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Abstract

This thesis introduces the model of Weighted Probabilistic Timed Automata
(WPTA). WPTA are an extension of the well known Timed Automata. With
WPTA we can make a specification of systems that have discrete control, and
continuous real-time behaviour. Moreover we can model cost-per-time, depend-
ing on the discrete state, and we can model probability on the discrete behaviour.
An example of a system that can be modeled as WPTA is a task-scheduling
problem with cost-per-time on resources, and resources being available with a
certain probability.

The question is whether model checking, i. e. the automatic verification of
certain properties, is possible on WPTA. Our research focused on methods for
deciding whether a certain discrete state is reachable from the stating state,
with cost below a certain boundary, and a certain minimal probability. Our
research resulted in three algorithms. We assume a given cost-bound. The
first algorithm is a backward algorithm that uses priced zones. It solves the
problem when we are only interested in a positive probability instead of the
exact value. The second algorithm constructs an upper bound on the probability
for which the property holds. The third algorithm possibly does not terminate,
but it generates an ascending sequence of values that converges to the maximum
probability. In this way if a state exists such that the property holds, then we
can conclude this. But if such a state does not exist we cannot give a verdict.





Samenvatting

Dit verslag introduceert het model: Weighted Probabilistic Timed Automata
(WPTA). WPTA zijn een uitbreiding op de welbekende Timed Automata. Met
behulp van WPTA kan een specificatie worden opgesteld van systemen met een
discrete besturing die continu tijdsgedrag vertonen. Er kunnen kosten-per-tijd
worden gemodelleerd, afhankelijk van de discrete toestand. Verder kunnen er
kansen worden verbonden aan het discrete gedrag. Een voorbeeld van een sys-
teem dat als WPTA gemodelleerd kan worden is een task-scheduling probleem
waaraan kosten-per-tijd zijn verbonden aan resources en de resources met een
zekere kans beschikbaar zijn.

De vraag is nu of model checking, dat wil zeggen automatische verficatie van
zekere eigenschappen, mogelijk is op WPTA. Het onderzoek heeft zich beperkt
tot methoden waarmee gekeken kan worden of een zekere discrete toestand be-
reikbaar is vanaf de begintoestand, waarbij de kosten beneden een bepaalde
grens blijven met kans boven een bepaald minimum. Dit onderzoek heeft ge-
resulteerd in drie algoritmen. We veronderstellen een vaste kostengrens. Het
eerste algoritme dat gebaseerd is op terugwaardse exploratie en priced zones
bepaalt of het met positieve kans mogelijk is. Het tweede algoritme vindt een
bovengrens op de kans waarvoor het mogelijk is. Het derde algoritme termineert
mogelijk niet, maar genereert een stijgende reeks van waarden die naar de maxi-
mum kans convergeren. Als er nu een toestand is die aan de randvoorwaarden
voldoet, dan kunnen we dit met zekerheid concluderen. Echter als er niet zo’n
toestand bestaat kunnen we geen uitspraak doen.
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Chapter 1

Introduction

1.1 Reachability Analysis

System verification is checking if certain properties in a system hold. As some
systems can get very complex we would like to do system verification in an auto-
mated way. To that end, both the system and the properties to be checked have
to be formulated in a formal language. Model checking concerns the automatic
verification of a formal model against formal properties.

There are a number of combinations of models and properties for which model
checking is possible. An important property to be checked is if a certain state
of the model, and thus of the system, is reachable from some other state. These
properties are called reachability properties.

1.2 Formal System Models

A well studied formal model of systems are timed automata [AD94]. With
timed automata it is possible to describe systems that have a notion of time.
On timed automata model checking of reachability properties is possible. Timed
automata can for example be used to model a number of tasks, as well as their
commonly used resources, together with various time constraints. The question
whether there exists a schedule that fulfills all requirements (such as ordering
of the tasks, the timing constraints between tasks and the deadline(s)) can be
formulated as a time-constrained reachability problem, and can be solved using
model checkers such as Uppaal. Recently, this approach has been extended such
that also costs can be treated [BFH+01, ATP01]. Costs could model prices for
the usage of resources, or the like. By means of cost-and-time constrained
reachability one is able to answer the question: “Can a certain number of tasks
be scheduled within a certain deadline with maximally cost κ?”

Another recent extension of timed automata is by including probabilities in
the model [KNSS02]. Now reachability properties are extended to probabilistic
reachability properties. A probabilistic reachability property for example states
that a certain system state is reachable with probability λ or higher. Timed



8 Introduction

automata with probabilities are suited to model protocols, because protocols
have timing constraints and some probability of message loss.

1.3 A New Model

We define the new model of Weighted Probabilistic Timed Automata (WPTA),
that extends the model of timed automata, by adding both costs and probability.
The new model will be useful for scheduling problems where resources have
prices on usage but also are not 100% available. Another application could
be in protocols that consume different amounts of energy in different states of
execution, where energy consumption can be modeled as cost.

In the model we want to check whether some system state is reachable with
probability λ or higher, and cost at most κ. We call these cost-bounded prob-
abilistic reachability properties. Our first step in solving the problem was to
study [BFH+01] and [KNSS02]. In these papers, two problems related to ours
are solved, namely: minimal cost reachability on timed automata with cost, and
probabilistic reachability on timed automata with probabilities. At first, with
a combination of these two approaches a solution to our problem seemed easy
but this is not the case.

As the semantics of our model is described by an infinite structure, the next
step concerned the construction of finite abstractions of this semantics. Finite
abstractions based on the priced regions of [BFH+01], or the priced zones of
[LBB+01], were investigated. Here the problem of adding both costs and prob-
abilities becomes apparent. We will see that these kind of finite abstractions do
not exist for WPTA, at least not for the problem investigated. We are, however,
able to construct an algorithm that uses priced regions to compute an upper
bound on the probability to reach a certain state with cost at most κ. We
are also able to construct an efficient algorithm that decides (non-probabilistic)
reachability of some state with cost at most κ, using backward analysis.

A new kind of abstraction with classes called multi-priced zones is introduced.
Multi-priced zones are a subclass of multi-dimensional polyhedra. Multi-priced
zones do not give a finite abstraction of the semantics, but with multi-priced
zones we can use an altered version of the algorithm of [KNS03] to get an algo-
rithm which iteratively approximates the cost-bounded maximal probabilistic
reachability. Being able to approximate the maximum probability, we are able
to give a partial solution to the problem of cost-bounded probabilistic reacha-
bility. The problem is solved partially in the sense that if the property holds
the algorithm will give the answer “yes” after a finite number of iterations, but
the algorithm can never given the answer “no” for certain. Finally we present
some ideas on how to compute answer “no”.

Chapter 2 contains the preliminaries for the rest of this thesis. It will introduce
the model of timed automata, its variants with cost and probability, and reach-
ability verification results on these models. Chapter 3 introduces the model
of WPTA and its semantics. Finite abstractions for the infinite semantics are
given, and some first easy results are presented. Moreover we present the new
efficient backward algorithm to model check non-probabilistic reachability for
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WPTA. Chapter 4 formalizes the property of cost-bounded probabilistic reach-
ability. Next, we present our first naive algorithm based on priced regions, and
prove its incorrectness by a counter-example. We analyze the problem and con-
clude with proving that the algorithm is capable of computing an upper bound
on the probability. Chapter 5 presents our iterative algorithm, that returns
a monotonous sequence that converges to the maximum on probability λ for
which some cost-bounded probabilistic reachability property may still hold. As
our algorithm may not converge, this solves the problem partially. The chapter
finishes with some ideas on how to solve the problem fully. Finally this thesis
ends with a conclusion, and directions for further research.

1.4 Related Work

The work most closely related to ours is that of J. Sproston. In [Spr00] model
checking on probabilistic linear hybrid automata is presented. Reachability
properties are part of their model checking properties, and WPTA are a subclass
of probabilistic linear hybrid automata. The difference is that they only handle
model checking on automata that have a finite bisimulation quotient, whereas
WPTA in general do not have a finite bisimulation quotient.
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Chapter 2

Preliminaries

A number of results and definitions from the literature are relevant for the
problem investigated. Three models and important results on these models are
introduced: timed automata, linear priced timed automata, and probabilistic
timed automata.

2.1 Timed Automata

Timed automata are discrete transition systems extended with a notion of time.
With timed automata it is possible to model systems that incorporate timing
aspects. For timed automata there are a number of model checkers available,
that can check properties like for example: “Within 5ms after receiving a packet,
the system sends an acknowledgment,” or “Every 3ms the system empties its
buffer.” Formalization of the properties to be checked is often done in some
temporal logic (TCTL [ACD93]). Before giving a more detailed description of
timed automata we need to give some definitions.

Clocks and clock valuations

A clock x is a variable that denotes time. Clocks can have a value from the
positive reals including zero, denoted R+. Time is expressed in some unit of
choice, which is unimportant for the functioning of the model. We consider X
to be a finite set of clocks. All clocks in X increase with the same rate. This
means that without reset, if one clock increases with say d time units then
all clocks increase with d. A clock valuation is an assignment of values to all
clocks. Thus a clock valuation is a mapping v : X → R+. The set of all clock
valuations is called the clock valuation space and is denoted as RX

+. Let v be
a clock valuation. For d ∈ R+ (u ∈ RX

+), let v + d (v + u) denote the clock
valuation that maps each x ∈ X to v(x) + d (v(x) + u(x)). Define v − d and
v−u analogously, but these may not be valid clock valuations, as they possibly
map a clock to a negative value. For r ⊆ X, let v[r := 0] denote the reset of the
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clocks in r such that:

v[r := 0](x) =

{

0 if x ∈ r
v(x) otherwise

Clock valuation 0̄ is the special clock valuation that maps all clocks to zero,
i. e. for all x ∈ X, 0̄(x) = 0.

A set of clock valuations V ⊆ RX
+ is called bounded w. r. t. x if there exists

a ∈ R+ such that for all v ∈ V we have that v(x) ≤ a. When V is not bounded
w. r. t. x it is called unbounded w. r. t. x. A set of clock valuations is called
bounded (unbounded) if it is (not) bounded for all clocks.

Clock constraints

Clock constraints are conditions on the values of clocks. They are limited to
the constraints in which a single clock or the difference between two clocks is
compared to an integer. Furthermore, a constraint can have a conjunction of
these comparisons which must all hold for the constraint to be met. Formally,
for the set of clocks X the set Cons(X) of clock constraints φ is defined by the
grammar:

φ ::= x ⊲⊳ b | x − y ⊲⊳ b | φ ∧ φ | true where x, y ∈ X, b ∈ Z, ⊲⊳∈ {<,≤,≥, >}

A subset is formed by the diagonal-free clock constraints. These constraints
do not have bounds on the difference between two clocks, and are given by the
grammar:

φ ::= x ⊲⊳ b | φ ∧ φ | true where x, y ∈ X, b ∈ Z, ⊲⊳∈ {<,≤,≥, >}

Clock constraints can be closed, which means that all bounds are closed (⊲⊳∈
{≤,≥}). We write v ∈ φ if clock valuation v satisfies clock constraint φ.

Transition systems and paths

A labeled transition system is a triple (S,Act ,→), with S a set of states, Act a
finite set of (action) labels, and transition relation →⊆ S × Act × S.

A path in a labeled transition system is a sequence of transitions: ω = s0
a0−→

s1
a1−→ · · · , such that si

ai−→ si+1 is a transition in the labeled transition system,
for all i ≥ 0. If ω is finite and the last state is sn, then |ω| = n denotes the length
of ω. A path of length zero contains only a single state. We write ω(i) = si,
and last(ω) for the last state of ω if it is finite.

A timed transition system is written as a triple (S,Act ,→), and is the labeled
transition system (S,Act ∪ R+,→), where Act ∩ R+ = ∅. Labels on the transi-

tions are now elements of the set Act ∪ R+. A transition s
a
−→ t, with t, s ∈ S,

is called a discrete transition if a ∈ Act , and a time transition if a ∈ R+. For
time transitions the following axioms [Sto02] must always hold:
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time determinism: if s
d
−→ t and s

d
−→ t′ for d ∈ R+ then t = t′,

Wang’s Axiom: s
d
−→ t, with d > 0, if and only if there exists s′ and d′ < d

such that s
d′

−→ s′ and s′
d−d′

−−−→ t.

zero delay: s
0
−→ t if and only if s = t. 1

Forward & backward exploration

When we have a labeled transition system LTS = (S,Act ,→), reachability
analysis concerns answering the question whether some state in a set of target
states is reachable from some starting state. There are two main methods to
perform reachability analysis: forward exploration and backward exploration.
Forward exploration starts with a set containing only the starting state. In
operation of the procedure, the set always contains states that are reachable
from the starting state. In steps, the set is extended with new states that
are reachable from the set using some transition, until a target state is added.
Backward exploration works in opposite direction. The set is initialized with
the target states and is extended by states that can reach some state in the set,
and thus the set contains only states that can reach the target. This continues
until the starting state is added. Both forward and backward exploration could
also work with a set of starting states.

If the transition system is given in advance then it is clear that, for a method
to be computable, S must be finite. However if only the transition relation
→ is given, the states can be generated from the previously generated ones,
and are contained in the set that both methods maintain. In this way only a
subset of the state space is generated. For forward exploration → needs to be
finitely branching, meaning that from a state there are only a finite number
of transitions possible. With backward exploration each state should only be
reachable by a finite number of transitions. Note that these conditions are
always true when S is finite.

2.1.1 The model

A timed automaton is a discrete transition system, or equivalently a directed
graph, with a set of clocks X. The transitions take place between what are
called locations. A state in a timed automaton is a pair consisting of a location
and a clock valuation. Execution of a timed automaton starts in one location,
with all clocks set to zero. In a location a certain amount of time units can be
spent. This does not need to be a discrete amount but can be a real number.
The effect of spending d ∈ R+ time units in a location is that all clocks are
increased by d. Edges between locations are enabled if a constraint on the
clocks, called the guard, is satisfied. Taking an edge induces no time, so none
of the clocks is changed, unless the clock is reset to zero by the edge. An edge
can reset any number of clocks. All locations have a constraint that is called

1This condition is needed because we allow d = 0.
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an invariant. When taking edges and letting time progress, the invariant in the
current location must hold.

A timed automaton can be represented by a directed graph augmented by oper-
ations on the clocks. Figure 2.1 gives an example of such a representation. The
timed automaton models a light switch. The automaton has two clocks x and y.
The circles represent the locations of the timed automaton. The initial location
‘off’ is marked by a dangling incoming arrow. The invariants are written in the
locations, or left out when there is no restriction (i. e. the invariant equals true).
The guard and resets of a transition are written next to the edge. Guards are
left out when the transition is always enabled.

In location ‘off’, the light is off. To turn the light on, the edge marked ‘push’
may be taken. This can only be done when the guard x ≥ 2 is satisfied, thus
at least 2 time units should be spent in location ‘off’. When taking the edge,
both clocks x, y are reset to zero. When the light is on, at most every 2 time
units the button can be pushed again, as can be seen from the looping edge
from location ‘on’. The invariant in location ‘on’ makes that the light is on for
at most 9 time units. The edge marked ‘click’ makes that the light may switch
automatically off after more than 8 time units. Thus the light stays on for more
than 8, but at most 9 time units.

We can write a possible execution as a path in a timed transition system, where
states consists of the current location and the values of x and y. We have for
example:

→ (off, 0, 0)
1.3
−−→ (off, 1.3, 1.3)

1
−→ (off, 2.3, 2.3)

push
−−−→ (on, 0, 0)

4.3
−−→ (on, 4.3, 4.3)

push
−−−→ (on, 0, 4.3)

4
−→ (on, 4, 8.3)

click
−−−→ (off, 0, 8.3)

Figure 2.1: An example timed automaton

push

onoff

click

push

y ≤ 9

y > 8x := 0

x ≥ 2
y := 0
x := 0

x := 0

x ≥ 2
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Definition 2.1.1 A Timed Automaton [AD94] is a tuple (L, l0, X, inv , E)
with the following properties:

• L - finite set of locations.

• l0 ∈ L - single starting location.

• X - finite set of clocks.

• inv : L → Cons(X) - function assigning an invariant to each location.

• E ⊆ L × (Cons(X) × 2X) × L - edges.

¤

We shall write l
g,r
−−→ l′ when (l, g, r, l′) ∈ E. A timed automaton is said to be

diagonal-free, if all its invariants and guards are diagonal-free. In the same way
a timed automaton is closed, if all its invariants and guards are closed.

Definition 2.1.2 (Timed Automata Semantics) The semantics of a timed
automaton TA = (L, l0, X, inv , E) are given by a timed transition system TTS =
(S,Act ,→), where Act = E,S = {(l, v) | l ∈ L ∧ v ∈ inv(l)}. The starting state
is (l0, 0̄). Transitions are defined by letting time pass, or taking an edge:

time transitions: (l, v)
d
−→ (l, v+d) if v ∈ inv(l) and (v+d) ∈ inv(l) for d ∈ R+,

discrete transitions: (l, v)
a
−→ (l′, v′) if a = (l

g,r
−−→ l′) ∈ E, v ∈ g, v′ = v[r := 0]

and v′ ∈ inv(l′).

For a state s of TA, loc(s) denotes its location. ¤

The definition of time transitions in Definition 2.1.2 is somewhat relaxed with
respect to the regular definition that states: (l, v)

d
−→ (l, v + d) for all d′ ≤

d, (v + d′) ∈ inv(l). Here, all time moments in the interval [0, d] must satisfy
the invariant. Note that our definition implies the traditional one, since the
invariant can be seen as a convex polyhedron (see 2.1.9). Now if both v and
v + d satisfy the invariant, this implies that v + d′, for any d′ ≤ d must satisfy
the invariant.

2.1.2 Reachability analysis on timed automata

Reachability analysis on timed automata answers the question whether some
location of a set of target locations is reachable from the starting state of the
timed automaton. There are a number of methods for reachability analysis on
timed automata. In the next sections we will discuss some different approaches.
Due to the presence of real valued clocks the state space of a timed automaton,
i. e. all possible states of its semantics, is uncountable. Infinite state systems
are inadequate for automated verification. All approaches rely on a finite ab-
straction of the infinite semantics.
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Region equivalence

[AD94]. Reachability analysis does not concern the values of the clocks in the
target locations, but the values of the clocks are of importance for the behavior,
as there are constraints on the clocks in a timed automaton. A time-abstracting
bisimulation is an equivalence relation on the states in a timed transition sys-
tem. Recall that a timed transition system is used to define the semantics of
a timed automaton. A time-abstracting bisimulation abstracts away from the
exact amount of time that elapses, as long as the equivalent states have the
same results on discrete transitions. With a time abstracting bisimulation it is
possible to construct an abstract transition system on the equivalence classes.
There are several sorts of time-abstracting bisimulations [TY01], but this thesis
always refers to strong time-abstracting bisimulations. Region equivalence is an
equivalence relation defined on clock valuations and was first discovered by Alur
and Dill [AD94]. Region equivalence is a used to define a special kind of finite
time-abstracting bisimulation for timed automata.

Definition 2.1.3 [TY01]. Let TTS = (S,Act ,→) be a timed transition sys-
tem. A (Strong) Time-Abstracting Bisimulation of TTS is an equivalence
relation ≃⊆ S × S such that for all s1, s2 ∈ S, s1 ≃ s2,

• when s1
a
−→ s′1, there exists s′2 ∈ S such that s2

a
−→ s′2 and s′1 ≃ s′2,

• when s1
d
−→ s′1 with d ∈ R+, there exists d′ ∈ R+ and s′2 ∈ S such that

s2
d′

−→ s′2 and s′1 ≃ s′2.

A time-abstracting bisimulation that has a finite number of equivalence classes
is called finite. ¤

Definition 2.1.4 [TY01]. Let TTS = (S,Act ,→) be a timed transition sys-
tem, and ≃ a time-abstracting bisimulation of TTS . ≃ induces a labeled
transition system TTS/≃ = (S/≃,Act ∪ {ǫ},−→ /≃ ), that is called a Time-
Abstracting Quotient, with:

• S/≃ is a partitioning of S containing the equivalence classes of ≃,

• σ
a
−→/≃ τ if for all s ∈ σ there exists t ∈ τ such that s

a
−→ t,

• σ
ǫ
−→ /≃ τ if for all s ∈ σ there exists d ∈ R+ and t ∈ τ such that s

d
−→ t

and for all s
d′

−→ t′, with d′ < d we have that t′ ∈ σ ∪ τ .

¤

Definition 2.1.5 (Clock Ceiling) Given a diagonal-free timed automaton
TA = (L, l0, X, inv , E), let k : X → N be a function mapping each clock to
a natural number representing its ceiling in TA. The ceiling of a clock is the
upper bound used as a constraint in TA. Thus for some clock x ∈ X : x < k(x)
or x ≤ k(x) are part of some constraint in TA. ¤
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Definition 2.1.6 (Region Equivalence) Given a diagonal-free timed au-
tomaton TA = (L, l0, X, inv , E), with k : X → N mapping each clock to its
ceiling. For a real number r, let frac(r) denote the fractional part of r, and ⌊r⌋
denote its integer part. Two clock valuations u, v are region equivalent, denoted
u ≃k v, if and only if all of the following conditions hold:

1. for all x, either ⌊u(x)⌋ = ⌊v(x)⌋ or both u(x) > k(x) and v(x) > k(x),

2. for all x, if u(x) ≤ k(x) then frac(u(x)) = 0 iff frac(v(x)) = 0,

3. for all x, y if u(x) ≤ k(x) and u(y) ≤ k(y) then frac(u(x)) ≤ frac(u(y)) iff
frac(v(x)) ≤ frac(v(y)).

