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Abstract

A Markov Reward Model (MRM) is a Stochastic Process satisfying the Markov
property. MRMs have been used for the simultaneous analysis of performance and
dependability issues of computer systems, sometimes referred to as performability.

Previous work for Model Checking MRMs [Bai00, Bai02, Hav02] is restricted
to state-based reward rates only. However, greater insight into the operation of
systems can be obtained when impulse rewards are incorporated in these models
which express the instantaneous cost imposed with the change of state of systems.

The main aim of this thesis is to enable Model Checking of MRMs with impulse
rewards. In this thesis methods for Model Checking MRMs have been extended
for the incorporation of impulse rewards. To that end, the syntax and semantics
of the temporal logic CSRL (Continuous Stochastic Reward Logic) have been
adapted and algorithms have been developed and implemented that allow for the
automated verification of properties expressed in that logic.
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Chapter 1

Introduction

This chapter presents the motivation, objective and structure of this thesis. A
brief introduction to Markov Reward Models is presented in section 1.1. Section
1.2 gives a short overview of Model Checking. The motivation behind this thesis
is presented in section 1.3. In section 1.4, the objective of this project is stated
and section 1.5 describes the structure of this thesis.

1.1 Markov Reward Model

Many events occur in a disorderly or random fashion. For instance the arrival of
a customer to an airline counter or the time it will take to serve the customer.
In mathematics such events are described by random functions for which if the
value of the function is given at a certain point of time, its future value can only
be determined with a certain probability and not precisely. Such functions to
represent random events are referred to as Stochastic Processes [How71, Hav98].

One special class of Stochastic Processes is referred to as the Markov Process.
A Markov Process is essentially a Stochastic Process which satisfies the Markov
Property. The Markov Property states that “given the present state, the knowl-
edge of the past states does not influence the future state.” This is sometimes
referred to as the memoryless property. A Markov Chain is a Markov Process
whose state space is finite or countably infinite.

A Markov Reward Model (MRM) is such a Markov Chain. It is augmented
with a reward assignment function. The reward assignment function assigns a
state-based reward rate to each state such that the residence time in a state entails
the accumulation of overall reward gained based on the state-based reward rate.
The reward assignment function also assigns an impulse reward to each transition
such that the occurrence of the transition results in a gain in the overall reward
governed by the impulse reward assigned to the transition.

The application of Markov Reward Models to computer systems can be traced
back to the work of Professor John F. Meyer of the University of Michigan,
Ann Arbor [Mey80] which concerns the simultaneous analysis of performance and
dependability of computer systems. Whilst performance in computer systems is

1



2 CHAPTER 1. INTRODUCTION

the efficacy by which the system delivers services under the assumption that the
services delivered conform to the specification, dependability is the ability of the
system to deliver services that conform to the specification. Although these two
issues may be analyzed independently, simultaneous analysis becomes imperative
when the performance of the system degrades under the presence of behavior that
does not conform to the specification. This analysis is sometimes referred to as
performability [Mey95].

The definition of the performability measure is based on a performability vari-
able (Y ). The performability variable is realized over a base stochastic model and
incorporates an utilization interval and an accomplishment set in which the per-
formability variable takes its values. An example of such an accomplishment set
is the set of all non-negative real numbers R≥0. The performability measure for a
subset of the accomplishment set is then the probability that the performability
variable interpreted over the stochastic process takes values in the subset. For
instance, a subset of the accomplishment set R≥0 is [0, y], y ∈ R≥0.

The accumulated reward over an MRM in a finite interval can be considered
to be a performability variable. Then performability over an MRM for a finite
interval [0, t] and for a set [0, y], y ∈ R≥0 is defined as the probability that the
accumulated reward is in [0, y] over a utilization interval [0, t].

1.2 Model Checking

Model Checking [Cla99, Kat02] is a formal verification strategy. The verification of
systems requires first a precise specification of the system. A model of the system
is then constructed whose behavior should correspond to the specification. Once
such a model is available, statements about functional correctness of the system
can be made. The specification of these statements is made in mathematical
logic such as temporal logic interpreted over the model. Subsequently, a set of
statements about the functional correctness of the system are made.

Once the model of the system and the statements about the functional cor-
rectness of the system are available, it has to be ascertained whether the model
satisfies these statements. This is either achieved by simulation tests or by formal
verification methods. If the model satisfies all these statements then it is said to
be correct and this strategy to ascertain correctness is called Model Checking.
The specification of a model of a system and statements about its correctness in
mathematical terms requires careful insight into the modeling concepts and the
functioning of the system to ensure that the model portrays the system precisely.

The relationship between the system and the model in most cases however
cannot be clearly established. One primary cause of this is that models are
usually simplified and designed to capture some essence but not all aspects of
systems. Yet even such simplified models cannot be made manually. Frequently,
these models are specified at an abstract level which can automatically be refined
into models at detailed specification levels. Formal verification provides tools to
capture such modeling concepts.
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1.3 Motivation

In recent times as performability requirements on computer systems become more
acute, models based on MRM are gaining more importance and so do verification
techniques for these models. This is the inspiration to investigate model checking
applied to the field of performability. Many qualitative and quantitative state-
ments can be made about systems modeled in terms of such MRM by means of
Model Checking. Previous work for Model Checking MRMs [Bai00, Bai02, Hav02]
is restricted to state-based reward rates only. However, greater insight into the
operation of systems can be obtained when impulse rewards are incorporated in
these models which express the instantaneous cost imposed with the change of
state of systems.

The occurrence of this instantaneous cost in terms of energy consumption can
be observed in modern-day cellular phones. The phone periodically moves to an
idle state. It then stays in such a state continuously unless a call is initiated or
received or if a location hand-over becomes necessary. If a call is received then
the phone has to transition to a state where it can handle the call. During this
transition instantaneous costs related to tasks such as preparing to ring the ringer
are endured. This behavior of accumulating instantaneous costs can be modeled
by impulse reward functions.

This ability to model instantaneous costs is the motivation to extend Model
Checking procedures defined for MRMs with only state-based reward rates to
include impulse reward functions. A further motivation is to develop efficient and
numerically stable algorithms for model checking MRMs.

1.4 Objective

To develop modeling formalisms and practical algorithms for model checking
Markov Reward Models with state-based reward rate and impulse rewards. To
fulfill this objective the following tasks are distinguished:

1. Background study of Markov Processes, Markov Reward Models and Per-
formability measures.

2. Extension of definitions, model and logic to incorporate impulse rewards.

3. Survey of numerical methods to compute measures defined over MRMs.

4. Development and implementation of algorithms for Model Checking MRMs.

5. Development of an example application which is modeled as an MRM and
performing experiments with the example.

6. Comparison of the performance of new algorithms with existing methods
for models with only state-based reward rates.
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1.5 Structure

This thesis is organized as follows:
Chapter 2: Markov Processes describes background theory of Markov Pro-

cesses. It presents a brief introduction to Stochastic Processes, Markov Processes
and Discrete & Continuous-Time Markov Chains.

Chapter 3: Markov Reward Model (MRM) describes Markov Reward Mod-
els. It presents the formal definition of MRMs and measures interpreted over
these MRMs. Subsequently a logic (CSRL) to specify properties over MRMs is
presented.

Chapter 4: Model Checking MRMs describes the model checking procedure
to check the validity of properties specified in CSRL interpreted over MRMs.
Numerical methods which have been developed to check the validity of CSRL
properties are presented. This constitutes the main part of this thesis.

Chapter 5: Experimental Results describes the implementation of model
checking procedures and several experiments using this implementation. It also
presents a comparison of the performance of the numerical methods with existing
methods for models with only state-based reward rates.

Chapter 6: Conclusion presents conclusions drawn in the context of this the-
sis. This chapter also presents indications towards future work in Model Checking
MRMs with state-based reward rates and impulse rewards.



Chapter 2

Markov Processes

This chapter presents background theory of Markov Processes. A brief introduc-
tion to Stochastic Processes is presented in section 2.1. Section 2.2 gives an
overview of Markov Processes. Discussion about Discrete and Continuous-Time
Markov Chains is presented in section 2.3 and in section 2.4 respectively. Sec-
tion 2.5 discusses Continuous-Time Markov Chains augmented with a labeling
function.

2.1 Stochastic Processes

A Stochastic Process is a collection of random variables {X(t)|t ∈ T } indexed by
a parameter t which can take values in a set T which is the time domain. The
values that X(t) assumes are called states and the set of all possible states is
called the state space I. Both set I and T can be discrete or continuous, leading
to the following classification:

1. Discrete-state discrete-time stochastic processes can be used for instance to
model the number of patients that visit a physician where the number of
patients represents states and time is measured in days.

2. Discrete-state continuous-time stochastic processes can be used for instance
to model the number of people queueing in an airplane ticketing counter
where the number of people in the queue represents states.

3. Continuous-state discrete-time stochastic processes can be used for instance
to model the volume of water entering a dam where the volume of water
entering the dam represents states and time is measured in days.

4. Continuous-state continuous-time stochastic processes can be used for in-
stance to model the temperature of a boiler where the temperature of the
boiler represents states.

At a particular time t′ ∈ T , the random variable X(t′) may take different
values. The distribution function of the random variable X(t′) for a particular

5
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t′ ∈ T is defined as:

F (x′, t′) = Pr{X(t′) ≤ x′},

which is also called the cumulative density function of the random variable or the
first-order distribution of the stochastic process {X(t)|t ∈ T }. This function can
be extended to the n-th joint distribution of the stochastic process as follows:

F (x′, t′) = Pr{X(t′1) ≤ x′
1, . . . , X(t′n) ≤ x′

n},

where x′ and t′ are vectors of size n, x′
i ∈ I and t′i ∈ T for all 1 ≤ i ≤ n.

An independent process is a stochastic process where the state being occupied
at a certain time does not depend on the state(s) being occupied in any other time-
instant. Mathematically, an independent process is a stochastic process whose
n-th order joint distribution satisfies:

F (x′, t′) =
n∏

i=1

F (x′
i, t

′
i) =

n∏

i=1

Pr{X(t′i) ≤ x′
i}.

A stochastic process can also be a dependent process in which case some form
of dependence exists among successive states.

2.2 Markov Processes

One form of a dependent process in which there is a dependence only between two
successive states is called a Markov process. Such dependence is called Markov
dependence or first-order dependence. A stochastic process {X(t)|t ∈ T } is a
Markov process if for any t0 < t1 < · · · < tn < tn+1, the distribution of X(tn+1),
given X(t0), · · · , X(tn), only depends on X(tn), or mathematically:

Pr{X(tn+1) ≤ xn+1|X(t0) = x0, . . . , X(tn) = xn} = Pr{X(tn+1) ≤ xn+1|X(tn) = xn},

which is referred to as the Markov property. This is to say that the immedi-
ate future state in a Markov process depends only on the state being occupied
currently.

A Markov process is called time-homogeneous if it is invariant to time shifts
which means that the behavior of the process is independent of the time of ob-
servation. For any t1 < t2, x1 and x2:

Pr{X(t2) ≤ x2|X(t1) = x1} = Pr{X(t2 − t1) ≤ x2|X(0) = x1}.

If the state space I of a Markov process is discrete, the Markov process is
called a Markov chain. Hence two types of Markov chains can be identified,
namely Discrete-Time Markov Chains and Continuous-Time Markov Chains.
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2.3 Discrete-Time Markov Chains

A Discrete-Time Markov Chain (DTMC) is a stochastic process such that the
state space I and the set T are both discrete, and the stochastic process satisfies
the Markov property, which in the discrete-state and discrete-time case is defined
as:

Pr{Xn+1) = in+1|X0 = i0, · · · , Xn = in} = Pr{Xn+1 = in+1|Xn = in},

where T = {0, 1, 2, . . .} and i0, . . . in+1 ∈ I.
Let pi(n) denote the probability of being in state i at time n, and the con-

ditional probability pj,k(m, n) = Pr{Xn = k|Xm = j} denote the probability
of being in state k at time n, given that at time m the DTMC is in state
j. Since in time-homogeneous Markov chains, the transition probabilities only
depend on the time difference, this conditional probability can be written as
pj,k(l) = Pr{Xm+l = k|Xm = j}, which is called the l-step transition probability.
Hence, the l-step transition probability pj,k(l) denotes the probability of being in
state k after l steps given that the current state is j. The 1-step probabilities are
pj,k(1) or simply pj,k and the 0-step probabilities are the initial distribution of
the DTMC. A DTMC is described by the initial probabilities p(0) and the 1-step
probabilities, which is represented by the state-transition probability matrix P .

Example 2.1 A DTMC can be conveniently represented graphically as a labeled
directed graph. The vertices in the graph represent states in the DTMC and
the name of the state is in the vertex that represents the state. A transition is
represented by an edge in the graph. The probability of a transition is placed near
the edge representing the transition in question. Figure 2.1 is an example of such
a graph.

0 1 2
0.5 0.5

0.25

0.75

0.6

0.2

0.2

Figure 2.1: A DTMC Represented in Labeled Directed Graph

Figure 2.1 depicts a DTMC with three states, named 0, 1 and 2. There are
seven transitions in the DTMC. These transitions are shown together with their
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probability, for instance, transition from state 0 to state 1 occurs with probability
0.5. From the figure the 1-step probabilities are given by:

P =




0.5 0.5 0
0.25 0 0.75
0.2 0.6 0.2



 .

The Markov property can only be satisfied if the state residence time in the
DTMC has a memoryless discrete distribution. Since the geometric distribution
is the only memoryless discrete distribution, it follows that the state residence
time in a DTMC is geometrically distributed. Hence, for every state i ∈ I in the
DTMC a non-negative real value P i,i = 1−∑

i$=j P i,j, is associated such that the
residence time distribution in state i (the probability to reside in state i for n
steps) is:

Fi(n) = (1−P i,i) · P n−1
i,i , n ≥ 0.

2.3.1 Transient Analysis

Transient analysis aims at determining the probability with which the DTMC
occupies a state after a given number of observation steps have occurred. This
probability is referred to as the state occupation probability. These state occupa-
tion probabilities are given by:

p(n) = p(0) · P n,

where p(0) is the initial distribution of the DTMC and P is the state-transition
probability matrix. The state occupation probabilities, which is contained in p(n)
express the transient behavior of the DTMC.

Example 2.2 Using the DTMC presented in figure 2.1,and p0(0) = 1; pi(0) = 0
for i = 1, 2; the state occupation probabilities after 3 steps are as follows:

p(3) = p(0) · P 3 =
[
1 0 0

]
·




0.5 0.5 0
0.25 0 0.75
0.2 0.6 0.2





3

=
[
0.325 0.412 5 0.262 5

]
.

These state occupation probabilities describe the probabilities of ending in
states after 3 steps starting from state 0. For instance, after 3 steps, starting
from state 0, the DTMC will be in state 2 with probability 0.2625. State occupa-
tion probabilities after more number of steps have elapsed can also be obtained.
For instance the state occupation probabilities after 15 and 25 steps are as follows:

p(15) =
[
0.311 1 0.355 67 0.333 23

]
,

p(25) =
[
0.311 11 0.355 56 0.333 33

]
.
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In the previous example it can be observed that after a certain number of steps,
the state occupation probabilities converge. It would be interesting to know if
the converged probabilities can be determined directly since for some measures
these converged probabilities will suffice to describe the behavior of the DTMC.
However, such converged probabilities do not exist for all DTMC. The conditions
under which these converged probabilities exist are presented in [Hav98].

2.3.2 Steady-State Analysis

The steady-state analysis aims at determining the state occupation probabil-
ities after an unbounded number of steps have occurred in a DTMC: vi =
limn→∞ pi(n), which are called the steady-state probabilities. If this limit exists,
these steady-state probabilities are described by a system of linear equations:

v = v · P ,
∑

i
vi = 1, 0 ≤ vi ≤ 1.

