
means to impose restrictions on the system. A constraint is specified as a boolean expres-
sion which can contain references to budgets.

Chapter 6

System Model Viewpoint

This chapter describes the system model viewpoint, which corresponds to the third sub-
problem of the problem statement of Section 1.2. We introduce a UML extension in order
to automatically recognize the structure of a system, calculate budget values and evaluate
constraints. This chapter thus contains a UML implementation of the concepts presented
in Chapter 5.

6.1 Introduction

Besides textual descriptions of systems, models are becoming increasingly important as
design artifacts in the Model Driven Architecture (MDA) [17]. For software systems, the
UML is widely used as a modeling language. Since a CMS is not purely a software system,
SysML would be the modeling language of choice. Recall that a lack of tool support for
SysML (Section 3.4) is the reason that models are expressed in UML. To show the close
relationship between UML and SysML, the SysML modeling constructs are provided with
the UML modeling constructs in this chapter.

Instead of expressing performance properties of a CMS in an Excel sheet, which is large,
complex and difficult to understand, a UML model provides a much clearer overview of the
structure of a system. Allocation of software to hardware is clearly visible, because of the
allocation relationships. The use of UML models to express the structure and performance
properties of systems results in a better understanding of those systems, making it easier
to experiment with different structures, budgets and constraints.

Even though Rational Software Architect does provide good UML modeling support for a
variety of models and model elements, support for UML objects is poor. In RSA, an object,
an instance of a class, does not have access to the attributes defined in the class. Hence,
different objects of a single class cannot assign different values to an attribute defined in
the class.

Since no UML objects can be used, all instances are modeled as UML classes. To still
distinguish different model elements classes from each other, stereotypes have been defined
for the concepts of Chapter 5, which are described in the following sections. All stereotypes
provide extensions to the UML metaclass Class, as described in Section 3.1.1. Whereas
one would like to describe real-world objects as UML objects, they are described using UML
classes, thereby essentially shifting the levels of the four-layer metamodel hierarchy one
level up. The instances of all model elements are defined at level M1, leaving level M0
empty.

38 TProfile Definition

6.2 TProfile Definition

To distinguish the model elements created in this chapter from standard UML elements,
stereotypes are defined which correspond to the elements of the domain model. To group
all stereotypes presented in this chapter, the Thales profile, or TProfile has been created. A
profile is essentially a UML package, only stereotyped as «profile».

The complete TProfile is shown in Figure 6.1. It contains the stereotypes corresponding
to the domain model elements for both hardware («THWSystem» and «TNode»)and software
(«TSWSystem», «TLayer» and «TComponent»). They are all subclasses of the abstract stereo-
type «TBudgetElement», which extends the UML Class. This means that all subclasses of
the «TBudgetElement» can be assigned to UML classes.

The «allocate» stereotype extends the UML Association. Associations in a model can thus
be assigned this stereotype when the TProfile is applied.

<<Profile>>

TProfile

<<stereotype>>

THWSystem

<<stereotype>>

TBudgetElement

+cpuUnit: CpuBudgetUnit = MIPS

+cpuValue: String = "0"

+memUnit: MemBudgetUnit = MByte

+memValue: String = "0"

+storUnit: StorBudgetUnit = MByte

+storValue: String = "0"

+netUnit: NetBudgetUnit = Mbps

+netValue: String = "0"

<<metaclass>>

Class

<<stereotype>>

TNode

*

<<stereotype>>

TComponent

<<stereotype>>

TLayer

<<stereotype>>

TSWSystem
<<stereotype>>

TDelegate

*

*

*

*

<<metaclass>>

Association

<<stereotype>>

allocate

+constraints: String[]

<<enumeration>>

CpuBudgetUnit

 MIPS

 SPECint

<<enumeration>>

MemBudgetUnit

 KByte

 MByte

 GByte

<<enumeration>>

NetBudgetUnit

 Kbps

 Mbps

 Gbps

<<enumeration>>

StorBudgetUnit

 KByte

 MByte

 GByte

Figure 6.1 — The complete TProfile

System Model Viewpoint 39

The following sections discuss the various parts of the TProfile in detail.

6.3 Hardware
This section describes the hardware part of a system, which consists of a number of nodes
connected by a network.

6.3.1 Mapping Domain Concepts into UML Equivalents
The two main domain concepts of the hardware are the hardware system itself and the
nodes of which it is composed. Both are represented by UML classes and are related via a
composition relationship.

Hardware System

A hardware system is the high-level entity that groups a number of nodes. With SysML, it
would be modeled by a block. Since the SysML block is basically a UML class, the hardware
system is modeled by a class. The class modeling the hardware system is a level M1 model
element, as shown in Figure 6.2.

metaClass

Class

HardwareSystem

M3-Level
(MOF)

M2-Level (UML) M1-Level
(User Classes)

M0-Level
(User

Objects)

<<stereotype>>

THWSystem
<<stereotype>>

TNode Console

<<stereotype>>

TBudgetElement

*

RTNRT

Figure 6.2 — The hardware model elements placed in the
OMG four-layer metamodel hierarchy. The instances (e.g.
HardwareSystem) resides at level M1 and the stereotypes,
which extend the UML Class, at level M2. Level M0, the
user level, remains empty.

As shown in Figure 6.2, the stereotype for the hardware system is called «THWSystem».

«THWSystem» The hardware system is represented by a UML class. To identify the class
as representing a hardware system, it is stereotyped as a «THWSystem».

Stereotype Base Class Tags

«THWSystem» Class

Table 6.1 — «THWSystem» stereotype definition

Node

Using SysML, any part of the hardware would be represented by a block. Nodes are part of
the hardware system and would be modeled by blocks as well. Similarly to the hardware

40 Software

system, nodes can be represented by classes. Because the hardware system itself is also
represented by a class, the composition relationship between the two can easily be made.

As shown in Figure 6.2, the class modeling a node, for instance a Console, is a level M1
element as well. For each type of node, a class is created at level M1. For the example CMS,
three nodes would be created: Console, RT and NRT. The stereotype representing a node is
called «TNode».

«TNode» Nodes from the domain model are represented by UML classes. To distinguish
them from standard UML classes, they are stereotyped as «TNode».

Stereotype Base Class Tags

«TNode» Class

Table 6.2 — «TNode» stereotype definition

6.3.2 Example CMS Hardware Structure Model

An example application of the stereotypes defined for the hardware system is shown in
Figure 6.3. Three instances of the «TNode» stereotype are shown in the figure, one for each
type of node in the example CMS. Of the Console node type, there are eight nodes in the
example CMS. This is reflected in the model by the multiplicity of 8 at the composition
relationship to the Console model element.

<<THWSystem>>

HardwareSystem

<<TNode>>

Console

8

<<TNode>>

RT
<<TNode>>

NRT

1 1

Figure 6.3 — The structural UML model of the hardware of
the example CMS.

6.4 Software

As discussed in Chapter 5, the main concepts of the software are components, layers group-
ing those components and the software system itself, grouping layers.

6.4.1 Mapping Domain Concepts into UML Equivalents

The sections below discuss the domain concepts of the software model and provide corre-
sponding SysML and UML elements.

System Model Viewpoint 41

Software System

The properties of the software system are similar to those of the hardware system presented
in Section 6.3. Whereas the hardware system groups nodes, the software system groups all
layers in the system.

Using SysML, a software system would therefore be modeled by a single block, which
would contain the model elements representing the layers. In UML however, the software
system is represented by a class, just like the hardware system.

The position of the software system in the OMG four-layer metamodel hierarchy is sim-
ilar to the hardware system, as illustrated in Figure 6.4. It does also not have a real-world
instance and exists only at level M1.

metaClass Class

SoftwareSystem

M3-Level
(MOF)

M2-Level (UML) M1-Level
(User Classes)

M0-Level
(User

Objects)<<stereotype>>

TSWSystem

<<stereotype>>

TLayer BOE

<<stereotype>>

TBudgetElement

*

OS_X
<<stereotype>>

TComponent

*

*

Figure 6.4 — Place of the software part of a system in the
OMG metamodel hierarchy (Dashed lines show instance-of
relationships)

TSWSystem The software system is represented by the «TSWSystem» stereotype. The
stereotype itself does not have any tags and is only included for the identification
of a software system. To ensure that the «TSWSystem» stereotype can be applied to a
class, it extends the abstract «TBudgetElement» stereotype.

Stereotype Base Class Tags

«TSWSystem» Class

Table 6.3 — «TSWSystem» stereotype definition

Layer

Abstract concepts such as layers can be represented in SysML by blocks, because blocks
are meant to represent both concepts and real-world entities. Layers group components
in different levels of abstraction and are therefore important to structure a model. Fur-
thermore, layers have to contain budget information. Either for a layer itself (for instance
when no components have been defined within the layer), or as a summary of the budget
information of its contained components.

42 Software

The way layers are included in the model of this section provides many degrees of free-
dom to the engineer, because they have many of the properties of a component. Instead
of introducing yet another model element with new properties, model element properties
are consistent throughout the system, thus easing the development of systems using the
model.

TLayer A layer is represented by a UML class as well, as illustrated in Figure 6.4. To
denote that a class represents a layer, it is stereotyped as a «TLayer». The stereotype
extends the abstract «TBudgetElement» stereotype and does not have any tags.

Stereotype Base Class Tags

«TLayer» Class

Table 6.4 — «TLayer» stereotype definition

Component

A component is a modular part of a system, which provides some service to the system
and can consist of several other parts (which are components themselves in turn). Just
as with the other model elements, the SysML model element suitable to represent such a
component is the Block.

The UML equivalent of a SysML block is a class, as blocks are in fact classes which
have the «Block» stereotype applied. For this reason, components are represented using
UML classes, which provide all required features. Composition of components can be ac-
complished by the use of the composite pattern, which is applicable to blocks as well as
classes.

The representation of components with classes is illustrated in Figure 6.4. All instances
of the components are placed in the OMG four-layer metamodel hierarchy at level M1.
The exact number of instances of each component is not known until the allocation of the
components to nodes has been specified. This is further discussed in Section 6.6.

TComponent UML Classes that represent Components are stereotyped as «TComponent».
The stereotype extends the «TBudgetElement» stereotype and does not have any tags.

Stereotype Base Class Tags

«TComponent» Class

Table 6.5 — «TComponent» stereotype definition

6.4.2 Example CMS Software Structure Model

An example application of the stereotypes for the software system is shown in Figure 6.5.
The software system consists of three layers: CSCIs, Middleware and BOE. The layers con-
sist of a number of components, however, for illustration purposes only three components
are shown for the layers CSCIs and BOE.

The composition relationships between the model elements all have a standard multi-
plicity of 1. However, just as with the hardware, other values can be specified to introduce
information about the number of instances of a particular model element. For software
however, this will generally never be the case and the exact semantics of such a multiplicity
are not defined for software either. Still, including a multiplicity value other than 1 does
have some effect on the calculation of budgets, as explained in Section 6.5.