¤

The normk operation can be used to construct the set of equivalent valuations
for some arbitrary set of valuations, and ceiling function.

Definition 2.1.7 (k-Normalization) [BY03]. Let V ⊆ RX
+ be a set of

clock valuations, and k : X → N mapping each clock to its ceiling. The k-
normalization operation is defined as follows: normk(V ) = {u | ∀v ∈ V.u ≃k v}.
¤

Region equivalence defines equivalence classes on the valuation space that are
called regions. Regions are unbounded if and only if there exists a clock x, such
that for all valuations v we have that v(x) > k(x). Bounded regions can be
described using Definition 2.1.8. Unbounded regions can be described by using
Definition 2.1.8 to define a region that is bounded but has a clock valuation that
assigns a clock to a value beyond its ceiling, and then applying the normalization
procedure to this region. Note that by using this approach there are infinite
possibilities of representing an unbounded region. Although it is not hard to
find a canonical representation, we do not need it in this context.

Definition 2.1.8 (Representation for Bounded Regions) A region can
be represented as R = (h, [r0, . . . , rn]) ⊆ (X → N) × Seq(2X), where Seq(S)
denotes the set of finite sequences of elements of set S; [r0 . . . rn] is a partition-
ing of X, where i > 0 implies that ri 6= ∅. Given a clock valuation v ∈ RX

+, and
v ∈ R the following conditions hold:

• for all x, ⌊v(x)⌋ = h(x),

• x ∈ r0 iff frac(v(x)) = 0,

• x, y ∈ ri iff frac(v(x)) = frac(v(y)),

• x ∈ ri, y ∈ rj , with i < j iff frac v(x) < frac v(y).

¤

Consider a timed automaton with two clocks x and y, with ceilings k(x) = 3 and
k(y) = 2. Then the possible regions of the automata are depicted in figure 2.2,
and consist of: all corner points (including those on the axes), all line segments
between points, and all spaces defined by the segments. The total number of
possible regions is 60. Three regions are marked a, b and c, where a is a line
segment. The representations are as follows, with two possible representations
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of c:

a = ({x 7→ 2, y 7→ 0}, [{x}, {y}])

b = ({x 7→ 0, y 7→ 1}, [∅, {y}, {x}])

c = normk({x 7→ 3, y 7→ 1}, [∅, {y, x}])

or c = normk({x 7→ 4, y 7→ 1}, [∅, {x}, {y}])

Figure 2.2: Regions for a system with two clocks

a
0
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The importance of region equivalence is that it can be lifted to a time-abstracting
bisimulation on the states of a timed automaton, by defining that two states are
bisimilar only if they have the same location and their clock valuations are region
equivalent [TY01]. Now by using Definition 2.1.4 it is possible to construct a
finite quotient that is finite due to the finiteness of the number of locations. The
new system is called the region graph. The states of the region graph are called
symbolic states, and are described by tuples (l, R), where l is a location, and
R ⊆ RX

+ is a region. More generally symbolic states are sets of states that can be
represented as a tuple. The first of the tuple part contains the discrete part that
is the same for all states. In this thesis the discrete part will consist of a location,
and we write loc(l, R) = l. The second part is a set containing all continuous
parts of the states. The definition of region equivalence can be altered such that
it is an equivalence relation on timed automata including difference constraints.
For more information see [BDFP00].

On the region graph a number of properties can be model checked, including
reachability. Forward exploration and backward exploration are two methods
for checking reachability. The region graph captures all possible behavior of a
timed automaton, even of states that are not reachable from the starting state,
or states that will never reach a target location. This results in redundant
symbolic states. When using forward exploration it is possible to generate only
the symbolic states that are reachable from the starting symbolic state. With
backward exploration we only have to generate the symbolic states that can
reach a target location.

Figure 2.3 gives a timed automaton and its region graph (from [AD94]). The
timed automaton has extra labels α, β, γ, δ on its edges. And the corresponding
edges in the region graph have the same label. Note that all invariants are true,
allowing all clock valuations in locations.
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Figure 2.3: An example timed automaton and its region graph [AD94].
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Next to region equivalence, other time-abstracting bisimulations on timed au-
tomata are possible. For reachability, more generally than target locations, we
can use a target set of states. When a time-abstracting bisimulation is used
to calculate reachability, it must be such that its equivalence classes respect
the partitioning between target states and non-target states. There must be no
equivalence class containing target states as well as non-target states, because
then these states will be regarded equivalent. Of interest is the coarsest bisimu-
lation, i. e. the time-abstracting bisimulation with the least equivalence classes
respecting the partitioning of target states.

Forward reachability analysis

With region equivalence, in the worst case the number of regions is exponential
in the number of clocks, and constants k(·) of the ceiling function. In the simple
system of figure 2.2 we already had 60 regions. Using forward or backward
exploration to generate a subset of the symbolic state space will not help very
much.

Forward reachability analysis is another method of constructing a finite ab-
straction of a timed automaton, by using symbolic states with zones instead of
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regions. On the symbolic states a successor operation is defined. A successor
symbolic state contains all states reachable by delaying some amount of time,
and taking an edge. The successor operation implements forward exploration
on a (infinite) set of states that can be described by a zone. Zones are, like
regions, sets of clock valuations, in fact they are a convex set of regions. The
number of reachable zones is in most cases smaller than the number of regions.

Definition 2.1.9 A Zone is the set of all possible clock valuations that respect
some clock constraint. A zone takes the form of a convex polyhedron in the
space RX

+. The set of all possible zones is closed under intersection, as clock
constraints can be a conjunction of clock constraints.

Different clock constraints can describe the same zone. The constraint of a zone
has a canonical form, where the number of equations of the form (x ⊲⊳ b) or (x−
y ⊲⊳ b) is maximal, and those equations can’t be strengthened without changing
the zone it describes. Strengthening an equation means that b is changed such
that less clock valuations satisfy the equation, for example equation x − y ≤ 2
can be strengthened to x − y ≤ 1. When regarding the constraint of a zone
we will always use its canonical form. A clock constraint is said to be part of
a zone, if it is part of the canonical constraint that induces the zone. Zones
can effectively be represented and stored in memory by using difference bound
matrices [Dil89].

Let N be a zone, and b ∈ Cons(X), then N ∧ b denotes the zone that is induced
by the constraint of N strengthened by constraint b. b can also be seen as
a zone on itself, in that way: N ∧ b = N ∩ b. A zone is called closed when
it is induced by a closed clock constraint. For a closed zone Z, the offset
clock valuation ∆Z ∈ Z is the infimum clock valuation on the zone, formally:
∀v ∈ Z.∀x ∈ X.∆Z(x) ≤ v(x). ¤

Example 2.1.10 Figure 2.4 gives an example of a zone on two clocks x and y.
The borders of the zone are formed by the equations of its clock constraint. ¤

Figure 2.4: An example zone
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Like regions, zones can be used to construct symbolic states (l, Z) where l is
a location, and Z ⊆ RX

+ is a zone, with Z ⊆ inv(l). Forward reachability
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analysis starts with a symbolic state representing the starting state. Then the
successor operation is used to compute symbolic states that are reachable from
the starting symbolic state, by letting some amount of time progress, and then
taking an edge in the timed automaton. Now for the new symbolic states the
successors are computed. This process is repeated until no new symbolic states
are generated. Forward analysis only works correctly for diagonal-free timed
automata, for timed automata including difference constraints, special measures
should be taken [BDFP00].

As the clocks can take arbitrary high values, there is a possibility of generating
an infinite number of symbolic states. To ensure termination, zones are normal-
ized using the normk operation of Definition 2.1.7. The intuition is that, like
for regions, all values for a clock that are above the ceiling for that clock are
equivalent. Now zones that have bounds beyond the ceiling can be transformed
to equivalent zones by removing these bounds. As the number of locations is
finite, in this way only a finite number of symbolic states will be generated using
forward analysis. Note that forward analysis does not construct a partition of
the state space, because the zones can overlap.

The next definition is a formal definition of the successor operations on sets of
states in a timed transition system. Note that this can be any timed transition
system, it is not necessarily the semantics of some timed automaton. As the
number of states in a timed transition system can be infinite, computation
cannot be performed analogously to the definition.

Definition 2.1.11 (General Successor Operations) Let
TTS = (S,Act ,→) be a timed transition system, and subset S′ ⊆ S. Define
the following operations:

time successor: tsucc(S′) = {t | s
d
−→ t for some s ∈ S′ and d ≥ 0},

discrete successor: dsucca(S′) = {t | s
a
−→ t for some s ∈ S′}, for a ∈ Act ,

successor: succa = tsucc ◦ dsucca.

¤

For timed automata the semantics are defined by a timed transition system with
an infinite number of states. Using symbolic states with zones, it is possible to
define successor operations for timed automata that are computable. Figure 2.5
gives an example of the operations ↑ and [r := 0].

Definition 2.1.12 (Timed Automata Successor Operations) [BY03].
Let TA = (L, l0, X, inv , E) be a timed automaton. Let Z be a zone and
r a set of clocks. We define Z↑ = {v + d | v ∈ Z ∧ d ∈ R+} and
Z[r := 0] = {v[r := 0] | v ∈ Z}. Redefine the following operations:

time successor: tsucc(l, Z) = (l,normk(Z↑ ∩ inv(l))),

discrete successor: dsucc(l,g,r,l′)(l, Z) = (l′, (Z ∩ g)[r := 0]) ∩ inv(l′), if l
g,r
−−→

l′ ∈ E.

¤
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Figure 2.5: Example of operations on a zone Z.
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Backward reachability analysis

Like forward reachability, backward reachability uses zones instead of regions
as finite abstraction. Backward reachability starts with a set of symbolic states
representing the target locations. The predecessor operation is used to compute
symbolic states that can reach target symbolic states, by taking an edge in
the timed automaton, and then letting some amount of time progress. In this
way new symbolic states are generated from previous generated ones, until no
new symbolic states can be generated. For termination, in contrast to forward
reachability analysis, the ceiling of the automaton does not need to be taken
into account [HNSY92].

Like Definition 2.1.11 did for successor operations, we now give a general defi-
nition for predecessor operations.
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Definition 2.1.13 (General Predecessor Operations) [HNSY92]. Let
TTS = (S,Act ,→) be a timed transition system, and subset S′ ⊆ S. Define
the following operations:

time predecessor: tpre(S′) = {s | s
d
−→ t for some t ∈ S′ and d ≥ 0},

discrete predecessor: dprea(S′) = {s | s
a
−→ t for some t ∈ S′}, for a ∈ Act ,

predecessor: prea = tpre ◦ dprea.

¤

Like Definition 2.1.12 did for successor operations, we now give a computable
definition of predecessor operations, that work on zones. The definition uses
operation ↓, called the past-operator, and [r := 0]·. Figure 2.5 gives an example
of both operations.

Definition 2.1.14 (Timed Automata Predecessor Operations)
[HNSY92, KNS03]. Let TA = (L, l0, X, inv , E) be a timed automaton. Let Z be
a zone and r a set of clocks. We define Z↓ = {v | v + d ∈ Z for some d ∈ R+}
and [r := 0]Z = {v | v[r := 0] ∈ Z}. Redefine the following operations:

time predecessor: tpre(l, Z) = (l, Z↓ ∩ inv(l)),

discrete predecessor: dpre(l,g,r,l′)(l
′, Z) = (l, ([r := 0]Z) ∩ g ∩ inv(l)), if l

g,r
−−→

l′ ∈ E.

¤

Lemma 2.1.15 Given TTS and set of clock valuations V that are all possible
in TTS then

• if v ∈ V ↓ and ∃d ≥ 0.v + d ∈ V we have that v + d′ ∈ V for all 0 ≤ d′ < d.

• V ⊆ V ↓

Proof: by definition of ↓ and Wang’s Axiom in definition of TTS. ¤

2.2 Linear Priced Timed Automata

Linear priced timed automata (LPTA) are timed automata extended with a
variable that can be used to model the cost of execution. This model has been
independently introduced in [BFH+01] and [ATP01] (uses the name Weighted
Timed Automata). The cost variable is incremented due to prices on certain
behavior. Edges have a price for taking the edge. Locations have a price that
specifies a cost per time-unit for time spent in the location. To make things
clear first an example is given, and then the formal definition and its semantics.

Example 2.2.1 Consider the simple static scheduling problem represented by
the LPTA in figure 2.6 (based on [BFH+01]), which contains 3 tasks {A,B,C}.
D denotes the ‘goal’. Task A is the first task to be executed. At beginning of
A all clocks have value zero, and the cost variable is also zero. The edge from
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A to B makes that task B will commence execution only when task A finishes.
It is clear that task B is the only task that can be executed multiple times.
The price of the tasks are written in the corresponding locations. They model
the cost per time unit of executing the task. Prices on edges are written next
to the corresponding arrow. The cost variable can model for example power
consumption, or cost on some other resource. None of the locations has an
invariant, meaning there is no restriction on the time that is spent in a location.

A possible path in the underlying timed transition system leading to location
D is:

(A, (0, 0), 0)
1
−→ (A, (1, 1), 2)

→ (B, (0, 0), 3)
0.3
−−→ (B, (0.3, 0.3), 3.3)

→ (C, (0.3, 0.3), 3.3)
2.7
−−→ (C, (3, 3), 11.4)

→ (D, (3, 3), 15.4)

Note that states are now triples (l, v, c) where c is the cumulated cost so far.
The given path is not optimal when minimizing cost. The next path is better,
because more time is spent on task B than on C, and B is ‘cheaper’ than C.

(A, (0, 0), 0)
1
−→ (A, (1, 1), 2)

→ (B, (0, 0), 3)
1
−→ (B, (1, 1), 4)

→ (C, (1, 1), 4)
2
−→ (C, (3, 3), 10)

→ (D, (3, 3), 14)

An optimal path leading to ‘goal’ D, is obtained by executing task B two times:

(A, (0, 0), 0)
1
−→ (A, (1, 1), 2)

→ (B, (0, 0), 3)
3
−→ (B, (3, 3), 6)

→ (B, (0, 3), 8)

→ (C, (0, 3), 8)

→ (D, (0, 3), 12)

¤

Definition 2.2.2 A Linear Priced Timed Automaton is a tuple
(L, l0, X, inv , E, c, $̇, $) with the following properties:

(L, l0, X, inv , E) - is a diagonal-free timed automaton following Definition 2.1.1.

c - the cost variable.

$̇ : L → N - function assigning a price to each location.

$ : E → N - function assigning prices to transitions. ¤
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Figure 2.6: A LPTA of a scheduling problem with prices
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The semantics are easy to understand. The cost variable c is only used as an
observable, meaning that it is not used in guards or invariants. If we only
regard the value of the clocks the execution is exactly the same as that of the
underlying timed automaton. Initially the value of c is zero. When taking an
edge the value increments by the price on that edge. When staying for t time
units in some location l, c increments by $̇(l) · t.

Definition 2.2.3 (LPTA Semantics) The semantics of a linear priced timed

automaton LPTA = (L, l0, X, inv , E, c, $̇, $) is given by the timed transition
system TTS = (S,Act ,→), where Act = E,S = {(l, v, c) | l ∈ L∧v ∈ inv(l)∧c ∈
R+}. Transitions are defined by letting time pass or taking an edge:

timed transitions: (l, v, c)
d
−→ (l, v+d, c+d·$̇(l)) if v ∈ inv(l) and (v+d) ∈ inv(l),

discrete transitions: (l, v, c)
a
−→ (l′, v′, c + $(l

g,r
−−→ l′)) if a = (l

g,r
−−→ l′) ∈ E, v ∈

g, v′ = v[r := 0] and v′ ∈ inv(l′).

¤

2.2.1 Verification of LPTA

From Definition 2.2.2, we see that a LPTA is in fact a normal timed automa-
ton extended with prices. Reachability analysis is possible on LPTA through
reachability analysis of the underlying timed automaton. This only answers the
question if a certain set of locations is reachable. It doesn’t minimize cost. As
we have seen in example 2.2.1, all paths would lead to ‘goal’ D, but only the
last path gives the minimal cost.

In contrast to timed automata, in general, LPTA do not have a finite bisim-
ulation [Hen95]. Despite this fact, minimum cost reachability is proven to be
decidable by [BFH+01] and [ATP01]. [BFH+01] shows this result for bounded
LPTA. A LPTA is bounded if the clocks can’t get arbitrary high, thus all regions
will be bounded. This limitation is no problem, as they show that every LPTA
can be transformed to a bounded LPTA that is equivalent. It is equivalent in
the sense that every location is reachable with some path in both LPTA, that
has exactly the same cost. The bounded LPTA has constant updates on clocks.
Edges may now reset a clock to some natural number. It is easy to alter the
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reset operation of Definition 2.2.7 to incorporate this new functionality; just let
h′ in the definition have the new constant value for the clock that was updated.
The recursive definition for reseting a set of clocks holds for a set of updates.

Minimum cost reachability answers the question whether a set of locations is
reachable from the starting state, and if it is reachable, by what minimum cost.
Being able to compute minimal cost reachability, it is also possible to com-
pute cost-bounded reachability. Cost-Bounded reachability answers the question
whether a set of locations is reachable with an upper bound on the cost.

Priced regions

In [BFH+01] decidability of minimum cost reachability is proven by using priced
regions. Priced regions are regions, where cost is associated with the clock
valuations in the region.

Definition 2.2.4 [BFH+01]. A (Bounded) Priced Region
R = (h, [r0 . . . rn], [c0 . . . cn]) is an element of (X → N) × Seq(2X) × Seq(N),
where Seq(S) denotes the set of sequences of elements of set S; The first two
components: h and [r0, . . . , rn], make a bounded region. ¤

The closure of a bounded region consists of all valuations in the bounded re-
gion, and the valuations that are not part of the region, but which values can
be approached arbitrary close. The closure of the bounded region is a con-
vex polyhedron. For a priced region R = (h, [r0 . . . rn], [c0 . . . cn]), the natu-
rals c0 . . . cn are associated with the vertices of the bounds of the closure of
(h, r0, . . . , rn). c0 is associated with the vertex that is the infimum for the value
of all clocks. In case of two dimensions, this will be the left-most lower ver-
tex. By adding one time unit to all the clocks of this valuation that appear
in rn we get the next vertex, to which we assign cost c1. Now this process is
repeated by adding one time unit to all clocks appearing in rn−1 etcetera. The
costs span a linear cost plane on the n-dimensional unpriced region. The cost
of clock valuations in the priced region are given by the next definition. Fig-
ure 2.7 gives an example, for priced region R = (h, [r0 . . . rn], [c0 . . . cn]), where
h(x) = 1, h(y) = 0, r0 = ∅, r1 = {y}, r2 = {x}, c0 = 1, c1 = 4, c2 = 3.

Definition 2.2.5 (Cost inside Priced Regions) [BFH+01]. Given priced
region R = (h, [r0 . . . rn], [c0 . . . cn]) and clock valuation v ∈ RX

+, the cost of
v in R is defined as:

cost(v,R) = c0 +

n−1
∑

i=0

frac(v(xn−i)) · (ci+1 − ci)

where xj is some clock in rj . The minimal cost associated with R is
mincost(R) = min{c0, . . . , cn}. ¤

The previous definition can be used to calculate the cost of clock valuations
inside the priced region. The definition differs from [BFH+01], such that it
is also possible to calculate the cost of valuations associated with the region
that lie outside the priced region. The cost function is extended beyond the
boundaries of the region. This useful property is needed for calculating the cost
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Figure 2.7: Example cost inside a priced region.
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of valuations in unbounded priced regions.

Next we recall the operations on priced regions from [BFH+01], which later
will be used to define the symbolic semantics for LPTA. The delay operation
computes a time successor for a priced region. The unpriced region of the
successor is the same as the unpriced region we would get by taking a time-
abstracting ǫ-transition in the region graph. The two cases in the operation are
illustrated in Figure 2.8.

Definition 2.2.6 (Priced Region Delay) [BFH+01]. Given a priced region
R = (h, [r0 . . . rn], [c0 . . . cn]) and a price q ∈ N, the function delay is defined as
follows:

• if r0 6= ∅ then delay(R, q) = (h, [∅, r0, . . . , rn], [c0, . . . , cn, c0 + q]),

• if r0 = ∅ then delay(R, q) = (h′, [rn, r1, . . . , rn−1], [c1, . . . , cn]), where

h′(x) =

{

h(x) + 1 if x ∈ rn

h(x) otherwise.