Vector v is referred to as the steady-state probability vector of the DTMC,
which describes the steady-state distribution of the DTMC.

Example 2.3 Using the DTMC presented in figure 2.1, in a long run, after
infinite steps occur in the DTMC, the state occupation probabilities are given by
the steady-state probabilities. For the DTMC, the steady-state probabilities are:

v = v ·




0.5 0.5 0
0.25 0 0.75
0.2 0.6 0.2



 ,
∑

i
vi = 1, 0 ≤ vi ≤ 1 ⇒ v =

[
14
45

16
45

1
3

]
.

These steady-state probabilities can be interpreted as the probabilities of dis-
covering that the DTMC is in some state after it has been running for a long
time. They can also be interpreted as the fraction of time the DTMC stays in
some state in the long run. Thus for the example, it can be said that after a long
running time the DTMC will be in state 2 with probability 1

3 or the fraction of
running time that the DTMC spends in state 2 is 1

3 .

2.4 Continuous-Time Markov Chains

A Continuous-Time Markov Chain (CTMC) is a stochastic process such that
the state space I is discrete, the set T is continuous, and the stochastic process
satisfies the Markov property namely:

Pr{X(tn+1) = xn+1|X(t0) = x0, · · · , X(tn) = xn} = Pr{X(tn+1) = xn+1|X(tn) = xn}.

The Markov property can only be satisfied if the state residence time in the
CTMC has a memoryless continuous distribution. Since the negative exponential
distribution is the only memoryless continuous distribution, it follows that the
state residence time in a CTMC is negative exponentially distributed. Hence, for
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every state i ∈ I in the CTMC a random variable with parameter a non-negative
real value µi, referred to as the rate, is associated such that the residence time
distribution in state i is:

Fi(t) = 1− e−µi·t, t ≥ 0.

Beside the state residence time distribution with rate µi, several delays de-
pending on the number of transitions are associated with every state with rate
Ri,j. The total rate of taking an outgoing transition from state i is E(i) =

∑
j Ri,j.

Note that the rate of residence in state i is now µi = E(i). These delays can con-
veniently be represented in a rate matrix R.

The operation of CTMCs can be imagined as follows, at any given instant the
CTMC is said to be in one of the states. Let the CTMC enter state i at some
observation instant. Subsequently, it will make a transition to one of the states
j after residing in state i for a negative exponentially distributed interval of time
given by the following distribution:

Fi,j (t) = 1− e− i,j ·t.

Since the delays assigned to various transitions from state i can be different,
the transition corresponding to the fastest rate will take the shortest time to take
place. Hence at the observation instant all transitions from state i are said to be
in a race condition. Due to this property the probability that a certain transition
i → j is successful in relation to other transitions from state i is:

P (i, j) =
Ri,j∑
k Ri,k

.

Consequently, the probability of moving from state i to a state j within time
t is given by P (i, j) · (1 − e−E(i)·t). For most measures defined over CTMCs the
specification of a CTMC involves the specification of the initial probability vector
p(0) and the rate matrix R only.

2.4.1 Transient Analysis

For many measures that are defined over CTMCs it is interesting to know the
probability with which the CTMC occupies a state after a given observation inter-
val has elapsed. This probability is referred to as the state occupation probability.
The analysis used to determine the state occupation probabilities in this manner
is called transient analysis of CTMCs. These state occupation probabilities are
described by a linear system of differential equations:

p′(t) = p(t) · Q, (2.1)

where
Q = R−Diag(E),
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is the infinitesimal generator matrix.
In many practical situations, uniformization is used to perform transient

analysis of CTMC by analyzing the uniformized Discrete Time Markov Chain
(DTMC). To generate the uniformized process of the CTMC, specified by ini-
tial probability distribution p(0) and rate matrix R, first obtain the infinitesimal
generator matrix Q:

Q =





Q1,1 Q1,2 · · · Q1,n

Q2,1 Q2,2 · · · Q2,n

· · · · · · · · · · · ·
Qn,1 Qn,2 · · · Qn,n



 where Qi,i = −
n∑

j=1

Qi,j,

a rate of residence Λ is assigned to each state where Λ ≥ maxi(−Qi,i). The 1-step
probability matrix for the uniformized process is found in the following fashion:

P = I +
Q

Λ
where I is an Identity matrix of cardinality (n× n).

Once such a uniformized process is available, let {Nt : t ≥ 0} be a Poisson
process with rate Λ, p(t), the distribution of state occupation probability at time
t, is:

p(t) =
∞∑

i=0

e−Λt(Λt)i

i!
· p(0) · P i. (2.2)

2.4.2 Steady-State Analysis

Consider a CTMC specified by an initial probability distribution p(0) and a rate
matrix R. For many measures defined over such a CTMC it suffices to consider
the steady-state distribution. The steady-state analysis aims at determining the
state occupation probabilities after an unbounded observation interval is allowed
to elapse: pi = limt→∞ pi(t). For finite CTMC this limit always exists; hence
from equation (2.1) p′(t) = 0. Consequently, these steady-state probabilities are
described by a system of linear equations:

p · Q = 0,
∑

i∈I
pi = 1. (2.3)

When the steady-state distribution depends on the initial-probability distri-
bution then a graph analysis to determine the bottom-strongly connected com-
ponents can be performed. This is elaborated upon in chapter 3.

2.5 Labeled Continuous-Time Markov Chain

Continuous-Time Markov Chains can be further augmented with a labeling func-
tion. This labeling functions assigns a set of statements to each state which
represent certain qualitative properties of the state in question. This enables
qualitative statements about the system modeled as a CTMC to be made.
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2.5.1 Atomic Propositions

Atomic propositions are the most elementary statements that can be made, can-
not be further decomposed and can be justified to be true or false. For instance,
“It is Sunday” is an atomic proposition. The finite set of all atomic propositions
is referred to as AP . The selection of such a set AP determines the qualitative
aspects that can be expressed about a system.

2.5.2 Interpretation Function: Labeling (Label)

Label : S −→ 2AP : A labeling function Label assigns to each state s a set of
atomic propositions Label(s) ∈ AP that are valid (true) in state s. The function
Label indicates which atomic propositions are valid in which states. A state s for
which the atomic proposition p ∈ AP is valid i.e. p ∈ Label(s) is called a p-state.

Definition 2.1 A Continuous-Time Markov Chain (CTMC) C is a three-tuple
(S, R, Label) where S is a finite set of states, R : S × S −→ R≥0 is a function.
R is called the rate matrix of the CTMC, where Rs,s′ is the rate of moving from
state s to s′. It is said that there is a transition from state s to state s′ if and
only if Rs,s′ > 0. Label : S −→ 2AP is a labeling function.

The total rate of taking an outgoing transition from state s ∈ S is given by
E(s) =

∑
s′∈S Rs,s′. The probability of moving from state s to any state within

time t is (1− e−E(s)t). The probability of moving from state s to a state s′ is:

P (s, s′) =
Rs,s′

E(s)
.

The probability of making a transition from state s to s′ within time t is
Rs,s′

E(s)
· (1 − e−E(s)·t). Note that this definition of a CTMC is different from the

original definition of a CTMC in the sense that self-transitions are allowed to
occur. This implies that after a negative exponentially distributed residence time
in a state has elapsed the CTMC may transition to the same state.

Example 2.4 Consider a WaveLAN modem which is designed to be energy- effi-
cient. Typical operating modes in such an interface are off, sleep, idle, receive and
transmit [Pau01]. In the transmit mode it is transmitting and is receiving data
in the receive mode. In the idle mode it is idle but ready to either transmit or to
receive. In the sleep mode the interface is powered down. Consequently, it is nei-
ther ready to receive nor to transmit but listens for some incoming transmissions.
When in sleep mode the interface is powered up after some time has elapsed and
subsequently is ready either to transmit or to receive. Such a WaveLAN modem
is modeled as a labeled CTMC in figure 2.2.
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1
{off}

2
{sleep}

3
{idle}

4
{receive, busy}

5
{transmit, busy}

λOS

µSO

λSI

µIS

λIR

µRI

λIT

µTI

Figure 2.2: WaveLAN Modem Modeled as a Labeled CTMC

This CTMC can be specified as C = (S, R, Label) where S = {1, 2, 3, 4, 5},

R =





0 λOS 0 0 0
µSO 0 λSI 0 0
0 µIS 0 λIR λIT

0 0 µRI 0 0
0 0 µTI 0 0




; and

Label(1) = {off},
Label(2) = {sleep},
Label(3) = {idle},
Label(4) = {receive,busy},
Label(5) = {transmit,busy}.

From the rate matrix, the total rate of taking an outgoing transition for each
state s ∈ S (E(s)) can be calculated:

E(1) = λOS,
E(2) = λSI + µSO,
E(3) = λIR + λIT + µIS,
E(4) = µRI ,
E(5) = µTI.

In figure 2.2 by the application of the labeling function certain qualitative
aspects about the states of the CTMC can be expressed. In state 1 the atomic
propositions off indicates the state of the system where it is turned off. Similarly
state 2, 3, 4 and 5 indicate the sleep, idle, receive and transmit states of the
system. In states 4 and 5 the system is either transmitting or receiving in which
case it is considered to be busy indicated by the atomic proposition busy.
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Chapter 3

Markov Reward Model (MRM)

This chapter presents the definition of Markov Reward Model and a logic for the
specification of properties over such MRM. The definition of MRM is presented
in section 3.1. Section 3.2 describes paths in an MRM. In section 3.3, the proba-
bility measure defined over paths in MRM is described. Section 3.4 presents state
occupation probabilities. In Section 3.5, the definition of performability and its
interpretation over MRMs is presented. A logic for the specification of properties
over such MRM is presented in section 3.6. Characterization of steady-state and
of transient measures is described in section 3.7 and in section 3.8 respectively.

3.1 Markov Reward Model

A Markov Reward Model is formally defined as:

Definition 3.1 (Markov Reward Model (MRM)) A Markov Reward Model
(MRM) M is a three-tuple ((S, R, Label), ρ, ι) where (S, R, Label) is the un-
derlying labeled CTMC C, ρ : S −→ R≥0 is the state reward structure, and
ι : S × S −→ R≥0 is the impulse reward structure such that if Rs,s > 0 then
ι(s, s) = 0.

An MRM is a labeled CTMC augmented with state reward and impulse reward
structures. The state reward structure is a function ρ that assigns to each state
s ∈ S a reward ρ(s) such that if t time-units are spent in state s, a reward of
ρ(s) · t is acquired. The rewards that are defined in the state reward structure
can be interpreted in various ways. They can be regarded as the gain or benefit
acquired by staying in some state and they can also be regarded as the cost spent
by staying in some state.

The impulse reward structure, on the other hand, is a function ι that assigns
to each transition from s to s′, where s, s′ ∈ S and Rs,s′ > 0, a reward ι(s, s′) such
that if the transition from s to s′ occurs, a reward of ι(s, s′) is acquired. Similar
to the state reward structure, the impulse reward structure can be interpreted
in various ways. An impulse reward can be considered as the cost of taking a
transition or the gain that is acquired by taking the transition.

15
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Example 3.1 Back to the WaveLAN modem example in the previous chapter,
the given labeled CTMC can be extended to an MRM by augmenting it by state
reward and impulse reward structures.

1
{off}

0

2
{sleep}

80

3
{idle}
1319

4

{receive, busy}
1675

5
{transmit, busy}

1425

λOS,0.02

µSO,0.0

λSI,0.32975

µIS,0.0

λIR,0.42545

µRI ,0.0

λIT ,0.36195

µTI ,0.0

Figure 3.1: WaveLAN Modem Modeled as an MRM

The state reward and impulse reward structures in this example are interpreted
as cost in terms of energy consumption. A WaveLAN modem, as described in
[Pau01], typically consumes 1675 mW while transmitting, 1425 mW while receiv-
ing, 1319 mW while being idle and 80 mW while in sleep mode. This information
is used to develop the state reward structure as follows:

ρ(1) = 0 mW, ρ(2) = 80 mW,
ρ(3) = 1319 mW, ρ(4) = 1675 mW,
ρ(5) = 1425 mW.

It is also described that transitions from sleep to idle take 250 µs with the
power consumption of the idle state. It is also noted that 254 µs is required
before the payload is transmitted. It is further assumed that the same duration
of time is required before a payload can be received. Similarly the transition from
off to sleep is assumed to take 250 µs with the power consumption of the sleep
state. These observations are interpreted as impulse rewards, thus for defining
the impulse rewards the transitions are assumed to be instantaneous. Hence the
impulse reward structure is as follows:

ι(1, 2) = 80 · 250 · 10−6 = 0.02 mJ, ι(3, 4) = 1675 · 254 · 10−6 = 0.425 45 mJ,
ι(2, 1) = 0 mJ, ι(4, 3) = 0 mJ,
ι(2, 3) = 1319 · 250 · 10−6 = 0.32975 mJ, ι(3, 5) = 1425 · 254 · 10−6 = 0.361 95 mJ,
ι(3, 2) = 0 mJ, ι(5, 3) = 0 mJ.



3.2. PATHS IN MRM 17

Figure 3.1 presents the labeled directed graph of the MRM described in the
above example. In addition to the states and transitions that are represented
by vertices and edges respectively, the labeled directed graph of an MRM also
contains representations of label sets, state rewards and impulse rewards. The
label set and state reward of a state are placed, in that order, near the vertex
representing the state. The impulse reward of a transition is placed near the edge
representing the transition after the rate of the transition.

Definition 3.2 (Absorbing State in an MRM) A state s ∈ S in an MRM
M = ((S, R, Label), ρ, ι) is absorbing if and only if Rs,s′ = 0 for all s′ ∈ S.

3.2 Paths in MRM

During its running time, an MRM makes transitions from states to states. Infor-
mally, the sequence of the states that the MRM resides is called a path. In this
section the concept of a path in MRMs is formalized. This concept provides a
tool to compute several measures in an MRM.

Definition 3.3 (Path in MRMs) An infinite path σ in MRM M = ((S, R, Label), ρ, ι)

is a sequence s0
t0−→ s1

t1−→ · · · , with si ∈ S and ti ∈ R>0 is the amount of time
spent in state si where i ∈ N and Rsi,si+1 > 0 for all i. A finite path σ in M
is a sequence s0

t0−→ s1
t1−→ · · · tn−1−→ sn, such that sn is an absorbing state and

Rsi,si+1 > 0 for all i < n. For finite paths that end in sn, tn = ∞. For infinite
path σ, let σ[i] = si, i ∈ N. For finite path σ that ends in sn, σ[i] = si is only de-
fined for i ≤ n. The last state in the finite path σ (the (n+1)-st state) is referred
to as last(σ). Two additional functions are defined over paths in MRMs:

The state being occupied at time t on path σ is defined as:

σ@t = σ[i] ⇔
i−1∑

j=0

tj < t ∧
i∑

j=0

tj ≥ t.

Rewards accumulated at time t in a path σ is a function yσ : R≥0 −→ R≥0

such that:

yσ(t) = ρ(σ[i])·


t−
i−1∑

j=0

tj



+
i−1∑

j=0

ρ(σ[j])·tj +
i−1∑

j=0

ι(σ[j], σ[j+1]) where σ@t = σ[i].

Thus, there are two types of paths: infinite and finite paths. An infinite path
contains infinitely many transitions. In finite paths, there are a finite number of
transitions, but the last state in the path is absorbing and an infinite amount of
time is spent in this state. PathsM is the set of finite and infinite paths in the
MRM, PathsM(s) is the set of finite and infinite paths in the MRM that start in
state s, thus ∀σ ∈ PathsM(s).σ[0] = s.
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For instance, path:

σ = s1
0.5−→ s3

100−→ s2
2−→ s1

17−→ s4,

is a finite path. Hence, the last state in the path, s4, is absorbing and an infinite
amount of time is spent in this state. In this path σ[2] is the (2+1)-st state in
the path, namely s2. Similarly σ[0] = s1, σ[1] = s3, σ[3] = s1 and σ[4] = s4. σ[i]
is only defined for i ≤ 4. last(σ) = s4, since s4 is the last state in the path.