System Model Viewpoint 43

<<TSWSystem>>

SoftwareSystem

<<TLayer>>

CSCIs
<<TLayer>>

Middleware
<<TLayer>>

BOE

<<TComponent>>

OS_X

<<TComponent>>

SPLICE_DDS

<<TComponent>>

ShMem

<<TComonent>>

SPLICE

<<TComponent>>

S142

<<TComponent>>

INFRA_APP

<<TComponent>>

SA

<<TComponent>>

ASW_TM

Figure 6.5 — The structural UML model of the software of
the example CMS.

6.5 Budgets
Resources are quantified by budgets, which all have types, units and values. Budgets are
present in all parts of the model of a system, as for both hardware and software budgets
need to be defined. The difference between required and provided budgets is not made
explicitly when designing a system model. Instead, a budget is presumed to be a required
budget when it is part of the software system. Vice versa, a budget is presumed to be a
provided budget when it is part of the hardware system. The distinction between hardware
and software systems is made clear though through application of stereotypes, as described
in Sections 6.3 and 6.4.

6.5.1 Mapping Domain Concepts into UML Equivalents
Budget information needs to be assigned to a variety of model elements. As described in
Sections 6.3 and 6.4, model elements are represented by stereotyped UML classes.

In SysML, the model elements would be represented by blocks, which have a special pre-
defined «values» compartment. A value is a special kind of attribute of the block, which can
be specified in more detail using new blocks. The best way to represent budget information
for a block would be to put it in the «values» compartment.

Values of SysML blocks are essentially UML attributes, so budget information is added
to UML classes by means of attributes. To ease the creation of a model of a system, four
default attributes are available for each model element, representing the four basic budgets
for cpu, memory, storage and networking. To make these budgets available to all model
elements by default, they have been added as tags to the «TBudgetElement» stereotype, the
supertype for all other model elements.

The overview of the TProfile in Figure 6.1 shows the tags of the four budget types. One
tag for the unit of each budget and one tag for each value. The available units for each
budget type are defined by the enumerations. For instance, for the budget of the CPU this

44 Budgets

means that there are two tags: cpuUnit and cpuValue. The complete description of the
stereotype is listed in Table 6.6. For each budget type, an enumeration is defined listing

Stereotype Base Class Tags

«TBudgetElement» Class cpuUnit
cpuValue
memUnit
memValue
storUnit
storValue
netUnit
netValue

Table 6.6 — «TBudgetElement» stereotype definition

the available units. They are listed in Table 6.7.

Enumeration Literals

CpuBudgetUnit MIPS, SPECint
MemBudgetUnit KByte, MByte, GByte
StorBudgetUnit KByte, MByte, GByte
NetBudgetUnit Kbps, Mbps, Gbps

Table 6.7 — TProfile unit enumerations

Four of the eight tags added to the «TBudgetElement» stereotype are for the definition
of the values, four are for the corresponding units. Tags defining values are of the String
type, the tags defining the units are typed by the previously defined enumerations. The
specification of the tags is shown in Table 6.8.

Tag Type Multiplicity Default value

cpuUnit CpuBudgetUnit [0..1] CpuBudgetUnit::MIPS
cpuValue String [0..1] “0”
memUnit MemBudgetUnit [0..1] MemBudgetUnit::MByte
memValue String [0..1] “0”
storUnit StorBudgetUnit [0..1] StorBudgetUnit::MByte
storValue String [0..1] “0”
netUnit NetBudgetUnit [0..1] NetBudgetUnit::Mbps
netValue String [0..1] “0”

Table 6.8 — «TBudgetElement» tag definitions

6.5.2 References
No two names of budgets of a single model element are allowed be equal. This is already
forced by the fact that budgets are modeled as attributes, which are not allowed to have
equal names within a class as well. Furthermore, a name can consist of letters (lowercase
and capital), digits and underscores, but always has to start with a letter. The uniqueness
of a budget name within a model element allows for reference by name.

Referencing a budget from within the model element it contains, can simply be done
by referring to the name of the budget. Consider the memory budget of the INFRA_APP
component. From within this component, it can be referred to by the name mem. To

System Model Viewpoint 45

explicitly refer to the budget with the specified name within the same model element, the
budget name can also be prefixed with this. A reference to the memory budget of the same
model element can thus also be specified as this.mem.

When including a reference to the same budget from another component, the budget
name has to be prefixed with the name of the component. Components of a system are all
in the same namespace and thus need to have unique names throughout the system. A
reference to the memory budget of the INFRA_APP component from another component is
INFRA_APP.mem.

6.5.3 Values

As discussed in Section 5.4.2, budgets have either fixed values, or their values depend on
other budgets. In both cases, the value and unit of a budget are specified using the tags of
the applied stereotype. The tags representing the budget values have the String type, which
means that a reference to some other budget can also be a budget value.

Fixed

In case of a fixed value, it is directly specified in the appropriate tag of the corresponding
stereotype. For example, to set a memory budget of 100 MByte for the SA component, the
value of the tag SA.memValue is set to 100 and the value of the tag SA.memUnit is set to
MemBudgetUnit::MByte.

Dependent

Dependent budget values are budgets that reference other budgets in their definitions.
Referred budgets are either contained by the same model element as the calling budget (a
local reference), or they exist in other model elements (remote reference). Local references
can always be made, as long as the referred budget exists. Remote references require
the existence of a dependency relationship to the model element containing the remote
reference. The remote budget can be referred to by prefixing its name with the name of the
owning model element.

A shorter reference method is available, which does not require the name of a remote
budget to be prefixed with the name of the model element. It can however only be used if
the source model element does not contain a budget with the same name as the referred
budget. In Figure 6.6 for example, a reference from INFRA_APP to S142.avg_overhead can
be made by simply stating avg_overhead. This is only allowed if INFRA_APP itself does not
contain a budget with the name avg_overhead and if no other dependency of INFRA_APP
contains a budget with that name.

An example of dependency relationships is illustrated in Figure 6.6. It shows depen-
dency relationships between the components of the CSCIs layer and the S142 component
of the middleware.

Since budget values have the String type, the basic arithmetic operations of addition,
subtraction, multiplication and division can be used to combine and change budget values.
For a complete and exact specification of the syntax, please refer to Appendix A.

Sum

When no value has been defined for a budget by the engineer, it is derived from the budget
values of the children of the owning model element. If a value has been defined, but the
sum of the budget values of the children is greater, the defined value is overruled by the
summation. The value of the budget thus is the maximum of its own value and the sum of
its children.

46 Budgets

<<TSWSystem>>

SoftwareSystem

<<TLayer>>

CSCIs
<<TLayer>>

Middleware
<<TLayer>>

BOE

<<TComponent>>

OS_X

<<TComponent>>

SPLICE_DDS

<<TComponent>>

ShMem

<<TComonent>>

SPLICE

<<TComponent>>

S142

<<TComponent>>

INFRA_APP

<<TComponent>>

SA

<<TComponent>>

ASW_TM

Figure 6.6 — Example dependency relationships between
the CSCIs and S142 and between S142 and SPLICE.

System Model Viewpoint 47

<<TComponent>>

S142

+desc_part: String = (4+datasort)*(n_prod+n_cons+n_prod_cons)

+cons_part: String = (6+datasort)*(n_cons+n_prod_cons)

+prod_part: String = (6+datasort)*(n_prod+n_prod_cons)

+total_part: String = desc_part+cons_part+prod_part

+avg_overhead: String = total_part * 0.7

<<TComponent>>

INFRA_APP

+n_PA: String = 10

+n_WP: String = 10

+serv_cons_PA: String = 43 MByte

+serv_cons_WP: String = 66 MByte

+n_prod: String = 61

+n_cons: String = 123

+n_prod_cons: String = 47

+total_budget_PA: String = serv_cons_PA+(n_PA*avg_overhead)

+total_budget_WP: String = serv_cons_WP+(n_WP*avg_overhead)

<<TLayer>>

CSCIs
<<TLayer>>

Middleware

<<TSWSystem>>

SoftwareSystem

Figure 6.7 — CMS budget calculation of INFRA_APP com-
ponent. This part of the complete CMS model shows
fixed budgets (INFRA_APP.n_PA) and dependent budgets (IN-
FRA_APP.total_budget_PA).

48 Allocation

6.5.4 Extra Budgets
Besides the budgets that are predefined in the stereotypes, the engineer has the possibility
to introduce extra budgets and parameters. Parameters are also called budgets, which
means that all values are specified using budgets and calculations are only made with
budgets.

In contrast to the predefined budgets, these extra budgets can have, but do not need to
have a type or unit. This means that simple amounts (which do not have a type or unit) can
be specified as well. When a budget without type or unit is combined with a budget with a
type or unit (for example in a multiplication), the resulting budget will always have a type
or unit. Multiplying a memory budget of 100 MByte with a parameter 5 will thus result in
the memory budget of 500 MByte.

New budgets can be added to a model element by adding an attribute to the class rep-
resenting that model element. This is possible for all model elements of hardware and
software.

6.5.5 Example CMS Budgets
To illustrate how budgets are specified for the example CMS, the memory budget calculation
of the INFRA_APP component is shown in Figure 6.7.

The example shows fixed budgets (for instance INFRA_APP.n_PA and INFRA_APP.
serv_cons_PA) and budgets that depend on other budgets within the same model element
(for instance S142.total). It also shows budgets that depend on other budgets of elements
connected by a dependency relationship (for instance INFRA_APP.total_budget_PA).

6.6 Allocation
Allocation is the way to relate a software system to a hardware system. This can be modeled
in several ways. SysML, for instance, provides the possibilities to use a table, matrix,
allocate relationship or even the definition of an allocation in the special predefined block
compartments «allocatedFrom» and «allocatedTo».

Software elements can be allocated to hardware either as a whole or in parts, which
corresponds to simple and complex allocation respectively. Many parts of the model of this
chapter are visually, rather than textually, presented to the engineer. This provides him
with an easily surveyable model of the system. To keep as most parts of the model as
possible represented visually, allocations are also not expressed using text or tables.

6.6.1 Mapping domain concepts into UML equivalents
In UML the allocation specification remains close to its SysML equivalent of an allocation
relationship. Allocating a software model element to a hardware model element is accom-
plished by an association between the two. Since allocation always defines that software
is allocated to hardware and not the reverse, the association is not required to be directed.
However, to distinguish the allocation association relationship from a regular association,
it is stereotyped.

The «allocate» stereotype defines that an association between two model elements is the
allocation of one element to the other. Allocation relationships always have to relate exactly
one software element to exactly one hardware element.

Stereotype Base Class Tags

«allocate» Association

Table 6.9 — «allocate» stereotype definition

System Model Viewpoint 49

The «allocate» stereotype is included in the TProfile. It provides an extension to the
Association metaclass, as shown in Figure 6.1.

6.6.2 Example CMS Allocations
An example of an allocation is depicted in Figure 6.8. It shows the allocation of the CSCIs
layer to the complete hardware system. This is just for illustration purposes, because in the
examle CMS, the CSCIs layer does not need to be allocated to the NRT server. The proper
allocation of the CSCIs layer requires a delegate and is described in Section 6.7.1.

Three allocation relationships are included and together define the allocation of the
CSCIs layer. The sum of the ratios at the CSCIs equals 1.0, denoting that the layer is
completely allocated. However, not all components of the CSCIs are equally allocated, hence
the three allocation relationships.