¤

Figure 2.8: Example operations on priced regions [BFH+01].
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When resetting a clock, a region may lose a dimension. Two vertices collapse
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to one new vertex. In a priced region a choice must be made for the cost on the
new vertex. We chose the minimum of the cost on the two vertices, as we are
interested in minimum cost reachability. Two of the three cases in the operation
are illustrated in Figure 2.8.

Definition 2.2.7 (Priced Region Reset) [BFH+01]. Given a priced region
R = (h, [r0 . . . rn], [c0 . . . cn]) and a clock x ∈ ri, the function reset is defined as
follows:

• if i = 0 then reset(x,R) = (h[{x} := 0], [r0, . . . , rn], [c0, . . . , cn]),

• if i > 0 and ri 6= {x}, then
reset(x,R) = (h[{x} := 0], [r0 ∪ {x}, . . . , ri\{x}, . . . , rn], [c0, . . . , cn]),

• if i > 0 and ri = {x}, then reset(x,R) = (h[{x} := 0], [r0 ∪
{x}, . . . , ri−1, ri+1, . . . , rn], [c0, . . . , cn−i−1, c

′, cn−i+2, . . . , cn]), where c′ =
min(cn−i, cn−i+1).

The reset operation on a set r of clocks is defined inductively by: reset(r ∪
{x}, R) = reset(r, reset(x,R)), and reset(∅, R) = R. ¤

The increment operation is used to model a discrete cost increment on an edge.

Definition 2.2.8 (Priced Region Increment) [BFH+01]. Given a priced
region R = (h, [r0 . . . rn], [c0 . . . cn]) and a price q ∈ N, the increment of R
with respect to q is the priced region inc(R, q) = (h, [r0, . . . , rn], [c′0, . . . , c

′
n])

where c′i = ci + q. ¤

If in priced region R, no clock has fractional part 0, then time may pass in R.
When R is associated with location l, the costs on the vertices are determined
by $̇(l). By taking an edge, a new location l′ may become associated with R. All
time spent in l, can also be spent in l′. The next operation, is used to calculate
the cheapest possible way of letting time elapse.

Definition 2.2.9 (Priced Region Self) [BFH+01]. Given a priced region
R = (h, [r0 . . . rn], [c0 . . . cn]) and a price q ∈ N, the function self is defined
as follows:

• if r0 6= ∅ then self (R, q) = R,

• if r0 = ∅ then self (R, q) = (h, [r0, . . . , rn], [c0, . . . , cn−1, c
′]), where c′ =

min(cn, c0 + q).

¤

Symbolic semantics

With definitions 2.2.6 2.2.7, 2.2.8, and 2.2.9, it is possible to define a symbolic
transition system for a LPTA. The states of the transition system consist of
a location, and a priced region. The big difference with the symbolic states
for timed automata is that now symbolic states are not a set of states of some
LPTA. A symbolic state only captures states without cost of a LPTA, i. e. a
location and possible clock valuations, and defines a minimal cost function on
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those states. A Symbolic state is regarded ‘cheaper’ than some other symbolic
state, if all possible clock valuations have a lower cost. The state system captures
all cost minimal paths; symbolic states do not model a set of states of the LPTA
that are bisimilar.

Definition 2.2.10 [BFH+01]. The Symbolic semantics of a LPTA =

(L, l0, X, inv , E, c, $̇, $) is defined as a labeled transition system where symbolic
states are of the form (l, R), with l a location and R a priced region satisfying
inv(l). The starting symbolic state is (l0, (0̄, [X], [0])). The transition relation is
as follows:

• (l, R)
ǫ
−→ (l, delay(R, $̇(l))) if delay(R, $̇(l)) ∈ inv(l),

• (l, R)
(l,g,r,l′)
−−−−−→ (l′, R′) if there exists g, r such that (l

g,r
−−→ l′) ∈ E,R ⊆

g,R′ = self (inc(reset(r,R), $(l, g, r, l′)), $̇(l′)).

¤

The definition of the symbolic semantics is slightly different from [BFH+01],
where there were three sorts of transitions including a ‘self’-transition. In Defi-
nition 2.2.10 the ‘self’-transition is not possible, but is encapsulated in first type
of transitions. This generates less symbolic states, because if self generates a
‘cheaper’ symbolic state we do not need the original one; we are only interested
in the minimal cost reachability. This approach is similar to that of the reset
operation, where the minimum cost is taken on two vertices that collapse.

The priced regions represent the minimum cost for paths in the semantics leading
to clock valuations in the region, when these paths take the same edges of the
LPTA used in generating the priced region from the starting priced region.
cost(v,R) does not give the exact minimum cost of paths to v, but rather gives
the infimum cost. Meaning that exact minimum cost on paths respecting the
edges by which R was generated, may have a higher cost than cost(v,R), but
are arbitrary close to it.

The following lemma is sufficient to show that cost-bounded reachability is de-
cidable on basis of the symbolic semantics of a LPTA.

Lemma 2.2.11 [BFH+01] For every reachable state (l, v, c) in the LPTA, there
is a reachable symbolic state (l, R) such that v ∈ R and cost(v,R) ≤ c.
Proof: lemma 1 in [BFH+01], the integration of the ‘self’-transition into the
time-transitions does not alter the proof. ¤

Priced zones

The definition of zones in timed automata can also be extended with cost.
Priced zones are closed zones extended with a linear cost function [LBB+01].
Like zones for timed automata, priced zones can be used to verify reachability of
LPTA, but now including costs. In [LBB+01] priced zones are used in a forward
exploration algorithm to compute minimum cost reachability. [LBB+01] only
defines closed priced zones. Closed priced zones have the nice property that
clock valuations with the infimum and supremum for the cost are element of
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the priced zone. What modifications are necessary when non-closed LPTA and
non-closed priced zones are used remains to be investigated. The successor
operation on symbolic states with priced zones differs from that using normal
zones, in that it generates a set of successor symbolic states. The successor
symbolic states have disjoint priced zones.

2.3 Probabilistic Timed Automata

The model of Probabilistic timed automata (PTA) is introduced in [KNSS02].
PTA are timed automata extended with probabilistic edges. Like a normal edge,
a probabilistic edge has a source location and a guard. Now the combination of
reset and target location is chosen probabilistically from a set, with a discrete
probability distribution defined on it.

Example 2.3.1 [KNS03] Consider the PTA modeling a simple probabilistic
communication protocol given in Figure 2.9. The locations are named: di

(sender has data, receiver is idle); si (sender sends data, receiver idle); and
sr (sender has sent data, receiver has received). The automaton starts in loca-
tion di in which the sender has data that needs to be sent. After between 1 and
2 time units, the protocol makes a transition either to sr with probability 0.9
(data received), or to si with probability 0.1 (data lost). In si after 2 to 3 time
units, the protocol will attempt to resend the data, which again can be lost, this
time with probability 0.05. ¤

Figure 2.9: A PTA modeling a probabilistic protocol.

x := 0

x := 0

x := 0
0.05

x ≥ 20.95sr

x := 0

0.9

di

x ≤ 2

x ≥ 1

0.1

si

x ≤ 3

A discrete probability distribution (subdistribution) over a finite set Q is a func-
tion µ : Q → [0, 1] such that

∑

q∈Q µ(q) = 1 (
∑

q∈Q µ(q) ≤ 1). For a possibly
uncountable set Q′, let Dist(Q′) (SubDist(Q′)) be the set of distributions (sub-
distributions) over finite subsets of Q′.



2.3 Probabilistic Timed Automata 31

Definition 2.3.2 A Probabilistic Timed Automaton is a tuple
(L, l0, X, inv , pE ). L, l0, X, and inv , have the same meaning a in a nor-
mal timed automaton (Definition 2.1.1). pE ⊆ L×Cons(X)×Dist(2X ×L) is a
probabilistic edge relation. All guards and invariants in PTA are diagonal free.
EPTA are the edges of the PTA. (l, g, p, r, l′) ∈ EPTA if (l, g, p) ∈ pE , and
p(r, l′) > 0. ¤

2.3.1 Probabilistic Systems

A probabilistic system is exactly the same as a discrete time Markov decision
process. Probabilistic systems are of great importance to the verification of
PTA, as both the semantics of a PTA, as well as the symbolic semantics can be
described as a probabilistic system.

Definition 2.3.3 [KNSW04]. A Probabilistic System is a Markov decision
process (S,Steps), where S is a set of states, Steps ⊆ S × Dist(S) is a proba-
bilistic transition relation. ¤

For s, s′ ∈ S, s
µ
−→ s′ denotes a transition. The transition is made by first

nondeterministically selecting a distribution µ ∈ Dist(S) such that (s, µ) ∈
Steps, and then making a probabilistic choice of target state s′ according to µ
(given that µ(s′) > 0). We see that a transition resolves both nondeterminism
and probability.

Now a path is denoted ω = s0
µ0
−→ s1

µ1
−→ s2

µ2
−→ . . .. The probability on a finite

path ω = s0
µ0
−→ s1

µ1
−→ · · ·

µn−1
−−−→ sn is of course P (ω) = µ0(s1) · µ1(s2) · . . . ·

µn−1(sn).

An adversary of a probabilistic system is similar to a scheduler or policy in a
Markov decision process. An adversary A is a function mapping every finite path
ω in probabilistic system PS = (S,Steps) to a distribution µ ∈ Dist(S) such
that µ ∈ Steps(last(ω)). Hereby all nondeterminism is resolved, therefore an
adversary applied to a probabilistic system in fact gives a discrete time Markov
chain (DTMC). For any adversary A, let PathA

full and PathA
fin respectively denote

the infinite paths and finite paths induced by the adversary. ProbA denotes the
probability measure on infinite paths associated with adversary A, defined using
classical techniques [KNS03, KSK76]. AdvPS denotes all possible adversaries on
PS .

Probabilistic reachability is the probability of reaching a certain set of target
states in a finite number of transitions under some adversary. For probabilistic
system (S, Steps) with s ∈ S and F ⊆ S, and adversary A let:

ProbReachA(s, F )
def
= ProbA{ω ∈ PathA

full | ω(0) = s ∧ ∃i ∈ N.ω(i) ∈ F}

, denote the probabilistic reachability defined on infinite paths as in [KNS03].

The probabilistic reachability depends on the non-deterministic choices made
by the adversary. A non-deterministic choice can model branches in system
execution, for which the probability distribution is not known, therefore we are
interested in maximal probabilistic reachability, that gives the maximum if all
choices are optimal. The maximal probabilistic reachability for probabilistic
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system (S, Steps) with s ∈ S and F ⊆ S is defined as:

MaxProbReach(s, F )
def
= sup

A∈AdvPS

ProbReachA(s, F )

For finite state probabilistic systems (Markov decision processes), maximal and
minimal probabilistic reachability are computable [dA99].

2.3.2 Timed Probabilistic Systems

Definition 2.3.4 [KNSW04]. A Timed Probabilistic System (TPS) is a
probabilistic system of Definition 2.3.3 extended with two extra labels on the
probabilistic edge relation. Now Steps ⊆ S × R+ × {time, disc, full} × Dist(S),
such that if (s, d, ι, µ) ∈ Steps then d denotes the duration. time and disc are
used to mark discrete, and time transitions respectively, with the following rules:

non-probabilistic time: if ι = time then µ is required to be a point distribution.

discrete transitions: if ι = disc then d = 0,

time determinism: if s
d,·
−−→
time

t and s
d,·
−−→
time

t′ then t = t′,

Wang’s Axiom: s
d,·
−−→
time

t, with d > 0, if and only if there exists s′ and d′ < d

such that s
d′,·
−−→
time

s′ and s′
d−d′,·
−−−−→

time

t.

zero delay: s
0,·
−−→
time

t if and only if s = t.

full denotes full transitions. Full transitions are a combination of a time transi-

tion and a discrete transition. Formally, there exist transitions s
d,{t7→1}
−−−−−→

time

t and

t
0,µ
−−→
disc

u if and only if transition s
d,µ′

−−→
full

u exists, where µ′(u) = µ(u). ¤

Labels on transitions are sometimes left out when they are clear from the con-
text. Now adversaries map finite paths to duration-distribution pairs. A path

ω in a TPS has the form: ω = s0
d0,µ0
−−−→

ι0
s1

d1,µ1
−−−→

ι1
s2

d2,µ2
−−−→

ι2
· · · . The duration D

of ω up to the n + 1th state is Dω(n + 1) =
∑n

i=0 ti. Path ω is divergent if for
any t ∈ R+, there exists j ∈ N such that Dω(j) > t.

Definition 2.3.5 (Divergent Adversary) [KNSS02]. An adversary A of a
timed probabilistic system TPS is divergent if and only if
ProbA{ω ∈ PathA

full | ω is divergent = 1}. ¤

The definition of divergent adversaries considers probabilistic divergence, as some
paths may be non-divergent, but the probability on these paths is zero. This in
contrast to a stronger definition that requires all paths of an adversary to be
divergent. See [KNSS02] for the reason why probabilistic divergence is used.
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Definition 2.3.6 A timed probabilistic system is non-Zeno if and only if there
exists a divergent adversary. ¤

Definition 2.3.7 (PTA Semantics) The semantics of a probabilistic timed
automaton PTA = (L, l0, X, inv , pE ) are given by a timed probabilistic system
TPS = (S,Steps), where S = {(l, v) | l ∈ L ∧ v ∈ inv(l)}. Now ((l, v), d, ι, µ) ∈
Steps, if and only if one of the following conditions holds:

time transitions: µ(l, v + d) = 1 (point distribution), v + d ∈ inv(l), and
ι = time,

discrete transitions: d = 0 and there exists (l, g, p) ∈ pE such that v ∈ g,
ι = disc, and for any (l′, v′) ∈ S: µ(l′, v′) =

∑

r⊆X∧v′=v[r:=0] p(r, l′).

¤

A PTA is considered non-Zeno if the underlying TPS is non-Zeno. In verifica-
tion of PTA only divergent adversaries are of interest as these model realizable
behavior. A Zeno PTA contains no such adversaries and will typically contain a
modeling error, as there is no possibility of letting time diverge. In real systems
time will always proceed, it does not converge to some value.

2.3.3 Verification of PTA

All reachability results for timed automata also hold for PTA. This can simply
be verified by the following observation: every probabilistic edge can be replaced
with a set of normal edges, where every normal edges has one possibility of reset
and target location from the distribution of the probabilistic edge. The following
definition gives the construction of a timed automaton from some PTA.

Definition 2.3.8 For some PTA = (L, l0, X, inv , pE ) let PTATA denote the
timed automaton PTATA = (L, l0, X, inv , E), where E = EPTA. ¤

Of course in addition, for PTA, we want to say something about the probability
that certain behavior occurs. In [KNSS02] it is shown that by using region
equivalence on PTA it is possible to construct a region graph with probabilistic
edges. The probabilistic region graph is an abstraction that is sufficient for
model checking the logic PTCTL, and therefore can also be used for probabilistic
reachability of a set of locations. Section 4.4.3 of chapter 4 gives the formal
definition.

In [KNSS02], also forward analysis on PTA using zones is discussed. Assume
some PTA, on PTATA we can generate a (symbolic) state space Σ of zones
with forward analysis of normal timed automata. Now construct a probabilistic
system PS fwd = (Σ,Steps) on the state space, where µ ∈ Steps(l, Z) if and only
if there exists g and p such that for all (l′, Z ′) ∈ Σ:

µ(l′, Z ′) =
∑

r⊆X

∅6=(l′,Z′)=succ(l,g,p,r,l′)(l,Z)

p(r, l′)

With the probabilistic system PSfwd only an upper bound on the maximum
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reachability probability can be computed, see [KNSS02].

In [KNS01] backward analysis is used to compute exact maximal probabilistic
reachability on symbolic probabilistic systems. Symbolic probabilistic systems
are a very general class of probabilistic systems that have a symbolic represen-
tation. PTA are a possible instance of such a symbolic probabilistic system. In
[KNS03] the approach of [KNS01] is specially tailored toward PTA. More im-
portant the problem of minimal probabilistic reachability is solved. The method
requires the PTA to be non-Zeno. Due to a minimum and a maximum we can
compute a probability interval for reachability using backward analysis, and it
is possible to model check full PTCTL.

The backward analysis of [KNS01] and [KNS03] is based on the same predecessor
operation as for normal timed automata. In addition, the intersection between
certain symbolic states is added to the symbolic state space. Now also on
these interactions predecessor operations are applied. In short, the intersections
represent set of states from which different paths can lead to the target under
the same adversary. The intersections are of interest, as more paths to the
target will lead to a higher reachability probability. The problem could also
be solved by using the coarsest bisimulation [Spr00]. For the quotient system
under coarsest bisimulation, the same rules as for the probabilistic region graph
would hold. The problem is that a lot of symbolic states are generated, because
intersections, and differences between symbolic states are added. The method
of [KNS01] and [KNS03] only adds intersections, and is capable of computing
maximum and minimum probabilistic reachability.



Chapter 3

Weighted Probabilistic

Timed Automata

Weighted probabilistic timed automata (WPTA) are probabilistic timed au-
tomata extended with prices in the locations, like linear priced timed automata.
WPTA are as far as we know a new formalism, but WPTA can be seen as
a specialization of probabilistic linear hybrid automata that are presented in
[Spr00].

In section 3.1 we define WPTA formally, we give an example, and define the for-
mal semantics as timed probabilistic system (TPS). Section 3.2 gives the formal
definition of the cost-bounded probabilistic reachability problem. In section 3.3
known reachability results for WPTA are discussed. Section 3.4 presents our
new symbolic states for WPTA based on priced zones, and a computable prede-
cessor operation. Section 3.5 presents an algorithm for computing cost-bounded
reachability using our symbolic states and predecessor operations. Finally sec-
tion 3.6 argues why our symbolic states are not suitable, and presents symbolic
states based on a new abstraction called multi-priced zones.
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3.1 The Model

Definition 3.1.1 A Weighted Probabilistic Timed Automaton is a tuple
WPTA = (L, l0, X, inv , pE , c, $̇), where each element has the same meaning as
in LPTA and PTA, and are defined as follows:

• L - finite set of locations.

• l0 ∈ L - single starting location.

• X - finite set of clocks.

• inv : L → Cons(X) - function assigning to each location an invariant
condition.

• pE ⊆ L × Cons(X) × Dist(2X × L) - probabilistic edge relation.

• c - the cost variable.

• $̇ : L → N - function assigning a price to each location.

Note that WPTA in contrast to LPTA do not have prices on edges. All guards
and invariants in WPTA are diagonal-free. We define EWPTA, the set of edges
of the WPTA, as follows: (l, g, p, r, l′) ∈ EWPTA if (l, g, p) ∈ pE and p(r, l′) > 0.
Note that the tuple (L, l0, X, inv , pE ) in fact defines a PTA (Definition 2.3.2),

and $̇ defines prices in this PTA. ¤

Figure 3.1 gives an example of a WPTA. It has five locations:
L = {l0, l1, l2, goal, fail}. The set of clocks is X = {x, y}. Locations are drawn

as circles with their name and price inscribed, e. g. $̇(l1) = 2. The invariant of
each location is true, meaning there are no constraints on the values of clocks
in a location. Probabilistic edges are drawn as arrows (possibly with multiple
heads), and we use α, β, γ to point out which of the distributions is chosen from
location l0.

Like for PTA, the semantics of a WPTA can be defined by paths in a TPS,
but now the states include the value for the cost variable. A WPTA is called
non-Zeno if the TPS semantics is non-Zeno.

Definition 3.1.2 (WPTA Semantics) Let WPTA = (L, l0, X, inv , pE , c, $̇)
be a weighted probabilistic timed automaton. We define its semantics by the
timed probabilistic system TPS = (S,Steps), where S = {(l, v, c) | l ∈ L ∧ v ∈
inv(l) ∧ c ∈ R+}. A probabilistic transition ((l, v, c), d, ι, µ) is element of Steps,
if and only if ∀(l′, v′, c′) ∈ support(µ).c′ = c + $(l) · d, and one of the following
conditions holds:

time transitions: d ≥ 0, ι = time, µ(l, v + d, c′) = 1 (point distribution) and
v + d′ ∈ inv(l) for all 0 ≤ d′ ≤ d.

discrete transitions: d = 0, ι = disc, and there exists (l, g, p) ∈ pE such that
v ∈ g, and for any (l′, v′, c′) ∈ S, µ(l′, v′, c′) =

∑

r⊆X∧v′=v[r:=0] p(r, l′).

¤

We continue our example of figure 3.1. States are of the form (l, (x, y), c). We
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are interested in reaching location ‘goal’ from the starting state. When prices
and probabilities are ignored we have a simple path:

(l0, (0, 0), 0)
α

−−→
disc

(l2, (0, 0), 0)
6,·
−−→
time

(l2, (6, 6), 12) −−→
disc

(goal, (6, 6), 12)

The probability of this path is as high as possible, namely 1. Note that when
more than one time unit is spent in l0, x should be reset by taking β or γ.
Assume we are interested in reaching location ‘goal’ with cost at most 10. Now
the cost of the above path, which is 12, is too high. The path with minimal cost
is:

(l0, (0, 0), 0)
6,·
−−→
time

(l0, (6, 6), 6)
γ

−−→
disc

(l0, (0, 6), 6)
α

−−→
disc

(l2, (0, 6), 6) −−→
disc

(goal, (0, 6), 6)

The probability on this path is 0.4. But is this probability maximal? The
answer is no. In the next section we will see why the maximum probability is of
interest. Take cost as well as probability into account. An adversary chooses in a
location between taking a probabilistic edge or letting some amount of time pass.
Figure 3.2 gives the tree of paths generated in this way by an adversary that
maximizes the reach probability. For brevity, only the starting and ending state
of the paths are given. Note that in this special case a finite tree suffices. The
maximal probabilistic reachability respecting the cost bound is the summation
over the paths: 0.8 + 0.16 + 0.016 = 0.976.