A certain state can be identified to be occupied at a given time t on path
σ assuming that time started from the initial state on the path. Then the i-th
state on path σ is occupied at time t if the sum of the residence time of all states
before the i-th state is less than t and the sum of the residence time of all states
including the i-th state is greater than t.

In a similar fashion, rewards accumulated at time t in a path σ, yσ(t), can
be obtained from the definition of path in MRMs, given that the state being
occupied at time t is σ@t = σ[i]. The first addendum indicates the amount of
reward accumulated due to residence in the i-th state until time t. The second
addendum indicates the sum of rate rewards accumulated due to residence in
states prior to the visit to the i-th state. The third addendum indicates the
impulse rewards accumulated on the path σ.

Example 3.2 Consider an infinite path in the WaveLAN modem as an MRM
example as follows:

σ = 1
10−→ 2

4−→ 3
2−→ 4

3.75−→ 3
1−→ 5

2.5−→ 3
5−→ · · · .

The state that is occupied at time 21.75 in path σ is σ@21.75 = σ[5] = 5 since:

4∑

j=0

tj = 20.75 < 21.75 ∧
5∑

j=0

tj = 23.25 ≥ 21.75.

Further, the rewards accumulated at that time is yσ(21.75) where:

yσ(21.75) = ρ(σ[5]) ·


21.75−
4∑

j=0

tj



 +
4∑

j=0

ρ(σ[j]) · tj +
4∑

j=0

ι(σ[j], σ[j + 1])

= ρ(5) · (21.75− 20.75) + ρ(1) · 10 + ρ(2) · 4 + ρ(3) · 2 + ρ(4) · 3.75

+ρ(3) · 1 + ι(1, 2) + ι(2, 3) + ι(3, 4) + ι(4, 3) + ι(3, 5)

= 11983.25 mW · s + 1.13715 mJ = 11984.38715 mJ.

Thus, in this path, after 21.75 seconds, 11984.38715 mJ of energy is consumed.
The path σ is an element of PathsM(1).
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3.3 Probability of Paths

To be able to define and evaluate measures that are defined over MRMs it is
necessary to obtain a probability measure over paths in the MRM. Given an
MRM M = ((S, R, Label), ρ, ι), every state s ∈ S and s = s0 gives a probability
measure over all paths that originate in state s0 by Borel Space construction
[Bai00]. Let s0, . . . , sk ∈ S with Rsi,si+1 > 0 for 0 ≤ i < k and I0, . . . , Ik−1

be non-empty intervals in R≥0. Then, C(s0, I0, . . . , Ik−1, sk) denotes the cylinder
set consisting of all paths σ ∈ PathsM(s) such that σ[i] = si and ti ∈ Ii for
0 ≤ i < k. Let F(PathsM(s)) be the smallest σ-algebra defined over PathsM(s)
which contains all the sets C(s, I0, . . . , Ik−1, sk) with s0, . . . , sk ranging over all
state sequences and s = s0 where Rsi,si+1 > 0 for 0 ≤ i < k and I0, . . . , Ik−1

ranges over all non-empty intervals in R≥0. Then the probability measure over
F(PathsM(s)) is defined by induction over k as follows:

Pr{C(s0)} = 1 for k = 0,

Pr{C(s, I0, . . . , Ik−1, sk, I
′, s′)} = Pr{C(s, I0, . . . , Ik−1, sk)} · P (sk, s

′) · (e−E(sk)·a − e−E(sk)·b),

where a = inf(I ′) and b = sup(I ′) and the probability of taking the transition
from state sk to state s′ within the time-interval I ′ is:

∫

I′
P (sk, s

′) · E(sk) · e−E(sk)·tdt = P (sk, s
′) · (e−E(sk)·a − e−E(sk)·b),

where E(sk) · e−E(sk)·t is the probability density function of the state residence
time in state sk at time t.

3.4 Transient and Steady-State Probability

Given an MRM M = ((S, R, Label), ρ, ι) with the underlying CTMC C. In
chapter 2 for such CTMC C two kinds of state probabilities have been defined
viz. the steady-state probability and the transient probability. The transient
probability is the state occupation probability after a bounded time-interval t
has elapsed. Let π(s, s′, t) represent the probability of starting in state s ∈ S
and reaching state s′ ∈ S within t time-units. By the definition of probability of
paths this probability is formally defined as:

πM(s, s′, t) = Pr{σ ∈ PathsM(s)|σ@t = s′}.

The steady-state analysis aims at determining the state occupation probabili-
ties after an unbounded observation interval has elapsed. Let πM(s, s′) represent
the steady-state probability of starting in state s ∈ S and reaching state s′ ∈ S.
This measure is given by:

π(s, s′) = lim
t→∞

πM(s, s′, t).
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When the underlying CTMC is strongly-connected then this probability does
not depend on the initial-probability distribution and this probability is referred
to as π(s′). This measure can also be defined for a set of states S ′ ⊆ S:

π(s, S ′) =
∑

s′∈S′ π(s, s
′).

3.5 MRM and Performability

The definition and evaluation based on MRMs was initiated due to the need for
simultaneous analysis of performance and dependability of computer systems, also
referred to as performability [Mey95]. Whilst performance in computer systems is
the efficacy by which the system delivers services under the assumption that the
services delivered conform to the specification, dependability is the ability of the
system to deliver services that conform to the specification. Although these two
issues may be analyzed independently, simultaneous analysis becomes imperative
when the performance of the system degrades under the presence of behavior that
does not conform to the specification.

The Performability Measure Y is a random variable; its specification includes
a utilization period T , which is an interval of the time base and an accomplishment
set A, in which Y takes its values. The performability of the system Perf(B) rel-
ative to a specified Y where B ⊆ A, is defined to be Perf(B) = Pr{Y ∈ B}. An
example of such an accomplishment set is the set of all non-negative real numbers
R≥0. The performability measure for a subset of the accomplishment set is then
the probability that the performability variable interpreted over the stochastic
process takes values in the subset. For instance, a subset of the accomplishment
set R≥0 is [0, y], y ∈ R≥0.

Definition 3.4 (The Performability Measure Y (I)) The performability of a
system, modeled by an MRM in the utilization interval I in the time base such that
the accumulated reward (accomplishment) is in J, is Perf(J) = Pr{Y (I) ∈ J}.

The accumulated reward over an MRM in a finite interval can be considered
to be a performability variable. Then performability over an MRM for a finite
interval [0, t] and for a set [0, y], y ∈ R≥0 is defined as the probability that the ac-
cumulated reward is in [0, y] over a utilization interval [0, t] and the performability
measure is then defined to be Perf(≤ r) = Pr{Y (t) ≤ r}.

3.6 A Logic for MRMs (CSRL)

Once the model of the system as an MRM is available some means for the expres-
sion of requirements over the model is necessary. In many practical situations
one is also concerned with the ability to impose requirements over the tempo-
ral ordering of certain events. Such requirements or properties to be interpreted
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over an MRM are specified in the Continuous Stochastic Reward Logic (CSRL)
[Bai00, Hav02].

The definition of such a logic provides the means for expressing requirements
of the system being modeled as an MRM. The definition encapsulates two sub-
components viz. the syntax and the semantics. The syntax of the logic defines
precisely what constitutes a CSRL formula. It provides the means to specify
properties of the system modeled as an MRM. However, the syntax alone does not
explain the interpretation of these formulas over the system. This interpretation
is explained by the semantics. The syntax and semantics of CSRL over MRMs
with both state and impulse reward structures are as follows:

3.6.1 Syntax of CSRL

The definition of the syntax of CSRL is concerned with the development of means
by which properties of systems being modeled as MRMs can be expressed. In
CSRL two kinds of formulas are distinguished viz. state formulas and path for-
mulas. Formulas whose validity is investigated given a state are referred to as
state formulas while formulas whose validity is investigated given a path are said
to be path formulas. The first step is the definition of a set of atomic propositions,
AP . The definition of such a set AP determines the set of qualitative properties
of the system that can be expressed. Given a set AP the following definition
presents the formulas that can be expressed in CSRL:

Definition 3.5 (Syntax of Continuous Stochastic Reward Logic (CSRL))
Let p ∈ [0, 1] be a real number, ! ∈ {<,≤,≥, >} a comparison operator and I
and J intervals of non-negative real numbers. The syntax of CSRL formulas over
the set of atomic propositions AP is defined as follows:

tt is a state formula,
Each a ∈ AP is a state formula,
If Φ and Ψ are state formulas then ¬Φ and Φ ∨Ψ are state formulas,
If Φ is a state formula then S p(Φ) is a state formula,
If ϕ is a path formula then is P p(ϕ) a state formula,
If Φ and Ψ are state formulas then X I

JΦ and ΦU I
JΨ are path formulas.

Interval I is a timing constraint, while interval J is a bound for the accumu-
lated reward. X is called ne(X )t operator, while U is called (U)ntil operator.
These formulas can be distinguished as follows:

State Formulas

1. The boolean operators are as in propositional logic. Other boolean op-
erators ∧ and ⇒ can be derived as follows: Φ ∧ Ψ = ¬(¬Φ ∨ ¬Ψ) and
Φ⇒ Ψ = ¬Φ ∨Ψ.
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2. The measure S p(Φ) is referred to as the steady-state measure. The state
formula S p(Φ) asserts that the steady-state probability for the set of Φ-
states meets the bound "p.

3. The measure P p(ϕ) is referred to as the transient probability measure. The
state formula P p(ϕ) asserts that the probability measure of paths satisfying
ϕ meets the bound "p.

Path Formulas

1. The measure X I
JΦ asserts that a transition is made to a Φ-state at time

t ∈ I such that the accumulated reward until time t, r ∈ J .

2. The measure ΦU I
JΨ asserts that Ψ-formula is satisfied at some future time

t ∈ I such that the accumulated reward until time t, r ∈ J and the Φ-
formula is satisfied at all instants before t.

3. Additional formulae are defined by direct consequence of the syntax of
CSRL: ♦I

JΦ = ttU I
JΦ and P p($I

JΦ) = ¬P p(♦I
J¬Φ).

Example 3.3 Some interesting measures of the WaveLAN modem example that
can be expressed in CSRL are as follows:

• The probability is more than 0.5 that the system is either transmitting or
receiving after a certain duration of time has elapsed. It is assumed that
the system has only 50 J of energy. Then after an observation interval of
10 minutes is allowed to elapse this property is: P>0.5(ttU [0,600]

[0,50] busy).

• Energy consumption in WaveLAN can be significantly reduced if the inter-
face spends most of the time in sleep mode. One way to improve this is by
imposing requirements on the ability of the system to reach the sleep state
from busy or idle state within a certain time-duration. This property can be
specified as: the probability is more than 0.8 that the system reaches the sleep
state from busy or idle state before a certain duration of time has elapsed.
If it is assumed that the system has only 50 J of energy and the duration al-
lowed is 10 seconds this property in CSRL is: P>0.8((busy∨idle)U [0,10]

[0,50] sleep).

• Nested measures for instance the CSRL formula, P>0.8(X (P>0.5X [0,10]
[0,50] sleep)))

specifies that a state is reached after one transition from the starting state
with a probability of at least 0.8 from which it is possible to reach the sleep
state with a probability of more than 0.5 in one transition within 10 seconds
and expending less than 50 J of energy.
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3.6.2 Semantics of CSRL

The syntax of CSRL provides the rules to construct valid CSRL formulas or to
check whether a given formula is a valid CSRL formula. The interpretation of all
operators in CSRL is given by its semantics. The semantics of formulas in CSRL
is defined by means of a satisfaction relation % between a state s and a state
formula Φ, and between a path σ and a path formula ϕ. A satisfaction relation
is called valid iff a state formula is valid in a state or a path formula is valid for
a path. The semantics of CSRL is defined as follows:

Definition 3.6 (Semantics of Continuous Stochastic Reward Logic (CSRL))
CSRL formulas are interpreted over an MRM M = ((S, R, Label), ρ, ι) by a sat-
isfaction relation %, which is defined for state formulas and path formulas as
follows:

s % tt ∀s ∈ S,
s % a ⇔ a ∈ Label(s),
s % ¬Φ⇔ ¬(s % Φ),
s % Φ ∨Ψ⇔ s % Φ ∨ s % Ψ,
s % S p(Φ) ⇔ π(s, Sat(Φ)) ! p,
s % P p(ϕ) ⇔ Pr{σ ∈ Paths(s)|σ % ϕ} ! p,
σ % X I

JΦ⇔ σ[1] is defined ∧ σ[1] % Φ ∧ t0 ∈ I ∧ yσ(t0) ∈ J ,
σ % ΦU I

JΨ⇔ ∃t ∈ I.(σ@t % Ψ ∧ (∀t′ ∈ [0, t).σ@t′ % Φ) ∧ yσ(t) ∈ J).

Recall that t0 is the residence time in the initial state in the given path σ.
The interpretation of these formulas is as follows:

State Formulas

If state s % Φ then it is said that state s satisfies the state formula Φ. The
interpretation of state formulas is as follows:

1. The interpretation of the boolean operators is as in propositional logic.

2. s % S p(Φ) iff the steady-state probability π(s, Sat(Φ)) for the set of Φ-
states starting from the initial state s, meets the bound "p.

3. s % P p(ϕ) iff the probability measure of paths satisfying ϕmeets the bound
"p. The definition of the probability of such paths is derived from the Borel
Space construction [Bai03] and is measurable.

Path Formulas

1. σ % X I
JΦ iff a transition is made to a Φ-state at time t0 ∈ I such that the

accumulated reward until time t0, yσ(t0) ∈ J .
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2. σ % ΦU I
JΨ iff the Ψ-formula is satisfied at some future time t ∈ I, σ@t % Ψ,

such that the accumulated reward until time t, yσ(t) ∈ J and the Φ-formula
is satisfied at all instants before t. Note that once the Ψ-formula is satisfied
on path σ the future behavior of the path is irrelevant as far as the validity
of the path formula is concerned.

Let PM(s,ϕ) denote the probability with which the given path formula ϕ is
satisfied starting from state s ∈ S:

PM(s,ϕ) = Pr{σ ∈ Paths(s)|σ % ϕ}.

Example 3.4 Consider the formula specified in the previous example for the
WaveLAN modem to verify that the probability is more than 0.5 that the system
is either transmitting or receiving after a certain duration of time has elapsed:
P>0.5(ttU [0,600]

[0,50] busy). Further consider the following path:

σ = 1
100−→ 2

40−→ 3
20−→ 4

37.5−→ 3
10−→ 5

25−→ 3
50−→ · · · .

From figure 3.1, σ[3] % busy and all previous states in path σ satisfy tt and
∃t = 160 ∈ [0, 600] such that:

σ % ΦU I
JΨ⇔ (σ@160 % busy∧(∀t′ ∈ [0, 160).σ@t′ % tt)∧yσ(160) = 29.581 ∈ [0, 50]).

Consequently, it can be concluded that σ % ttU [0,50]
[0,600]busy.