<<TLayer>>

CSCIs
<<THWSystem>>

HardwareSystem

<<allocate>>

0.20 1.0

<<allocate>>

0.55 0.20

<<allocate>>0.25 0.40

Figure 6.8 — Example allocation in the example CMS of the
CSCIs layer to the hardware system.

6.7 Delegates
The hardware and software structures described in Sections 6.3 and 6.4 define a strict
hierarchy in the hardware and software systems. Grouping concepts such as the hardware
system, software system or layers will always include all of their contained nodes, layers or
components. To provide the engineer with a way to group an arbitrary number of model
elements, the delegate model element is available.

Although the delegate can contain all types of model elements, it should not mix up
elements of hardware and software. Delegates can however contain other delegates, as long
as hardware and software are kept separated.

The delegate is a special model element and has special properties. There are similarities
between a delegate and ‘regular’ model element:

• A delegate can contain other model elements, just like the hardware system, software
system, layer and component model elements.

• A delegate owns the same basic budget types as other model elements. Cpu, mem,
stor and net are always available. Custom budgets can be added to a delegate too.

Besides these similarities, there are some important differences between delegates and
other model elements:

• A delegate is always part of either the software system or the hardware system, no
matter what elements it contains. If the delegate contains software elements, it is part
of the software system. If it contains hardware elements, it is part of the hardware
system.

To include delegates in the model, the TProfile is extended with the additional stereotype
«TDelegate».

50 Packages

Stereotype Base Class Tags

«TDelegate» Class

Table 6.10 — «TDelegate» stereotype definition

An extension is made to the TProfile, thereby including the new «TDelegate» stereotype. It
has to have the basic budget types and therefore extends the «TBudgetElement» stereotype,
as illustrated in Figure 6.1.

Delegates can contain all other model elements, including other delegates, but a delegate
is not allowed to contain itself.

6.7.1 Example CMS Delegates

Instead of allocating the CSCIs layer to the complete hardware system (as described in Sec-
tion 6.6.2), the layer has to be allocated to the Console nodes and the RT node exclusively.
To model this, a delegate is required which groups the Console nodes and the RT node,
but excludes the NRT node. This is illustrated in Figure 6.9. Instead of defining allocation
relationships between the CSCIs and the hardware system, they can be defined between the
CSCIs and the new Console_RT delegate, thus allocating the CSCIs to the Console nodes
and the RT node only.

<<THWSystem>>

HardwareSystem

<<TNode>>

Console

8

<<TNode>>

RT
<<TNode>>

NRT

1 1

<<TDelegate>>

Console_RT

5 1

Figure 6.9 — A delegate in the example CMS

6.8 Packages

For a better overview of large and complex models, model elements can be grouped using
packages. This is especially useful when creating models in RSA, as described in Chapter B.
Large models tend to become complex and hard to survey. Grouping model elements in
packages can reduce cluttering, which improves readability of the model.

System Model Viewpoint 51

6.9 Constraints
Constraints relate required budgets to provided budgets. In SysML, budgets would be de-
fined in the «values» compartment of a block. Constraints on these budgets are defined
using constraint blocks, which contain both the constraint expression and a list of pa-
rameters. The model element representing the application of a constraint block is called
a constraint property and can be included in a parametric diagram. In a parametric dia-
gram, the budget values (represented by blocks containing the fully qualified name of the
budget, recall Figure 3.11) are bound to constraint parameters via the ports owned by the
constraint properties.

6.9.1 Mapping domain concepts into UML equivalents

Since the UML does neither contain a parametric diagram nor constraint blocks, this
method cannot be applied. Instead, the constraints can be defined in two rather differ-
ent ways: by means of a UML activity diagram, or by an extension of the TProfile.

UML Activity Diagram Approach

The functionality provided by a parametric diagram can be imitated by a UML activity dia-
gram. The Call Behavior Action can be considered the UML equivalent of a SysML constraint
block. Input pins can be used to model the parameters of a SysML constraint block and
can be bound to budget values.

Whereas in a parametric diagram, budgets are represented by a block with the fully
qualified name, in UML they can be defined by data stores. By using the fully qualified
name of the budget for the data store, it can represent the corresponding budget. The data
stores can be connected to the input pins of the activities by object flows, thus realizing the
binding of budget values to the parameters of the constraints.

To distinguish an action representing a constraint from a regular action, it is stereo-
typed as «TConstraint». The body of constraint is specified in an attached UML constraint
(essentially a note), as illustrated in Figure 6.10.

<<TConstraint>>
ExampleConstraint

<<datastore>>
CSCIs.mem

<<datastore>>
Console_RT.mem

{CSCIs.mem < Console_RT.mem}

Figure 6.10 — Constraint definition using the UML activity
diagram

Profile Extension Approach

Constraints always define relations between required and provided budgets and do there-
fore reside on the boundary between hardware and software. In fact, only budgets of model
elements that take part in an allocation relationship can be constrained. Constraints can
thus also be specified on the allocation relationships themselves, for instance by means of
extending the «allocate» stereotype with an additional tag.

When multiple allocation relationships are defined between two model elements, con-
straints can be added to any of those relationships. There is no difference between adding a
constraint to one allocation relationship or adding it to another, as long as the relationships
relate the same two model elements.

52 Discussion

Even though the constructs provided by the parametric diagram can be mimicked by the
UML activity diagram, this approach introduces a lot of overhead in defining constraints
and is therefore not preferred. To create the diagram of Figure 6.10, as many as nine
elements have to be created by the engineer (this includes the data stores, constraint,
call behavior action, two input ports and all relationships). An extension of the «allocate»
stereotype, however, only introduces a minimal overhead with respect to the current model.
Section 6.9.2 describes this approach.

6.9.2 TProfile Extension

In order to add constraints to allocation relationships, the «allocate» stereotype (added to
the TProfile profile in Section 6.6) is extended with the constraints tag. This is specified in
Tables 6.11 and 6.12.

Stereotype Base Class Tags

«allocate» Association constraints

Table 6.11 — «allocate» stereotype definition, including con-
straints

Tag Type Multiplicity

constraints String [0..*]

Table 6.12 — «allocate» constraint tag definition

The constraints tag of the «allocate» stereotype is shown in the TProfile of Figure 6.1. If
multiple «allocate» relationships exist between a software element and a hardware element,
the constraints can be placed on any of them. When evaluating the constraints, they are
all processed, no matter on which «allocate» relationship they reside.

6.9.3 Constraint Syntax

Just as budget values, constraints are represented by expressions of the String type. The
syntax of these expressions is similar to the syntax of the expressions for budget values.
The main difference is that a constraint expression always has to have a boolean result, so
it has to yield either true or false. For the exact syntax of constraint expressions, please
refer to Appendix A.

6.10 Discussion
The elements introduced in this chapter mostly follow the concepts of the domain viewpoint.
However, at some points the system model differs from the domain viewpoint. The most
important decisions which have led to the current model are discussed in this section.

6.10.1 Layers

It is easy to see how a software system can be decomposed into a number of components.
Layers are, however, also introduced as model elements and reside in between the software
system element and component elements. In fact, a layer does not add to the functionality
of the system, but only exists as a grouping concept for components providing functionality

System Model Viewpoint 53

at the same level of abstraction. Despite a layer having only the level attribute, it is still
included in the model.

Engineers do have the concept of a layer in mind when designing a system. It is a
powerful tool to ease system design and therefore has to be included in the model. The level
attribute of the layer however, is not included. Levels can be used to define an ordering
of the layers and thereby, implicitly, define restrictions on the communication between
components in those layers. The model described in this chapter has to allow engineers to
experiment with the structure of a system and provide as much freedom in doing this as
possible, while still providing the engineer with a clear picture of the structure. Addition of a
level attribute to a layer does not introduce new possibilities to the engineer, but would only
restrict the freedom of experimentation. Dependency relationships can be used to create
similar constraints on the model, but have far more potential.

The addition of budget information to a layer does improve the model, because it enables
the engineer to treat a layer similar to any other component and design a system at a very
high level (i.e. the level where a single layer can exist without any contained components).

6.10.2 Delegates

A delegate is not an element of the domain viewpoint, but is important in the system model.
When allocating software to hardware, the domain model simply states that it is possible
to allocate every software element or collection of elements to any hardware element or
collection of elements. To implement this, the delegate is required as an additional model
element in the system model viewpoint.

The delegate is required when an allocation is to be defined of other than default col-
lections of elements. A layer can for example be looked upon as a default collection of all
components it contains. Also, the hardware system is the default collection of all nodes it
contains.

To allocate some software components to a subset of all nodes, the structure of the
hardware model is not to be changed. Instead, a delegate element is used to delegate
the allocation of the software components to the designated hardware nodes. Since, in
contrast to nodes being parts of the hardware system, they are not part of the delegate
element, relationships between the delegate and elements are directed associations instead
of composition relationships.

6.10.3 Objects

All parts of the model presented in this chapter are defined at level M1 of the OMG meta-
model hierarchy, whereas one would expect to find elements (objects) at level M0 as well.
After all, the model has to be a reflection of the real world and should define instances of
the classes of level M1. The main reason for this is, again, the RSA tool, which has no
proper implementation of UML objects. Class Instances, the UML objects in RSA, have no
connection with the classes they instantiate. Attributes of a class are not known by the
instance of that class, which means that no specific values can be set for those attributes
either. Including class instances in the model does not contribute to the ease of use of the
model, because of this deficiency in RSA. They are therefore not included.

Multiplicities at composition relationships provide a means to fill this void. The inter-
pretation of a multiplicity of x at a composition relationship is that for every instance of
the parent, x instances of the child exist in reality (at level M0). Since a hardware system
is usually only instantiated once, the multiplicities at the nodes do define the number of
instances of those nodes in the real world.

Multiplicities can also be specified in the structural model of the software, where they
have the same consequences as in the hardware model. Even more important than with the
hardware system is the question whether a software model element will ever be instantiated
more than once with respect to its parent. The option remains available due to the similar

54 Discussion

implementation of the hardware model and the software model, but is just not likely to ever
be used.

6.10.4 Constraints
The implementation of most domain concepts in UML is almost identical to the SysML im-
plementation. Especially the implementation of the structure closely resembles the SysML
approach, since SysML blocks are essentially UML classes. In SysML, constraints would
be implemented using constraint blocks and parametric diagrams, which are both new
concepts of SysML.

The UML diagram which resembles the SysML constraint blocks and parametric dia-
grams closest is the activity diagram. With it, the same modeling constructs can be accom-
plished, namely binding attribute values to formal parameters of constraints. A drawback
of this approach is that it requires a large amount of UML elements for each constraint.
Whereas in SysML a constraint can be modeled by a single constraint block, the activity
diagram approach in UML would require a CallBehaviorAction and an input pin for each
parameter of the constraint. Furthermore, the expression representing the constraint can-
not be included in the CallBehaviorAction, but would have to be specified in a separate UML
constraint.

The close resemblance of the activity diagram approach to the use of SysML constraint
blocks does not make up for the complexity of creating such a model. It is for this reason
that constraints are part of allocation relationships.