Figure 3.1: An example WPTA.
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Figure 3.2: A tree of paths for the maximizing adversary.
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3.2 Formal Problem Definition

We now present the formal definition for the cost-bounded probabilistic reach-
ability problem. Like for PTA, only divergent adversaries are of interest, as
they present realizable behaviour. However we can weaken this to T -divergent
adversaries.

T -divergent paths in PTA are paths that are either divergent or reach a location
from set T in some finite number of steps. A T -divergent adversary generates T -
divergent paths with probability one [KNSS02]. T -divergence is a weaker notion
than normal divergence. It is useful when there are no divergent paths that
reach a target location, but we still want to compute probabilistic reachability
for that target location. First we give the more general definition of F -divergent
adversaries.
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Definition 3.2.1 (F -divergence) Assume given a probabilistic system PS =
(S,Steps) and a set of states F ⊆ S. A path ω is F -divergent if it is either
divergent or there exists i ∈ N such that ω(i) ∈ F . An adversary of A ∈ AdvPS

is F -divergent if and only if

Prob{ω | ω ∈ PathA
full and ω is F -divergent} = 1

¤

Let T ⊆ L denote a target set of locations. An adversary is T -divergent if it is
F -divergent with F = {(l, v, c) | l ∈ T ∧ v ∈ inv(l) ∧ c ≥ 0}.

Definition 3.2.2 Assume given a WPTA = (L, l0, X, inv , pE , c, $̇), target loca-
tions T ⊆ L, an operator ⊒∈ {≥, >}, a target probability λ ∈ [0, 1], and cost
bound κ. Let TPS denote the semantics of WPTA.
The cost-bounded probabilistic reachability problem (T,⊒, λ, κ) is the question:

“Is ProbA{ω ∈ PathA
full | ω(0) = (l0, 0̄, 0) ∧ (∃i ∈ N.(l, v, c) = ω(i) ∧ l ∈

T ∧ c ≤ κ)} ⊒ λ true, for some adversary A ∈ AdvTPS?”

Using the definition of ProbReach the last expression equals
ProbReachA(s0, F ) ⊒ λ, with F = {(l, v, c) | l ∈ T ∧ v ∈ RX

+ ∧ c ≤ κ}.
¤

To solve the cost-bounded probabilistic reachability problem (T,⊒, λ, κ) for a
WPTA, the problem of maximal probabilistic reachability (section 2.3.1) needs
to be solved on the TPS semantics, where we are interested in reachability
probability on states that have location in T and cost at most κ. Formally,
if MaxProbReach(s0, F ) ⊒ λ, with s0 and F the same as above, the answer is
“yes” and “no” otherwise.

The dual problem is that of inevitability of reaching T with a given probability
λ or less. Clearly, such a property is true if it is not possible to reach the set of
states with probability greater than λ.

3.3 Known Results for WPTA

Minimal cost reachability is decidable for WPTA, and thereby cost-bounded
reachability is decidable. This can simply be verified by transforming the
WPTA to a LPTA: every probabilistic edge can be replaced with a set of nor-
mal edges, where every normal edge has one possibility of reset and target
location from the distribution of the probabilistic edge. Formally, for some
WPTA = (L, l0, X, inv , pE , c, $̇) let WPTALPTA = (L, l0, X, inv , E, c, $̇, $) be a
linear priced timed automaton, where E = EWPTA, and ∀e ∈ EWPTA.$(e) = 0
thus discrete cost changes are not used.

On the other hand, if all prices in a WPTA are ignored, it becomes a PTA,
and maximal probabilistic reachability is computable. The notion of divergence
on WPTA is equivalent to divergence on this PTA. Deciding non-Zenoness for
WPTA can then be done by using the methods of [KNS03]. From minimal
cost reachability on LPTA and maximal probabilistic reachability on PTA the
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problem of cost-bounded probabilistic reachability on WPTA seems easy, but
in the next chapter we will see that the combination of probabilities and prices
makes the problem not so trivial.

3.4 Symbolic States for WPTA

Symbolic states are needed to make an abstraction of the infinite state space.
Here we present our symbolic states for WPTA, using the priced zones of
[LBB+01]. Furthermore, a computable definition for the backward predeces-
sor operation pre on the new symbolic states is given. Our symbolic states are
useful in the algorithm of section 3.5, but section 3.6 will show some problems.

3.4.1 Priced zones

Definition 3.4.1 A Priced Zone is a tuple Z = (N, $0, o) where N is a (nor-
mal) closed zone. The offset cost $0 ∈ Z ∪ {∞} describes the maximal cost
associated with clock valuation 0̄, and o : X → Z assigns a cost-rate to every
clock.
We identify a priced zone with (clock) valuation/cost-pairs, such that (v, c) ∈ Z,
if and only if v ∈ N and 0 ≤ c ≤ maxcost(v, Z). The function maxcost gives
the maximal cost possible for a clock valuation:
maxcost(v, Z) = $0 +

∑

x∈X
o(x) · v(x) for v ∈ N . ¤

Figure 3.3 gives an example of a priced zone Z = (N, $0, o) with two clocks,
where o(x) = 3 and o(y) = −2. The cost-rates are written next to the arrows
in the priced zone.

Figure 3.3: Example of a priced zone.
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The priced zones we use are slightly different from those of [LBB+01]. Firstly,
they identify priced zones with sets of clock valuations and a cost function that
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defines the minimum cost for each clock valuation. Second, we define the offset
cost on 0̄ instead of the offset clock valuation ∆N of N , and allow it to be
negative and unbounded, i. e. ∞.

For priced zones Z and Z ′ we define Z ′ ⊆ Z, if for any (v, c) ∈ Z ′, then (v, c) ∈
Z. The inclusion relation can be decided by formulating a linear programming
problem, see [LBB+01] for details. We have equality Z = Z ′ between two priced
zones if and only if Z ′ ⊆ Z and Z ⊆ Z ′. Likewise, we can define inequality.

Note that different priced zones can describe the same set of valuation/cost-
pairs, but equality is decided on equality of the valuation/cost-pairs. For exam-
ple: in the case of one clock x, let N be induced by clock constraint (x ≤ 1∧x ≥
1), then priced zone (N, 0, {x 7→ 1}) equals priced zone (N,−1, {x 7→ 2}).

3.4.2 Predecessor with priced zones

With priced zones we are able to define a new sort of symbolic states. Here
we show how a computable predecessor operation on these symbolic states can
be defined. Before we present the predecessor operation in Definition 3.4.6, we
need some definitions.

The facets of a closed zone are the sub-zones on the bounds of the zone. LF(N)
denotes the set of lower facets of N . UF(N) denotes the set of upper facets of
N . The formal definition is given below, it also gives the facets of priced zones,
which are priced zones themselves and are called priced facets. Figure 3.4 gives
an example zone, and all its facets. Lemma 3.4.3 states that facets can be used
to decompose the ↓ operation for normal zones.

Definition 3.4.2 (Facets) [LBB+01]. Let Z be a (priced) zone. For arbitrary
integer b ∈ N, we define the (priced) facets as follows:

LF(Z) = {F | ∃x ∈ X.F = Z ∧ (x ≤ b) and (x ≥ b) is a clock constraint in Z}

UF(Z) = {F | ∃x ∈ X.F = Z ∧ (x ≥ b) and (x ≤ b) is a clock constraint in Z}

¤

Lemma 3.4.3 [LBB+01]. Let N be a zone. Then:

• N↓ = N ∪
⋃

F∈LF(N) F ↓

• N↓ =
⋃

F∈UF(N) F ↓

¤

The next definition is a priced version of the past-operator from Definition
2.1.14. It takes an arbitrary set of valuation/cost-pairs V . Now V ↓q defines all
valuation/cost-pairs that can become a valuation/cost-pair in V by letting time
elapse. Here q is the rate by which the cost increases when time elapses.
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Figure 3.4: A zone with its facets.

(Z ∧ (y ≥ 0)) ∈ LF(Z)

(Z ∧ (y ≤ 4)) ∈ UF(Z)
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Definition 3.4.4 (General Priced Past-Operator) Let V = {(v, c) | v ∈
RX

+ ∧ c ≥ 0} be a set of valuation/cost-pairs, and q ∈ N.

V ↓q = {(v, c) | ∃d ≥ 0.(v + d, c + d · q) ∈ V }

¤

The next definition shows how the priced past-operator can be computed on
priced facets. Figure 3.5 gives an example. We see priced facet F ′. Which
uses $′0 in its description. The values for y in F are bounded to a single value.
Thus the cost-rate on y is changed to −1 in F ′↓2. The new cost in 0̄, i. e. $0

is computed from maxcost(∆N , F ), which equals 4 in the figure. Note that in
certain cases we need $0 to be negative.

Definition 3.4.5 (WPTA Priced Past-Operator) Let F ′ = (N ′, $′0, o
′) be

a priced facet, thus there is at least one clock x with clock constraint (x ≤

b ∧ x ≥ b), choose x arbitrary. Let q ∈ N be a price. Then F ′↓q
= (N, $0, o)

where

• N = N ′↓,

• o(x) = q −
∑

z 6=x o′(z) and o(y) = o′(y) for y 6= x,

• $0 = maxcost(∆′
N , F ′) −

∑

y∈X
o(y) · ∆′

N (y).

¤

The idea of Definition 3.4.5 is that in the priced past we are interested in the
maximal cost possible for clock valuations. Let Z be a priced upper or lower facet
for some clock x, with clock constraint x ≤ b∧x ≥ b. In general to represent Z↓q

by a priced zone, we need (N, $0, o), with
∑

z∈X
o(z) = q. Following Definition

3.4.4, for every valuation/cost-pair (v, c) ∈ Z↓q there must exist d such that
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(v + d, c + dq) ∈ Z. But as Z only permits a single value for clock x, d is unique
for every valuation/cost-pair. We can see that clock valuations from N ′ must
have the same maximum allowed cost in Z and Z↓q. Therefore o(y) = o′(y) for
y 6= x. We can choose o(x) different because it plays no role of significance in
Z, as x is bounded to a single value. Choose o(x) = q−

∑

z 6=x o′(z), and in that
way

∑

z∈X
o(z) = q. Note that by changing the cost-rate on x, the offset cost

$′0 needs to be recomputed. We compute it from the maximum cost in offset
valuation ∆′

N , which is also the maximum cost for valuation ∆′
N in Z↓q.

When more than one clock is bounded to a single value in Z, we can choose any
of those clocks to play the role of x in the above. Depending on the choice of
x,Z↓q may be represented by a different priced zone.

Figure 3.5: An example priced facet F , and F ↓2. The values at the arrows give
the cost-rates for the clocks. The values in the points are the maximal cost in
those clock valuations.
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Recall that a priced zone consists of a closed normal zone, and a price function.
We are now ready to give computable predecessor operations that satisfy the
general Definition 2.1.13. Note that tpre returns a set of predecessor symbolic
states. The union of these give all predecessor states.
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Definition 3.4.6 (predecessor in WPTA).

Let WPTA = (L, l0, X, inv , pE , c, $̇). Let l ∈ L with q = $̇(l), Z = (N, $0, o) be
a priced zone, and e = (l′, g, ·, r, l) ∈ EWPTA.

tpre(l, Z) =































{(l, Z)} ∪ {(l,H↓q ∧ inv(l)) | H ∈ LF(Z)} if q >
∑

x∈X
o(x)

{(l,H↓q ∧ inv(l)) | H ∈ UF(Z)} if q <
∑

x∈X
o(x)

and UF(Z) 6= ∅
{(l, ((N↓) ∧ inv(l),∞, o))} if q <

∑

x∈X
o(x)

and UF(Z) = ∅
{(l, ((N↓) ∧ inv(l), $0, o))} if q =

∑

x∈X
o(x)

dpree(l, Z) = (l′, Z ′), with Z ′ = (([r := 0]N) ∧ g ∧ inv(l), $0, o
′)

and o′(x) =

{

0 if x ∈ r
o(x) otherwise.

pree(τ) = {dpree(σ) | σ ∈ tpre(τ)}

¤

In Definition 3.4.6, the condition on the first case of tpre shows that letting time
elapse is cheaper according to Z than according to q. Because we are interested
in maximal cost on clock valuations by which some state in (l, Z) is reachable,
the cheapest way of time elapse is of interest as in that case clock valuations
with higher costs may still lead to (l, Z). Therefore we need to maintain Z in our
description of the time predecessor. From Lemma 3.4.3 we have seen how the
past-operator can be composed of applying the past-operator on facets. This is
extended to our priced setting, where we take the priced past-operator on the
lower priced facets of Z, thereby not interfering with the maximal cost assigned
to clock valuations by Z. The left part of figure 3.6 shows an example in case
of two clocks.

The second case of tpre is the counter-part of the first case. Now letting time
elapse is cheaper according to q and the maximal costs described by Z should
be abolished. We use the priced past-operator on the upper priced facets of
Z. The condition makes sure these priced upper facets exist. The right part of
figure 3.6 shows an example in case of two clocks.

The third case of tpre is the same as the second, but now no upper priced facets
exist. Lack of upper priced facets means all clocks are unbounded, and an
arbitrary amount of time may be spent for both (l, Z) and tpre(l, Z). Because
spending time is more expensive according to Z than according to q, we can
always spend an amount of time according to q such that the cost becomes
lower than the maximum defined by Z. Thus all costs are allowed in tpre(l, Z),
denoted by ∞. Note that o becomes unimportant.

The fourth case is a special case, where tpre(l, Z) can be easily obtained by
only extending the underlying normal zone, as spending time according to Z or
q induces the same cost.

Figure 3.7 gives an example of the dpre operation on a priced zone, note that
the zone has only one clock on the y-axis, and the cost is on the x-axis.
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Figure 3.6: Example of the first two cases in tpre operation on priced zones.

inv(l)inv(l)

Z

x

y

x

y

Figure 3.7: dpre operation on a priced zone with one clock y, and inv(l) = true.
The cost is on the horizontal axis.
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3.5 Backward Cost-Bounded Reachability

With the predecessor operations we are able to construct algorithm
BwReachability on page 46, which decides cost-bounded reachability using back-
ward analysis. The verification is performed on the underlying LPTA, i. e.
WPTALPTA as in section 3.3. Recall that this problem can be solved by for-
ward analysis, but backward analysis is of interest, because the verification
procedure of chapter 5 will also use backward analysis. The target is not a
set of locations but a set of symbolic states ψ. This more general approach
makes the computation nothing more difficult. If we want to compute reacha-
bility for a set of locations T , and cost bound κ, we initialize the target set as
ψ = {(lT , (inv(lT ), κ, o)) | lT ∈ T ∧ ∀x ∈ X.o(x) = 0}. BwReachability returns
the set of symbolic states Visited . The time predecessors of symbolic states
in Visited contain all states from which target ψ is reachable with a positive
probability.

The fact that BwReachability terminates in a finite number of steps is impor-
tant. Otherwise, it would be hopeless to search for an algorithm computing
cost-bounded maximal probabilistic reachability, using predecessor operations.
Theorem 3.5.1 states the correctness of the BwReachability .

We think the usage of priced zones will lead to a fast implementation of
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BwReachability . An implementation can first generate the state space of the
underlying unpriced zones that would be generated by using Definition 3.4.6. If
the target is unreachable from the starting state already a negative verdict can
be given. The priced zones use the normal zones of the generated set, and two
priced zones can share the structure for their normal zone.

Finally, we think that BwReachability can be used on LPTA that include dif-
ference constraints (not diagonal-free).

Algorithm 1: BwReachability(ψ)

(1) Input: WPTA = (L, l0, X, inv , pE , c, $̇),
(2) target set of symbolic states ψ

Output: symbolic state space Visited
Visited := ∅ //set of generated symbolic states

(3) Waiting := ψ //set of symbolic states waiting to be explored
(4) repeat
(5) get and remove τ from Waiting
(6) Visited := Visited ∪ {τ}
(7) foreach e = (l, g, p, r, l′) ∈ EWPTA with l′ = loc(τ)
(8) foreach σ ∈ pree(τ)
(9) if ∀ι ∈ Visited .σ * ι
(10) Waiting := Waiting ∪ {σ}
(11) until Waiting = ∅
(12) return Visited

The condition ∀ι ∈ Visited .σ * ι on line 9 is sufficient to guarantee termina-
tion. BwReachability is in fact very generic. For example, if we use symbolic
states with normal zones and the predecessor operation of Definition 2.1.14,
BwReachability becomes a backward exploration algorithm for timed automata.
The only thing that has to be taken into account, is that pre for timed automata
does not generate a set of predecessors, but just one. When we have a represen-
tation for symbolic states and predecessor operations, even other systems like
hybrid automata can be handled by BwReachability . The problem is that not
for all kinds of systems termination is guaranteed.

Theorem 3.5.1 Let WPTA = (L, l0, X, inv , pE , c, $̇), and ψ be the target set
of symbolic states. Let TPS = (S,Steps) denote the semantics of WPTA.
Algorithm BwReachability terminates in a finite number of steps. The time
predecessors of symbolic states in Visited , that is the set {tpre(τ) | τ ∈ Visited},
contains all states from which target ψ is reachable with a positive probability.
Formally, for any s ∈ S,MaxProbReach(s, ψ) > 0 if and only if there exists
σ ∈ Visited such that s ∈ tpre(σ). ¤

Proof By definition of the predecessor operation, if BwReachability terminates,
{tpre(τ) | τ ∈ Visited} contains all states from which ψ is reachable. The
proof that BwReachability terminates is more involved, and is given in the next
section. ¤

The following theorem is a simplified version of Theorem 3.5.1.
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Theorem 3.5.2 Let WPTA = (L, l0, X, inv , pE , c, $̇), and ψ be a target set
of symbolic states with the following condition: for each symbolic state
(l, (N, $0, o)),∀x ∈ X.o(x) = 0. Let TPS = (S,Steps) denote the semantics
of WPTA. Algorithm BwReachability is altered by replacing line 9 with:

if ∀ι ∈ Visited .σ 6= ι ∧ σ 6= ∅

The altered algorithm generates symbolic states such that all states able to
reach the target are in the time predecessor of some symbolic state, just like the
unaltered version. More important, the altered algorithm terminates in a finite
number of steps. ¤

Proof Only termination needs to be proven. By using lemmas 3.5.6 and 3.5.7
all priced zones that are unbounded w. r. t. some clock x will have o(x) = 0.
By using the alternative representation of priced zones of the proof of Theorem
3.5.1, we see that [c0, . . . , cn] < 0 is for all priced zones a sufficient condition for
concluding that the priced zone is empty. Thus the number of generated priced
zones is finite and the theorem holds. ¤

The following lemma is a very straightforward result.

Lemma 3.5.3 When allowing priced zones with $0 ∈ Q, all the above results
on priced zones including Theorem 3.5.1 still hold. ¤

Proof Given a priced zone Z = (N, $0, o) with $0 ∈ Q. Let f = $0−⌊$0⌋ be the
positive fraction. Construct original priced zone Y = (N, ⌊$0⌋, o) from Z. For
priced zones we have operations Z↓q, [r := 0]Z, and Z ∧ g for some constraint
g. All operations can be applied to Y . If Y ′ = (M, $′0, o

′) is a resulting priced
zone, then (M, $′0 + f, o′) is the result that would be given when the operation
was directly applied to Z. ¤

3.5.1 Proof of termination of algorithm BwReachability

To prepare the proof, we need a few lemmas.

Any zone N with clocks X = {x1, . . . , xn} describes a convex polyhedron in
space Zn. Clocks are numbered, and valuations can be given as vectors ~v =
(a1, . . . , an)T , such that v(xi) = ai. Let vertices(N) ⊂ Zn be the set of clock
valuations that give the vertices of the polyhedron. Let V ⊆ Z be a set of
clock valuations. convexhull(V ) is the minimal convex polyhedron that in-
cludes all clock valuations in V . From mathematical geometry we know that
convexhull(vertices(N)) ⊆ N for any N . Note that the convex hull is possibly
not representable as a zone.