3.7 Steady-State Measures

Given an MRM M = ((S, R, Label), ρ, ι), a starting state s0 ∈ S and a formula
of the form S p(Φ), the question whether s0 satisfies the given formula, can be
answered by using analysis in [Bai03]. In this procedure first the set of states
Sat(Φ) = {s ∈ S|s % Φ} is found. Subsequently, the set of states satisfying
S p(Φ) namely Sat(S p(Φ)) is determined, by distinguishing the following two
cases:

1. A strongly connected CTMC: When the underlying CTMC of M is
strongly connected then a standard CTMC steady-state analysis by the
solution of a linear system of equations suffices:

s0 ∈ Sat(S p(Φ)) iff
∑

s′∈Sat(Φ)

π(s0, s
′) ! p. (3.1)

2. CTMC is not strongly connected: When the underlying CTMC of M
is not strongly connected then a graph analysis of the CTMC is performed
to obtain the bottom-strongly connected components (BSCCs). Now each
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BSCC is a strongly connected CTMC. Consequently standard CTMC steady-
state analysis can be used for each BSCC. The question whether s0 satisfies
the given formula can be answered by the following analysis:

s0 ∈ Sat(S p(Φ)) iff
∑

B



P (s0, ♦B) ·
∑

s′∈B∩Sat(Φ)

πB(s′)



 ! p. (3.2)

P (s0, ♦B) is the probability of satisfying the formula (♦B) or (ttUB) start-
ing from state s0. Characterization of this measure is given by equation
(3.8). Note that equation (3.2) reduces to equation (3.1) when the CTMC
is a BSCC itself.

Example 3.5 Consider the example CTMC in figure 3.2 and the computation
involved to check S≥0.3(b) for state s1. A graph analysis reveals that there are two
BSCCs in the example viz. B1 = {s3, s4} and B2 = {s5}.

s1

{a}

s2

{b}

s3

{a}

s4

{b}

s5

{a}

2.0

1.0

1.0

2.0

2.0

1.0

Figure 3.2: BSCCs in Steady-State Analysis

The first step is to determine the set of states that satisfy b-formula. As s4

is the only b-state belonging to one of the BSCCs hence by the application of
equation (3.2), the steady-state probability π(s1, Sat(b)) is:

π(s1, Sat(b)) =
(
P (s1, ♦B1) · πB1(s4)

)
,

where P (s1, ♦B1) can be determined by a solution for:

P (s1, ♦B1) =
2

3
· P (s2, ♦B1) and P (s2, ♦B1) =

2

3
+

1

3
· P (s1, ♦B1).

Hence P (s1, ♦B1) = 4
7 . For πB1(s4) the following equations have to be solved:

2 · πB1(s3)− πB1(s4) = 0 and πB1(s3) + πB1(s4) = 1,

yielding πB1(s4) = 2
3 . Hence, π(s1, Sat(b)) = 4

7 ·
2
3 = 8

21 and s1 % S≥0.3(b).
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3.8 Transient Measures

Given an MRM M = ((S, R, Label), ρ, ι), to resolve whether the transient prob-
ability measure of the form s % P p(ϕ) is satisfied by the given model and state
s, it is first necessary to determine the probability with which the given path
formula ϕ is satisfied. Define:

K(s) = {x ∈ I|ρ(s) · x ∈ J}, and

K(s, s′) = {x ∈ I|(ρ(s) · x + ι(s, s′)) ∈ J},

for closed intervals I and J . K(s) is an interval of time in I such that the
state-rewards accumulated by being resident in state s for any length of time
in K(s) is in J . K(s, s′) is an interval of time in I such that the sum of the
state-rewards accumulated by being resident in state s for any length of time
in K(s, s′) and the impulse reward acquired by transition from state s to s′ is
in J . The probability density of moving from state s to s′ within x time-units
is P (s, s′, x) = P (s, s′) · E(s) · e−E(s)·x. Hence the probability of leaving state s
within the interval I such that both the time and reward bounds are met after
the outgoing transition has taken place is:

P I
J (s) =

∑

s′∈S

∫

K(s,s′)
P (s, s′) · E(s) · e−E(s)·xdx, (3.3)

where s, s′ ∈ S. For instance consider the case where unbounded reward is allowed
to be accumulated:

P [0,t]
[0,∞)(s) =

∑

s′∈S

∫ t

0
P (s, s′) · E(s) · e−E(s)·xdx =

∑

s′∈S

P (s, s′) · (−e−E(s)·x)

∣∣∣∣∣∣

t

0

=
∑

s′∈S

P (s, s′) · (1− e−E(s)·t) = (1− e−E(s)·t) ·
∑

s′∈S

P (s, s′) = (1− e−E(s)·t).

3.8.1 NeX t Formula

For formula s % P p(X I
JΦ), let PM(s,X I

JΦ) be the probability of satisfying the
formula (X I

JΦ) starting from state s. From equation (3.3), PM(s,X I
JΦ) is:

PM(s,X I
JΦ) =

∑

s′ Φ

P (s, s′) · (e−E(s)·inf(K(s,s′)) − e−E(s)·sup(K(s,s′))). (3.4)

This characterization suggests that the algorithm to compute s % P p(X I
JΦ)

proceeds by first obtaining all states that satisfy Φ. Subsequently, PM(s,X I
JΦ) is

determined by the use of equation (3.4) and this probability is compared with the
specified probability p. Special cases exist for the next formulas when J = [0,∞)
and I = [0,∞):

PM(s,X [0,∞)
[0,∞)Φ) = PM(s,XΦ) =

∑

s′ Φ

P (s, s′). (3.5)
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3.8.2 Until Formula

For formula s % P p(ΦU I
JΨ), let PM(s,ΦU I

JΨ) be the probability of satisfying the
formula (ΦU I

JΨ) starting from state s. For time-reward bounded until formula
P p(ΦU I

JΨ), PM(s,ΦU I
JΨ) is characterized by a fixed-point equation. First let

L / y = {l − y|l ∈ L ∧ l ≥ y}, then PM(s,ΦU I
JΨ) is the least solution of the

following set of equations:

PM(s,ΦU I
JΨ)

=






1, if s % ¬Φ∧Ψ and inf(I) = 0 and inf(J) = 0,
∑

s′∈S

∫ sup(K(s,s′))
0 P (s, s′, x) · PM(s′,ΦU I)x

J)(ρ(s)·x+ι(s,s′))Ψ)dx,
if s % Φ∧¬Ψ,

e−E(s)·inf(K(s))

+
∑

s′∈S

∫ inf(K(s,s′))
0 P (s, s′, x) · PM(s′,ΦU I)x

J)(ρ(s)·x+ι(s,s′))Ψ)dx,
if s % Φ∧Ψ,

0, otherwise.

(3.6)

The justification of this characterization is as follows:

1. s % Ψ and inf(I) = 0 and inf(J) = 0: Since s satisfies Ψ and inf(I) = 0
and inf(J) = 0 then all paths starting from state s satisfy the formula and
consequently the probability is 1.

2. s % Φ∧¬Ψ: If s satisfies (Φ∧¬Ψ) then the probability of reaching a Ψ-state
from state s within the interval I and by accumulating reward r ∈ J is the
probability of reaching a direct successor s′ within x time-units, (x ≤ sup(I)
and (ρ(s) · x + ι(s, s′)) ≤ sup(J), that is x ≤ sup(K(s, s′))) multiplied with
the probability of reaching a Ψ-state from state s′ within the interval I / x
and by accumulating reward (r − (ρ(s) · x + ι(s, s′))).

3. s % Φ∧Ψ: If s satisfies (Φ∧Ψ) then the path formula is satisfied if the state
s is not left for inf(K(s)) time-units. Alternatively, state s should be left
before inf(K(s, s′)) time-units have elapsed in which case the probability is
defined as in case 2. Note that by definition inf(K(s, s′)) ≤ inf(K(s)).

Whilst the system of equations described above completely characterizes the
until formula some trivial cases still exist. If J = [0,∞) and I = [0, t] for t ∈ R≥0

then the characterization of the path formula is given by the least solution of the
following set of equations:

PM(s,ΦU [0,t]
[0,∞)Ψ) =






1, if s % Ψ,∫ t
0

∑
s′∈S P (s, s′, x) · PM(s′,ΦU [0,t)x]Ψ)dx,

if s % Φ∧¬Ψ,
0, otherwise.

(3.7)

which corresponds to the characterization in [Bai03].
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If J = [0,∞) and I = [0,∞) then:

PM(s,ΦU [0,∞)
[0,∞)Ψ) = PM(s,ΦUΨ). (3.8)

The solution to the RHS of equation (3.8) is the least solution of the following
set of linear equations:

PM(s,ΦUΨ) =






1, if s % Ψ,∑
s′∈S P (s, s′) · PM(s′,ΦUΨ),

if s % Φ∧¬Ψ,
0, otherwise.

The solution to equation (3.8) can be computed by the solution of linear equations
by standard means such as Gaussian elimination or iterative strategies such as
the Gauss-Seidel method.

Example 3.6 Consider the WaveLAN modem model of example 3.1. In this ex-
ample it is demonstrated as to how the value of the formula PM(3, idleU [0,2]

[0,2000]busy)
can be computed using the characterization for until formula as presented in equa-
tion (3.6).

By condition (2) in equation (3.6):

PM(3, idleU [0,2]
[0,2000]busy) =

∫ a

0
λIR · e−E(3)·x · PM(4, idleU [0,2−x]

[0,2000−1319·x−0.42545]busy)dx

+
∫ b

0
λIT · e−E(3)·x · PM(5, idleU [0,2−x]

[0,2000−1319·x−0.36195]busy)dx,

where E(3) = (λIR + λIT + µIS), a = 2000−0.42545
1319 , b = 2000−0.36195

1319 . By condition
(1) in equation (3.6):

PM(4, idleU [0,2−x]
[0,2000−1319·x−0.42545]busy) = PM(5, idleU [0,2−x]

[0,2000−1319·x−0.36195]busy) = 1,

hence:

PM(3, idleU [0,2]
[0,2000]busy) =

∫ a

0
λIR · e−E(3)·xdx +

∫ b

0
λIT · e−E(3)·xdx

Assume rates λIR = 1.5 hr.−1,λIT = 0.75 hr.−1, µIS = 12 hr.−1, then:

PM(3, idleU [0,2]
[0,2000]busy) =

∫ a

0
1.5 · e−14.25·xdx +

∫ b

0
0.75 · e−14.25·xdx

= 0.10526 + 5.2632 · 10−2 = 0.15789.

Although full characterization of until formulas is presented in equation (3.6),
the solution of this equation by standard means for the solution of integral func-
tions is a difficult task and susceptible to numerical instability. In chapter 4
methods for the computation of these measures without the need for evaluating
the integral are presented.



Chapter 4

Model Checking MRMs

This chapter presents algorithms for model checking Markov Reward Models. An
overview of the model checking procedure is provided in section 4.1. Section 4.2
describes algorithms for model checking steady-state formulas. In section 4.3, al-
gorithms for model checking transient probability measures are described. Section
4.4 presents numerical methods for model checking transient probability measures.
Applications of the numerical methods for model checking transient probability
measures are presented in section 4.5 and in section 4.6.

4.1 The Model Checking Procedure

For model checking MRMs, given a system modeled as an MRM and a formula
expressed in CSRL, it has to be ascertained whether the formula is valid for the
MRM. Initially the formula is parsed and its sub-formulas are determined. Then
a post-order recursive traversal of the parse-tree is carried out to determine the
values of the sub-formulas. The value of a formula is the set of states that satisfy
the formula. Such a set of states that satisfy a formula Φ is referred to as Sat(Φ).
An algorithm to obtain Sat(Φ) is algorithm 4.1.

Algorithm 4.1 SatisfyStateFormula
SatisfyStateFormula(StateFormula Φ): SetOfStates

if Φ = tt then return S
if Φ ∈ AP then return {s|Φ ∈ Label(s)}
if Φ = ¬Φ1 then return S−SatisfyStateFormula(Φ1)
if Φ =Φ 1 ∨ Φ2 then return SatisfyStateFormula(Φ1) ∪ SatisfyStateFormula(Φ2)
if Φ = S p(Φ1) then return SatisfySteady(p, !,SatisfyStateFormula(Φ1))
if Φ = P p(X I

JΦ1) then return SatisfyNext(p, !,SatisfyStateFormula(Φ1), I, J)
if Φ = P p(Φ1U I

JΦ2) then
return SatisfyUntil(p, !,SatisfyStateFormula(Φ1),SatisfyStateFormula(Φ2), I, J)

end SatisfyStateFormula

Algorithms to determine SatisfySteady, SatisfyNext and SatisfyUntil are presented
in sections 4.2, 4.3.1 and 4.3.2 respectively.

29
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4.2 Model Checking Steady-State Operator

The state formula S p(Φ), given an MRM M = ((S, R, Label), ρ, ι) and a starting
state s ∈ S, asserts that the steady-state probability for the set of Φ-states meets
the bound ! p. As has been illustrated in chapter 3 when the underlying CTMC
of M is strongly connected then a standard CTMC steady-state analysis by the
solution of a linear system of equations (3.1) suffices.

When the underlying CTMC of M is not strongly connected then first a graph
analysis is performed to determine all the bottom-strongly connected components
(BSCCs). Every BSCC is a strongly connected component and standard CTMC
analysis to determine the steady-state probability for each BSCC can be carried
out. For finding maximal SCCs (MSCC) standard algorithms are available and
can be readily modified to obtain BSCCs. To find BSCCs the Tarjan’s algorithm
for obtaining MSCCs as presented in [Nuu93] is considered. Subsequently, every
one of the MSCCs has to be further analyzed to determine if it is a BSCC. For
this purpose it has to ascertained that all the successors of states belonging to a
MSCC belong to the MSCC too.

Consider algorithm 4.2. The Tarjan’s algorithm has two procedures viz. pro-
cedure visit and procedure getBSCC. Procedure getBSCC applies procedure visit
to all the states that have not been visited. Procedure visit initially considers the
state being visited as the root of a component. Subsequently all the successor
states of the state being visited are considered. If one of the successor states is
not visited yet then it is visited too. Once all the successor states have been
visited the root of the state being visited is the minimum of its initial root and
the roots of its successor states which are not already in a component. Note that
minimum here refers to the dfs (depth-first search) order in which the states are
visited. If at this point the root of the state being visited is still the original dfs
order of the state then a MSCC is said to have been detected and the states in
the MSCC are on the top of the stack.

With reference to the detection of the BSCC two cases arise during the evo-
lution of the algorithm. When a certain state is being visited either it can transit
to a state which has not been visited or to a state which has already been visited.
If it can transit to a state that has already been visited either this new state
is in the present stack or is part of a detected component and not in the stack.
Consequently if a transition to a state already detected to be in a component is
possible then the present component being detected can never be a BSCC. If a
new state is visited then it would either be a part of the present component being
detected or it would be a new component. If the new state is found to be in a
new component then a transition to another component from the present state is
possible. Consequently the component being visited can never be a BSCC.

To detect BSCCs, the procedure visit has been augmented with a boolean vec-
tor reachSCC which records whether it is possible to reach a strongly connected
component for every state. If a MSCC can be reached from a state say s then
the MSCC in which s belongs could never be a BSCC.
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The computational cost for Tarjan’s algorithm is O(M +N) time where M is
the number of non-zero elements in the rate matrix and N is the number of states.
The time-complexity of the modified Tarjan’s algorithm for detecting BSCC is
O(M + N) too.