Chapter 7

Tool Support

This chapter describes the requirements of the System Verifier Tool (referred to as the
tool in this chapter) supporting the creation of the UML model described in Chapter 6.
Subsequently, the implementation of the tool itself is discussed in detail. With our own
expression-based language, created using the parser generator ANTLR, budget values and
constraints can easily be expressed and evaluated.

7.1 Rational Software Architect
The Integrated Development Environment (IDE) Rational Software Architect is built by IBM
as a set of plugins for the Eclipse platform and provides the same basic functionality as
Eclipse. RSA adds a number of extra features, of which the most important one consists
of the visual creation of UML models. UML 2.0 is largely supported, including the profiling
extension mechanism.

7.1.1 UML Modeling
RSA applies the Model-View-Controller (MVC, [4]) pattern in its UML modeling functionality.
The distinction between the model and the views on this model is especially important when
creating a UML model.

The model part of the MVC implementation is realized by the UML2 package [31] and
provides a representation of a UML model in Java classes. This is available to all versions of
Eclipse, also to the non-IBM implementations. RSA provides a view and controller for UML
models, which, among other things, distinguishes it from the standard version of Eclipse.

7.2 Tool Purpose
The main purpose of the tool is to support systems engineers in the initial design of a
system, consisting of software and hardware. To get an early indication of whether the
hardware can provide enough resources to the software, the tool helps the engineers with
the following four tasks:

1. Visual creation of a UML model of a system, consisting of both hardware and software
and of allocations.

2. Specification of required and provided budgets, budget values and budget dependen-
cies.

3. Specification of constraints on the budgets.

56 Requirements

4. Automatic verification of the specified constraints.

An implementation of the model by the tool ensures that these tasks can be performed.
The model of a complete system consists of a hardware model and a software model, con-
nected by allocation relationships. This is necessary to complete task 1. These models
are enhanced with budget information (task 2) and constraints are defined on the budgets
(task 3). Finally, the tool provides for an automatic verification mechanism to verify the
constraints (task 4).

The basic functionality required for completing the first task is already provided by RSA,
because it supports the visual creation of UML models. The additional value of the tool
described in this chapter is that it makes the TProfile available, which allows the engineers
to describe systems according to the model described in the previous chapters. The profile
is also required for tasks two and three. The functionality to complete the fourth task is
completely provided by the tool.

7.3 Requirements
For the tool to meet its stated purpose, several requirements have to be fulfilled. The first,
important requirement is the following:

Requirement 1 The tool has to integrate with RSA.

For the creation of UML models, engineers use Rational Software Architect. Because the
engineers are already used to working with RSA, extension of the IDE reduces the barrier
to start using the tool.

Since RSA is Eclipse-based, it can easily be extended by means of plugins [3]. A big
advantage of developing the tool as an RSA plugin is that it can easily be integrated with
existing installations, so no additional software needs to be installed.

Requirement 2 The tool has to provide support for visual design of a structural model of a
system.

Eclipse plugins have access to almost all parts of the Eclipse framework and other installed
plugins. The visual UML modeling functionality, as well as the underlying UML 2.0 imple-
mentation [31], integrated into RSA can be accessed as well by custom plugins.

To support UML extensions, RSA provides the option to create custom UML profiles.
These profiles can be applied to UML models, so the stereotypes defined in a profile can be
applied to the elements of the model. Profiles can be bundled with a plugin, thus simplifying
distribution of the profile. The model created in Chapter 6 is a UML model with an applied
profile and can thus be created in RSA.

The combination of basic RSA UML modeling functionality and the introduction of a
UML profile is sufficient to support visual design of a structural model of a system.

Requirement 3 Created UML system models have to be annotated with budget information.

The models created to represent the system’s structure need to contain budget information.
This information can be added in several ways, but since some standard budget types are
always present (such as CPU, memory, storage and networking), tags are a good way to
accomplish this.

A stereotypes can contain an arbitrary number of tags. The stereotype presented in
Chapter 6 does contain the tags for these budget types. Applying the stereotype to a UML
model element in RSA automatically makes the associated tags available for that model
element.

Whereas tags are the attributes of a stereotype, classes can still contain other attributes
themselves. Extra budget information can easily be added by introducing new attributes

Tool Support 57

to a class. This is all standard UML notation and is supported by the UML modeling
capabilities of RSA.

Budget information has to be provided by the engineers. Correctness of this information
is not checked by the tool and has to be ensured by the engineers.

Requirement 4 The tool has to evaluate constraints automatically.

Constraints are specified as tags of «allocate» relationships and consist of expressions re-
ferring to budgets of the model elements related by the allocation. To evaluate a constraint
and return a boolean result, the tool has to be able to parse and interpret an expression
and calculate the value of referenced budgets. The parser generator ANTLR is used for this
purpose [29].

Just as budget information, constraints have to be provided by the engineers, who have
to ensure their correctness.

7.4 Use Cases

There are four basic tasks an engineer should be able to perform with the tool. They are
derived directly from the purpose description of the tool, as illustrated in Figure 7.1.

Engineer

model the
system

model the
software

model the
hardware

model the
allocation

<<include>>

<<include>>

<<include>>

add budget
information

add constraints

verify the
constraints

System Verifier Tool

Figure 7.1 — Use cases for the System Verifier Tool

The model the system use case consists of three use cases, which correspond to the
sub-models of a system: software, hardware and allocation.

7.5 Implementation

The tool is implemented as two separate Eclipse plugins, ModelStructure and SystemVerifier.
The implementation of both is discussed in the sections below.

58 Implementation

7.5.1 ModelStructure plugin
The ModelStructure plugin basically reads a UML model created in RSA and constructs
a corresponding Java model. Whereas the UML model consists of stereotyped classes,
attributes, tags and relationships, the Java model consists of Java classes with attributes.

The Java classes of the ModelStructure plugin are arranged into four packages, all pre-
fixed with com.thales: modelStructure, modelStructure.expression, modelStructure.model
and modelStructure.structure. These packages are discussed in the sections below.

modelStructure

The com.thales.modelStructure package contains the basic classes of the plugin. It is
shown in Figure 7.2

com.thales.modelStructure

com.thales.modelStructure.model

com.thales.modelStructure.expression

com.thales.modelStructure.structure

Constants
+getString(key:String): String

<<interface>>
IParserErrorReporter

+reportError(error:String): void
+reportError(error:RecognitionException,
 message:String): void

ModelStructurePlugin

Figure 7.2 — modelStructure package

• ModelStructurePlugin This is the base class of the plugin which extends the Eclipse
Plugin class. Plugin is the abstract superclass of all plugin runtime class implemen-
tations. The class overrides the plugin’s lifecycle methods start(BundleContext)
and stop(BundleContext) [8].

• Constants The Constants class extracts all String constants from the classes of
this plugin, so they can be used uniformly. This is especially useful for names of
stereotypes and tags, because they are stored in one place only.

As shown in Figure 7.2, the class only contains the getString(key:String) method
which is used to retrieve the String corresponding to the provided key from the
constants.properties file. This properties file contains a number of key=value
pairs and eases the task of changing the names of stereotypes when necessary.

• IParserErrorReporter Classes implementing this interface have to implement its two
methods for error reporting.

Tool Support 59

modelStructure.expression

The modelStructure.expression package contains classes generated by the parser gen-
erator ANTLR [29]. The expressions specified as values of budgets need to be parsed and
interpreted to determine their values. Parsing and interpretation are both performed by
classes generated by ANTLR.

ANTLR first creates an abstract syntax tree (AST) of the input, based on the definition
of the grammar in the parser.g file. The interpreter of the interpreter.g file specifies a
treewalker for the AST created by the parser.

• parser.g Both a lexer and a parser are defined in this file. The lexer reads the input
and converts it into tokens. The parser creates an AST based on these tokens. The
grammars of the lexer and parser are listed in Appendix A.

• interpreter.g The interpreter is defined in this file as a treewalker. The grammar is
listed in Appendix A.

Compiling the .g ANTLR source files results in a number of files to be created by ANTLR. The
most important ones are the Java source files containing the lexer, parser and interpreter
that can actually be compiled by the Java compiler.

modelStructure.model

This package contains classes that are required to produce a model of Java objects from
a UML model created in RSA. The allocations are contained in this package, as well as
budgets.

• Allocation This class represents all allocation relationships between exactly two
model elements, so it contains exactly one source and one target element. Further-
more, it keeps track of the ratios at all relationships and the constraints specified
on those relationships. Based on the ratios, the allocation factor can be calculated,
defining the contribution of the source element budgets to the target element.

• AllocationModel The AllocationModel contains all allocations and provides the func-
tionality to compact allocation relationships between the same source and target el-
ements. Compactification ensures that at most one Allocation instance remains per
source – target element pair.

• Budget Each element has a budget, represented by this class. A budget has several
properties, such as a name, value and unit and provides functions to calculate the
value of the budget.

• SystemModel The SystemModel is the encompassing class, containing all informa-
tion about the model, such as the structural model and allocations.

• UMLModelParser This is the main class for parsing UML models created in RSA. It
takes a UML model (org.eclipse.uml2.impl.ModelImpl) as input and produces a
SystemModel, containing all required properties of the UML model.

modelStructure.structure

All Java representations of model elements are contained in this package. BudgetElement
is the abstract base class for all model element classes, as shown in Figure 7.3.

• BasicComponent Class representing a component without any children. Part of the
composite pattern.

• Component Base class for components and part of the composite pattern.

60 Implementation

• CompositeComponent Class representing a component with children (other compo-
nents). Also part of the composite pattern.

• Delegate Class representing a delegate. The class can only be owned by either a
SoftwareModel or a HardwareModel element, depending on the contained elements.

• HardwareModel The base class for a hardware model. Instances of this class contain
Nodes and Delegates.

• Layer Class representing a layer.

• BudgetElement Base class for all model elements. This class provides all basic
functionality for a model element and contains all common properties, such as a
name and a list of children.

• Node The class representing a node in the hardware system.

• SoftwareModel The encompassing class for a software model. It contains a number
of layers and, possibly, delegates.

com.thales.modelStructure.structure

BudgetElement

+name: String

+multiplicity: int

+budgets: ArrayList<Budget>

+getChildren(): HashMap<ModelElement,Integer>

+getInstances(): int

+getDependencies(): ArrayList

+getBudgets(): ArrayList<Budget>

+parent

1

+children

*

HardwareSystem Node SoftwareSystemLayerComponent

BasicComponent CompositeComponent

Delegate

Budget

+name: String

+body: String

+unit: int

*

Figure 7.3 — modelStructure.structure package

The stereotypes of all model elements inherit from the common abstract stereotype
«TBudgetElement». This abstract stereotype is reflected by the BudgetElement Java class.
All other classes, representing the hardware and software systems, nodes, layers and com-
ponents, are subclasses of the BudgetElement class. The Delegates have similar properties
and also inherit from BudgetElement.

7.5.2 SystemVerifier plugin
Whereas the ModelStructure plugin is concerned with parsing UML models and creating a
corresponding structure in Java classes, the SystemVerifier plugin uses the ModelStructure
plugin to verify the associated constraints and display the results in a dedicated view.

Tool Support 61

This plugin thus consists of two main packages: systemVerifier.engine, an engine
for the verification of constraints and systemVerifier.views, an eclipse extension provid-
ing a view for displaying the verification results. Furthermore, it contains the main class of
the plugin.