Lemma 3.5.4 Let zone N be unbounded w. r. t. all clocks in U , then v ∈ N
implies there exists v′ ∈ convexhull(vertices(N)) such that

(v − v′)(x)

{

≥ 0 if x ∈ U
= 0 otherwise

¤
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Proof For x ∈ U , let xmin be s. t. (x ≥ xmin) is a constraint in N . Such a
constraint always exists, because of the canonical form of N , and the fact that
at least x ≥ 0 should hold. Choose

v′(x) =

{

xmin if x ∈ U
v(x) otherwise

¤

Lemma 3.5.5 Given two priced zones Z = (N, $0, o) and Z ′ = (N, $′0, o
′), that

have the same underlying normal zone. Let U ⊆ 2X be the maximal set of
clocks, such that Z and Z ′ are unbounded for all clocks in U . Now Z ′ ⊆ Z if for
all v ∈ vertices(N) we have maxcost(v, Z ′) ≤ maxcost(v, Z), and for all x ∈ U
we have o′(x) ≤ o(x). ¤

Proof Let Z,Z ′ and U be as in the lemma. Assume for all v ∈ vertices(N) we
have maxcost(v, Z ′) ≤ maxcost(v, Z), and for all x ∈ U we have o′(x) ≤ o(x).
From mathematical geometry and linearity of priced zones, we conclude that
for all v′ ∈ convexhull(vertices(N)),maxcost(v′, Z ′) ≤ maxcost(v′, Z). Take
arbitrary u ∈ N , by Lemma 3.5.4 there exists u′ ∈ convexhull(vertices(N))
such that

(u − u′)(x)

{

≥ 0 if x ∈ U
= 0 otherwise

maxcost(u,Z ′) = maxcost(u′ + (u − u′), Z ′)

= maxcost(u′, Z ′) +
∑

y∈X

o′(y)(u − u′)(y)

= maxcost(u′, Z ′) +
∑

y∈U

o′(y)(u − u′)(y)

≤ maxcost(u′, Z) +
∑

y∈U

o(y)(u − u′)(y)

= maxcost(u′ + (u − u′), Z) = maxcost(u,Z)

¤

From now we say a symbolic state (l, Z) is (un)bounded w. r. t. clock x if Z is
(un)bounded w. r. t. x.

Lemma 3.5.6 If some symbolic state (l′, Z ′) is bounded w. r. t. x, then for all
(N, $0, o) ∈ pree(l

′, Z ′) that are unbounded w. r. t. x, we have that o(x) = 0. ¤

Proof Given some symbolic state that is bounded w. r. t. x. All symbolic states
generated from it by operation tpre are also bounded w. r. t. x. Choose arbitrary
(l′, Z) from the symbolic states generated by tpre, and let e = (l, g, p, r, l′) ∈
EWPTA. Now operation dpree can only generate a priced zone that is unbounded
w. r. t. x if x ∈ r. Assume x ∈ r and let (l, (N, $0, o)) = dpree(l

′, Z), then
o(x) = 0. ¤

Lemma 3.5.7 If some symbolic state (l′, Z ′) = (l′, (N ′, $′0, o
′)) is unbounded

w. r. t. x, then for all (l, (N, $0, o)) ∈ pree(l
′, Z ′) that are unbounded w. r. t. x,

we have that o(x) = 0 ∨ o(x) = o′(x). ¤
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Proof Given some symbolic state (l, Z ′) unbounded w. r. t. x, where Z ′ =
(N ′, $′0, o

′). Take an arbitrary symbolic state (l, (N, $0, o)) ∈ tpre(l, Z ′) which

is unbounded w. r. t. x. Let q = $̇(l). We have to consider the four cases of tpre,
see Definition 3.4.6.

• if q =
∑

z∈X
o(z) then o(x) = o′(x).

• if q <
∑

z∈X
o(z) and UF(Z ′) = ∅ then o(x) = o′(x).

• if q >
∑

z∈X
o(z) then if (N, $0, o) = Z ′ the lemma holds. Otherwise,

(N, $0, o) = H↓q ∧ inv(l) for some H ∈ LF(Z ′), and there are two possi-
bilities:

1. H is a lower priced facet obtained by strengthening Z with a con-
straint of the form (y ≤ n), where y 6= x, n ∈ N. From Definition
3.4.5 we have that o(x) = o′(x).

2. H is a lower priced facet obtained by strengthening Z with a con-
straint of the form (x ≤ n), where n ∈ N. From Definition 3.4.5
we see that the H↓q becomes bounded w. r. t. x. From the proof
of Lemma 3.5.6, if dpre generates a priced zone that is unbounded
w. r. t. x, then o(x) = 0.

• if q <
∑

z∈X
o(z) and UF(Z ′) 6= ∅ then H cannot be obtained by strength-

ening Z with some constraint (x ≥ n), because there is no such upper facet
due to unboundedness w. r. t. x. When H is obtained by strengthening Z
with some constraint (y ≥ n), with y 6= x, the situation is the same as in
1.

What remains to be considered (except for case 2.) is operation dpre. From
Definition 3.4.6 it is clear that dpre can only change the cost-rate on clock x
to zero or leave it unchanged. By combining this observation with that on tpre
the proof is complete. ¤

Completing the proof

Let $max
ψ ∈ N ∪ {∞} denote the maximum on the cost of all states in ψ. If

$max
ψ = ∞, this means that the cost can get arbitrarily high. Let ratesψ ⊆ N

be the finite set of all cost-rates used in the priced zones of ψ. By combining
Lemma 3.5.6 and 3.5.7, all priced zones generated by BwReachability that are
unbounded w. r. t. some clock x, will have a cost-rate o(x) ∈ ratesψ ∪ {0}. For
priced zone Z = (N, $0, o), if a vertex v ∈ N has maxcost(v, Z) = ∞ then all
vertices u ∈ N have maxcost(u,Z) = ∞.

From the general definition of tpre and the semantics of LPTA that say cost can
only grow, we know that the maximum on the cost of all states in a symbolic
state is always higher or equal to the maximum on the cost of all states in some
predecessor symbolic state. By definition of the predecessor operation, when all
vertices of a symbolic state have maximum cost in {. . . ,−1, 0, 1, . . . , $max

ψ } then
vertices of a predecessor symbolic state have maximal cost in {. . . ,−1, 0, 1, . . . , $max

ψ }.
When all vertices of a symbolic state have maximum cost ∞, then all vertices of
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the predecessor operation have maximum cost ∞. We conclude that maximum
costs on vertices are elements from {. . . ,−1, 0, 1, . . . , $max

ψ ,∞}.

To complete the proof we choose another representation for priced zones. Priced
zone Z = (N, $0, o) can be represented as a tuple
(N, [v1, . . . , vn], [c0, . . . , cn], θ), where [v1, . . . , vn] are the vertices of N in some
order, [c0, . . . , cn] are the maximal costs of the vertices in the same order, and
θ : X → Z is a function such that

θ(x) =

{

o(x) if N is unbounded w. r. t. x
0 otherwise.

For arbitrary symbolic state (l, (N, [v1, . . . , vn], [c0, . . . , cn], θ)), there are finitely
many possible values for all of the following:

• l, as the set of locations L is finite,

• N , as from the theory on timed automata [HNSY92], we know that the
set of normal zones generated by BwReachability is finite,

• θ, as for all clocks θ(x) ∈ ratesψ ∪ {0},

• [v1, . . . , vn], with the same argument as for N .

The proof is completed by showing that for fixed l, N, [v1, . . . , vn], θ, it is im-
possible to generate an infinite sequence of symbolic states [σi]0≤i≤∞ with
σi = (l, (N, [v1, . . . , vn], [c0, . . . , cn]i, θ)), without having σj ⊇ σk for some j < k.

≥ is a well-quasi-order (sometimes called well partial order) on
{. . . ,−1, 0, 1, . . . , $max

ψ ,∞}. Application of Higman’s Lemma [Hig52] gives that
point-wise ≥ is a well-quasi-order on tuples of elements of {. . . ,−1, 0, 1, . . . , $max

ψ ,∞}.
From Lemma 3.5.5 we see that σj ⊇ σk if [c0, . . . , cn]j ≥ [c0, . . . , cn]k point-wise.
Thus ⊇ is a well-quasi-order on [σi]0≤i≤∞ and by definition of well-quasi-order
σj ⊇ σk for some j < k. The use of Higman’s Lemma is similar to that in
[BFH+01].

3.6 Intersections of Symbolic States

We present a new abstraction called multi-priced zones. In chapter 5 we will
see that the intersection between symbolic states is needed. An intersection of
symbolic states gives all common states. In the computation of intersections, it
is clear that the location of symbolic states plays no role of importance, because
for the intersection to be non-empty locations must be the same.

Priced zones with n clocks can be seen as convex polyhedra in Qn+1. The
intersection of priced zones, is by rules of geometry, also a convex polyhedron
in Qn+1. But now constraints containing equations like for example x ≤ 1

2 or
x−2y ≤ 3 might be needed, see figure 3.8 that shows two priced zones, and their
intersection. Figure 3.9 shows the time predecessor of an intersection of priced
zones. Rational numbers are needed on the cost rate function o to describe the
time predecessor.
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Figure 3.8: Intersection of two priced zones Z and Z ′, clock valuations on the
dashed line have the same maximal cost on both Z and Z ′. The clock valuations
of the intersection are A∪B. In A the price function of Z is needed. In B that
of Z ′.
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From literature [AHH96, HPR94] it is known that convex polyhedra in Qn+1 are
closed under time predecessor, discrete predecessor, and conjunction. Convex
polyhedra can be described by a conjunction of linear formulas on clocks and
cost. Formally, when X = {x1, . . . , xn} and c is the cost variable, a linear
formula φ on clocks and cost is of the form φ : ac+ b1x1 + · · ·+ bnxn ≤ b0, with
a, b0, . . . , bn ∈ N. A valuation/cost-pair (~v, c) satisfies φ, written (~v, c) ⊢ φ if the
formula holds for the values of ~v and c. [AHH96] presents a method that uses
quantifier elimination to compute predecessors on polyhedra that are described
by a conjunction of linear formula. [HPR94] manipulates polyhedra by switching
between two different representations of polyhedra. The first representation is
equivalent to the conjunction of linear formula. The second representation uses
spanning vertices and generator vectors. [AHH96] suggests that the method of
[HPR94] will have better performance.

To be able to describe intersections we may use multi-priced zones. These are
zones with multiple cost functions defined on them.
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Definition 3.6.1 A Multi-Priced Zone (mp-zone) is a tuple M = (N,Φ)
where N is a (normal) zone. Let c denote the cost variable. Φ is a finite set
of linear functions such that for all φ ∈ Φ we have that φ : ac ≤ b1x1 + · · · +
bnxn + b0, with a, b0, . . . , bn ∈ N and a > 0. We require that Φ is minimal in
the sense that ∀φ ∈ Φ.

∧

(Φ\φ) ;
∧

Φ. Write (v, c) ∈ M if and only if v ∈ N
and (v, c) ⊢

∧

Φ ∧ (c ≥ 0). ¤

From the definition of mp-zones we see that the formulas in Φ are not equivalent
to any constraint of N , because a > 0 implies that cost always is a nontrivial
variable in the formula. Mp-zones are a class of polyhedra. The predecessor
operations are redefined in the definition below. Operators ↓q, [r := 0]·, and
conjunction can be implemented as operations on polyhedra, we make no as-
sumptions on the exact implementations.

Definition 3.6.2 (Predecessor on Multi Priced Zones) Let WPTA =

(L, l0, X, inv , pE , c, $̇). Let l ∈ L with q = $̇(l), Z = (N, $0, o) be a multi-priced
zone, and e = (l′, g, ·, r, l) ∈ EWPTA.

tpre(l, Z) = (l, (Z↓q) ∧ inv(l))

dpree(l, Z) = (l′, ([r := 0]Z) ∧ g ∧ inv(l))

pree = dpree ◦ tpre

¤

Theorem 3.6.3 states that mp-zones are closed under conjunction and pre. Only
one simple assumption is that the conjunction of linear formulas must be min-
imal in the sense of Definition 3.6.1. Algorithm CBMaxReachAlg on page 73
of chapter 5 needs to compute inclusion or inequality between symbolic states.
Because we can use mp-zones these computations can typically be performed
faster by first comparing the normal zones of the two mp-zones. Moreover,
CBMaxReachAlg generates a symbolic state space. By using mp-zones we can
first explore the state space of the underlying normal zones. This terminates
from theory on timed automata in a finite number of steps. Then we can cal-
culate the behaviour when the linear price functions are included. Whether
more recent approaches than [HPR94], in combination with the fact that mp-
zones are a subclass of general polyhedra, will lead to more improvements on
algorithms remains to be investigated.

Theorem 3.6.3 Given WPTA, mp-zone M , location l and edge e ∈ EWPTA.

• Given another mp-zone K, then M ∩K can be described using a mp-zone.

• S = pree(M) can be described using a mp-zone.

¤

Proof of Theorem 3.6.3

Let φ be the linear formula on clocks and cost that describes M as a convex
polyhedron. Let ψ be the same for K. Now M ∩ K can be described by the
formula φ∧ψ. This formula is of course representable as mp-zone. This proves
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the first bullet of the theorem.

Operation pre is composed of dpre and tpre, which in turn are composed of:
conjunction with a clock constraint, ↓q, and [r := 0]·. Conjunction with a clock
constraint is nothing more than the first bullet of the theorem, using a priced
zone that permits arbitrary cost.

Given mp-zone M, [r := 0]M can be constructed in three steps. Figure 3.10
gives an example of this construction.

1. M1 = M ∧
∧

{(x = 0) | x ∈ r}, where (x = 0) is a constraint. Clearly M1

is a mp-zone.

2. Let M1 = (N,Φ). Construct MP-zone M2 = (N,Φ′), where Φ′ is obtained
by reducing all formulas of Φ. For all φ ∈ Φ : ac ≤ b1x1 + · · ·+ bnxn + b0.
All terms bixi, with xi ∈ r, are removed.

3. M3 is obtained by removing all bounds in M2 of the form x ≤ b, for x ∈ r.

Now M3 = [r := 0]M . Clearly M3 is a mp-zone, and mp-zones are closed under
[r := 0]·.

For operation ↓q let H = M↓q for some mp-zone M . We know that H is
a convex polyhedron in Qn+1, where n is the number of clocks. When only
observing clock valuations, by Definition 2.1.13:

∀(v, c) ∈ H.∃d ≥ 0.∃c′ ≥ 0.(v + d, c′) ∈ M (3.1)

We see that all possible clock valuations of H can be described using a normal
zone. From Definition 3.4.4 we have:

∀(v, c) ∈ H.∃d ≥ 0.(v + d, c + dq) ∈ M

We see that inclusion of a valuation/cost-pair in H, relies in the first place on
(3.1) and then only on its cost. As costs are bounded by the price functions, we
see that multi-priced zones are sufficient to describe the set of values obtained
after applying ↓q.
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Figure 3.9: The intersection of two priced zones Z and Z ′ in the first picture.
Its time predecessor (Z ∪ Z ′)↓1 in the second picture. Clock valuations on the
dashed line have the same maximal cost on both Z and Z ′.
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Figure 3.10: Example construction of [r := 0]M for multi-priced zone M .

c

x

c ≤ x + 2

c

x

M3

c ≤ 2

M1

c

x

M2

c ≤ 2

c

x

c ≤ x + 2

M



56 Weighted Probabilistic Timed Automata



Chapter 4

A first naive algorithm

This chapter presents a first naive algorithm to calculate cost-bounded max-
imal probabilistic reachability. First, we introduce our idea and algorithm.
Unfortunately, the algorithm is incorrect: we give a counter-example. Next the
problem of the counter-example is analyzed, and we proof that the algorithm
can be used to compute an upper bound. Finally some ideas of how to compute
a lower bound are given.

4.1 Idea to Solve Cost-Bounded Probabilistic

Reachability

The idea is to construct a probabilistic region graph as in section 2.3.3 with
the priced regions of section 2.2.1, where the cost-bounded maximal probabilis-
tic reachability computed on this graph is equal to the cost-bounded maximal
probabilistic reachability of the WPTA. Note that in this chapter we will not
use symbolic states based on priced zones or multi-priced zones.

The first issue is that priced regions are only defined for bounded regions. There-
fore we need a similar construction as for LPTA (Theorem 2 in [BFH+01]), to
construct a bounded equivalent for some WPTA. A WPTA is bounded if the
clocks can’t get arbitrary high, thus all regions will be bounded. [BFH+01]
constructs the bounded equivalent for LPTA, by introducing constant updates
on clocks in extension to clock resets: edges may now reset a clock to some
natural number. However, they do not alter their symbolic semantics for LPTA
to capture constant updates, but this should be no big problem.

We do not introduce constant updates because this is stronger than necessary,
and interferes with our definition of WPTA. Instead, we introduce WPTAδ that
has the same probabilistic edges as WPTA, and in addition implicit probabilistic
edges that have exactly the same semantics as the edges with constant updates
of [BFH+01]. We proceed by giving the semantics of WPTAδ.
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Definition 4.1.1 Assume given WPTA = (L, l0, X, inv , pE , c, $̇), with clock
ceiling function k. We construct the special bounded WPTA WPTAδ =
(L, l0, X, inv ′, pE , c, $̇), where ∀l ∈ L.inv ′(l) = inv(l)

∧

x∈X
(x ≤ k(x) + 2). The

semantics for WPTAδ are defined by TPS = (S,Steps), and are the same as for
normal WPTA, but with the following extra probabilistic transitions:

((l, v, c), 0, disc, µ) ∈ Steps if

(l, v, c) ∈ S,∃x ∈ X.v(x) = k(x) + 2, µ(l, v′, c) = 1, and

∀y ∈ X.v′(y) =

{

k(x) + 1 if y = x
v(y) otherwise

¤

Theorem 4.1.2 Assume given WPTA and its special bounded version WPTAδ

of Definition 4.1.1. For any location l ∈ L, l is reachable with cost k and
probability p in WPTA if and only if l is reachable with cost k and probability
p in WPTAδ.
Proof: by Theorem 2 in [BFH+01] and the fact that the new transitions in the
semantics of WPTAδ do not alter the probability on paths, as their probability
is one. ¤

In our algorithm we use the symbolic semantics of the underlying LPTA of
WPTAδ. We denote the underlying LPTA by WPTAδ

LPTA, and construct it as
in section 3.3, with edges EWPTA, but with the difference that the implicit edges
will also have equivalent edges in WPTAδ

LPTA. To capture the new transitions
in WPTAδ

LPTA the symbolic semantics of Definition 2.2.10 needs to be extended
with a new type of transitions. First we need the following new operation on
priced regions.

Definition 4.1.3 (Priced Region Translate) Given a priced region R =
(h, [r0 . . . rn], [c0 . . . cn]) and a function f : X → Z giving for every clock
the value by which it should be translated, R translated by f is the priced
region translate(R, f) = (h′, [r0, . . . , rn], [c0, . . . , cn]), where ∀x ∈ X.h′(x) =
h(x) + f(x). ¤

Now we are able to give the symbolic semantics for WPTAδ
LPTA using priced

regions, similar to Definition 2.2.10.
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Definition 4.1.4 The symbolic semantics of WPTAδ
LPTA =

(L, l0, X, inv , E, c, $̇, $) is defined as a labeled transition system where
symbolic states are of the form (l, R), with l a location and R a priced region
satisfying inv(l). The starting symbolic state is (l0, (0̄, [X], [0])). The transition
relation is as follows:

• (l, R)
ǫ
−→ (l, delay(R, $̇(l))) if delay(R, $̇(l)) ∈ inv(l),

• (l, R)
(l,g,r,l′)
−−−−−→ (l′, R′) if there exists g, r such that (l

g,r
−−→ l′) ∈ E,R ⊆

g,R′ = self (inc(reset(r,R), $(l, g, r, l′)), $̇(l′)),

• (l, R)
δ
−→ (l, R′) if there exists x ∈ X such that R ∧ (k(x) + 2) 6= ∅ and

R′ = translate(R, f), where ∀y ∈ X.f(y) =

{

−1 if y = x
0 otherwise

.

¤

The new discrete transitions of Definition 4.1.1 are correctly mimicked by the
δ-transitions of Definition 4.1.4. We have probabilistic transition
((l, v, c), 0, disc, {(l, v′, c) 7→ 1}) ∈ Steps as in Definition 4.1.1 if and only if there

exist R,R′ such that v ∈ R, v′ ∈ R′, and (l, R)
δ
−→ (l, R′). Now Lemma 2.2.11

will hold for WPTAδ
LPTA, using the symbolic semantics of 4.1.4.

4.2 The Algorithm

Algorithm FwdBoundedReach on page 61 generates a symbolic state space, for
a WPTA, with cost bound κ. Symbolic states consist of a location and a priced
region, and are generated by forward analysis using Definition 4.1.4. Recall
that these symbolic states are not sets of states, but rather a location and a
set of clock valuations with a minimal cost function. We construct a priced
probabilistic region graph (PPRG) on the symbolic state space, similar to the
construction of the probabilistic region graph in section 2.3.3. The idea was that
the PPRG could be used to calculate cost-bounded maximal probabilistic reach-
abilities, but a counter-example will show the incorrectness of this approach.
However, it can be proven that the returned probability is an upper bound on
cost-bounded maximal probabilistic reachability. With an upper bound we may
be able to say that the answer to some cost-bounded probabilistic reachability
problem is “no”, but we cannot give a positive verdict.