Algorithm 4.2 Bottom-Strongly Connected Component
getBSCC(StateSpace S, RateMatrix R): ListOfBSCC

initialize stack, bool [|S|] reachSCC, integer[|S|] root
initialize bool[|S|] inComponent, ListOfBSCC bscclist, integer dfsorder = 0
for each s ∈ S such that root[s] = 0

visit(s) /* root[s]=0 ⇒ s is not visited */
end for
return bsccList

end getBSCC

visit(State s): void
increment dfsorder
initialize integer remorder = dfsorder
initialize BSCC newbscc, bool reachSCC = false
root[s] = dfsorder, inComponent[s] = false, visited[s] = true
push(s, stack)
for each s′ ∈ S such that Rs,s′ > 0

if root[s′] = 0 then visit(s′)
if ¬inComponent[s′] then root[s] = min(root[s], root[s′])

else reachSCC[s] = true
end for
if root[s] = remorder then

do
s′ = pop(stack)
reachSCC = reachSCC ∨ reachSCC[s′]
newbscc.add(s′)
inComponent[s′] = true

while s 1= s′

if ¬reachSCC
then bscclist.add(newbscc)

end if
end visit

Once the BSCC are determined, a steady-state analysis by standard means
by the solution of the system of linear equations by the Gauss-Seidel method
is used for each BSCC. Subsequently, the probability of reaching each BSCC is
determined by the evaluation of equation (3.8). The final result is obtained by
the use of equation (3.2) for obtaining Sat(S p(Φ)). An algorithm to determine
Sat(S p(Φ)) is algorithm 4.3. Note that it is not necessary to distinguish the two
cases explicitly.
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Algorithm 4.3 SatisfySteady
SatisfySteady(ProbabilityBound p, ComparisonOperator !, SetOfStates SatΦ): SetOf-
States

initialize SetOfStates SatSteady = ∅
initialize ListOfBSCC bsccList = getBSCC(S, R)
if |bsccList| = 1 and bsccList(1) = S then

if
∑

s′∈SatΦ
π(s′) ! p then SatSteady = S

else
for each s ∈ S

if
∑

B∈bsccList

(

P (s, ♦B) · ∑

s′∈B∩SatΦ
πB(s′)

)

! p

then SatSteady = SatSteady ∪ {s}
end for

end if
return SatSteady

end SatisfySteady

Note that P (s, ♦B) is determined by associating an extra atomic proposition
atB to all the states in BSCC B. Subsequently a system of linear equations
(3.8) has to be solved to obtain P (s, ♦atB). By doing this, P (s, ♦B) ∀s ∈ S is
obtained. S refers to the state space and R is the rate matrix of the MRM.

In conclusion the computation involved for the evaluation of the steady-state
measure requires first to determine the BSCCs which requires O(M + N) time
where M is the number of non-zero elements in the rate matrix and N is the
size of state space. Subsequently |B| number of equations need to be solved for
one BSCC, considering all the BSCC the total number of equations in the worst
case is N . Then N number of equations need to be solved to determine steady-
state probability of all BSCCs. The solution of linear equations requires O(N3)
time if direct-methods such as Gauss Elimination are used. If the Gauss-Seidel
method is used for solving linear equations then the time complexity depends on
the convergence of the Gauss-Seidel method.

4.3 Model Checking Transient Measures

4.3.1 Next Formulas

The characterization given in equation (3.4) can be used to develop an algorithm
to model check formulas that contain the next operator. Given an MRM M =
((S, R, Label), ρ, ι), a starting state s0 ∈ S and a formula of the form P p(X I

JΦ),
the question whether s0 satisfies the given formula, can be answered by evaluating
PM(s0,X I

JΦ) which is the probability of satisfying the formula (X I
JΦ) starting

from state s0.
The algorithm for checking next formula in this case will proceed by comput-

ing the probability of satisfying next formula for each state s. This consists of
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determining K(s, s′) for each state s′ which satisfy Φ-formula. Recall that K(s, s′)
is an interval of time in I such that the sum of the state-rewards accumulated by
being resident in state s for any length of time in K(s, s′) and the impulse reward
acquired by transition from state s to s′ is in J .

For each s′ the probability of making a transition from state s to s′ within
K(s, s′) time-units is computed. The sum of all such transition probabilities
for all s′ is then compared to the probability bound. Those states that satisfy
the probability bound are the subset of state space that satisfy the transient
probability measure with next formula. Algorithm 4.4 finds the subset of state
space that satisfies the transient probability measure with next operator.

Algorithm 4.4 SatisfyNext
SatisfyNext(ProbabilityBound p, ComparisonOperator !, SetOfStates SatΦ, TimeIn-
terval I, RewardInterval J): SetOfStates

initialize SetOfStates SatNext = ∅
for each s ∈ S

Prob = 0
for each s′ ∈ SatΦ

compute K(s, s′)
Prob = Prob + P (s, s′) · (e−E(s)·inf(K(s,s′)) − e−E(s)·sup(K(s,s′)))

end for
if Prob ! p then SatNext = SatNext ∪ {s}

end for
return SatNext

end SatisfyNext

For transient probability measure with next formula involving the special cases
when I = [0,∞) and J = [0,∞), equation (3.5) can be utilized to compute the
probability of satisfying next formula for a particular initial state.

4.3.2 Until Formulas

The characterization given in equation (3.6) can be used to develop an algorithm
to model check formulas that contain the until operator. However, the evaluation
of the integral is susceptible to numerical instability. In this section methods to
transform the MRM are presented such that standard algorithms for the analysis
of MRMs can be used. For model checking until formulas firstly as in [Hav02] the
following types of properties are distinguished:

P0: P≤p(ΦUΨ): This formula asserts that the probability of reaching a Ψ-
state by residing in only Φ-states is at most the probability specified. Values for
this property are obtained by a solution of linear system of equations (3.8).

P1: P≤p(ΦU [0,t]Ψ): This formula asserts that the probability of reaching a
Ψ-state within t time-units and by residing in only Φ-states is less or equal to the
probability specified. This measure is characterized by equation (3.7). Efficient
methods to compute the value of this property are presented in [Bai03].
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P2: P≤p(ΦU [0,t]
[0,r]Ψ): This formula asserts that the probability of reaching a Ψ-

state within t time-units and by accumulating rewards at most the reward bound
r and by residing in only Φ-states is less or equal to the probability specified.
To resolve the values of properties of this type when only state reward rates are
present numerical solutions are presented in [Hav02]. When the underlying model
has impulse rewards too this value is characterized by equation (3.6).

Given an MRM M = ((S, R, Label), ρ, ι), a starting state s0 ∈ S and a for-

mula of the form P p(ΦU [0,t]
[0,r]Ψ), the question whether s0 satisfies the given formula

can be answered by first evaluating PM(s0,ΦU [0,t]
[0,r]Ψ) which is the probability of

satisfying the formula (ΦU [0,t]
[0,r]Ψ) starting from state s0.

The following theorems provide a method to transform the MRM so that stan-
dard algorithms for the evaluation of MRMs can be used to compute PM(s0,ΦU [0,t]

[0,r]Ψ).
This transformation involves making certain states in the model absorbing and
assigning zero impulse rewards to all transitions originating from such states, and
assigning zero state reward rate to the state. Formally the procedure to make
this transformation is captured in definition 4.1:

Definition 4.1 For MRM M = ((S, R, Label), ρ, ι) and CSRL state formula Φ,
let M[Φ] = ((S, R′, Label), ρ′, ι′) be an MRM such that:

R′
s,s′ =

{
Rs,s′ if s ! Φ
0 otherwise

,

ρ′(s) =

{
ρ(s) if s ! Φ
0 otherwise

,

ι′(s, s′) =

{
ι(s, s′) if s ! Φ

0 otherwise
,

for all s, s′ ∈ S.

M[Φ] is thus obtained from M by making all Φ-states absorbing and equip-
ping these states with zero rewards. Note that applying definition 4.1 for Φ-states
followed by applying it for Ψ-states is the same as applying it for the union of Φ-
states and Ψ-states, thus M[Φ][Ψ] = M[Φ∨Ψ]. In the following sections the term
absorbing-states is used to refer to states which are transformed as illustrated in
definition 4.1

Definition 4.1 allows us to develop an algorithm to make states which sat-
isfy certain formula absorbing. In the subsequent sections MakeAbsorbing(MRM,
SetOfStates) refers to such an algorithm. The following example shows the result
obtained after making certain states absorbing in the WaveLAN modem example.

Example 4.1 Let M be the MRM given in the example 3.1 presented in chapter
3 and let Φ = busy. Then M[busy] is an MRM obtained from M by making all
busy-states absorbing. The MRM M[busy] is given in figure 4.1.
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1
{off}

0

2
{sleep}

80

3
{idle}
1319

4

{receive, busy}
0

5
{transmit, busy}

0

λOS,0.02

µSO,0.0

λSI,0.32975

µIS,0.0

λIR,0.42545

λIT ,0.36195

Figure 4.1: WaveLAN Modem Model where busy-states are made absorbing

Having formalized the notion of making states absorbing in MRM, the follow-
ing theorem maintains that the probability of satisfying the formula (ΦU [0,t]

[0,r]Ψ)

starting from state s is equal to the probability of satisfying the formula (ttU [t,t]
[0,r]Ψ)

starting from state s once all (¬Φ ∨Ψ)-states are made absorbing:

Theorem 4.1 Given an MRM M = ((S, R, Label), ρ, ι), then for s ∈ S:

PM(s,ΦU [0,t]
J Ψ) = PM[¬Φ∨Ψ](s, ttU [t,t]

J Ψ).

Proof From the semantics of until formula:

PM(s,ΦU [0,t]
J Ψ)

= Pr{σ ∈ PathsM(s)|∃x ∈ [0, t].(σ@x % Ψ ∧ (∀y ∈ [0, x).σ@y % Φ) ∧ yσ(x) ∈ J)}.

In M[Ψ] all the Ψ-states are made absorbing, state reward assigned to these
states is 0. Hence once a Ψ-state is reached in M[Ψ] it cannot be left and no
reward is earned any further. Accordingly:

PM(s,ΦU [0,t]
J Ψ) = Pr{σ ∈ PathsM[Ψ](s)|(σ@t % Ψ∧(∀y ∈ [0, t).σ@y % Φ∨Ψ)∧yσ(t) ∈ J)}.

M[Ψ][¬Φ ∧ ¬Ψ] is obtained from M[Ψ] in which all the (¬Φ ∧ ¬Ψ)-states
are made absorbing, state reward assigned to these states is 0. Hence once a
(¬Φ ∨ Ψ)-state is reached it cannot be left and no reward is earned any further.
Accordingly:

PM(s,ΦU [0,t]
J Ψ) = Pr{σ ∈ PathsM[¬Φ∨Ψ](s)|σ@t % Ψ ∧ yσ(t) ∈ J}.

From the semantics of until formula:

PM(s,ΦU [0,t]
J Ψ) = PM[¬Φ∨Ψ](s, ttU [t,t]

J Ψ).

$
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Hence satisfying (ΦUJΨ) within time [0, t] can be checked by investigating
whether formula (♦JΨ) is satisfied at exactly time t if all (¬Φ ∨Ψ)-states in the
MRM are made absorbing.

A similar procedure can be employed to compute the probability of satisfying
the formula (ΦU [t,t]

J Ψ) starting from state s, namely the probability of satisfying
the formula at exactly time t, while accumulating J rewards starting from state
s, as given by the following theorem:

Theorem 4.2 Given an MRM M = ((S, R, Label), ρ, ι), a CSRL formula P p(ΦU [t,t]
J Ψ)

and Ψ⇒ Φ, then for s ∈ S:

PM(s,ΦU [t,t]
J Ψ) = PM[¬Φ∧¬Ψ](s, ttU [t,t]

J Ψ).

Proof From the semantics of until formula:

PM(s,ΦU [t,t]
J Ψ)

= Pr{σ ∈ PathsM(s)|(σ@t % Ψ ∧ (∀y ∈ [0, t).σ@y % Φ) ∧ yσ(t) ∈ J)}.

M[¬Φ∧¬Ψ] is obtained from M in which all the (¬Φ∧¬Ψ)-states are made
absorbing and state reward assigned to these states is 0. Consequently, once a
(¬Φ ∧ ¬Ψ)-state is reached, it cannot be left.

However Ψ-states are not made absorbing hence they could possibly be left
and another Ψ-state could be reached at time t. Since Ψ⇒ Φ hence the condition
σ@y % Φ is no longer necessary:

PM(s,ΦU [t,t]
J Ψ) = Pr{σ ∈ PathsM[¬Φ∧¬Ψ](s)|(σ@t % Ψ ∧ yσ(t) ∈ J)}.

From the semantics of until formula:

PM(s,ΦU [t,t]
J Ψ) = PM[¬Φ∧¬Ψ](s, ttU [t,t]

J Ψ).

$

Hence satisfying (ΦUJΨ) at time t can be checked by investigating whether
formula (♦JΨ) is satisfied at time t if all (¬Φ∧¬Ψ)-states in the model are made
absorbing, provided that Ψ⇒ Φ.

The following theorem maintains that the probability measure PM(s, ttU [t,t]
[0,r]Ψ)

is equal to the joint probability of residing in Ψ-states at time t and accumulating
rewards less or equal to r at time t.

Theorem 4.3 Given an MRM M = ((S, R, Label), ρ, ι), then for s ∈ S:

PM(s, ttU [t,t]
[0,r]Ψ) = Pr{Y (t) ≤ r, X(t) % Ψ} interpreted over M and p

s
(0) = 1.
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Proof From the semantics of until formula:

PM(s, ttU [t,t]
[0,r]Ψ) = Pr{σ ∈ PathsM(s)|σ@t % Ψ ∧ yσ(t) ∈ [0, r]}.

Let process {X(t), Y (t)} be a two-dimensional stochastic process representing the
state X(t) being occupied at time t and the reward accumulated Y(t) at time t.
Then the probability that a Ψ-state is occupied at time t and the reward accumu-
lated at time t is in [0, r] in the stochastic process is: Pr{Y (t) ≤ r, X(t) % Ψ}.

Since the starting state is s:

PM(s, ttU [t,t]
[0,r]Ψ) = Pr{Y (t) ≤ r, X(t) % Ψ} interpreted over M and p

s
(0) = 1.

$

The theorems presented above allow us to develop an algorithm to find the
subset of state space that satisfies transient probability measure with until oper-
ator restricted in time-interval [0, t] and reward-interval [0, r], as follows:

Algorithm 4.5 SatisfyUntil
SatisfyUntil(ProbabilityBound p, ComparisonOperator !, SetOfStates SatΦ, SetOf-
States SatΨ, TimeUpperBound t, RewardUpperBound r): SetOfStates

initialize SetOfStates SatUntil = ∅
initialize MRM M′ = MakeAbsorbing(M, SatcΦ ∪ SatΨ)
for each s ∈ S

if PM′
(s, ttU [t,t]

[0,r]Ψ) ! p then SatUntil = SatUntil ∪ {s}
end for
return SatUntil

end SatisfyUntil

Note that PM′
(s, ttU [t,t]

[0,r]Ψ) = Pr{Y (t) ≤ r, X(t) ∈ SatΨ} interpreted over M′.
The algorithm proceeds by first making all (¬Φ ∨ Ψ)-states absorbing. For each

state in the state space the probability measure PM(s, ttU [t,t]
[0,r]Ψ) is computed and

the probability is compared with the probability bound. Those states that satisfy
the probability bound are the subset of state space that satisfy the transient
probability measure with until formula. Two numerical methods to compute
PM(s, ttU [t,t]

[0,r]Ψ) are provided in the following section.

4.4 Numerical Methods

4.4.1 Discretization

This method is based on the discretization algorithm in [Tij02] for transient per-
formability measures. It discretizes both the time interval and the accumulated
reward as multiples of the same step size d where d is chosen such that the prob-
ability of more than one transition in the MRM in an interval of length d is
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negligible. Using discretization method, the probability of accumulating less or
equal to r reward in an MRM is given by:

Pr{Y (t) ≤ r} =
∑

s∈S

k=R∑

k=1

F T (s, k) · d,

where R = r
d , and T = t

d .
F T (s, k) is the probability of being in state s, at discretized time T and with

accumulated discretized reward k. The initial condition F 1(s, k) is given by:

F 1(s, k) =

{
1/d if (s, k) = (s0, ρ(s0)),
0 otherwise.