• SystemVerifierPlugin Similarly to the ModelStructurePlugin class, the SystemVer-
ifierPlugin extends the Eclipse Plugin class. Extending this class makes the Sys-
temVerifierPlugin a true Eclipse plugin.

systemVerifier.engine

Just like the calculation of budget expressions, constraint expressions need to be parsed
and interpreted in order to evaluate them. Again, the ANTLR parser generator is used to
create a lexer, parser and interpreter for the constraint expressions.

The ANTLR specifications of the parser and interpreter are also named parser.g and
interpreter.g and closely resemble the specifications for the budget parser and inter-
preter. Their additional value is the addition of boolean operators. Furthermore, whereas
the interpreter for budget expressions returns a numerical value, the interpreter for con-
straints returns a boolean value, indicating whether the constraint has been satisfied (true)
or not (false).

Besides the classes generated by ANTLR, the verification engine consists of two more
classes.

• VerificationResult The result of the evaluation of a constraint is stored in an in-
stance of the VerificationResult class. Such a result naturally contains the boolean
result value of the constraint, but also the values of the variables of the constraint
expression. Displaying these values besides the result of the evaluation greatly eases
the process of debugging a system when a constraint evaluates to false.

• VerifierEngine The VerifierEngine retrieves all constraints from the model created by
the ModelStructure plugin and feeds them to the parser and interpreter. Interpreta-
tion yields one VerificationResult per constraint, which are stored in the VerifierEngine
class to be retrieved by a view and displayed to the engineer.

systemVerifier.views

The views package contains the following classes, which create the view and ensure that
the proper information is displayed. A View is a vital part of the Eclipse framework and
consists of a frame within the IDE which can contain any kind of information. Information
is provided to the view via an implementation of the MVC pattern in Eclipse.

• ConstraintTreeContentProvider The content provider for the table showing the con-
straints and variable values. The class gets an object as input and returns an array
of objects to be shown in the table. These are the top-level objects. Furthermore, the
class defines the children to be shown for each object.

• ConstraintTreeLabelProvider The label provider defines what needs to be shown for
each object in the table of constraints. Depending on the colomn, this class defines
the text to be shown in the corresponding table cell.

• StructureTreeContentProvider This class is the content provider for the table show-
ing the structure of the model and all budgets. It defines that the hardware model and
the software model elements are to be shown as the top-level elements in the table
and uses the structure to derive the children of those elements.

• StructureTreeLabelProvider The label provider for the structure table defines what
needs to be put in the cells of the table. Depending on the column, this class produces
the text to be shown in the table.

62 Implementation

• StructureTreeSorter Elements in the structure table are sorted alphabetically in an
ascending order by default. This class ensures that the elements appear in a sorted
order in the table.

• SystemVerifierView The main class for the view. This class extends the Eclipse
ViewPart class, which is required for any view. Furthermore, it implements the
IParserErrorReporter interface, allowing it to receive error messages from the UML
parser. The SystemVerifierView creates all parts of the view, as shown in Figure 7.4.

The view consists of four parts. The list on the top-left of the view shows all opened
UML models. Figure 7.4 shows that two models are open in RSA: Blank Model and
Blank Model1.

The table on the top-right of the view shows the structure of the UML model and
assigned budgets. The background of a row is colored according to the decomposition
hierarchy level of the model element it contains. A darker background implies a higher
level in the decomposition hierarchy. The background of a row can also be colored
orange. An orange row indicates a warning to the engineer that one of the budgets of
the corresponding model element is smaller than the sum of its children. The larger
summation of the children’s budgets is used as the budget for the model element
instead of the budget defined for that model element.

The table on the bottom-right of the view shows all constraints and their contained
variables. The background of each constraint is either colored red or green, depend-
ing on the result of the evaluation. Values of the variables are shown below the
constraints.

The button on the bottom-left of the view causes the entire view to be refreshed. The
list of open UML models is refreshed, the selected UML model is parsed and budgets
are recalculated. All constraints are evaluated and evaluation results are shown in
the view.

Figure 7.4 — System Verifier View

Chapter 8

Conclusion

This chapter concludes the thesis. The achieved results are discussed briefly and evaluated.
Finally, a brief discussion on related work and future work is given.

8.1 Evaluation
The main objective of this research was to develop a method for specifying and verifying
performance budgets in an early design phase for software intensive systems. To solve this
problem, the following three parts of the problem statement have been fulfilled.

Definition of a method for the specification of performance budgets.

To specify performance budgets for a system, it is generally required that a model of the
system exists to which this information can be added. The UML model we have developed
can be used to define the structure of the example combat management system, but also of
other systems exhibiting a similar structural hierarchy. All basic elements of a system (Soft-
wareSystem, Layer, Component for software and HardwareSystem and Node for hardware)
are available as UML stereotypes.

With our model performance budgets can be added to all elements of the created struc-
tural description of a system. Budgets denote the amount of resources offered by hardware
or demanded by software. The four budget types CPU, memory, storage and networking are
by default available for all model elements. An unlimited number of additional budgets and
parameters can however be defined for each element of the model of a system.

Budgets are not required to have fixed values, but can depend on other budgets. A
budget is dependent when its value is not a constant, but contains a reference to another
budget. Dependencies between components can thus be specified using dependent budgets.
Values of budgets are specified using our own expression-based language.

The division of a software system into layers and components is widely applied nowa-
days, making the model we have developed applicable to a wide range of systems.

Creation of a system independent framework for the expression of constraints to verify per-
formance budgets.

Constraints define restrictions on the resource utilization. To define in our model which
software parts run on which hardware parts, allocation relationships can be defined be-
tween any pair of a software element and a hardware element. It is on these allocation
relationships where resource utilization is defined, because they relate software to hard-
ware. The relations between budgets of software and hardware, the constraints, are thus
best specified on these allocation relationships.

63

64 Discussion

In our model, constraints are independent of a hardware or software system, because
they can be specified on every allocation relationship to relate any pair of budgets. Since
allocation relationships can be defined for every combination of a software element and
a hardware element, constraints can cover the complete boundary between software and
hardware. Budgets of all types can be constrained, thus providing engineers with maximum
freedom. Just as budgets, constraints are specified using our expression-based language,
which allows the application of all basic arithmetic and logic operations.

Development of an engine which calculates the resource utilization of a system.

The described model has been created as a set of UML stereotypes, which are packaged in
the TProfile UML profile. This profile has been implemented in RSA and, when applied, pro-
vides engineers with all model elements required to create a structural model of a system,
add budget information and define allocation relationships and constraints.

The System Verifier Tool has been developed as a plugin for RSA and integrates with the
IDE. It contains the TProfile and can read the models of systems created using the TProfile
by extracting all relevant information. The System Verifier Tool calculates budget values,
which depend on the allocation relationships. It does this by using the parser generator
ANTLR, which builds an abstract syntax tree of an expression and evaluates it using the
tree. Subsequently, constraints are parsed and evaluated, using ANTLR as well, and the
result of each constraint is displayed.

Resource utilization is calculated by our System Verifier Tool when budget values are
calculated. Combined with the allocation relationships, the budget values themselves define
the resource utilization for a system. Evaluation of constraints presents engineers with
additional information and allows them to experiment with budget values (hence resource
utilization as well) and restrictions.

8.2 Discussion

Although the application of our method method can help Thales’ engineers to determine
whether a complex software system fits on a distributed hardware system, it cannot replace
the knowledge and experience of systems engineers. The developed System Verifier Tool
aids engineers in determining resource utilization in an early development phase, but still
requires the input of budget information and constraints. These are not always exactly
known and sometimes have to be estimated. The quality of estimations, as well as the
correctness of the structural model of a system, relies on the knowledge and experience of
engineers and is not verified by the tool. The System Verifier Tool can however be used to
evaluate a number of different structures, budget values and constraints and thus support
the estimations in an early development phase.

The model created during the research presented in this thesis has been developed
to capture properties of combat management systems, but can be used for other kinds
of systems as well. The hierarchical structure of software and the distributed nature of
the hardware system are not unique to combat management systems, but also fit other
types of systems. The System Verifier Tool can therefore be used to evaluate performance
properties of those systems as well and thus not only provides a contribution to the systems
development process of Thales, but to systems performance research in general.

The use of SysML as a basis for our model eases the process of integrating this model into
the systems development process. The UML model closely resembles its SysML counterpart
and can easily be converted to SysML. However, this is not feasible without proper support
for SysML in RSA. Existing support for UML in RSA is better, but not perfect, which is why
objects cannot be used. This imperfect support is however also taken advantage of, because
it makes the use of Real values for association multiplicities possible.

Conclusion 65

Originally, constraints were to be specified using OCL. This idea was not implemented
because of the same reason SysML was not used; the lack of support in RSA. The current
implementation which makes use of ANTLR generated parsers and interpreters is not easily
replaced by an implementation which makes use of OCL. An advantage of our approach
is that every syntactical construction is possible, because it can be defined in the ANTLR
source files. Inclusion of OCL would however introduce a standardized syntax and integrate
easily with UML models.

8.3 Related Work

Most research on performance engineering focuses on process scheduling, communication
latencies, response times and throughput measurements. A lot of effort is put into stan-
dardizing these types of performance evaluation, for instance by means of the SPE research
by Smith et al. [34, 35, 36] and by the SPT profile of the OMG [24].

The methods proposed by those research areas can only be applied when the structure
of hardware and software has already been defined. If application of our method already in-
dicates that a hardware system cannot provide enough resources for a software system, it is
pointless to apply more fine-grained performance engineering methods such as throughput
measurements, because it is very likely that they will indicate that the system performance
is unsatisfactory. Application of those methods does not make sense, when the System
Verifier Tool already indicates that the resource demands a software system imposes on a
hardware system are too large.

The research reported in this thesis focuses on performance engineering in an earlier
phase of systems development than the above mentioned research. Also, it is not about the
dynamic behavior of software, but about the static structure of software and relations to the
hardware it runs on. The main contribution of this research, not only to Thales, but also
to the research area of performance evaluation, is therefore that the presented method can
already be applied from the moment the first system decomposition specification is being
made and one can continue apply the method until the system structure is satisfactory.

8.4 Future Work

This research covers the first of three performance engineering steps for Thales. The fol-
lowing step is concerned with determining the most important functional flows in a system
and checking quality of service aspects of systems. The System Verifier Tool built during
this research can be used as a basis for tool support of the future work. Special attention
should be paid to the following aspects of this research:

Budgets as Classes

Currently, budget information is expressed by means of attributes of the classes represent-
ing the model elements. Default budgets are introduced by the tags of applied stereotypes.
Even though this allows engineers to express a variety of budgets and other information,
adding extra information to a budget is not easily done. Representation of budgets by
classes would give the model an extra degree of freedom, because extra budget information
can be added easily. This is illustrated in Figure 8.1.

An advantage of representing a budget by an attribute is that it reduces the size of a
model. Adding an extra instance for each new budget takes up space in the model and can
make it overly complex. The System Verifier Tool however, does implement a budget as a
Java class. Changing the model to include UML classes for budgets as well will therefore
have little consequence for the implementation of the system verifier.