The symbolic semantics of Definition 4.1.4 is infinite. Since region equivalence is
a finite time-abstracting bisimulation, the number of generated unpriced regions
is finite, but costs are unbounded. The algorithm of [BFH+01] terminates by
stating that in a finite number of steps only ‘more expensive’ symbolic states
than the symbolic states already explored will be generated. These ‘more ex-
pensive’ symbolic states are not added to the symbolic state space, as only a
single path reaching a target location with minimal cost is of interest.

For cost-bounded maximal probabilistic reachability we are interested in all
paths, including non-minimal ones, under some adversary that lead to a target
location, unless their cost is higher than the cost bound. All these paths are of
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interest, as together they define the reachability probability.

FwdBoundedReach terminates when no new symbolic states are added. To
guarantee termination, symbolic states with the same underlying normal region,
that have for every vertex in the priced region the same costs or both costs
above κ, are regarded cost-equivalent. There are only a finite number of cost-
equivalent priced regions, thus guaranteeing termination. The next definition
defines cost-equivalence.

Definition 4.2.1 Priced regions (h, [r0 . . . rn], [c0 . . . cn]) and
(h′, [r′0 . . . r′n], [c′0 . . . c′n]) are cost-equivalent w. r. t. cost bound κ ∈ N if and
only if:

• their unpriced regions are the same: (h, [r0 . . . rn]) = (h′, [r′0 . . . r′n]), and

• for all 0 ≤ i ≤ n we have ci = c′i or ci > κ ∧ c′i > κ

¤

The next definition gives a canonical form for priced regions.

Definition 4.2.2 (Cost Bound Normalization) Let
R = (h, [r0 . . . rn], [c0 . . . cn]) be a priced region, and κ ∈ N. pnormκ(R) =
(h, [r0 . . . rn], [c′0 . . . c′n]) where c′i = min(ci, κ + 1) for 0 ≤ i ≤ n. ¤

Lemma 4.2.3 Two priced regions R,R′ are cost-equivalent w. r. t. κ ∈ N if
and only if pnormκ(R) = pnormκ(R′). Proof: by definition of pnorm and
cost-equivalence. ¤

From the operations on priced regions in definitions 2.2.6, 2.2.7, 2.2.9, and 4.1.3,
the following lemma can be concluded. By this lemma the number of canonical
cost-normalized priced zones will be finite.

Lemma 4.2.4 For any priced regions R,R′ that are cost-equivalent w. r. t. κ:

• pnormκ(delay(R, q)) = pnormκ(delay(R′, q)) for all q ∈ N

• pnormκ(reset(r,R)) = pnormκ(reset(r,R′)) for all r ⊆ X

• pnormκ(inc(R, q)) = pnormκ(inc(R′, q)) for all q ∈ N 1

• pnormκ(self (R, q)) = pnormκ(self (R′, q)) for all q ∈ N

• pnormκ(translate(R, f)) = pnormκ(translate(R′, f)) for all f : X → Z

¤

Proof Assume given cost-equivalent priced regions A = (h, [r0 . . . rn], [a0 . . . an])
and B = (h, [r0 . . . rn], [b0 . . . bn]). Let A′, B′ be the result of applying one
of the operators delay , reset , inc, self for some q ∈ N, r ⊆ X, or f : X →
Z, on both A,B respectively. Let A′ = (h′, [r′0 . . . r′m], [a′

0 . . . a′
m]) and B′ =

(h′, [r′0 . . . r′m], [b′0 . . . b′m]). From the definitions of the operators, one of follow-
ing properties must hold for a′

j and b′j

1For completeness operation inc is included, although it is not needed in the symbolic

semantics, as WPTA do not allow discrete cost changes.
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• 0 ≤ j ≤ m,a′
j = ai, and b′j = bi, for some 0 ≤ i ≤ n, or

• j = m,a′
m = a0 + q, and b′m = b0 + q, or

• 0 < j ≤ m,a′
j = min(an−j , an−j+1), and b′j = min(bn−j , bn−j+1), or

• 0 ≤ j ≤ m,a′
j = aj + q, and b′j = bj + q, or

• j = m,a′
m = min(an, a0 + q), and b′m = min(bn, b0 + q).

We know that for all 0 ≤ k ≤ n we have that ak = bk or ak > κ ∧ bk > κ. Now
inspection of all the cases mentioned above shows us that for all 0 ≤ j ≤ m we
have a′

j = b′j or a′
j > κ ∧ b′j > κ, and thus the lemma holds. ¤

Cost-equivalence and pnormκ are lifted to symbolic states by requiring the same
location and cost-equivalence on the priced regions. Lemma 4.2.4 ensures that
the semantics of Definition 4.1.4 on two cost-equivalent symbolic states main-
tains cost-equivalence. If some symbolic state σ has a state that reaches the tar-
get location within the cost bound, all symbolic states that are cost-equivalent
to σ also have such a state (not necessarily the same state).

Algorithm 2: FwdBoundedReach(WPTA, κ)

(1) Input: WPTA = (L, l0, X, inv , pE , c, $̇), cost bound κ ∈ N0

Output: the LTS: (Visited ,D)
Visited := ∅ //set of generated symbolic states

(2) Waiting := {(l0, (0̄, [X], [0]))} //set of symbolic states waiting to be
explored

(3) D := ∅ //set of edges
(4) repeat
(5) get and remove σ from Waiting
(6) Visited := Visited ∪ {σ}

(7) foreach σ
a
−→ τ , with a = ǫ, a = (l, g, r, l′) or a = δ //as in Definition

4.1.4
(8) if pnormκ(τ) /∈ Visited
(9) Waiting := Waiting ∪ {pnormκ(τ)}

(10) D := D ∪ {σ
a
−→ pnormκ(τ)}

(11) until Waiting = ∅
(12) return (Visited ,D)

After algorithm FwdBoundedReach has finished, the next step consists of con-
structing the priced probabilistic region graph (PPRG) from the LTS: (Visited ,D).
PPRG is a probabilistic system (Visited ,Steps), where Steps contains all pairs
(σ, µ) ∈ Visited × Dist(Visited) such that one of the following holds:

• there is a transition (σ
ǫ
−→ τ) ∈ D such that µ = {τ 7→ 1}, or

• there is a transition (σ
δ
−→ τ) ∈ D such that µ = {τ 7→ 1}, or

• for all τ ∈ Visited

µ(τ) =
∑

(σ
l,g,p,r,l′

−−−−−→τ)∈D

p(r, l′)
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For target set of locations T ⊆ L, the cost-bounded maximal probabilistic reach-
ability can be computed from the PPRG. It is expressed by MaxProbReach(σ0, ψ),
where σ0 = (l0, (0̄, [X], [0])) the starting symbolic state, and ψ = {σ ∈ Visited |
loc(σ) ∈ T ∧ mincost(region of σ) ≤ κ}

4.3 Counter-example

Consider the WPTA and its PPRG of figure 4.1, with the cost-bounded maximal
probabilistic reachability problem (T,⊒, λ, κ) = ({l4},≥, 0.8, 2). Only paths
leading to l4 within the cost bound are included. The maximal probabilistic
reachability of the PPRG is 1, and the answer to the problem is “yes”. Clearly
this is not correct. The error comes from the fact that in PPRG for the left
path in location l0, arbitrarily close to 1 units of time are spent, while for the
right path in l0, arbitrarily close to 0 units of time are spent. But an adversary
must choose in advance how much time exactly is spent in location l0. The
problem is that we abstract away from the exact amount of time that is spent.
The self operator in ǫ-transitions uses this assumption to let time progress in
the cheapest way.

4.4 Problem Analysis

In the previous section we showed a counter-example of our approach, and we
gave an analysis of the problem. Here we formalize that analysis, and we show
that FwdBoundedReach computes an upper bound on the cost-bounded maxi-
mal probabilistic reachability. First, some definitions and methods for probabil-
ity on finite paths are presented. Then the use of time-abstracting bisimulations
on the verification of probabilistic timed automata (PTA) is discussed. Finally
the exact problem is given, and we prove that FwdBoundedReach computes an
upper bound on the cost-bounded maximal reachability.

4.4.1 Reachability probability on paths of finite length

Definition 4.4.1 Let PS = (S,Steps) be a probabilistic system and F ⊆ S a
set of states. For any adversary A ∈ AdvPS and finite path ω ∈ PathA

fin, let:

PA
0 (ω Ã F ) =

{

1 if last(ω) ∈ F
0 otherwise

and for any n ∈ N

PA
n+1(ω Ã F ) =

{

1 if last(ω) ∈ F
∑

s∈S µ(s) · PA
n (ω

µ
−→ s Ã F ) otherwise

where µ = A(ω). ¤
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Define:

Pmax
n

def
= sup

A∈AdvPS

PA
n

Computation of Pmax
n (s Ã F ) can be formulated as a dynamic programming

problem [dA99], which can be solved by value iteration (see [Tij03]). Assume
given PS = (S,Steps), with k = |S|. λ = [λs]s∈S\F ∈ Rk denote a vector of
real numbers indexed by the states of PS without the target states. Define the
Bellman operator L : Rk 7→ Rk on the space of λ by

[L(λ)]s = min(s,µ)∈Steps

[

∑

t∈S\F µ(t)λt +
∑

t∈F µ(t) · −1
]

where [L(λ)]s denotes the s-component of vector L(λ). Given initial vector λ0

that has value zero for all elements, the value iteration method computes the
sequence of vectors λ0, λ1, . . . , λn by λi = L(λi−1), for 1 ≤ i ≤ n. The solution
is Pmax

n (s Ã F ) = −λn
s .

The following lemma shows us how maximal probabilistic reachability can be
computed.

Lemma 4.4.2 [KNS03, KNS01] For any probabilistic system PS = (S,Steps),
adversary A ∈ AdvPS , state s ∈ S and target F ⊆ S: [PA

n (s Ã F )]n∈N

is an ascending (or non-decreasing) sequence in [0, 1] which converges to
ProbReachA(s, F ). ¤

4.4.2 Time-Abstracting Bisimulations

The following results are useful, when working with time-abstracting bisimula-
tions (TaBs).

Definition 4.4.3 (Time transitions traversing classes) [TY01]. Now we
prove an important property of TaBs related to the passage of time. Consider

TTS and a TaB ≃ on TTS . Given a time transition of TTS , s
d
−→ t, and m

different classes σ1, . . . , σm, we say that the transition traverses σ1, . . . , σm if:

1. s ∈ σ1 and t ∈ σm.

2. For all 0 < d′ < d, there exists 1 ≤ i ≤ m such that s + d′ ∈ σi.

¤

Lemma 4.4.4 [TY01].

1. Any time transition traverses a unique (finite) set of classes.

2. If s ≃ s′ then for any time transition s
d
−→ t, there exists a time transition

s′
d′

−→ t′ such that t ≃ t′ and the two transitions traverse the same classes.

¤

For a path ω in TTS = (S,Act ,→), let word(ω) be the sequence of labels
of discrete transitions from Act in ω, in the same order. word is defined on
symbolic paths of TTS/≃ in the same way.
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Lemma 4.4.5 (Symbolic Correspondence) Every path ω in TTS has a
unique path denoted [ω] in TTS/≃ s. t. word(ω) = word([ω]). Inversely, if
Ω = σ1 −→/≃ σ2 −→/≃ · · · is a path in TTS/≃ then for all s1 ∈ σ1 there exists
a path ω starting from s1 with [ω] = Ω. ¤

Proof (see also proof of proposition 25 in [KNSS02]). Given finite or infinite
path ω = s0 → s1 → · · · → sn → sn+1 → in TTS . For all transitions si → si+1,
with i ≥ 0, we can find a symbolic path Ωi such that si ∈ Ωi(0) and si+1 ∈
last(Ω) in one of the following ways:

• if si → si+1 is a time transition, then by Lemma 4.4.4 we can find unique
symbolic path Ωi, possibly of length zero,

• if si → si+1 is a discrete transition, then by time-abstracting bisimulations
we can find unique symbolic path Ωi = σi → σi+1,

We can write concatenation [ω] = Ω0 · Ω1 · · ·Ωn · · · . We know that ∀i ≥
0. last(Ωi) = Ωi+1(0), and by leaving out symbolic paths of length zero, we
get the combined symbolic path.

Inversely, by definition of TaB, for every symbolic path σ → τ and every s ∈ σ,
we can find t ∈ τ such that s → t is a transition in TTS . Constructing path ω
for some symbolic path Ω in this way, it is easy to see that [ω] = Ω. ¤

4.4.3 Probabilistic Region Graph

With a probabilistic region graph it is possible to construct a quotient system
that preserves probabilistic reachability in a PTA.

Definition 4.4.6 (Probabilistic region graph) [KNSS02]. Given PTA, let
TTS give the semantics of PTATA (section 2.3.3), and region equivalence ≃k,
where k : X → N maps each clock to its ceiling. For brevity we omit k. The
region graph of PTATA is TTS/≃ = (S/≃,Act ∪ {ǫ},−→/≃ ), with Act = EPTA.
The probabilistic region graph is a probabilistic system (Σ,Steps), where Σ =
S/≃ and Steps contains all pairs (σ, µ) ∈ Visited × Dist(Visited) such that one
of the following holds:

• There is a transition (σ
ǫ
−→/≃ τ) such that µ = {τ 7→ 1}, or

• µ = {τ 7→ 1} if σ
ǫ
−→/≃ τ exists,

• for all τ ∈ S/≃

µ(τ) =
∑

σ
l,g,p,r,l′

−−−−−→/≃ τ

p(r, l′).

¤

The main Theorem of [KNSS02] states that model checking the logic PTCTL
on some PTA can be reduced to model checking the probabilistic region graph,
which is finite. Next to that we have the following lemma on probabilistic region
graphs.
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Lemma 4.4.7 Given PTA with semantics TPS = (S,Steps). Let Q =
(S/≃,Steps) be the probabilistic region graph. For every A ∈ AdvTPS , and
G ⊆ {ω | PathA

full} measurable, there exists unique [A] ∈ AdvQ such that:

Prob[A]{[ω] | ω ∈ G} = ProbA(G)

Proof: using part 2. of the proof of proposition 25 in [KNSS02] ¤

4.4.4 The problem & an upper bound

By using [Spr00], the TPS semantics of a WPTA can be formulated as a con-
current probabilistic process. Cost-bounded maximal probabilistic reachability
can be expressed in the logic PBTL, together with an atomic proposition in
the concurrent probabilistic process, that distinguishes target states, i. e. states
having the correct target location and cost at most the cost bound. Now [Spr00]
states (after Theorem 1), that if the concurrent probabilistic process has a finite
probabilistic bisimulation, then model checking of all PBTL properties (includ-
ing ours) is decidable. A probabilistic bisimulation respects the partitioning by
atomic propositions. If we can find a finite time-abstracting bisimulation that
respects the partitioning, then this TaB is a special case of finite probabilis-
tic bisimulations, and cost-bounded maximal probabilistic reachability becomes
decidable.

The problem is that priced regions are not the equivalence classes of some finite
TaB. In the first place, because priced regions do not model a set of states, but
rather a set of clock valuations with a price function. Even if we would regard
a priced region as an equivalence class, with the clock valuation of a state in
the unpriced region, and the cost equal to the outcome of the price function,
then two states in this definition are not bisimilar. This can be seen from the
WPTA of figure 4.2 on page 70, where state (l0,

1
3 , 2

3 ) and (l0,
1
2 , 1) are both in

the same priced region of the PPRG, but only the latter will reach l4 by the left
path (for more information on the figure, read the next section). In chapter 5
we will see that in general, a WPTA may not have any finite TaB that respects
target states.

However, if finite bisimulations do not exist, we cannot conclude that exact
maximal reachability is not computable [BBR04]. Therefore it remains an open
question whether there is a terminating algorithm that returns the exact maxi-
mal probabilistic reachability.

Although priced regions are not equivalence classes of some TaB, we may take
the following approach. Assume given WPTA and its semantics TPS = (S,Steps).
Let T be the target set of locations, and κ the cost bound. Define F =
{(l, v, c) | l ∈ T ∧ v ≥ R+ ∧ 0 ≤ c ≤ κ}, the set of target states. Let
σ0 = (l0, (0̄, [X], [0])) is the symbolic state representing the starting state. Let
ψ = {(l, R) | l ∈ T ∧ mincost(R) ≤ κ} is the set of symbolic states that reach a
target location within cost bound κ. We would like the following two properties
to hold:

1. For every B ∈ AdvPPRG there exists A ∈ AdvTPS such that
ProbReachA(s0, F ) ≥ ProbReachB(σ0, ψ).
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2. For every A ∈ AdvTPS there exists B ∈ AdvPPRG such that
ProbReachB(σ0, ψ) ≥ ProbReachA(s0, F ).

Unfortunately, property (1) is incorrect as shown by figure 4.1; see section
4.3 for details. This means that the PPRG is not a sound representation of
the TPS. Still, we will prove property (2) below, so we can use the PPRG to
compute an upper bound of the reach probability.

Proof of property (2)

For some state (l, v, c) in a WPTA or LPTA, let unprice((l, v, c)) = (l, v) de-
note its unpriced version. Also for a symbolic state with a priced region σ =
(l, (h, [r0, . . . , rn], [c0, . . . , cn])) let unprice(σ) = (l, (h, [r0, . . . , rn])) denote its
unpriced version. unprice is extended to (symbolic) paths in the following way:
given ω = s0 → s1 → · · · then unprice(ω) = unprice(s0) → unprice(s1) → · · · .

We need the following lemma which is stronger than Lemma 2.2.11, because a
correspondence between paths is required.

Lemma 4.4.8 For every finite path ω in a LPTA, with last(ω) = (l, v, c), there
is a unique finite symbolic path Ω using the symbolic semantics of Defini-
tion 4.1.4, with unprice(Ω) = [unprice(ω)] (as defined by Lemma 4.4.5) and
last(Ω) = (l, R), with v ∈ R and cost(v,R) ≤ c (2.2.5).
Proof: by observing the proof of Lemma 1 in [BFH+01]. ¤

Assume given some A ∈ AdvTPS . Let

Reach = {ω ∈ PathA
full ∧ ω(0) = s0 ∧ (∃i ∈ N.ω(i) = (l, ·, c) ∧ l ∈ T ∧ c ≤ κ)}

denote the set of all infinite paths generated by A that respect the problem con-
ditions. By ignoring cost, with region equivalence we can construct for WPTA
a time-abstracting probabilistic quotient Q. By Lemma 4.4.7, it follows that a
corresponding adversary B′ ∈ AdvQ can be constructed such that

ProbA(Reach) = ProbB′

{[unprice(ω)] | ω ∈ Reach} (4.1)

From B′ an adversary B ∈ AdvPPRG can be constructed in the following way:
for all paths Ω in PPRG ,

B(Ω) = µ iff ∀σ ∈ support(µ).µ(σ) = µ′(unprice(σ))

,with µ′ = B′(unprice(Ω)).

For B the following holds:

ProbB{Ω | unprice(Ω) = [unprice(ω)] ∧ ω ∈ Reach}

= ProbB′

{[unprice(ω)] | ω ∈ Reach} (4.2)
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By Lemma 4.4.8:

{Ω ∈ PathB
full | unprice(Ω) = [unprice(ω)] ∧ ω ∈ Reach} ⊆

{Ω ∈ PathB
full | Ω(0) = σ0 ∧ (∃i ∈ N.(l, R) = Ω(i) ∧ mincost(R) ≤ κ ∧ l ∈ T )}

(4.3)

With σ0, ψ as in the property, combining everything:

ProbReachA(s0, F )

= ProbA(Reach)

= ProbB′

{[unprice(ω)] | ω ∈ Reach} by (4.1)

= ProbB{Ω | unprice(Ω) = [unprice(ω)] ∧ ω ∈ Reach} by (4.2)

≤ ProbB{Ω ∈ PathB
full | Ω(0) = σ0 ∧ (∃i ∈ N.(l, R) = Ω(i)∧

mincost(R) ≤ κ ∧ l ∈ T )} by (4.3)

= ProbReach(σ0, ψ)

4.5 A Lower bound

We claim that it is possible to calculate a lower bound on the maximal prob-
abilistic reachability using a priced probabilistic region graph (PPRG). In this
section, we describe an idea to find a lower bound and what needs to be changed
in the algorithm. The difference with calculating the upper bound is that the
symbolic semantics of Definition 4.1.4 is changed such that the self operator is
only used in a special symbolic transition. The symbolic transitions are now:

• (l, R)
ǫ
−→ (l, delay(R, $̇(l))) if delay(R, $̇(l)) ∈ inv(l),

• (l, R)
(l,g,r,l′)
−−−−−→ (l′, R′) if there exists g, r such that (l

g,r
−−→ l′) ∈ E,R ⊆

g,R′ = inc(reset(r,R), $(l, g, r, l′)).

• (l, R)
δ
−→ (l, R′) if there exists x ∈ X such that R ∧ (k(x) + 2) 6= ∅ and

R′ = translate(R, f), where ∀y ∈ X.f(y) =

{

−1 if y = x
0 otherwise

.