For subsequent intervals the following recursive scheme is used:

F j+1(s, k) = F j(s, k−ρ(s)) · (1−E(s) ·d)+
∑

s′∈S

F j(s′, k−ρ(s′)− ι(s
′, s)

d
) ·Rs′,s ·d.

For the MRM to be in state s at the (j + 1)-st time-instant either the MRM
was in state s in the j-th time-instant and remained there for d time-units without
traversing a self-loop (the first summand) or it was in state s′ and has moved to
state s in that period (the second sum). Given that the accumulated reward at
the (j + 1)-st time-instant is k the accumulated reward in the j-th time-instant
is approximated by (k − ρ(s)) in the first summand and it is (k − ρ(s′)− ι(s′,s)

d )
in the second summand.

Note that the discretization method requires non-negative state reward rates.
If the method is implemented by using matrices to store F j and F j+1, then it is
also necessary to have integer state reward rates. Rational state reward rates can
be scaled to integer value. If the state reward rates are scaled then the reward
bound in the formula should be appropriately scaled too.

The discretization method can be used to compute PM(s, ttU [t,t]
[0,r]Ψ), which is

explained in section 4.5. In section 4.5 the complexity of the method is described.

4.4.2 Uniformization for MRMs

Uniformization is one of the most widely applied strategies to evaluate transient
measures that are defined over an MRM [Sil94]. This section presents methods
to evaluate transient measures defined over an MRM by using uniformization. A
uniformized MRM can be obtained by uniformizing (section 2.4.1) the underlying
CTMC of the MRM. The following is the definition of the uniformized MRM:

Definition 4.2 (Uniformized MRM) Let M be an MRM defined as M =
((S, R, Label), ρ, ι). A uniformized MRM Mu = (S, P ,Λ, Label, ρ, ι) is obtained
by uniformizing the underlying CTMC of the MRM and Λ is the rate of the
Poisson process {Nt : t ≥ 0} associated with Mu.



4.4. NUMERICAL METHODS 39

Example 4.2 Consider example 3.1 in chapter 3. Assume that the rates λOS =
0.1, λSI = 5, λIR = 1.5, λIT = 0.75, µSO = 0.05, µIS = 12, µRI = 10, µTI = 15
hr.−1. The rate matrix is as follows:

R =





0 0.1 0 0 0
0.05 0 5 0 0
0 12 0 1.5 0.75
0 0 10 0 0
0 0 15 0 0
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Figure 4.2: WaveLAN Modem Model after Uniformization

Hence the total rate of taking an outgoing transition from each state (E(s))
is E(1) = 0.1, E(2) = 5.05, E(3) = 14.25, E(4) = 10 and E(5) = 15. Applying
uniformization to this model with Poisson process’ rate Λ = maxi(E(s)) = 15 the
1-step probabilities matrix of the uniformized process is given by:

P = I +
R−Diag(E)

Λ
=





149
150

1
150 0 0 0

5
1500

995
1500

500
1500 0 0

0 1200
1500

75
1500

150
1500

75
1500

0 0 2
3

1
3 0

0 0 1 0 0




.

Figure 4.2 presents the state-transition diagram of the uniformized model. The
labeling, state and impulse reward information is ignored in the figure.

Now, it is possible to evaluate transient measures that are defined over MRM
M by using the uniformized MRM Mu. Consider the evolution of the MRM ap-
proximated by the uniformized MRM. The MRM resides in a state for a certain
duration of time given by the transition times in the Poisson process that is asso-
ciated with the uniformized MRM. After such a transition the uniformized MRM
transits to the present state with a certain probability if more residence in the
state is necessary to approximate the behavior of the original MRM. Alternatively
it transits to another state with certain probability and so on.
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The amount of reward accumulated in the MRM depends on the nature of such
evolution trajectories (i.e. rewards of the states involved). Hence the computation
of the distribution of accumulated rewards requires a mechanism to characterize
such trajectories on the basis of rewards. Consider a trajectory of evolution of the
MRM. The trajectory consists of a sequence of states in the uniformized MRM.
Every residence corresponds to the time for a transition in the Poisson process.
Such a trajectory of length n could be characterized with a vector of n+1 numbers
corresponding to the reward assigned to states in the trajectory.

Alternatively, the path may contain many states which have identical rewards
assigned to them consequently it suffices to characterize a path with a vector of
length equal to the number of distinct rewards assigned to states in the MRM.
Every position in the vector now characterizes the number of residences in states
with a certain reward. Using such a characterization of paths on the basis of the
rewards assigned to states in individual trajectories the PDF of the performability
measure Y (t), the reward accumulated within [0, t] over M, was derived by de
Souza e Silva & Gail in [Sil94] and can be expressed as follows:

Pr{Y (t) ≤ r} =
∞∑

n=0

e−Λt(Λt)n

n!
·
∑

∀k

Pr{k|n} · Pr{Y (t) ≤ r|n, k} (4.1)

k = 〈k1, k2, k3, · · · , kK+1〉 is a vector where K + 1 is the number of distinct state
rewards r1 > r2 > r3 > · · · > rK+1 ≥ 0 in M and ki is the number of entrances
to some state with state reward ri such that

∑K+1
i=1 ki = n + 1.

If impulse rewards are present in the underlying MRM then every trajectory
is further characterized by an additional vector. The length of such a vector is
equal to the number of distinct impulse rewards that are assigned to transitions.
Every position in this new vector now characterizes the number of times that
transitions with a certain impulse reward occur in a trajectory. By characterizing
every trajectory by a combination of such two vectors to incorporate impulse
rewards, Qureshi & Sanders [Qur94] generalized equation (4.1) to obtain:

Pr{Y (t) ≤ r} =
∞∑

n=0

e−Λt(Λt)n

n!
·
∑

∀k

∑

∀j

Pr{k, j|n} · Pr{Y (t) ≤ r|n, k, j} (4.2)

j = 〈j1, j2, j3, · · · , jJ〉 is a vector where J is the number of distinct impulse
rewards i1 > i2 > i3 > · · · > iJ ≥ 0 in M and ji is the number of occurrences of
transitions with impulse reward ii such that

∑J
i=1 ji = n.

Depth Truncation

The exact computation of equation (4.2) requires the computation of an infinite
sum. Typically, this computation has to be truncated at some depth N . This is
referred to as depth truncation. If depth truncation is employed then equation
(4.2) can be written as:

Pr{Y (t) ≤ r} ≈
N∑

n=0

e−Λt(Λt)n

n!
·
∑

∀k

∑

∀j

Pr{k, j|n} · Pr{Y (t) ≤ r|n, k, j} (4.3)
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Note that the only difference with equation (4.2) is that the upper bound of the
summation is now fixed.

Path Truncation

Truncation of the computation of equation (4.2) can alternatively be achieved by
conditioning on paths on the basis of the probability of occurrence of the path.

Definition 4.3 (Path in Uniformized MRM) A path in a uniformized MRM
Mu = (S, P ,Λ, Label, ρ, ι) is a sequence of states s0−→s1−→ · · · , with si ∈ S
and P si,si+1 > 0 ∀i ≥ 0. PathsM

u
is the set of all paths in a uniformized

MRM; PathsM
u
(s) is the set of paths in the uniformized MRM where for all

σ ∈ PathsM
u
(s), σ[0] = s.

A finite path σ in Mu is a prefix of a path in Mu of length n ≥ 0. A finite
path is of the form s0−→s1−→ · · ·−→sn is called a Finite Path in Uniformized
MRM. FPathsM

u
be the set of finite paths is Mu. FPathsM

u
(s) be the set of

finite paths is Mu where for all σ ∈ FPathsM
u
(s), σ[0] = s. Let last(σ) be the

final state of a finite path σ, i.e. last(σ) = sn.

Definition 4.4 (Probability of a Finite Path) The probability of a finite path
σ = s0−→s1−→ · · ·−→sn in a uniformized MRM Mu = (S, P ,Λ, Label, ρ, ι)
given the initial probability distribution p(0) is:

P (σ) = p
s0

(0) · P s0,s1 · P s1,s2 · P s2,s3 · · · · · P sn−1,sn.

Definition 4.5 (Probability of a Finite Path at time t) The probability of
being in the final state at time t in a finite path σ = s0 −→ s1 −→ · · · −→ sn in
a uniformized MRM Mu = (S, P ,Λ, Label, ρ, ι) is:

P (σ, t) =
e−Λt(Λt)n

n!
· P (σ) where n = |σ|.

Definition 4.6 (Path Truncation) The truncation of paths can be performed
in such a way that the paths with probability less than a certain truncation proba-
bility w are ignored in the computation. This truncation is called path truncation.
The set of truncated paths given w is:

TP (M, w, s, t) = {σ ∈ FPathsM
u
(s)|0 < w ≤ P (σ, t) ≤ 1}.

If path truncation is employed then the PDF of the performability measure
Y (t) over M, derived by Qureshi & Sanders [Qur96] is:

Pr{Y (t) ≤ r} ≈
∑

σ∈TP (M,w,s,t)

P (σ, t) · Pr{Y (t) ≤ r|σ}. (4.4)

Note that several paths may be represented by the same value of (n, k, j).
For instance if several states have the same state reward and transitions have
identical impulse rewards. This implies that once the value of the conditional
probability expressed above is computed it can be stored to avoid recomputation.
Alternatively the computation of the conditional probabilities can be initiated
after the probability of all relevant paths is known.
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4.5 Discretization Applied to Until Formulas

From theorems 4.1 and 4.3, the probability measure PM(s,ΦU [0,t]
[0,r]Ψ) is given by:

PM(s,ΦU [0,t]
[0,r]Ψ) = Pr{Y (t) ≤ r, X(t) % Ψ} over M[¬Φ ∨Ψ] and p

s
(0) = 1.

Based on these theorems, the discretization method can be used to compute
PM(s,ΦU [t,t]

[0,r]Ψ), by first making all (¬Φ ∨Ψ)-states in the model absorbing and
then restricting the first sum to be performed only on the states that satisfy Ψ,
namely:

Pr{Y (t) ≤ r, X(t) % Ψ} =
∑

s′ Ψ

k=R∑

k=1

F T (s′, k) · d,

where R = r
d , T = t

d , and F T (s, k) is computed as had been demonstrated in
section 4.4.1.

Algorithm 4.6 is an algorithm to compute the probability measure PM(s,ΦU [t,t]
[0,r]Ψ)

using discretization method. It is assumed that prior to the invocation of the
algorithm, (¬Φ ∨ Ψ)-states in MRM M have been made absorbing, yielding
M[¬Φ ∨ Ψ] = ((S, R′, Label), ρ′, ι′). This algorithm employs two matrices to
store F j and F j+1.

Algorithm 4.6 Discretization
Discretization(InitialState s, SetOfStates SatΦ, SetOfStates SatΨ, TimeUpperBound
t, RewardUpperBound r, DiscretizationFactor d): Probability

initialize integer T = t
d , integer R = r

d
initialize real Prob = 0
initialize matrix F j[|SatΦ ∪ SatΨ|, R], matrix F j+1[|SatΦ ∪ SatΨ|, R]
F j[s, ρ′(s)] = 1

d
for t = 2 to T

for each s ∈ SatΦ ∪ SatΨ
for k = 1 to R

F j+1[s, k] = F j[s, k − ρ′(s)] · (1−E ′(s) · d)
+

∑

s′∈SatΦ∪SatΨ
F j[s′, k − ρ′(s′)− ι′(s′,s)

d ] · R′
s′,s · d

end for
end for
F j = F j+1

end for
for each s ∈ SatΨ

for k = 1 to R
Prob = Prob + F j[s, k] · d

end for
end for
return Prob

end Discretization
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4.5.1 Computational Requirements

Both matrices F j and F j+1 need to be stored to obtain the complete matrix F j+1.
A sparse representation has been used for the representation of these matrices
however, in the worst case 2 · |S| ·R floating point numbers need to be stored. A
total of ( t

d) iterations are necessary to obtain the result. The time complexity of
this method is O(|S|2 · t · |(t− r)| · d−2).

The computational effort reported in [Tij02] is O(|S|·t·|(t−r)|·d−2). However,
in each iteration for discretized interval in time and reward every transition in
MRM needs to be explored which in the worst case amounts to |S|2. Consequently,
the computational cost is O(|S|2 · t · |(t− r)| · d−2).

4.6 Uniformization Applied to Until Formulas

Uniformization can be applied to evaluate until formulas where I = [0, t] and
J = [0, r]. In this report solutions for until formulas with general time and
reward bounds are not considered. Note that neither [Bai00] nor [Hav02] have
considered computational methods for general time and reward bounds.

To determine the validity of formula P p(s0,ΦU [0,t]
[0,r]Ψ), consider the MRM

M = ((S, R, Label), ρ, ι). By making certain states absorbing and by the appli-
cation of theorems 4.1 and 4.3:

PM(s0,ΦU [0,t]
[0,r]Ψ) = PM[¬Φ∨Ψ](s0, ttU [t,t]

[0,r]Ψ)

= Pr{Y (t) ≤ r, X(t) % Ψ} over M[¬Φ ∨Ψ] and p
s0

(0) = 1.

Now it is possible to obtain the value of PM(s0,ΦU [0,t]
[0,r]Ψ). To achieve this

M[¬Φ ∨ Ψ] is uniformized to obtain M[¬Φ ∨ Ψ]u = (S, P ′,Λ, Label, ρ′, ι′). By
discarding those finite paths in M[¬Φ∨Ψ]u that do not satisfy Ψ-formula in the
last state and those paths whose probability is less than the truncation proba-
bility w, PM(s0,ΦU [0,t]

[0,r]Ψ) can be determined using equation (4.3). With initial

probability distribution p
s0

(0) = 1, PM(s0,ΦU [0,t]
[0,r]Ψ) can be approximated by:

PM(s0,ΦU [0,t]
[0,r]Ψ) ≈

∑

σ∈TP (M[¬Φ∨Ψ],w,s0,t),
last(σ) Ψ

P (σ, t) · Pr{Y (t) ≤ r|σ}. (4.5)

Having found PM(s0,ΦU [0,t]
[0,r]Ψ), the validity of s0 % P p(ΦU [0,t]

[0,r]Ψ) may now
be determined as follows:

s0 % P p(ΦU [0,t]
[0,r]Ψ) = (PM(s0,ΦU [0,t]

[0,r]Ψ) ! p).

In section 4.6.1 the error introduced by the truncation of paths is presented.
Subsequently algorithms for the computation of the path probabilities and the
conditional probability are presented in section 4.6.2 and in section 4.6.3 respec-
tively.
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4.6.1 Error Bounds

Given a path σ of length n such that P (σ, t) < w, it implies that σ and suffixes
of σ are to be discarded. Let pre(σ) be path obtained by removing the last state
in σ. Amongst the paths to be discarded there is a subset of paths:

DP (M, w, s, t) = {σ ∈ FPathsM
u
(s)|σ /∈ TP (M, w, s, t)∧pre(σ) ∈ TP (M, w, s, t)}.

The error introduced [Qur96] by discarding σ and all its suffixes is:

EM[¬Φ∨Ψ]u(σ, t) = P (σ) ·
(

1−
n−1∑

i=0

e−Λt(Λt)i

i!

)

.