66 Future Work

SoftwareSystem

CSCIs Middleware BOE

Budget

+type = mem

+value = 2

+unit = GByte

Budget

+type = mem

+value = 500

+unit = MByte

Budget

+type = mem

+value = 700

+unit = MByte

Figure 8.1 — Budgets represented by class instances.

Allocation Relationship Dependencies

Allocation relationships are independent of each other. This is not always desirable, be-
cause allocation relationships influence the values of budgets. Consider a budget of a soft-
ware component which is allocated to a hardware node and the complete software system
which is allocated to the hardware system, as illustrated in Figure 8.2.

SoftwareSystem

+budget1

CSCIs

INFRA_APP

+budget2

HardwareSystem

Console

8

<<allocate>>

<<allocate>>

Figure 8.2 — Allocation dependency influences budget val-
ues.

The contribution of budget2 is determined by the bottom allocation relationship. The
value of budget1, which depends on budget2, does currently not use the value of budget2
as influenced by the allocation relationship, but the original value which was specified by
the engineer.

It is recommended that such a dependency will be implemented in a continuation of this
research, because it is more intuitive to the user of the System Verifier Tool.

Conclusion 67

SysML

The UML models of systems presented in this thesis are all based on SysML models. The
only reason to use the UML is the lack of support for SysML in RSA. However, the final
version of SysML has only recently been released, so tool support is likely to improve.

With better tool support for SysML, it is not difficult to convert the presented UML
models to SysML models. The structure of software and hardware system is expressed by
class diagrams, which correspond directly to SysML block definition diagrams. Budgets can
be expressed in specialized compartments of these blocks and allocation can, just as with
the UML, be expressed by allocation relationships. Only constraints are best expressed
differently in SysML, because SysML introduces constraint blocks and the corresponding
parametric diagram, which are well suited to define constraints. SysML constraint blocks
support custom languages, so the expression-based language we have defined can still be
used.

The System Verifier Tool does not require many changes as well. Only the parser, which
constructs a Java based model from a UML model, needs to be modified to take SysML
models as input.

Altogether, a shift from UML to SysML can be done rather easily. SysML can improve
communication, because it supports the modeling of software as well as hardware and
more. If possible, when the presented research is continued, we recommend to take SysML
into consideration.

A lot of research has already been done regarding functional flows and quality of service
aspects of systems. Especially the SPE research of Smith et al. [34, 35, 36] is likely to be
a very interesting source of information for Thales. However, if application of the method
presented in this research indicates that the performance of a system is unsatisfactory,
evaluation of performance properties such as latencies and throughput is less likely to
succeed.

Bibliography

[1] Alain Abran and James W. Moore. SWEBOK, Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society Professional Practices Committee, 2004.

[2] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, 1981.

[3] Azad Bolour. Notes on the Eclipse Plug-in Architecture. Bolour Computing, July 2003.
Eclipse Corner Article.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented software architecture. A system of patterns. John Wiley & Sons
Ltd., Chichester, England, July 2001.

[5] R. Byrne. Managing Complexity: An Approach to Net-Centric Ops. presentation,
September 2005. MITRE Corporation.

[6] Phillippe Desfray. UML Profiles versus Metamodel extensions: An ongoing debate.
http://www.softeam.fr, 2000. Softeam.

[7] The Eclipse project. http://www.eclipse.org, 2006.

[8] Eclipse Platform API Specification. Release 3.0.

[9] EmbeddedPlus Engineering, LLC. SysML Toolkit for the IBM Rational Software Devel-
opment Platform (RSDP). http://www.embeddedplus.com, 2006.

[10] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous & Prac-
tical Approach. PWS Publishing Company, Boston, second edition, 1997.

[11] Sanford Friedenthal, Alan Moore, and Rick Steiner. OMG Systems Modeling Language
Tutorial. INternational COuncil on Systems Engineering (INCOSE), July 2006.

[12] J.H. van ‘t Hag. “Data-centric to the Max”, The SPLICE architecture experience. Thales
Naval Nederland, February 2003.

[13] Cecilia Haskins, editor. Systems Engineering Handbook. Number TP-2003-002-03 in
INCOSE. International Council on Systems Engineering (INCOSE), June 2006. Version
3.

[14] Ivo ter Horst. DESIDE, DEcision-support using System sImulation in a Design Envi-
ronment. Internship report, University of Twente and Thales Naval Nederland, May
2006.

[15] IBM. Rational Software Architect. http://www.ibm.com/software/awdtools/
architect/swarchitect/, 2006.

[16] International Organization for Standardization. Software engineering - Product quality
- Part 1: Quality model. ISO/IEC standard 9126-1, ISO/IEC, 2001. http://www.iso.
org.

69

http://www.softeam.fr
http://www.eclipse.org
http://www.embeddedplus.com
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.iso.org
http://www.iso.org

70 BIBLIOGRAPHY

[17] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. object technology series.
Addison-Wesley, April 2003.

[18] Timothy C. Lethbridge and Robert Laganière. Object-Oriented Software Engineering.
McGraw-Hill, 2001.

[19] Object Management Group (OMG). http://www.omg.org.

[20] Klasse Objecten. OCTOPUS: OCL Tool for Precise Uml Specifications. http://www.
klasse.nl/octopus, 2006.

[21] OMG. MDA Guide. version 1.0.1 omg/2003-06-01, Object Management Group, June
2003.

[22] OMG. Data Distribution Service for Real-Time Systems Specification. Technical Report
formal/05-12-04, Object Management Group, December 2005.

[23] OMG. OCL 2.0 Specification. Technical Report ptc/2005-06-06, Object Management
Group, June 2005.

[24] OMG. UML Profile for Schedulability, Performance, and Time Specification. version
1.1 formal/05-01-02, Object Management Group, January 2005.

[25] OMG. Unified Modeling Language: Superstructure. version 2.0 formal/05-07-04,
Object Management Group, August 2005.

[26] OMG. Meta Object Facility (MOF) Core Specification. version 2.0 formal/06-01-01,
Object Management Group, January 2006.

[27] OMG. Systems Modeling Language (SysML) Specification. Final Adopted Specification
ptc/06-05-04, Object Management Group, May 2006.

[28] OMG. Unified Modeling Language: Infrastructure. version 2.0 formal/05-07-05, Object
Management Group, March 2006.

[29] Terence Parr. ANTLR, ANother Tool for Language Recognition. http://www.antlr.
org, 2006.

[30] Jorge Enrique Pérez-Martínez. Heavyweight extensions to the uml metamodel to de-
scribe the c3 architectural style. SIGSOFT Softw. Eng. Notes, 28(3):5–5, 2003.

[31] The Eclipse project. UML2 UML. http://www.eclipse.org/uml2/?project=uml2#
uml2, 2006.

[32] David S. Rosenblum. Lightweight Extension Mechanisms for UML. Lecture notes
Advanced Analysis and Design (GS02/4022), 2005. University College London.

[33] Community site for metamodeling and semantic modeling. What is metamodeling, and
what is it good for? http://www.metamodel.com, September 2006.

[34] Connie U. Smith. Origins of Software Performance Engineering: Highlights and Out-
standing Problems. In R. Dumke et al., editor, Performance Engineering, LNCS 2047,
pages 96–118. Springer-Verlag, Berlin Heidelberg, 2001.

[35] Connie U. Smith and Lloyd G. Williams. Software Performance Engineering. In Luciano
Lavagno, Grant Martin, and Bran Selic, editors, UML for Real: Design of Embedded
Real-Time Systems. Kluwer, 2003.

[36] Connie U. Smith and Murray Woodside. Performance Validation at Early Stages of
Software Development. In E. Gelenbe, editor, System Performance Evaluation: Method-
ologies and Applications. CRC Press, 1999.

[37] Standard Performance Evaluation Corporation. http://www.spec.org, 2006.

http://www.omg.org
http://www.klasse.nl/octopus
http://www.klasse.nl/octopus
http://www.antlr.org
http://www.antlr.org
http://www.eclipse.org/uml2/?project=uml2#uml2
http://www.eclipse.org/uml2/?project=uml2#uml2
http://www.metamodel.com
http://www.spec.org

List of Figures

1.1 The Combat Management System in its domain 2

2.1 OMG four-layer metamodel hierarchy . 9
2.2 The layers pattern . 11
2.3 The composite pattern . 11

3.1 Definition of a new stereotype with a tag . 14
3.2 SysML diagram taxonomy . 16
3.3 SysML block . 16
3.4 SysML block definition diagram . 17
3.5 SysML standard port with interfaces . 17
3.6 SysML flow ports with interfaces . 18
3.7 SysML item flow specification . 18
3.8 SysML ValueType definition . 18
3.9 SysML constraint block . 19
3.10 SysML internal block diagram . 19
3.11 SysML parametric diagram . 20
3.12 SysML allocation relation . 21

4.1 The three layers of the example CMS software system 24

5.1 CMS domain overview . 28
5.2 Hardware system domain model . 28
5.3 Software system domain model . 29
5.4 Simple allocation 1 . 33
5.5 Simple allocation 2 . 33
5.6 Complex allocation . 34
5.7 Multiple allocation relationships between two model elements. 35

6.1 The complete TProfile . 38
6.2 Hardware model elements placed in the OMG metamodel hierarchy 39
6.3 Example CMS structural UML hardware model 40
6.4 Software model elements placed in the OMG metamodel hierarchy 41
6.5 Example CMS structural UML software model 43
6.6 Example dependency relationship . 46
6.7 CMS budget calculation of INFRA_APP component. 47
6.8 CMS example allocation . 49
6.9 A delegate in the example CMS . 50
6.10 Constraint definition using the UML activity diagram 51

7.1 Use cases for the System Verifier Tool . 57
7.2 modelStructure package . 58
7.3 modelStructure.structure package . 60

71

72 LIST OF FIGURES

7.4 System Verifier View . 62

8.1 Budgets represented by class instances. 66
8.2 Allocation dependency influences budget values. 66

B.1 Create a new UML model . 79
B.2 Create a new UML model element . 80
B.3 Create a new sub-element . 81
B.4 Change association multiplicities . 81
B.5 Delete association name from diagram . 82
B.6 Create new delegate . 83
B.7 Create new package . 84
B.8 Create new diagram . 85
B.9 Create software model . 86
B.10 Stereotype budget values . 87
B.11 Attribute budget values . 88
B.12 Show System Verifier View (1/2) . 89
B.13 Show System Verifier View (2/2) . 90
B.14 Show budget values in the System Verifier View 90
B.15 New dependency . 91
B.16 New allocations . 92
B.17 Create new constraint (1/2) . 93
B.18 Create new constraint (2/2) . 94
B.19 View constraint evaluation results . 95

List of Tables

3.1 Simple allocation using a tabular format. 20
3.2 Allocation using a matrix format. 21

6.1 «THWSystem» stereotype definition . 39
6.2 «TNode» stereotype definition . 40
6.3 «TSWSystem» stereotype definition . 41
6.4 «TLayer» stereotype definition . 42
6.5 «TComponent» stereotype definition . 42
6.6 «TBudgetElement» stereotype definition . 44
6.7 TProfile unit enumerations . 44
6.8 «TBudgetElement» tag definitions . 44
6.9 «allocate» stereotype definition . 48
6.10 «TDelegate» stereotype definition . 50
6.11 «allocate» stereotype definition, including constraints 52
6.12 «allocate» constraint tag definition . 52

73

Appendix A

Expression Syntax

This appendix describes the exact syntax of expressions for budget values and constraints.
Each of the following sections shows the source code from which the ANTLR compiler cre-
ates a lexer, parser and interpreter respectively. These generated Java source files can
easily be integrated into any application.