• (l, R)
self
−−→ (l, self (R, $̇(l)))

Further, in a path of priced regions that are all self-delayable, i. e. r0 = ∅ in
the definition of priced region, one and only one self-transition must occur. In
that way the algorithm has to choose where to spend time. If it has chosen to
spend it in some symbolic state, all successor symbolic states, even in different
branches, can’t spend it any more. In this way the problem of figure 4.1 is
solved, but figure 4.2 shows a WPTA with its PPRG constructed in the new
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way. The maximal probabilistic reachability is 0.7. But the optimal adversary
should spend 1

2 time units in location l0. Thus only a lower bound can be
computed.
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Figure 4.1: Counter example: WPTA and its priced region graph.
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Figure 4.2: Example on how to calculate a lower bound. A transition to ‘same’
means nothing changes.
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Chapter 5

Cost-Bounded Maximal

Probabilistic Reachability

In section 5.1, an algorithm is given that does not always terminate, and will
output an ascending (or non-decreasing) sequence of values that converges to the
solution of cost-bounded maximal probabilistic reachability in closed WPTA. In
the rest of this chapter we assume every WPTA to be closed. Also a number
of properties of WPTA are discussed for which the algorithm will terminate.
Section 5.2 gives some ideas on algorithms that generate a sequence of values
that is descending (or non-increasing) and converges to the solution. This opens
the way for a solution to the cost-bounded maximal probabilistic reachability
problem that works in many cases.

5.1 Ascending Converging Value

The algorithm presented here is based on the algorithm in [KNS03] that com-
putes maximal probabilistic reachability for probabilistic timed automata (PTA).
We incorporate prices by using symbolic states that consist of a location and
a multi-priced zone. Moreover, the algorithm differs in that it computes a se-
quence of values, where the n-th value is the maximal probabilistic reachability
using at most n steps. Theorem 5.1.2 states the correctness of the computed
probabilities. The proof is based on the proof in [KNS03]; it follows the same
lines. The main difference is in one of the intermediate properties. [KNS03]
states that for every abstract adversary that uses n steps, there is a normal
adversary that has at least the same probability and uses 2n steps. We require
the stronger statement that there is a normal adversary with also n steps.

The work of [KNS03] is based on that of [KNS01], where an algorithm is pre-
sented that calculates maximal reachability for symbolic probabilistic systems.
Symbolic probabilistic systems are a very general framework, and it is possible
to formulate a WPTA as a symbolic probabilistic system. With this different
approach no new algorithm needs to be devised, although an implementation
for symbolic states and its operations needs to be given. Now we can base our
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proof on the one in [KNS01]. This is easier because here the number of steps in
the abstract adversary and the corresponding normal adversary are the same.
The problem is that the predecessor operation is split up in timed predecessor
(tpre) and discrete predecessor (dpre). This generates unnecessary symbolic
states, namely those between tpre and dpre.

Corollary 5.1.3 shows the usefulness of the algorithm, by stating that the se-
quence of probability values generated by the algorithm, converges to the actual
maximal probability, although this value may never be quite reached.

Definition 5.1.1 [KNSW04]. A sub-probabilistic system is a more general
version of the probabilistic system of Definition 2.3.3. The distributions can
now be sub-distributions. A SPS takes the form (S,Steps), where S is a set of
states and Steps ⊆ S × SubDist(S) is a probabilistic transition relation. ¤

Every SPS can easily be converted to a PS by adding a state that has no outgoing
edges, where all the ‘missing’ probabilities of the sub-distributions lead to.

5.1.1 The algorithm

Algorithm CBMaxReachAlg on page 73 is the algorithm that gives an ascending
(or non-decreasing) sequence of values that converge to the solution of cost-
bounded maximal probabilistic reachability, for some WPTA. Parameter s is
the state for which the reachability probability is computed. φ is the set of
target states. φ must be representable as a finite set of symbolic states, and
must be closed under time predecessor, i. e. tpre(φ) = φ. From now on we
assume that the symbolic states representing φ have the same maximum cost
for all clock valuations. Formally, for all σ ⊆ φ,∃κ ∈ N.∀(l, v, c) ∈ σ.c ≤ κ.
The symbolic states consist of a location and a multi-priced zone. Execution
of CBMaxReachAlg grows a sequence [Rn]n=1..∞ of output values that are as-
cending and converge to the cost-bounded maximal probabilistic reachability.
Theorem 5.1.2 states the correctness of CBMaxReachAlg , and Corollary 5.1.3
its converging behaviour.

CBMaxReachAlg is derived from [KNS03, KNS01]. The key observation is that
to preserve the probabilistic branching, one must consider the intersections of
symbolic states generated by edges from the same distribution. The intuition
is that by computing intersections, we get representations for states that have
multiple edges from a probabilistic edge leading to the target, thereby enlarging
the reach probability.

CBMaxReachAlg performs a breadth-first backward exploration of the symbolic
state space, where in each iteration of the algorithm, the depth of exploration
increases. The algorithm starts with the set φ. From this set successively pre-
decessors are computed in a breadth-first manner. During the exploration a
graph is constructed. The edges of the graph are contained in the sets E(l,g,p).
The edges exist between symbolic states, where an edge going to some sym-
bolic state, starts in its predecessor, or a subset of its predecessor. Formally,
(σ, r, l′, τ) ∈ E(l,g,p), if σ ⊆ pre(l,g,p,r,l′)(τ). The sets E(l,g,p) are initialized as
empty sets. The set Visited contains the generated symbolic states, it is a short-
hand notation, because it can be completely derived from the sets E(l,g,p) (line
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Algorithm 3: CBMaxReachAlg(s, φ) derived from [KNS03, KNS01]

(1) Input: WPTA = (L, l0, X, inv , pE , c, $̇),
(2) starting state s,
(3) target set of symbolic states φ closed under tpre

Output: Rn in iteration n
foreach (l, g, p) ∈ pE //Initialize all edge sets E(l,g,p)

(4) E(l,g,p) := ∅
(5) Waiting1 := φ //Waitingn is the set of symbolic states waiting to be

explored in iteration n.
(6) short-hand Visited = {τ | ∃(l, g, p) ∈ pE .(τ, ·, ·) ∈ E(l,g,p)} ∪ {φ}
(7) if ∃σ ∈ Visited .s ∈ tpre(σ) then R0 = 1
(8) else R0 = 0
(9) for n = 1 to ∞
(10) Waitingn+1 = ∅
(11) foreach τ ∈ Waitingn, e = (l, g, p, r, l′) ∈ EWPTA, with l′ = loc(τ)
(12) σ = pree(τ)
(13) if σ 6= ∅ //if at least one state with positive cost
(14) if σ /∈ Visited //if not already visited
(15) Waitingn+1 := Waitingn+1 ∪ {σ}
(16) E(l,g,p) := E(l,g,p) ∪ {(σ, r, l′, τ)}
(17) foreach (σ′, r̄, l̄′, τ ′) ∈ E(l,g,p)

(18) if σ ∩ σ′ 6= ∅ ∧ (r, l′) 6= (r̄, l̄′)
(19) Waitingn+1 := Waitingn+1 ∪ {σ ∩ σ′}
(20) E(l,g,p) := E(l,g,p) ∪ {(σ ∩ σ′, r, l′, τ), (σ ∩ σ′, r̄, l̄′, τ ′)}
(21) SPSn := (Visited ,Steps), where (σ, π) ∈ Steps if and only if

there exists Eπ ⊆ E(l,g,p) for some (l, g, p) ∈ pE such that
• ∀(σ′, ·, ·) ∈ Eπ.σ′ = σ

• ∀(σ, r, l′, τ), (σ, r̄, l̄′, τ ′) ∈ Eπ.τ 6= τ ′ ⇒ (r, l′) 6= (r̄, l̄′)

• ∀τ ∈ Visited .π(τ) =
∑

{p(r, l′) | (·, r, l′, τ) ∈ Eπ}

(22) Rn = maxσ∈Visited
s∈tpre(σ)

Pmax
n (σ Ã

SPSn

φ)

(23) if Waitingn+1 = ∅ then stop

6). Line 7 gives the result in case of iteration zero.

On line 16 an edge is added between a symbolic state and its predecessor. Lines
17–20 add intersections between the predecessor and previously generated sym-
bolic states. These intersections are only generated between symbolic states
that can reach the target using the same probabilistic edge (l, g, p), but another
edge from the distribution (condition (r̄, l̄′) 6= (r, l′) on line 18). Only these
intersections are of interest for probabilistic branching. On line 20 the intersec-
tion symbolic state gets the two outgoing edges, from which it was originated.
Figure 5.1 gives a graphical representation, where the normal arrows are the
ones from which the intersection is originated. The dashed arrows are the new
ones for the intersection symbolic state.

The intersection between for example three symbolic states is computed by first
intersecting two symbolic states and then intersecting the result with the third
one. More generally the intersection of a set of symbolic states is computed by
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Figure 5.1: Graphical representation of execution of lines 17–20 of algorithm
CBMaxReachAlg .

(r̄, l̄′) (r̄, l̄′)(r, l′)

(r, l′)

σ ∩ σ′

τ ′τ

σ′σ

applying pairwise intersection until only one symbolic state remains, which is
the intersection of all symbolic states of the original set. The order in which
symbolic states are intersected does not make a difference as can be seen from
lines 19 and 20.

On line 21, a sub-probabilistic system SPSn is constructed from the edge sets
E(l,g,p). The state space of SPSn is Visited . For each symbolic state in Visited ,
probabilistic edges are constructed, by taking together as much edges from one
edge set E(l,g,p) as possible. This set of edges is denoted as Eπ. The first
two bullets after line 21 are the conditions on edges in Eπ. Condition 1 is
obvious. Condition 2 ensures that different edges are used in the construc-
tion of the probabilistic edge. Note that these conditions imply that for all
(σ, r, l′, τ), (σ, (r̄, l̄′), τ ′) ∈ Eπ we have (r, l′) 6= (r̄, l̄′). From Eπ a probabilistic
edge with distribution π is constructed at the third bullet. Note that each Eπ

that can be constructed in this way results in a probabilistic edge in SPSn.
Figure 5.2 gives an example of the construction of two probabilistic edges (π1

and π2).

To compute Rn = maxσ∈Visited
s∈tpre(σ)

Pmax
n (σ Ã

SPSn

φ) on line 22 we can use value

iteration, see section 4.4.1. With value iteration a maximum reachability prob-
ability for all symbolic states of SPSn can be computed. Note that SPS is a
sub-probabilistic system. Adding an absorbing state to convert it to a PS is not
needed because there are no outgoing arrows from this new state; it plays no
positive role in the reachability probability. Now the maximum probability of
the symbolic states that have s in their time predecessor gives the result.

Value iteration computes probability values on states. The set of symbolic
states is extended in each iteration of the algorithm. When new states are given
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Figure 5.2: Example of the construction of the SPS on line 21 of algorithm
CBMaxReachAlg .

σ

τcτbτa

i3
i2i3

i1

E(l,g,p) ⊇ Eπ1
= {(σ, i1, τa), (σ, i2, τb), (σ, i3, τc)}

π1(τa) = p(i1)

π1(τb) = p(i2)

π1(τc) = p(i3)

E(l,g,p) ⊇ Eπ2
= {(σ, i1, τa), (σ, i2, τb), (σ, i3, τb)}

π2(τa) = p(i1)

π2(τb) = p(i2) + p(i3)

π2(τc) = 0

a maximal probability zero, value iteration can be continued, without having to
start over again.

Possibly CBMaxReachAlg terminates on line 23 when no new symbolic states are
explored. Value iteration can be continued, but another possibility is to solve
the problem by reducing it to a linear programming problem [dA99]. When
known in advance that the algorithm terminates the value iteration steps can
be skipped. Linear programming can give an exact answer, while value iteration
may only converge to an answer. Convergence is appropriate when the algorithm
does not terminate in the first place. Which approach is best when no exact
answer is needed, will probably depend on the concrete WPTA, and is subject
for further research.

Examples

Figures 5.3 and 5.4 contain two examples of WPTA and a graphical representa-
tion of the symbolic computation of CBMaxReachAlg . Figure 5.3 uses a closed
version of the WPTA of figure 4.1. Operation pre is split up in tpre and dpre,
but intersections can only be added when pre is fully completed. The plain ar-
rows are applications of tpre or dpre. The dashed arrows denote the intersection
that is made. The last tpre is made to see which states are in the timed prede-
cessor, as required. The target symbolic state has cost bound 2. The starting
state has all clocks and cost zero. Only the left path can reach the target, so the
reach probability is 0.3. Figure 5.4 is the counter-part. It uses a closed version
of the WPTA of figure 4.2. Now the target symbolic state has cost bound 3,
and the reach probability is 1. The generated SPS is in both cases clear from
the figure.
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In section 5.1.3 we will see a more complicated example.

5.1.2 Correctness of CBMaxReachAlg

Length-dependent adversaries are a special class of adversaries that only take
the last state and the length of a finite path into account. Let A be a length-
dependent adversary, then for any two paths ω and ω′ in probabilistic system
PS = (S,Steps), with |ω| = |ω′| and last(ω) = last(ω′), we have that A(ω) =
A(ω′). The length-dependent adversary A can also be written as a function
A : N × S → Dist(S). The natural number represents the path length. From
now on AdvPS denotes the set of length-dependent adversaries on probabilistic
system PS .

Theorem 5.1.2 Given WPTA = (L, l0, X, inv , pE , c, $̇) and its semantics as
TPS = (S,Steps). Let φ be the set of target states, that is closed under time
predecessor, i. e. tpre(φ) = φ, and representable as a finite set of symbolic states.
[Rn]n=1..∞ is the sequence of values generated by algorithm CBMaxReachAlg .
Define in the usual way: max ∅ = 0. For any state s ∈ S and n ∈ N then

Pmax
n (s Ã

TPS
φ) = Rn

using length-dependent adversaries in TPS , and in calculating Rn. ¤

The maximal probabilistic reachability for some probabilistic system TPS , start-
ing state s, and target set of states F equals limn→∞ Pmax

n (s Ã
TPS

F ). The

following corollary states that the sequence [Pmax
n (s Ã

TPS
F )]n∈N is an ascending

sequence. In each iteration of CBMaxReachAlg we get a higher probability that
is a better approximation of maximal probabilistic reachability.

Corollary 5.1.3 Given TPS = (S,Steps). For any s ∈ S, n ∈ N and F ⊆ S we
have that

Pmax
n+1 (s Ã

TPS
F ) ≥ Pmax

n (s Ã
TPS

F )

¤

Proof Let
Pmax

n (s Ã
TPS

F ) = PA
n (s Ã

TPS
F )

for some adversary A ∈ AdvTPS . Then

PA
n (s Ã

TPS
F ) ≤ PA

n+1(s Ã
TPS

F ) ≤ Pmax
n+1 (s Ã

TPS
F )

¤

Proof of Theorem 5.1.2

The proof is very similar to the proof of proposition 14 in [KNS03]. Note that we
only use adversaries that are length-dependent. SPSn = (Σn,Stepsn) denotes
the subprobabilistic system generated by CBMaxReachAlg in iteration n. The
proof is split up in proving properties (a), (b), (c) and (d).
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The proofs of (c) and (d) use induction on the number of iterations n. By line
7, Σ0 = φ, and we can assume that Steps0 has a looping probabilistic transition
for every symbolic state in φ. Formally, ∀σ ∈ φ.∃(σ, {σ 7→ 1}) ∈ Steps0.

(a) If (σ, r, l′, τ) ∈ E(l,g,p) of the algorithm, and (l, v, c) ∈ σ, then v ∈
inv(l), v ∈ g, and (l′, v[r := 0], c) ∈ tpre(τ). Proof: by definition of
dpre and tpre.

(b) For any s ∈ S, n ∈ N, Pmax
n (s Ã

TPS
φ) > 0 if and only if for some symbolic

state σ ∈ Σn, s ∈ tpre(σ). Proof: by definition of tpre and pre. In
fact this holds for all symbolic transition systems generated by taking
predecessor operations.

(c) For all n ∈ N, k ∈ N, B ∈ AdvSPSk
, σ ∈ Σk and s ∈ tpre(σ), there exists

A ∈ AdvTPS such that: PA
n (s Ã

TPS
φ) ≥ PB

n (σ Ã
SPSk

φ).

(d) For all n ∈ N, A ∈ AdvTPS and s ∈ S, if Pmax
n (s Ã

TPS
φ) > 0, then there

exist σ ∈ Σn and B ∈ AdvSPSn
such that s ∈ tpre(σ) and PB

n (σ Ã
SPSn

φ) ≥ PA
n (s Ã

TPS
φ).

By using (c) for all n ∈ N, k ∈ N and

b ∈ {PB
n (σ Ã

SPSk

φ) | B ∈ AdvSPSk
∧ σ ∈ Σk ∧ s ∈ tpre(σ)}

the following holds:

sup{PA
n (s Ã

TPS
φ) | A ∈ AdvTPS} ≥ b

By using (d) for all n ∈ N, s ∈ S and

a ∈ {PA
n (s Ã

TPS
φ) | A ∈ AdvTPS}

if Pmax
n (s Ã

TPS
φ) > 0 the following holds:

sup{PB
n (σ Ã

SPSn

φ) | B ∈ AdvSPSn
∧ σ ∈ Σn ∧ s ∈ tpre(σ)} ≥ a

By definition of supremum and maximum we have the following equation.

sup{PB
n (σ Ã

SPSk

φ) | B ∈ AdvSPSk
∧ σ ∈ Σk ∧ s ∈ tpre(σ)}

= max
σ∈Σk

s∈tpre(σ)

(

sup

{

PB
n (σ Ã

SPSk

φ) | B ∈ AdvSPSk

})

Combining the results, with k = n, (b), and the common definition that max ∅ =
0, the proof is completed.
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Proof of property (c)

Consider any k ∈ N, B ∈ AdvSPSk
, σ ∈ Σk and s ∈ tpre(σ). We prove (c) by

induction on n. For n = 0, by Definition 4.4.1, two cases have to be considered.

• If PB
0 (σ Ã

SPSk

φ) = 1, then σ ⊆ φ. By the fact that φ is closed under

tpre, tpre(σ) ⊆ φ. Now s ∈ φ and PA
0 (s Ã

TPS
φ) = 1 for any adversary

A ∈ AdvTPS .

• If PB
0 (σ Ã

SPSk

φ) = 0, then for any adversary A ∈ AdvTPS the equation

holds.

Next, suppose that (c) holds for some n ∈ N. If σ ⊆ φ the result follows as in
the case for n = 0. We are therefore left to consider the case when σ * φ.

By construction of SPSk, B(0, σ) = π for some (σ, π) ∈ Stepsk, and from line
21 of CBMaxReachAlg , there exist (l, g, p) ∈ pE and a set of edges Eπ ⊆ E(l,g,p)

such that for any τ ∈ Σk.

π(τ) =
∑

(σ,r,l′,τ)∈Eπ

p(r, l′)

If B′ is the adversary such that for any τ ∈ Σk: PB′

n (τ Ã φ) = PB
n (σ

π
−→ τ Ã φ),

then from Definition 4.4.1 and the construction of π we have:

PB
n+1(σ Ã φ) =

∑

τ∈Σ

π(τ) · PB
n (σ

π
−→ τ Ã φ)

=
∑

τ∈Σ

π(τ) · PB′

n (τ Ã φ)

=
∑

(σ,r,l′,τ)∈Eπ

p(r, l′) · PB′

n (τ Ã φ)

(5.1)

We let s = (l, v, c). Since (l, v, c) ∈ tpre(σ), it follows that there exists d ∈ R+

such that (l, v + d, c + $̇(l)d) ∈ σ and ((l, v, c)
d,{·7→1}
−−−−−→

time

(l, v + d, c + $̇(l)d)) ∈

Steps. Now, for any (σ, r, l′, τ) ∈ Eπ using (a) we have that (l′, (v + d)[r :=

0], c + $̇(l)d) ∈ tpre(τ). Therefore, by induction, for any (σ, r, l′, τ) ∈ Eπ there
exists A(σ,r,l′,τ) ∈ AdvTPS such that:

PA(σ,r,l′,τ)

n (l′, v + d[r := 0], c + $̇(l)d) Ã φ) ≥ PB′

n (τ Ã φ) (5.2)

Let A ∈ AdvTPS be the adversary such that

• A(0, (l, v, c)) = (d, µp), it chooses the full probabilistic transition that
combines the time transition and discrete transitions. The full probabilis-
tic transition exists by Definition 2.3.4. Now by Definition 3.1.2, for any
(l′, v′, c + $̇(l)d) ∈ S:

µp(l
′, v′, c + $̇(l)d) =

∑

r⊆X

v′=(v+d)[r:=0]

p(r, l′)
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• A(1, (l′, (v + d)[r := 0], c + $̇(l)d)) = A(σ,r,l′,τ)(0, (l′, (v + d)[r := 0], c +

$̇(l)d)).

Now we are able to complete the proof of (c).