The error bound for until formula computed using equation (4.5) is the error
introduced by discarding all paths that are in DP (M[¬Φ∨Ψ], w, s0, t) and their
suffixes. A slightly better bound can be obtained if further restriction is imposed
that the last state in the path satisfies the formula (Φ ∨ Ψ). This is since once a
(¬Φ ∧ ¬Ψ)-state is reached the until formula can never be satisfied. Consequently

the error bound for P p(s0,ΦU [0,t]
[0,r]Ψ) and MRM M given w computed using

equation (4.5) is:

EM[¬Φ∨Ψ]u

U (w, t) =
∑

σ∈DP (M[¬Φ∨Ψ],w,s0,t) ∧
last(σ) (Φ ∨ Ψ)

EM[¬Φ∨Ψ]u(σ, t). (4.6)

4.6.2 Generation of Paths and Path Probabilities

In this section a method to generate paths is presented. Using this method
it is possible to generate the paths to compute the value of equation (4.5). The
generation of paths can either be performed in breadth-first or depth-first manner.
Of particular interest with reference to the evaluation of equation (4.5) is the
depth-first strategy. This choice has two consequences. The first is that it is now
easier to perform conditioning on the basis of satisfaction of formulas and path
truncation. Secondly the amount of storage space required for the exploration of
paths is reduced since the generation of paths of length (N + 1) in the breadth-
first strategy requires storage of all paths of length (N). This situation does not
occur in the depth-first strategy since only a single path is stored at a time.

Consider algorithm 4.7. In the first statement, the end-condition of the path
generation is specified. If a state that satisfies neither Φ nor Ψ or the probability
of path is less than the truncation probability then further exploration of paths
is not necessary (cf. line 1). If the present-state in a path of length n is a Ψ-state
then the path satisfies the path formula and the details regarding the path are
stored (cf. line 2). Subsequently, all the successor states of the present state are
analyzed by a recursive call (cf. line 4). The Poisson probabilities are computed
in a recursive fashion:

Pi =






Λ · t
i + 1

· Pi−1 if i > 0,

e−Λ·t if i = 0.



4.6. UNIFORMIZATION APPLIED TO UNTIL FORMULAS 45

Algorithm 4.7 Depth First Path Generation
DFPG(integer n, Vector k, Vector j, State s, Probability p): void

if s % (¬Φ ∧ ¬Ψ) or p < w then return
if s % Ψ then store(n, k, j, s, p)
for all transitions starting from s ∈ S to s′ ∈ S

DFPG(n + 1, k + 1[s′], j + 1[s,s′], s
′, Λt

n+1 · p · P s,s′)
end for

end DFPG

1[s′] is a vector of length |k| and the value at index corresponding to ρ(s′) in k
is 1 and is 0 for other indices.
1[s,s′]: is a vector of length |j| and the value at index corresponding to ι(s, s′) in j is
1 and is 0 for other indices.

Example 4.3 Consider the WaveLAN modem example with rates as in example
4.2 and the paths to be generated for evaluating the formula P p(idleU [0,1]

[0,1000]busy).
Initially, all the (¬idle∨busy)-states are made absorbing. Subsequently, the MRM
is uniformized and the algorithm DFPG is used to obtain the paths required.

If the depth is restricted to two transitions and the starting state is state 3 then
the paths generated are shown in figure 4.3. The figure also indicates the order in
which the states are visited and the stored values for two paths. The values stored
include the probability of the path, the vectors k and j which characterize the path.
Note that in principle the truncation is based on the truncation probability w, thus
the depth can be different for different paths. This is not portrayed in figure 4.3.
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Figure 4.3: Depth First Path Generation
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4.6.3 Computation of Conditional Probability

Methods for the computation of conditional probability given by Pr{Y (t) ≤ r|σ}
or Pr{Y (t) ≤ r|n, k, j} are presented by de Souza e Silva & Gail [Sil94] and
Qureshi & Sanders [Qur94, Qur96]. This section presents a construction similar
to Qureshi & Sanders [Qur94] and new methods of computation and algorithms
to compute the value of the conditional probability.

Let U1(t), U2(t) · · · , Un(t) be independent, identical and uniformly distributed
random variables over (0, t). Now let U(j)(t) be the j-th smallest amongst the
random variables, U(0)(t) = 0 and U(n+1)(t) = t. Then U(1)(t), U(2)(t) · · · , U(n)(t)
are the order statistics of U1(t), U2(t) · · · , Un(t). It is known [Ros95] that the
joint distribution of transition times of CTMC given n transitions of the Poisson
process in [0, t] is identical to the joint distribution of the order statistics of n
uniformly distributed random variables over [0, t].

Now let Y1, Y2, · · · , Yn+1 be the (n + 1) residence times such that:

Y1 = U(1)(t)− U(0)(t) = U(1)(t),

Y2 = U(2)(t)− U(1)(t),
...

Yn+1 = U(n+1)(t)− U(n)(t) = t− U(n)(t).

Now let l1, l2, · · · , lK+1 be the (K+1) sum of sojourn times, where li is the sum
of lengths of intervals of state reward ri. The exchangeability property [Ros01]
states that random variables Yi are exchangeable i.e.:

Pr{Y1 ≤ t1, Y2 ≤ t2, · · · , Yn+1 ≤ tn+1} = Pr{Yh1 ≤ t1, Yh2 ≤ t2, · · · , Yhn+1 ≤ tn+1},

for all permutations hi of 1, 2, · · · , n + 1; hence, these li’s can now be written as:

l1 = Y1 + Y2 + · · · + Yk1,

l2 = Yk1+1 + Yk1+2 + · · ·+ Yk1+k2 ,
...

lK+1 = Yk1+k2+···+kK+1 + Yk1+k2+···+kK+2 + · · · + Yk1+k2+···+kK+kK+1.

Hence using the definition of Yi:

l1 = U(1)(t) + U(2)(t)− U(1)(t) + · · ·+ U(k1)(t)− U(k1−1)(t) = U(k1)(t),

l2 = U(k1+1)(t)− U(k1)(t) + U(k1+2)(t)− U(k1+1)(t) + · · ·+ U(k1+k2)(t)

−U(k1+k2−1)(t) = U(k1+k2)(t)− U(k1)(t),
...

lK+1 = U(k1+k2+···kK+1)(t)− U(k1+k2+···kK)(t) + U(k1+k2+···kK+2)(t)− U(k1+k2+···kK+1)(t)

+ · · ·+ U(k1+k2+···kK+kK+1)(t)− U(k1+k2+···kK+kK+1−1)(t) = t− U(k1+k2+···kK)(t).
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Let the state and impulse rewards be ordered: r1 > r2 > · · · > rK+1 ≥ 0 and
i1 > i2 > · · · > iJ ≥ 0, respectively. Then the total reward accumulated Y (t)
given (n, k, j) is:

Y (t, n, k, j) =
K+1∑

i=1

ri · li +
J∑

i=1

ii · ji. (4.7)

Since:

r1 · l1 = r1 · U(k1)(t),

r2 · l2 = r2 · (U(k1+k2)(t)− U(k1)(t)),
...

rK+1 · lK+1 = rK+1 · (t− U(k1+k2+···kK)(t)),

hence:

Y (t, n, k, j) = r1 · U(k1)(t) + r2 · (U(k1+k2)(t)− U(k1)(t)) + · · ·+

rK+1 · (t− U(k1+k2+···kK)(t)) +
J∑

i=1

ii · ji,

Y (t, n, k, j) =
K∑

i=1

(ri − ri+1) · U(k1+···+ki)(t) + rK+1 · t +
J∑

i=1

ii · ji.

The conditional probability of interest in equation (4.4) is:

Pr{Y (t) ≤ r|n, k, j} = Pr{Y (t, n, k, j) ≤ r).

As U1(t), U2(t), · · · , Un(t) and t · U1(1), t · U2(1), · · · , t · Un(1) have the same
distribution, hence:

Pr{Y (t) ≤ r|n, k, j} = Pr{
K∑

i=1

(ri−ri+1) · t ·U(k1+···+ki)(1)+rK+1 · t+
J∑

i=1

ii · ji ≤ r},

(4.8)
which is equivalent to:

Pr{Y (t) ≤ r|n, k, j} = Pr{
K∑

i=1

(ri− ri+1) ·U(k1+···+ki)(1) ≤ r

t
− rK+1−

1

t
·

J∑

i=1

ii · ji}.

(4.9)
The RHS of equation (4.9) can be evaluated by the methods of Weisberg

[Wei71], Matsunawa [Mat85] or Diniz, de Souza e Silva & Gail [Din02]. Previous
experiments for the evaluation of the distribution of accumulated reward [Qur94,
Sil94] were performed using the algorithm in [Wei71] for the computation of the
distribution of a linear combination of uniform order statistics. This method
however suffers from numerical instability and requires careful implementation
[Qur94]. Another experiment [Qur96] using the algorithm in [Mat85] also faced
difficulties in implementation.



48 CHAPTER 4. MODEL CHECKING MRMS

A new and numerically stable algorithm is presented in [Din02] for the com-
putation of equations of the form of equation (4.9) in a recursive manner. The
stability of this algorithm is attributed to calculations being restricted to mul-
tiplications of real numbers in [0, 1]. This new algorithm additionally is simple
to implement compared to the previously used methods. Consequently this algo-
rithm is used for the computation of the distribution of the linear combination of
uniform order statistics here.

Consider a linear combination of order statistics:

G =
n∑

i=1

ai · U(i).

Given that U(i) =
∑i

j=1 Yj where Yj = U(j) − U(j−1). Then by substitution:

G =
n+1∑

i=1

di · Yi,

where di = ai + · · · + an.
Let C = {c1, c2, · · · , cS} be a set of distinct di and k = 〈k1, k2, · · · , kS〉 where

kl is the number of intervals associated to cl. Now:

Pr{Y (t) ≤ r|n, k, j} = Pr{
K∑

i=1

(ri − ri+1) · U(k1+···+ki)(1) ≤ r

t
− rK+1 −

1

t
·

J∑

i=1

ii · ji

︸ ︷︷ ︸
r′

}

= Ω(r′, k). (4.10)

Now define two sets: G = {l|cl > r′} and L = {l|cl ≤ r′}. Given state space
S, (kS)l = {kl if l ∈ S} and ‖kS‖ =

∑
l∈S kl. Since sets G and L partition the set

{1, 2, · · · , S}, hence kG + kL = kS. The algorithm presented by Diniz, de Souza
e Silva & Gail [Din02] is as follows:

Algorithm 4.8 Omega Ω(r, k)
For ‖kG‖ > 0, ‖kL‖ > 0 choose i ∈ G and j ∈ L such that both ki > 0 and kj > 0,
then:

Ω(r, k) =

((
ci − r

ci − cj

)

· Ω(r, k − 1j) +

(
r − cj

ci − cj

)

· Ω(r, k − 1i)

)

,

with initial conditions: for either ‖kG‖ = 0 or ‖kL‖ = 0 (but not both):

Ω(r, k) =

{
1 if ‖kG‖ = 0,
0 if ‖kL‖ = 0.

Recall that 1[j] is a vector of length |k| and the value at index corresponding to j in
k is 1 and is 0 for other indices.



4.6. UNIFORMIZATION APPLIED TO UNTIL FORMULAS 49

Example 4.4 This hypothetical example demonstrates the dynamics of the algo-
rithm 4.8:

Assume:

• (K + 1) distinct state rewards to be 5 > 3 > 1 > 0 where K = 3, and

• J distinct impulse rewards to be 2 > 1 > 0 where J = 3.

Given a path such that n = 6, k = 〈1, 2, 2, 2〉, j = 〈4, 2, 0〉, t = 5 and r = 15.
Ω(r′, k) for this path can be found as demonstrated below.

Solution: the computation of r′, a and d:

r′ =
r

t
− rK+1 −

1

t
·
∑J

i=1
ii · ji =

15

5
− 0− 1

5
· (2 · 4 + 1 · 2 + 0 · 0) = 1,

a1 = r1 − r2 = 5− 3 = 2,

a2 = r2 − r3 = 3− 1 = 2,

a3 = r3 − r4 = 1− 0 = 1,

d1 = a1 + a2 + a3 = 2 + 2 + 1 = 5,

d2 = a2 + a3 = 2 + 1 = 3,

d3 = a3 = 1,

d4 = 0.

Hence d = 〈5, 3, 1, 0〉, c = 〈5, 3, 1, 0〉, k = 〈1, 2, 2, 2〉, and sets G = {1, 2} and
L = {3, 4}. The recursion of Ω(r′, k) for k = 〈1, 2, 2, 2〉 is:

〈0, 1, 0, 0〉 〈0, 2, 0, 0〉 〈1, 2, 0, 0〉
↓ ↓ ↓

〈0, 0, 0, 1〉 → 〈0, 1, 0, 1〉 → 〈0, 2, 0, 1〉 → 〈1, 2, 0, 1〉
↓ ↓ ↓

〈0, 0, 0, 2〉 → 〈0, 1, 0, 2〉 → 〈0, 2, 0, 2〉 → 〈1, 2, 0, 2〉
↓ ↓ ↓

〈0, 0, 1, 2〉 → 〈0, 1, 1, 2〉 → 〈0, 2, 1, 2〉 → 〈1, 2, 1, 2〉
↓ ↓ ↓

〈0, 0, 2, 2〉 → 〈0, 1, 2, 2〉 → 〈0, 2, 2, 2〉 → 〈1, 2, 2, 2〉
The values in each step of the above recursion are computed using the formula in
the algorithm and the vector c.

In conclusion for determining PM(s, ttU [t,t]
[0,r]Ψ) given a truncation probability w

initially algorithm 4.7 is used to obtain all the paths in which the last state
satisfies the state formula Ψ. Each of these paths is characterized with a certain
value of k and j vectors. The path probabilities of paths that are characterized
with the same value of these vectors are added. Subsequently, for each path the
value of the conditional probability in equation (4.5) is determined by the use of

equation (4.9) and algorithm 4.8. Then PM(s, ttU [t,t]
[0,r]Ψ) is determined using of

equation (4.5) and the error bound is found using equation (4.6).
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4.6.4 Computational Requirements

While the computation of equation (4.5) and of equation (4.6) depends on the na-
ture of the underlying model; upper bounds for the computation can be provided
under suitable assumptions. Since algorithm 4.8 can only start once all requi-
site paths are found, when state rewards and impulse rewards are present and
assuming that every state is reachable in one step from every other state and all
1-step probabilities are equal; the computation of the requisite path probabilities
requires O

(
N(1−Nn−1)

1−N

)
multiplications and the computation of the until formula

given the path probabilities requires O
((

K+n+1
n+1

)
×

(
J+n

n

)
× n2

2

)
multiplications

where n is the number of steps and N is the number of states.
Although this solution is very time-complex, two problems have been resolved

viz. both the computation of path probabilities and the conditional probability
are done in a depth-first manner and consequently do not require substantial
storage; secondly most earlier solutions were susceptible to numerical instability
which is not the case with this solution.



Chapter 5

Experimental Results

This chapter presents experiments for Model Checking MRMs primarily for the
computation of transient measures. An overview of the implementation of a pro-
totype model checker is provided in section 5.1. Section 5.2 describes experiments
performed for ascertaining the correctness of the implementation by comparing
the results to reference values. In section 5.3, experiments with impulse rewards
by the use of both uniformization and discretization methods are presented.

5.1 Implementation

In the context of this thesis a prototype model checker for MRMs is implemented
in Java. The components of the model checker and their functions are as follows:

1. User Interface: This component functions as an interface between users and
the model checker. Through this component, users input MRMs and the
CSRL formulas whose validity is to be checked.

2. Model: This component stores the state space and the reward assignment
functions of the MRMs. It also implements model checking functionality
for until, next, steady-state, complement, and disjunction operators.

3. CSRL Parser: This component accepts a CSRL formula from Model Checker,
parses the formula and then returns the parse tree.

4. Model Checker: This component invokes CSRL Parser to parse the input
formula. Based on the parse tree it invokes Model for individual operators.

5. Numerical Analysis Component: This component performs several numer-
ical analysis functions namely discretization, uniformization and Gauss-
Seidel algorithm to solve linear equations and is invoked by Model.