A.1 Lexer Grammar
The lexer creates a stream of tokens from a stream of characters (an expression) it receives
as input. The lexer tries to match all characters and create tokens. A ‘(’ for example is
assigned the ‘LPAREN’ token.

The listing below shows the ANTLR grammar for the lexer. It consists of a list of tokens
and the characters to be matched.

Line 58 shows the definition for identifiers: (LOWER|UPPER|’_’)(LOWER|UPPER|’_’
|DIGIT). The rule defines that an identifier can consist of lowercase and uppercase let-
ters, underscores and digits, but cannot start with a digit.

Listing A.1 — Antlr source of the Lexer

class ConstraintLexer extends Lexer;

3 options{
k=2;
charVocabulary=’\u0003’..’\u7FFE’;
testLiterals = false;
exportVocab = Constraint;

8 }

LPAREN : ’(’ ;
RPAREN : ’)’ ;
EQUAL : "==" ;

13 LNOT : ’!’ ;
NOT_EQUAL : "!=" ;
DIV : ’/’ ;
PLUS : ’+’ ;
MINUS : ’-’ ;

18 STAR : ’*’ ;
GE : ">=" ;
GT : ’>’ ;
LE : "<=" ;
LT : ’<’ ;

23 LOR : "||" ;
LAND : "&&" ;
QUESTION : ’?’ ;
COMMA : ’,’ ;
COLON : ’:’ ;

28 ASSIGN : ’=’ ;

75

76 Parser Grammar

PLUS_ASSIGN : "+=" ;
MINUS_ASSIGN : "-=" ;
STAR_ASSIGN : "*=" ;
DIV_ASSIGN : "/=" ;

33 DOT : ’.’ ;

WS : (’ ’
| ’\t’
| ’\n’

38 | ’\r’)
{ _ttype = Token.SKIP; }

;

protected
43 DIGIT : ’0’..’9’

;

protected
LOWER : ’a’..’z’

48 ;

protected
UPPER : ’A’..’Z’

;
53

IDENTIFIER
options {
testLiterals=true;

}
58 : (LOWER|UPPER|’_’) (LOWER|UPPER|’_’|DIGIT)*

;

NUMBER
: (DIGIT)+ ((DOT | COMMA) (DIGIT)+)?

63 ;

A.2 Parser Grammar
Similar parsers are used for the parsers of budget value expressions and constraint expres-
sions. The grammar of Listing A.2 has its first rule named constraint, but expression is
applicable as well. Please note that the reportError(...) method on line 23 needs to be
in the definition of the parser to catch the exceptions generated during parsing.

The parser takes a stream of tokens, generated by the lexer, and produces an Abstract
Syntax Tree (AST). The rules of the parser all generate specific nodes in the tree. The
additiveExpr rule on line 58 for example, creates either a PLUS or a MINUS node (depend-
ing on the received token) with two children representing the operands of the addition or
subtraction.

Listing A.2 — ANTLR source of the Parser

header{
2 package com.thales.systemVerifier.engine;

import com.thales.modelStructure.IParserErrorReporter;
}

7 class ConstraintParser extends Parser;

options {
exportVocab = Constraint;
k=1;

12 buildAST = true; // uses CommonAST by default
defaultErrorHandler = false;

}

tokens{
17 CONSTRAINT_AST; UNARY_MINUS; UNARY_PLUS; BOOL_TRUE; BOOL_FALSE; TYPE;

}

Expression Syntax 77

{
private IParserErrorReporter reporter;

22

public void reportError(RecognitionException ex) {
reporter.reportError(ex, "");

}

27 public void setErrorReporter(IParserErrorReporter reporter){
this.reporter = reporter;

}
}

32 constraint
: exprList EOF!

{#constraint = #([CONSTRAINT_AST, "constraint"], #constraint) ; }
;

37 exprList
: logicalOrExpr (COMMA! logicalOrExpr)*
;

logicalOrExpr
42 : logicalAndExpr (LOR^ logicalAndExpr)*

;

logicalAndExpr
47 : equalityExpr (LAND^ equalityExpr)*

;

equalityExpr
: relationalExpr ((NOT_EQUAL^ | EQUAL^) relationalExpr)*

52 ;

relationalExpr
: additiveExpr ((LT^ | GT^ | LE^ | GE^) additiveExpr)*
;

57

additiveExpr
: multiplicativeExpr ((PLUS^ | MINUS^) multiplicativeExpr)*
;

62 multiplicativeExpr
: unaryExpr ((STAR^ | DIV^ | MOD^) unaryExpr)*
;

unaryExpr
67 : MINUS^ {#MINUS.setType(UNARY_MINUS);} unaryExpr

| PLUS^ {#PLUS.setType(UNARY_PLUS);} unaryExpr
| unaryExpressionNotPlusMinus
;

72 unaryExpressionNotPlusMinus
: LNOT^ primaryExpr
| primaryExpr
;

77 primaryExpr
: LPAREN! logicalOrExpr RPAREN!
| constant
;

82 constant
: NUMBER^ (type:IDENTIFIER
{
#type.setType(TYPE);

}
87)?

| i:IDENTIFIER
{
if(i.getText().equals("true")) #constant.setType(BOOL_TRUE);
else if(i.getText().equals("false")) #constant.setType(BOOL_FALSE);

92 }(DOT^ IDENTIFIER)?
;

78 Interpreter Grammar

A.3 Interpreter Grammar
Interpreters take an AST (generated by the parser) as input and ‘walk’ the AST to generate
output. The rules correspond to the nodes, created by the parser. There are differences be-
tween the two treewalkers of the budget value interpreter and the interpreter for constraint
expressions. Budget values never have a boolean value, while constraint expressions never
yield a non-boolean value.

Listing A.3 — ANTLR source of the interpreter

class ConstraintInterpreter extends TreeParser;
2

options {
importVocab = Constraint;

}

7 constraint returns [boolean res]
{

res = false;
}

: #(CONSTRAINT_AST res=boolExpr)
12 ;

numExpr returns [Budget res]
{

Budget p1, p2, min1, min2, s1, s2, d1, d2, mod1, mod2, q2, q3, um;
17 boolean q1;

res = null;
}

: #(PLUS p1=numExpr p2=numExpr) { res = p1.add(p2); }
| #(MINUS min1=numExpr min2=numExpr) { res = min1.min(min2); }

22 | #(STAR s1=numExpr s2=numExpr) { res = s1.multiply(s2); }
| #(DIV d1=numExpr d2=numExpr) {res = d1.divide(d2); }
| #(UNARY_MINUS um=numExpr) {res = um.negate(); }
| #(UNARY_PLUS res=numExpr) // simply return the expression
| #(n:NUMBER (t:TYPE)?) { ... }

27 | id:IDENTIFIER { ... }
| #(DOT elName:IDENTIFIER budName:IDENTIFIER) { ... }
;

boolExpr returns [boolean res]
32 {

res = false;
Budget gt1, gt2, lt1, lt2, ge1, ge2, le1, le2, eq1, eq2, ne1, ne2;
boolean and1, and2, or1, or2, q1, q2, q3, not;

}
37 : BOOL_TRUE { res = true; }

| BOOL_FALSE { res = false; }
| #(GT gt1=numExpr gt2=numExpr) {res = gt1.greaterThan(gt2); }
| #(LT lt1=numExpr lt2=numExpr) {res = lt1.lessThan(lt2); }
| #(GE ge1=numExpr ge2=numExpr) {res = ge1.greaterEqualThan(ge2); }

42 | #(LE le1=numExpr le2=numExpr) {res = le1.lessEqualThan(le2); }
| #(EQUAL eq1=numExpr eq2=numExpr) {res = eq1.equal(eq2); }
| #(NOT_EQUAL ne1=numExpr ne2=numExpr) {res = ne1.notEqual(ne2); }
| #(LAND and1=boolExpr and2=boolExpr) {res = and1 && and2; }
| #(LOR or1=boolExpr or2=boolExpr) {res = or1 || or2; }

47 | #(LNOT not=boolExpr) {res = !not; }
;

Appendix B

System Verifier User Guide

This appendix can be used as a guideline to using the System Verifier Tool, which is a
Rational Software Architect plugin. All modeling and verification steps are described and
illustrated by screenshots of RSA. Following the steps in order results in the model of a very
simple system with budgets and constraints that can be verified.

B.1 Structure

First of all, a new model has to be created in RSA which can contain the model elements.
Figure B.1 shows the screen with which a new UML model can be created. The default
diagram type should be a Class diagram.

User actions: The screen can be accessed via the File → New menu and choosing the UML
Model option.

Figure B.1 — Create a new UML model.

79

80 Structure

More UML models can be created to contain multiple system models. A system, con-
sisting of both a hardware and a software part is contained in at most one UML model. To
compare several systems, multiple UML models have to be created.

B.1.1 Model Elements
Model elements are all stereotyped UML classes and need therefore be created in Class
Diagrams. Figure B.2 illustrates the creation of a new model element in a class diagram.

User actions: When hovering the mouse pointer over the modeling area, a menu appears
from which new model elements can be created. The third icon can be used to create
stereotyped classes. In this case, a «THWSystem» Class is created. The name of a model
element can be changed by clicking on it and entering a new name.

Other model elements are also listed in the pop-up menu and can be created in the
same way.

Figure B.2 — Create a new stereotyped UML model element.

Sub-elements of a model element can be created as shown in Figure B.3.

User actions: When hovering the mouse pointer over a model element, the appearing han-
dles can be used to create a relationship (in this case a Composition Association) to a new
UML model element.

All nodes of which the hardware system is composed can be drawn this way. The
composition association is created immediately and links the nodes to the hardware system.

Multiplicities provide a way to define the number of instances of a model element with
respect to its parent. Figure B.4 shows that the multiplicity of the composition association
to Console has been set to 8.

User actions: A multiplicity can be changed by clicking on the character denoting the mul-
tiplicity (a ‘*’ by default) and entering a new value.

System Verifier User Guide 81

Figure B.3 — Create a new stereotyped UML model element
as a child of another element.

Figure B.4 — Multiplicities of association relationships can
be changed. The composition association to Console now
has a multiplicity of 8.

82 Structure

The default multiplicity of ‘*’ is interpreted by the System Verifier Tool as a multiplicity
of 1. Engineers do therefore not need to change the default ‘*’ every time a multiplicity of 1
is required.

Names of relationships are not used in this model and can therefore be omitted from the
diagram. Figure B.5 shows the menu presented to the engineer when right-clicking on the
name of the relationship.

User actions: The name of the relationship can be removed by right-clicking on it and
choosing Delete from Diagram.

Figure B.5 — Names of associations are not required in the
models and can therefore be deleted from the diagram.

Please note that deleting the name from the diagram has no influence on the relationship
itself, but only on the diagram. Deleting the name from the model results in deleting the
relationship from the model altogether!