PA
n+1((l, v, c) Ã φ)

=
∑

(l′,v′,c+$̇(l)d)∈S

µp(l
′, v′, c + $̇(l)d) · PA

n ((l, v, c)
d,µp
−−−→

full

(l′, v′, c + $̇(l)d) Ã φ)

by Definition 4.4.1

=
∑

(l′,v′,c+$̇(l)d)∈S









∑

r⊆X

v′=(v+d)[r:=0]

p(r, l′)









· PA
n ((l, v, c)

d,µp
−−−→

full

(l′, v′, c + $̇(l)d) Ã φ)

by Definition 3.1.2

=
∑

(r,l′)∈support(p)

p(r, l′) · PA
n ((l, v, c)

d,µp
−−−→

full

(l′, (v + d)[r := 0], c + $̇(l)d) Ã φ)

by rearranging

≥
∑

(σ,r,l′,τ)∈Eπ

p(r, l′) · PA
n ((l, v, c)

d,µp
−−−→

full

(l′, (v + d)[r := 0], c + $̇(l)d) Ã φ)

by Definition of Eπ

=
∑

(σ,r,l′,τ)∈Eπ

p(r, l′) · PA(σ,r,l′,τ)

n ((l′, (v + d)[r := 0], c + $̇(l)d) Ã φ)

by construction of A

≥
∑

(σ,r,l′,τ)∈Eπ

p(r, l′) · PB′

n (τ Ã φ) by (5.2)

= PB
n+1(σ Ã φ) by (5.1)

Since k, σ and B are arbitrary, (c) holds by induction.

Proof of property (d)

Consider any A ∈ AdvTPS and s ∈ S such that Pmax
n (s Ã

TPS
φ) > 0. We prove

(d) by induction on n. For n = 0, by Definition 4.4.1, two cases have to be
considered.

• If PA
0 (s Ã

TPS
φ) = 1, then s ∈ φ. Now there exists σ ⊆ φ, such that s ∈ σ,

which implies s ∈ tpre(σ). For arbitrary B ∈ AdvSPSn
the following holds:

PB
0 (σ Ã φ) = 1.

• If PA
0 (s Ã

TPS
φ) = 0, then the premissa of (d) holds, so (d) holds vacuously.

Now suppose that (d) holds for some n ∈ N. If PA
n+1(s Ã

TPS
φ) = 0, then the

result follows as in the case when n = 0. It therefore remains to consider the
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case when PA
n+1(s Ã

TPS
φ) > 0, and from Definition 3.1.2 the following three

cases have to be considered.

(Case 1) If A(0, s) = (d, {t 7→ 1}) is a time transition, there are two possibil-
ities: if t ∈ φ then s ∈ φ, as φ is closed under tpre, the result follows similarly
to when n = 0. If t /∈ φ, then

PA
n+1(s Ã φ) = PA

n (s
d,{t7→1}
−−−−−→

time

t Ã φ) > 0 (5.3)

We have PA
n (t Ã φ) > 0, applying induction and the definition of tpre there

exists an adversary B ∈ AdvSPSn
such that:

PA
n (s

d,{t7→1}
−−−−−→

time

t Ã φ) = PB
n (σ Ã

SPSn

φ)

, with s ∈ tpre(σ).

Recall that an SPS is easily converted to an equivalent PS, and we can apply
Lemma 4.4.2, completing the proof of this case.

PB
n (σ Ã

SPSn

φ) ≤ PB
n+1(σ Ã

SPSn+1

φ)

(Case 2) We let s = (l, v, c). If A(0, (l, v, c)) = (0, µ) is a discrete probabilistic
transition, then by Definition 4.4.1 and the fact that the cost doesn’t change,
we have:

PA
n+1((l, v, c) Ã φ) =

∑

(l′,v′,c)∈S

µ(l′, v′, c) · PA
n ((l, v, c)

0,µ
−−→
disc

(l′, v′, c) Ã φ)

Now from Definition 3.1.2, there exists (l, g, p) ∈ pE such that v ∈ g and for
any (l′, v′, c) ∈ S:

µ(l′, v′, c) =
∑

r⊆X∧v′=v[r:=0]

p(r, l′)

Letting Ar,l′ be the adversary such that Ar,l′(0, (l′, v[r := 0], c)) = A(1, (l′, v[r :=
0], c)), it follows from the above that there exists (l, g, p) ∈ pE such that v ∈ g
and:

PA
n+1((l, v, c) Ã φ)

=
∑

(l′,v′,c)∈S





∑

r⊆X∧v′=v[r:=0]

p(r, l′) · PA
n ((l, v, c) → (l′, v′, c) Ã φ)





=
∑

(r,l′)∈support(p)

p(r, l′) · PAr,l′

n ((l′, v[r := 0], c) Ã φ) (5.4)
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Now consider any (r, l′) ∈ support(p) such that PAr,l′

n ((l′, v[r := 0], c) Ã φ) > 0.
We have Pmax

n ((l′, v[r := 0], c) Ã φ) > 0. By definition (l, g, p, r, l′) ∈ EWPTA

and by induction there exists symbolic state τr,l′ ∈ Σn and adversary Br,l′ such
that

PBr,l′

n (τr,l′ Ã φ) ≥ PAr,l′

n ((l′, v[r := 0], c) Ã φ) (5.5)

,with (l′, v[r := 0], c) ∈ tpre(τr,l′). Letting σr,l′ = pre(l,g,p,r,l′)(τr,l′), then
(σr,l′ , r, l

′, τr,l′) ∈ E(l,g,p), σr,l′ ∈ Σn+1 and (l, v, c) ∈ σr,l′ . Therefore, from
construction of SPSn+1 the following choice for σ is an existing symbolic state
in Σn+1:

σ =
⋂

{σr,l′ | (r, l′) ∈ support(p) and Pmax
n ((l′, v[r := 0], c), φ) > 0} (5.6)

We have that σ contains state (l, v, c), thus (l, v, c) ∈ σ. Furthermore, by
construction of SPSn+1 there exists (σ, π) ∈ Stepsn+1 such that for any τ ∈
Σn+1:

π(τ) =
∑

(σ,r,l′,τ)∈Eπ

p(r, l′) ≥
∑

(r,l′)∈support(p)
τ=τr,l′

P Ar,l′

n ((l′,v[r:=0],c)Ãφ)>0

p(r, l′) (5.7)

Now, set B to be the adversary of SPSn+1 such that B(0, σ) = π and ∀m ≥
0.B(m + 1, s) = Br,l′(m, s). Choose σ as in 5.6. We are able to complete the
proof of (d).

PB
n+1(σ Ã φ) =

∑

τ∈Σn

π(τ) · PB
n (σ

π
−→ τ Ã φ) by Definition 4.4.1

≥
∑

(r,l′)∈support(p)

P Ar,l′

n ((l′,v[r:=0],c)Ãφ)>0

p(r, l′) · PB
n (σ

π
−→ τr,l′ Ã φ) by (5.7)

=
∑

(r,l′)∈support(p)

P Ar,l′

n ((l′,v[r:=0],c)Ãφ)>0

p(r, l′) · PBr,l′

n (τr,l′ Ã φ) by construction of Br,l′

≥
∑

(r,l′)∈support(p)

P Ar,l′

n ((l′,v[r:=0],c)Ãφ)>0

p(r, l′) · PAr,l′

n ((l′, v[r := 0], c) Ã φ) by (5.5)

=
∑

(r,l′)∈support(p)

p(r, l′) · PAr,l′

n ((l′, v[r := 0], c) Ã φ) drop sum condition

= PA
n+1((l, v, c) Ã φ) by (5.4)

(Case 3) If A(0, s) = (d, µ) is a full probabilistic transition, then we can
simply construct adversary A′ that replaces this by a timed transition directly
followed by a discrete probabilistic transition.
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PA
n+1(s Ã φ) = PA′

n+2(s Ã φ) by construction of A′

= PA′

n+1(s
d,{t7→1}
−−−−−→

time

t Ã φ) by (5.3)

= PA′

n+1(t Ã φ)

≤ PB
n+1(σ Ã φ)

The last step holds by analogy to the case for a discrete probabilistic transition
and the fact that the full transition can’t be eliminated twice, for some σ ∈ Σn

and B ∈ AdvSPSn
.

5.1.3 Properties of algorithm CBMaxReachAlg

Infinite symbolic semantics

The SPS corresponding to a given TPS may have a infinite symbolic state space,
and thus CBMaxReachAlg is not guaranteed to terminate. When no intersec-
tions are added, i. e. line 19 is skipped, CBMaxReachAlg will terminate. First
note that the target symbolic states in φ can be described using the extended
priced zones of Lemma 3.5.3. Using our assumption that target symbolic states
have the same maximal cost for every clock valuation, we can use algorithm
BwReachability in the form of Theorem 3.5.2 to decide backward reachability,
and this terminates. Unions of these extended priced zones exactly describe
the mp-zones generated by BwReachability when no intersections are added.
Therefore without intersections, CBMaxReachAlg will terminate.

Intersections can have predecessors that again create new intersections, and in
this way infinitely many intersections are added. Figure 5.5 gives an example
WPTA, and the part of the symbolic state space that is generated with n = 5
iterations. p1 and p2 denote the probability distributions on the probabilistic
edges of the WPTA. Note that cost is on the x-axis, and pre is not split up.
The plain arrows are the edges from the WPTA that are used in pree. The
dashed arrow are the edges in the sets E(l,g,p). A symbolic state is inscribed
with ‘∩’ to denote it is an intersection. Figure 5.6 shows the generated sub-
probabilistic system SPS. We clearly see converging probability values. From
figure 5.5 it is clear that an infinite symbolic state space would be generated if
CBMaxReachAlg is not aborted at some point.

From figure 5.5 and literature [BBR04] we conclude that in general WPTA do
not have finite bisimulations that respect all possible integer cost bounds.
Recall from chapter 4 that cost-bounded probabilistic reachability can be for-
mulated in the logic PBTL, but that by absence of a finite bisimulation we can’t
conclude there is a decidable model checking procedure [Spr00].

Application to broader classes

Clearly decidability of non-probabilistic reachability is a necessary condition
for CBMaxReachAlg to work correctly. Therefore a similar approach for the
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broader class of probabilistic linear hybrid automata, will not work, as the
reachability problem for these kind of systems is undecidable [HKPV98, BBR04].
Subclasses of probabilistic linear hybrid automata are known that have finite
bisimulations [Spr00]. A well know subclass are of course probabilistic timed
automata. By having a finite bisimulation, maximal probabilistic reachability
is decidable [Spr00].

5.2 Descending Converging Value

In the previous section we have presented algorithm CBMaxReachAlg that com-
putes cost-bounded maximal probabilistic reachability as a (possibly infinite) se-
quence of values converging to the exact value. Assume given the cost-bounded
maximal probabilistic reachability problem Ξ = (T,⊒, λ, κ) (see 3.2). Let p de-
note the exact value that is approximated. If λ is such that λ ≥ p we cannot use
CBMaxReachAlg to give a verdict on Ξ, although the verdict should be “no”.
This is unsatisfying, we have investigated methods to give a negative verdict
if λ > p. Our solution is to compute p with a descending (or non-increasing)
converging sequence.

First we would like to point out that possibly by investigating properties of
convergence of CBMaxReachAlg it is possible to decide the problem. This is a
topic for further research. The approaches presented here try to find another
way to compute maxprob that creates also an infinite converging sequence of
values, but now with values that are descending. Note that still, if we would
choose λ = p, the problem is not decidable by our algorithms.

We give non-formal descriptions of two possible algorithms to compute p with a
descending converging sequence. The first algorithm (section 5.2.1) is incorrect
for some (finite) paths, but it remains to be investigated if it would be correct
for paths of length greater than some integer. We think the second algorithm
(section 5.2.2) is correct. Both algorithms rely on computing the probability of
reaching a set of states, denoted fail , that are certainly wrong. Let ψ denote
the target states representable as a set of symbolic states. fail are those states
from which there is no path to a state in ψ. Clearly paths from fail can only
reach states in fail . Note that typically ψ ∪ fail 6= S, otherwise we can give the
verdict right away.

The first step in constructing fail consists of using BwReachability on page 46 to
get the set of states that can reach ψ. BwReachability returns the set of symbolic
states Visited . Now the set of symbolic states G = {tpre(σ) | σ ∈ Visited}
represents all states that can reach ψ. By interpreting G semantically as a set
of states, we have fail = S\G. Both S and G can be described as a finite union
of symbolic states that use convex polyhedra (see section 3.6). Then, by theory
on geometry, fail can also be described as a finite union of symbolic states that
use convex polyhedra. We know that the predecessor operator is computable
on these symbolic states. In contrast to G, fail cannot use multi-priced zones,
as mp-zones are not closed under the difference operator (\).
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5.2.1 Fail reachability

The algorithm described here is in fact not an algorithm on its own, but merely
an extension of algorithm CBMaxReachAlg . Algorithm CBMaxReachAlg com-
putes in each iteration a probability maximizing adversary on the constructed
SPS, using some existing technique. Note that possibly more than one adver-
sary in the SPS will give the maximal reachability probability. According to
literature [Tij03, dA99], it should be possible to compute the whole set of max-
imal adversaries Γ. By incorporating fail as a special state in the SPS, we can
compute the reachability probability on fail for all adversaries in Γ. The idea
was that in each iteration of the new algorithm, the minimum of the reach prob-
abilities on fail for all adversaries in Γ, would give us a sequence of values that
converges from above to the actual solution of cost-bounded maximal proba-
bilistic reachability. We will see however the incorrectness of this approach.

We skip the details of how fail can be incorporated as a special state in the
SPS generated by the algorithm, and proceed with the example that shows
the incorrectness. Figure 5.7 depicts a WPTA. The part in the dashed box is
equal to the WPTA of figure 5.7. l2 is again the target location. From the
starting location, there is a choice between α and β. Clearly fail = (l3, {(v, c) |
v ∈ RX

+ ∧ c ≥ 0}), which is representable by a symbolic state. The arrow
to ? means that after this transition, it is unclear with what probability it is
possible to reach the target. From previous results on the WPTA in the dashed
box we know that in iteration n = 4, the probability from l0 reaching the target
is 0.372. Thus for iterations 0–3, the maximizing adversaries Γ (in this case
only one) will choose β. And from iterations 4 and higher, they will choose
α. But, the minimal probability of reaching fail , when choosing β is 0.61,
whereas the minimal probability of reaching fail in iteration 4, when choosing
α is 0.62. Thus, in fact the minimal reach probability on fail increases, showing
the incorrectness of this approach.

What remains to be investigated is if there exists a number of iterations from
where the probability on reaching fail can only descend. For example, in figure
5.7, assuming that from ? the target cannot be reached, this number would be
iteration 4.

5.2.2 Cost-bounded minimal probabilistic reachability

The algorithm described here gives an ascending sequence [Fn]n=0...∞ that con-
verges to the the minimal reachability probability on some target set of symbolic
states. Now we can take fail as target set. If p denotes the exact maximal reacha-
bility probability for the target set, and q denotes the exact minimal reachability
probability on fail , then clearly p = 1 − q. Therefore with this algorithm it is
possible to give a sequence [1− Fn]n=0...∞, that is descending and converges to
p.

[KNS03] presents a method to compute minimal probabilistic reachability, but
this method is not suited for our purpose, as in fact it uses the maximal proba-
bilistic reachability result p and computes the minimal reachability probability
q as q = 1 − p.
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The idea of our new algorithm is to compute in each iteration n, a weaker ver-
sion of the coarsest time-abstracting bisimulation, i. e. two states are bisimilar
if they both have the same path leading to the target in n or less steps. We
think the equivalence classes are computable with an algorithm similar to al-
gorithm CBMaxReachAlg , but now in addition to taking intersections between
symbolic states, also the differences between them are computed, like the algo-
rithms in [TY01] do. On this state space we can construct a sub-probabilistic
system (SPS) similar to CBMaxReachAlg . The next step is to compute minimal
probabilistic reachability on this SPS using techniques of [dA99].

In each iteration the state space grows, and represents equivalence classes which
respect longer paths to the target. We are convinced this will result in an ascend-
ing sequence of minimal reachability probabilities that converges to the exact
minimal probabilistic reachability value. From [KNS03, KNSS02] we conclude
that T -divergent adversaries (see section 3.2) should be considered. If the state
space grows, longer paths to the target are possible. Therefore a T -divergent
adversary in iteration n will give a higher probability on reaching the target in
iteration n + 1. Thus, the minimal adversary in n + 1 will have a higher proba-
bility on reaching the target. The correspondence between symbolic system and
semantical system is clear. The difference between symbolic states is needed,
because we are interested in symbolic states were as less as possible edges of
the same probabilistic edge may lead to the target. These will give minimal
probabilistic reachability.
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Figure 5.3: A WPTA and its symbolic state graph.
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Figure 5.4: A WPTA and its symbolic state graph.
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Figure 5.5: Example of an infinite symbolic state space [BBR04].
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Figure 5.6: SPS generated from the state space graph of figure 5.5. Every
symbolic state is placed in somewhat the same place. The numbers on the arrows
give the probabilities from the sub-probabilistic distributions. The numbers in
the symbolic states give the maximum reachability probability of the target
from that symbolic state.
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Figure 5.7: Counter-example of method using fail reachability.
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Conclusion

We introduced a new model called Weighted Probabilistic Timed Automata.
WPTA are timed automata with prices in locations and probabilistic edges. I
investigated model checking of cost-bounded probabilistic reachability properties
on WPTA. These properties state that a location is reachable with probability λ
and cost at most κ. To check these properties we need to compute cost-bounded
maximal probabilistic reachability on WPTA.

Although we know from literature that the problems of minimal cost reachabil-
ity [BFH+01, ATP01] and maximal probabilistic reachability [KNSS02] (both
on locations in WPTA) are decidable, the problem of cost-bounded maximal
probabilistic reachability is not trivial. The reason for this is that WPTA do
not have finite time abstracting bisimulations respecting cost bounds. Our first
naive solution resulted in a forward algorithm, that uses priced regions. The
algorithm is capable of computing an upper bound. Now we can only conclude
to a negative verdict on some cost-bounded probabilistic reachability property,
but cannot give a positive verdict for certain.

We have investigated backward algorithms and constructed an efficient back-
ward algorithm that computes cost-bounded reachability, where probabilities
are ignored. This provides no fundamental new results, but shows that back-
ward reachability using priced zones is possible. The algorithm is efficient in
the sense that predecessor symbolic states are easily computable on the facets of
priced zones. Next, we introduced a new abstraction called multi-priced zones,
which are a subclass of rational polyhedra. Multi-priced zones are closed under
the priced versions of predecessor operations and conjunction. Predecessor op-
erations are realizable as operations on polyhedra [HPR94, AHH96], but we do
not make assumptions of the used method.

With symbolic states consisting of a location and multi-priced zone we can
use an altered version of the algorithm of [KNS03] that computes maximal
probabilistic reachability for probabilistic timed automata. The difference in
our algorithm is that we do breadth-first backward exploration of the symbolic
state space, where in each iteration of the algorithm, the depth of exploration
increases. The algorithm starts with a set containing all symbolic states that
represent the target location and cost bound. From this set successively prede-
cessors are computed in a breadth-first manner. Like [KNS03] only intersections
between generated symbolic states need to be computed. The algorithm gives
a better approximation of maximal probabilistic reachability in each iteration,
but may not terminate. In this way an ascending converging sequence of values
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is obtained. When some cost-bounded probabilistic reachability property uses
a probability bound that is strictly lower than the exact solution of maximal
probabilistic reachability, we are able to conclude to a positive verdict.

Directions for Further Research

Algorithm CBMaxReachAlg only gives a partial solution of the problem. There-
fore a natural direction for further research is the full solution. Our own steps
in this direction concerned finding algorithms that compute the minimal prob-
abilistic reachability on states that are certainly not in the target (see section
5.2). Another important direction is to study the approximating behavior of
CBMaxReachAlg . For certain WPTA CBMaxReachAlg will terminate, return-
ing a system on which the exact probability can be computed. Of interest are
the subclasses of WPTA for which this is the case. Finally, one could look for
some other kind of abstraction that is finite, and can be used for probability
computation.

The presented algorithms are implementable in their present form, but for ef-
ficient implementations optimizations are useful. In CBMaxReachAlg the cal-
culation of maximal probabilistic reachability is performed on the generated
SPS. It would be interesting to see if these computations could be integrated
into the algorithm itself. We think that symbolic states completely included in
another symbolic state, and with a lower probability of reaching the target can
be discarded. Operations on price functions, and intersections are expensive,
therefore methods that already discard part of the state space are of interest.
Finally, we think symbolic states can share their unpriced part if it is the same,
thus reducing memory usage.

The model of WPTA can be extended in numerous ways. All extensions accord-
ing to probabilistic linear hybrid automata are of interest. The most obvious is
by adding discrete cost increments like LPTA. We have excluded discrete cost
increments from our model to completely focus on the problems with prices in
locations. We are convinced that the algorithms are easily adapted for discrete
cost increments by small adjustments to the successor/predecessor operations.

On WPTA, other properties can be formulated. Two interesting properties
are: expected cost reachability, and average cost reachability. Also a logic like
PTCTL could be formulated.
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