6. Graph Analysis Component: This components performs graph analysis for
finding the BSCC in MRMs and is invoked by Model.

The components and their relationship with each other are shown in figure 5.1.
A usage manual for the model checker is presented in Appendix A.
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Figure 5.1: Model Checker for MRMs

5.2 Results without Impulse Rewards

To investigate the correctness of the implementation of the discretization method
the case study in [Hav02] is used. In this case study only state-based reward
rates are present. However, the generic algorithm for both state-based reward
rates and the impulse reward also works for models with only state-based reward
rates if impulse reward of zero are assigned to all transitions. In this experiment
values for the until formula P>0.5((Call Idle∨Doze)U≤24

≤600Call Initiated) are ob-
tained. Initially M[¬(Call Idle∨Doze)∨Call Initiated] is obtained, which has
three transient and two absorbing states. Subsequently by applying discretiza-
tion method the results shown in table 5.1 with state 1 as the initial state are
obtained.

Table 5.1: Result without Impulse Rewards

d Pr{Y (24) ≤ 600, X(24) % Ψ} Computation Time(s)
1/16 0.49564786212263934 7.990
1/32 0.49545079878452436 65.858
1/64 0.49534976475617837 518.674

A reference value of 0.49540399 with an error bound of 10−8 [Hav02] is avail-
able for this computation. The values obtained by the generalized algorithm
presented here converge to this reference value.
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5.3 Results with Impulse Rewards

5.3.1 Experimental Setup

Experiments are performed using the model of a triple-modular redundant (TMR)
system. The TMR system comprises of three modules performing identical tasks
and a voter. The voter accumulates results from all the modules and gives a
verdict only if at least two of the modules are working. If two or more modules or
the voter have failed then the system is in a state of non-operation or is said to
have failed. When one of the modules fails, its repair starts immediately. If the
voter fails and is subsequently repaired then the system is said to start as ‘new’.
However, to start such repairs substantial effort is required and subsequently
the repair operation consumes substantial amount of resources and consequently
increases the cost of processing a single request. Such a system can be effectively
modeled by means of a Markov Reward Model as in figure 5.2.

1

{3up, allUp, Sup}
8.0

2

{2up, Sup}
9.0

3

{1up, failed}
10.0

4

{0up, failed}
11.0

5
{vdown, failed}

13.0

0.0004,3.0

0.0001,3.0

0.05,1.0

0.0004,3.0

0.0001,3.0

0.05,1.0

0.0004,3.0

0.0001,3.0

0.05,1.0

0.0001,3.0

0.06,5.0

Figure 5.2: Triple-Modular Redundant System

The rates of failure and repair of components in the TMR system are specified
in table 5.2. The rate of failure of components in a redundant modular system are
typical (see [Tri92]). The rewards can be interpreted in two ways either as gain
or loss of resources. In [Sil94] rewards are interpreted as the cost of performing
repairs for faulty systems in monetary units. In the experiments conducted no
explicit units are given, however, it is assumed that certain resources are being
consumed during the running time of the system. When components of the system
are to be repaired then it is further assumed that resources are spent at a higher
rate.

The atomic propositions are interpreted as follows: 3up means that the num-
ber of running modules is 3; 2up means that the number of running modules is 2;
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Table 5.2: Rates of the TMR Model

Transition Rate
failure of modules. 0.0004 hours−1.
failure of voter. 0.0001 hours−1.
repair of modules. 0.05 hours−1.
repair of voter. 0.06 hours−1.

1up means that the number of running modules is 1; 0up means that the number
of running modules is 0; Sup means that the system is in a state of operation;
allUp means that all modules are running; vdown means that the voter is down
and failed means that the system is non-operational.

All experiments are conducted on a computer with an Intel PIII processor
with a clock at 868 MHz., 256 MB of RAM running Windows XP professional
service pack 1. The implementation was performed in Java and executed on Java
2 runtime environment v. SE 1.4.1 02.

5.3.2 Results by Uniformization

Maintaining Constant Value for truncation probability w

In this experiment the impact of maintaining a constant truncation probability w
on the probability of satisfying the given formula P , the error bounds E computed
by equation (4.6) and the computation time T is investigated. The validity of
the formula P>0.1(Sup U≤t

≤3000 failed) for state 1 is checked with t ranging from
50 to 500. By maintaining the value of truncation probability at w = 10−11 the
results obtained are shown in table 5.3.

Table 5.3: Maintaining Constant Value for Truncation Probability

t P E T (s)
50 0.005087386344177422 2.4358698148888235× 10−9 0.01
100 0.010200965534212462 1.2515341178826049× 10−8 0.02
150 0.015292345758962047 3.082240323341275× 10−8 0.04
200 0.020357846035241836 9.586925654419818× 10−8 0.08
250 0.025397296769503298 2.23071030162702× 10−7 0.161
300 0.0304108011763401 3.719970665306907× 10−7 0.29
350 0.035398424356873154 8.059405465802234× 10−7 0.481
400 0.037778881862768586 1.8187796388985496× 10−5 0.791
450 0.035702997386052426 2.09565155821465× 10−3 1.142
500 0.033399142731982794 1.19809420907302× 10−2 1.512
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The result shows that up to t = 350, the error bounds are still acceptable.
For values of t from 400 to 500, the error bounds grow quite fast. The increase
of error bounds is since for higher values of t, the term e−Λt becomes smaller
and therefore the number of paths that are generated and computed is reduced.
The graph of computation time for increasing t is shown in figure 5.3. Figure 5.3
shows that even though w is fixed, the computation time still grows fast.
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Figure 5.3: T vs. t and E vs. t for constant w = 10−11

Maintaining Error Bound

In this experiment the impact of maintaining the error bounds E below 10−4 on
the time of computation T is investigated. Using the same TMR system model,
the validity of formula P>0.1(Sup U≤t

≤3000 failed) for state 1 is checked with t
ranging from 50 to 500. To maintain the magnitude of error bounds, the value of
truncation probability w needs to be adjusted for each value of t. The result of
the experiment is shown in table 5.4.

Table 5.4: Maintaining Error Bound

t w P E T (s)
50 10−6 0.005066346970920541 4.260913148296264× 10−5 0.00
100 10−7 0.010192188416409224 2.1869525322217564× 10−5 0.01
150 10−7 0.01526891561598995 5.647390585961248× 10−5 0.01
200 10−8 0.02034951753667224 1.810687989884388× 10−5 0.02
250 10−8 0.02535926036855204 6.703496676818091× 10−5 0.02
300 10−9 0.0303887127539854 3.0501927783531565× 10−5 0.07
350 10−10 0.035379256114703495 2.294785264519215× 10−5 0.21
400 10−11 0.037778881862768586 1.8187796388985496× 10−5 0.791
450 10−12 0.03777910398006526 1.743339250561631× 10−5 2.373
500 10−13 0.037779567600526885 1.6531714588135478× 10−5 8.762

The last column of table 5.4 shows the computation time for increasing t.
This computation time grows significantly faster when the error bound is to be
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maintained than the case where it was not to be maintained. This is due to longer
paths being explored as the value of the truncation probability is lowered. As the
number of paths to be explored grows exponentially in the worst case with the
depth of exploration; the computation time grows faster when the error bound is
to be maintained than the case where it was not to be maintained.

The Ability of the System to Reach the Fully Operational State with
Constant Failure Rate of Modules

This section presents the results for an alternative until formula. The system has
11 identical modules and a voter. A constant rate of failure and repair of the
modules and the voter is considered with rates as in previous sections. This al-
ternative formula concerns the ability of the system to reach the fully operational
state i.e. all the modules are working, starting from a state representing a certain
number of working modules. It is formulated in CSRL as follows:

P>0.1(tt U≤100
≤2000allUp)

where t = 100 and r = 2000. This implies that given a starting state the proba-
bility of reaching the fully operational state within 100 hours and by expending
resources less than 2000 units is investigated. A truncation probability w = 10−8

is used. Table 5.5 presents the results of this experiment. The number of working
modules in the starting state is represented by n.

Table 5.5: Reaching the Fully Operational State with Constant Failure Rates

n P E T (s)
0 0.00482952588914756 4.05866323902596× 10−4 0.381
1 0.0068486521925764 4.19455701443569× 10−4 0.481
2 0.0131488893307554 3.82813317721167× 10−4 0.42
3 0.0307864803541378 3.01314786268715× 10−4 0.401
4 0.0735906999244802 2.44049258515375× 10−4 0.35
5 0.161653274832831 1.66495488214506× 10−4 0.261
6 0.311639369763902 1.20696967385326× 10−4 0.23
7 0.516966415983422 7.02115774733882× 10−5 0.11
8 0.733673548795558 3.47684889215192× 10−5 0.06
9 0.899015328912742 1.64366888658804× 10−5 0.03
10 0.980329681725223 4.57035775880327× 10−6 0.01

Figure 5.4 presents the results obtained for this formula. For states represent-
ing more number working modules the probability of reaching the fully operational
state is much higher than for those states that represent a lesser number of work-
ing modules and the computation time is lower since lesser and more probable
paths need to be explored to reach the fully operational state.
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Figure 5.4: P and T vs. Number of working modules with constant failure rates

The Ability of the System to Reach the Fully Operational State with
Variable Failure Rate of Modules

This section presents the results for the formula which was considered in the
previous section with variable rate of failure of modules. The rates of failure and
repair are in table 5.6. The formula in CSRL is as follows:

P>0.1(tt U≤100
≤2000allUp).

A truncation probability of 10−8 is used. Table 5.7 presents the results.

Table 5.6: Variable Rates

Transition Rate
failure of modules. n× 0.0004 hours−1.
failure of voter. 0.0001 hours−1.
repair of modules. 0.05 hours−1.
repair of voter. 0.06 hours−1.

Figure 5.5 presents the results obtained for this formula. As the rate of failure
of modules is higher than in the case with constant failure rate it can be observed
that the probability of the system reaching the fully operational state in this case
is lower than in the case with constant rates of failure.

5.3.3 Results by Discretization

In this experiment the method based on discretization is used to verify the va-
lidity of formula P>0.1(Sup U≤t

≤3000 failed) for state 1 with t ranging from 50 to
200. A constant value of discretization factor d = 0.25 is used.The result of the
experiment is shown in table 5.8.
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Table 5.7: Reaching the Fully Operational State with Variable Failure Rates

n P E T (s)
0 0.00477909028870443 6.38697324029973× 10−4 0.49
1 0.00664628290706118 7.20798178315112× 10−4 0.571
2 0.0124264528171119 7.33708127644168× 10−4 0.621
3 0.0285473649414625 7.07105529376643× 10−4 0.62
4 0.0676727123697789 6.27622240550083× 10−4 0.611
5 0.14851270909792 5.35659168600983× 10−4 0.521
6 0.287706855662473 4.10240541832982× 10−4 0.4
7 0.482315748557532 2.99067173956765× 10−4 0.3
8 0.695701644333058 1.78056305155566× 10−4 0.18
9 0.87014207211784 9.35552614283647× 10−5 0.091
10 0.968076165457539 3.27905198638695× 10−5 0.04
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Figure 5.5: P and T vs. Number of working modules with variable failure rates

Table 5.8: Results by Discretization

t P T (s)
50 0.005061779415718182 14.409
100 0.010175568967901463 88.118
150 0.015267158582408371 345.652
200 0.020332872743413364 1592.433

It can be observed from table 5.4 and 5.8 that the results obtained using
uniformization and discretization methods converge to the same value. The val-
ues obtained using the modified discretization method for the model in [Hav02]
converge to reference values.



Chapter 6

Conclusions

In this thesis MRMs, the logic CSRL and its characterization with state-based
reward rate have been extended to incorporate impulse rewards. Algorithms for
model checking Markov Reward Models with impulse rewards and to compute er-
ror bounds for transient measures have been developed. The algorithms developed
are simple to implement and are numerically stable. A prototype model checker
has been implemented. An example application to demonstrate the applicability
of model checking MRMs has been developed. The correctness of the imple-
mentation has been demonstrated by empirical comparison to reference values in
[Hav02] when impulse rewards are not present. The correctness of the implemen-
tation when impulse rewards are present has been demonstrated by equivalence
of values obtained by the use of two different methods viz. uniformization and
discretization for transient measures.

The computational requirements of the algorithms for evaluating transient
measures for until operator are particularly extreme. The following are some
observations regarding these algorithms:

• The uniformization method is applicable when the value of (Λt) is small.
As the value of (Λt) is increased the number of paths to be explored grows
exponentially and makes this method unpractical.

• The discretization method is decidable in polynomial time although it too
depends on the value of (Λt) where larger values of (Λt) require smaller value
of discretization factor. However, the discretization method also depends
on the value of the reward bound.

A further shortcoming is that methods to compute values for transient measures
are restricted to reward intervals of [0, r] and mission time intervals of [0, t].

Future work in the direction of Model Checking Markov Reward Models in-
cludes developing efficient algorithms for computing transient measures. Another
direction is to develop methods to compute values for transient measures that are
not restricted to reward intervals of [0, r] and mission time intervals of [0, t].
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Appendix: Usage Manual

A tool for model checking MRMs has been implemented in the context of this the-
sis. Given a Continuous-Time Markov Reward Model by providing its transition
information (.tra file), its label information (.lab file) and its reward information
(.rewr file - state rewards, .rewi file - impulse rewards), the tool checks the valid-
ity of properties expressed in Continuous Stochastic Reward Logic (CSRL). The
tool can be used to validate all CSRL formulae. For until formulas the time and
reward bounds that are supported are [0, t] and [0, r].

In this tool, checking the properties of a model involves finding all states that
satisfy a given formula. The formula can be input such that the operators are
expressed as follows:

1. True: TT

2. False: FF

3. And operator: &&

4. Or operator: ||

5. Not operator: !

6. Infinity: ~

7. S(op fl) f

8. P(op fl) [X[fl,fl] [fl,fl] f]

9. P(op fl) [f U[int,int][fl,fl] f]

where op is binary comparison operator, f is formula, int is integer and fl is float.
Thus if one wishes to input a formula that states that “a b-state can be reached
with probability at least 0.3 by at most 3 time-units along a-state accumulating
costs at most 23” then the input will be: P(>=0.3) [a U [0,3][0,23] b].

To invoke the model checker the first step is to create a Continuous-Time
Markov Reward Model. The tool does not provide facilities to create such models.
However, the model can be speficied conveniently using four files by providing its
transition information (.tra file), its label information (.lab file) and its reward
information (.rewr file - state rewards, .rewi file - impulse rewards). The format
of these files is as follows:
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1. Transition information (.tra file):
STATES n
TRANSITIONS m
state1 state2 rate
...

2. Label information (.lab file):
#DECLARATION
ap ap ...
#END
state ap[,ap]*
...

3. State reward information (.rewr file):
state reward
...

4. Impulse reward information(.rewi file):
TRANSITIONS n
state1 state2 reward
...

Subsequently the tool can be invoked using the following command:

java checker/MRMChecker *.tra *.lab *.rewr *.rewi [{u|d} = f] [NP]

1. *.tra: specify the location and name of the *.tra file in a relative or absolute
manner.

2. *.lab: specify the location and name of the *.lab file in a relative or absolute
manner.

3. *.rewr: specify the location and name of the *.rewr file in a relative or
absolute manner.

4. *.rewi: specify the location and name of the *.rewi file in a relative or
absolute manner.

5. [{u|d} = f]: specify whether uniformization or discretization should be
used for until formulas. For uniformization a truncation probability w must
be specified. For discretization a discretization factor d must be specified.
This is optional and if nothing is specified then uniformization is used with
a truncation probability (w) of 10−8.

6. [NP]: This is optional. If specified then it indicates that the computed
probabilities will not be printed; only the set of states that satisfy the
formula will be printed.