B.1.2 Delegates
Delegates provide a way to group model elements without influencing the model itself. Fig-
ure B.6 shows the creation of a new «TDelegate» element, grouping 5 Console nodes and 1
RT node.

User actions: Delegates can be created in the same way as other models elements, such as
the «THWSystem» element (as shown in Figure B.2).

System Verifier User Guide 83

Figure B.6 — Delegates are created in the same way as
other model elements.

Please note that, in contrast to other structural model elements, delegates do not group
other elements by means of composition relationships, but by Directed Associations. The
multiplicities at the directed associations define how many instances are grouped by the
delegate. In this example, the delegate groups 5 Console nodes and the RT node. Note that
no more than the maximum number of instances (in this case 8 for the Console nodes) can
be included in a delegate.

B.1.3 Packages
Packages provide a way to organize model elements within one model. They prevent the
model from becoming one big list of model elements and relationships in the Model Explorer,
as shown in Figure B.7. A package creates a new branch in the Model Explorer tree and
can be collapsed to hide the contained elements.

User actions: A new package can be added by right-clicking on the model and selecting
Add UML → Package. In Figure B.7 a package called HW has already been created. Create
another one called SW to contain the elements of the software system.

New elements can be created in a package, or existing elements can be moved to a
package by dragging them to it.

User actions: Select all model elements of the Blank Model (including the main diagram
and all relationships, but excluding the newly created packages) and drag them to the HW
package. The elements are now contained in the package.

84 Structure

Figure B.7 — Model elements can be grouped into pack-
ages.

System Verifier User Guide 85

B.1.4 UML Views
Views on the model can be created by means of extra Class Diagrams. The creation of a
new Class Diagram is shown in Figure B.8. Existing model elements can be dragged onto
the new diagram, which thus provides a new view on those elements.

User actions: Create a new class diagram to contain the model of the software system in the
SW package. This can be done by right-clicking on the package and choosing Add Diagram
→ Class Diagram. The freeform diagram created by default in the package can be deleted
by right-clicking on it and selecting Delete From Model or simply pressing the delete button
on the keyboard.

Figure B.8 — Create a new class diagram in the software
(SW) package.

86 Budgets

User actions: Now create the software system on the new class diagram. Elements can
be added in the same way as described for the hardware system. The result is shown in
Figure B.9.

Figure B.9 — Create the software model inside the SW pack-
age.

B.2 Budgets

Several ways are available to define budgets. Stereotypes contain predefined budgets as
tags and custom budgets can be added to a class as attributes.

B.2.1 Tags

The budgets of CPU, memory, storage and networking are predefined in the stereotypes.
Setting the value for the memory budget for example, can be done as shown in Figure B.10.

User actions: To set the value of a predefined budget (i.e. defined as a tag in the stereotype),
first select the model element for which the budget has to be set (for example the Console in
Figure B.10). Go to the properties view at the bottom of the screen and select the Stereotypes
tab. Now fill in the required budget value. In this figure, the memory value has been set to
1 and the unit has been changed (by means of the drop-down list) to GByte.

System Verifier User Guide 87

Figure B.10 — Stereotype budget values

88 Budgets

Figure B.11 — Attribute budget values

System Verifier User Guide 89

B.2.2 Attributes
Custom budgets can be added to model elements by means of attributes. The new budget
of INFRA_APP in Figure B.11 has been given the name n_PA, the type String (all budgets
have to be of type String, which can contain both numerical values and expressions) and
the value 10.

User actions: Add a new attribute by hovering the mouse pointer over the model element
and selecting the red square Add new Attribute.

The attribute consists of three parts: a name, type and value, which can be entered
according to the following syntax: name : type = value. Names have to be unique and can
only consist of alphanumerical characters and underscores. A name has to start with a
letter.

User actions: Give the attribute the name n_PA, the type String and the value 10 by typing
n_PA : String = 10. The properties view at the bottom can also be used to set these
values.

B.2.3 System Verifier View
Once budgets are created, their values can be inspected in the new System Verifier View.
The view can be made visible as illustrated in Figure B.12.

Figure B.12 — Show the System Verifier View

User actions: Select Other... from the Window → Show View menu. Then select the System
Verifier View from the System Verifier category. The resulting view is shown in Figure B.13
and consists of four parts. Top left are the opened UML models. Top right is a table showing

90 Budgets

the structure of the model and budget values. Bottom right is a table showing constraints
and bottom left is the button by which the entire view can be refreshed. The magnifying

Figure B.13 — The System Verifier View.

glass at the top-right of the System Verifier View as shown in Figure B.14 and can be used
to inspect the values of custom budgets, such as the SA.budget.

User actions: Click on the magnifying glass and type the name of the budget to inspect to
include it in the view. Double clicking on the column header removes the column from the
view. Rows are given certain colors to easily distinguish model elements of different types.

Figure B.14 — Show budget values in the System Verifier
View

Depending on its level in the decomposition hierarchy, the row of an element is colored a
certain shade of gray. When a budget has been defined for an element, but is smaller than
the sum of the budgets of its children, the row is colored orange. This is done to warn the
engineer that the defined value has been ‘overwritten’ by the larger sum of the children.

System Verifier User Guide 91

B.2.4 Dependencies
Figure B.15 shows the addition of a dependency relationship between SA and S142.

User actions: To make budgets of SA dependent of S142 budgets, create a dependency
relationship from SA to S142 in the same way as other relationships (for instance the
Composition Association of Figure B.3). Then, to make a single budget dependent, change
its value to refer to a budget of a dependency.

Figure B.15 — New dependency

For example, the budget SA.budget can be made dependent on S142.avg_overhead
by setting its value to 10+avg_overhead. The SA.budget thus contains a reference to
S142.avg_overhead and depends on the value of that budget. This is only allowed if a
dependency relationship exists between SA and S142, as illustrated in Figure B.15. With
S142.avg_overhead having a value of 20 MByte, the net value of SA.budget becomes 30
MByte. The value of a budget can be made visible by hovering the mouse pointer over the

92 Allocations

budget, as shown for the avg_overhead. The dependency of Figure B.15 can be used by
both the SA.budget and S142.avg_overhead budgets, which have the following values:

SA.budget 10 + avg_overhead

S142.avg_overhead 20 MByte

The dependency also makes the budgets of SA available to S142. A reference to budget from
S142 will therefore have the value 20 MByte.

B.3 Allocations
Software is related to hardware via allocation relationships. These are default UML asso-
ciations with the «allocate» stereotype. Adding the «allocate» stereotype to an association is
illustrated in Figure B.16.

Figure B.16 — New allocations

User actions: To allocate a software part to a hardware part, first create a new class dia-
gram (a new view) to hold the allocation relationships (the class diagram is called allocation
in the screenshot). Now drag the BOE layer from the SW package onto the diagram area (do

System Verifier User Guide 93

not create a new BOE!) and do the same for the Console_RT delegate of the HW package.
They then both show in the diagram, as illustrated in Figure B.16.

An allocation can be added by creating an association relationship between the elements
and stereotyping it. First create an association relationship between the BOE and the Con-
sole_RT. Then add the stereotype by selecting the association and choosing Add Stereotypes
in the Stereotypes tab of the Properties view. Here, the «allocate» stereotype is added.

The multiplicities at the allocation relationships represent the ratios of the allocation.
The example of Figure B.16 shows that already 70% (0.7) of the BOE is allocated to 50%
(0.5) of the Console_RT delegate. Create another allocation relationship which allocates
30% (0.3) of the BOE to 100% (1) of the Console_RT. The BOE is then completely allocated.

User actions: Change the default multiplicities of the allocation relationships to the values
as shown in Figure B.16.

B.3.1 Constraints
Constraints are to be added to the constraints tag of the «allocate» stereotype. This is
illustrated in Figures B.17 and B.18.

Figure B.17 — Create new constraint (1/2)

94 Verification

Figure B.18 — Create new constraint (2/2)

User actions: To add constraints, select the corresponding allocation relationship and se-
lect the Stereotypes tab of the properties view. Subsequently select the ‘...’ button of the
constraints tag, as shown in Figure B.17. This results in the screen of Figure B.18.

User actions: Specify a constraint by pressing the Insert New String button (above the red
cross in Figure B.18) and defining the expression representing the constraint. In this case
BOE.mem < 0.5*Console_RT.mem.

More constraints can be added by pressing the Insert New String button repeatedly. The
constraint specified in Figure B.18 states that the memory budget of BOE has to be less
than half the memory budget of Console_RT.

As many constraints can be added as required.

B.4 Verification
User actions: Click the Refresh button on the System Verifier View to update it with the
latest information and constraints to be evaluated.

The bottom right part of the view shows the newly created constraint and the values of
referenced budgets. The constraint is shown in green because the result of the evaluation
is true. If the result would have been false, the constraint would have been colored red.
Values of budgets referenced by constraints are shown below them.

System Verifier User Guide 95

Figure B.19 — View constraint evaluation results

	Titlepage
	Introduction
	Research Background
	System Definition
	Non-functional Requirements
	Performance Budgets
	Constraints
	Validation and Verification

	Problem Statement
	Approach
	Structure of this thesis

	Systems Modeling
	Systems
	Models
	Metamodels
	Architectural Patterns
	Layers
	Composite

	UML, SysML and OCL
	UML Extension Mechanisms
	Lightweight Extensions
	Heavyweight Extensions

	Systems Modeling Language (SysML)
	Diagram Elements
	Diagrams
	Allocation

	Object Constraint Language (OCL)
	Evaluation

	Example System
	Structure
	Hardware
	Software

	Budgets
	Allocation

	Domain Viewpoint
	Introduction
	Hardware
	Structural Decomposition
	Domain Model

	Software
	Structural Decomposition
	Domain Model

	Budgets
	Types
	Values

	Allocation
	Simple Allocation
	Complex Allocation

	Constraints
	Discussion

	System Model Viewpoint
	Introduction
	TProfile Definition
	Hardware
	Mapping Domain Concepts into UML Equivalents
	Example CMS Hardware Structure Model

	Software
	Mapping Domain Concepts into UML Equivalents
	Example CMS Software Structure Model

	Budgets
	Mapping Domain Concepts into UML Equivalents
	References
	Values
	Extra Budgets
	Example CMS Budgets

	Allocation
	Mapping domain concepts into UML equivalents
	Example CMS Allocations

	Delegates
	Example CMS Delegates

	Packages
	Constraints
	Mapping domain concepts into UML equivalents
	TProfile Extension
	Constraint Syntax

	Discussion
	Layers
	Delegates
	Objects
	Constraints

	Tool Support
	Rational Software Architect
	UML Modeling

	Tool Purpose
	Requirements
	Use Cases
	Implementation
	ModelStructure plugin
	SystemVerifier plugin

	Conclusion
	Evaluation
	Discussion
	Related Work
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Expression Syntax
	Lexer Grammar
	Parser Grammar
	Interpreter Grammar

	System Verifier User Guide
	Structure
	Model Elements
	Delegates
	Packages
	UML Views

	Budgets
	Tags
	Attributes
	System Verifier View
	Dependencies

	Allocations
	Constraints

	Verification

