
A Performance Analysis on Maximal Common Subgraph
Algorithms

Ruud Welling
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

r.h.a.welling@student.utwente.nl

ABSTRACT
Graphs can be used as a tool to determine similarity be-
tween structured objects. The maximal common subgraph
of two graphs G and H is the largest graph in terms of
edges that is isomorphic to a subgraph of G and H. Find-
ing the maximal common subgraph is an NP-complete
problem. It is useful in many areas like (bio)chemistry,
file versioning and artificial intelligence.
There are many papers that evaluate algorithms for find-
ing maximal common induced subgraphs, but little re-
search has been done on the maximal common subgraph
that is not an induced subgraph. We have implemented
and benchmarked two maximal common (not induced)
subgraph algorithms: a backtrack search algorithm (Mc-
Gregor), and an algorithm that transforms the maximal
common subgraph problem to the largest clique problem
(Koch). We created generators for randomly connected
and mesh structured graphs, these generators have been
used to create a database of graph pairs to benchmark the
two algorithms.
The results of our benchmark have shown that in most
cases Koch is more efficient, because after creating the
edge product graph needed for the clique detection. The
actual clique detection is a relatively simple search.

1. INTRODUCTION
Graphs are data structures that can represent structured
objects, concepts or models. Determining similarity be-
tween two graphs is equivalent to determining the similar-
ity between the structured objects, concept or models that
the graphs represent [2]. When two graphs have subgraphs
that are isomorphic, then these subgraphs are called com-
mon subgraphs. A maximal common subgraph is a com-
mon subgraph which has the maximal number of edges, in
other words, if s is a common subgraph of graphs g and h,
and there is no other common subgraph which has more
edges than s, then s is a maximal common subgraph of g
and h [12].

Finding the maximal common subgraphs of two graphs is
important in many applications. For example comparing
protein structures [6], chemistry [10, 11], file versioning [3,
8] and machine learning [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
15th Twente Student Conference on IT June 20th, 2011, Enschede, The
Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

The problem of finding the maximal common subgraph is
NP-complete [2, 5]. This makes it an interesting computer
science problem. We have benchmarked the performance
of two maximal common subgraph algorithms: a backtrack
search algorithm by McGregor [7] and a clique detection
algorithm by Koch [5], which can be used to find the maxi-
mal common subgraph. We have created graph generators
to generate a database of graph pairs to benchmark our
algorithms on. Our results can be found in tables 1 and 2
and the tables in Appendix A.

An analysis similar to ours has been done already by Bunke
et al. [1] and Conte et al. [2], however Conte et al. and
Bunke et al. have benchmarked algorithms that search for
the maximal common induced subgraph only. We have
focussed on finding the maximal common subgraph which
is the subgraph with the maximal number of edges. In
section 5 we will compare our results with the results of
Conte et al. and Bunke et al.

2. PRELIMINARIES
To introduce the maximal subgraph problem, we will first
define what graphs, subgraphs and maximal common sub-
graphs are. We will then explain how the maximal com-
mon subgraph problem can be transformed to the maxi-
mal clique problem. In the last subsection we will describe
several graph categories we have used to benchmark the
algorithms.

2.1 Maximal Common Connected Subgraph
There are two different definitions of the maximal common
subgraph. This section will explain explain the differences
and which kind of maximal common subgraph we have
chosen to focus on.

Definition 1. (based on [2]) A graph is a 4-tuple G =
(V,E, α, L), where

• V is the finite set of vertices

• E ⊆ V × V × L is the set of edges

• α : V → L is a function assigning labels to the ver-
tices

• L is a finite nonempty set of labels for the edges and
vertices

An edge (u, v, l) is from vertex u to vertex v and has label
l. Undirected graphs have an edge (v, u, l) for every edge
(u, v, l) ∈ E [2].

Two vertices u and v in graph G are adjacent if an edge
(u, v, l) or (v, u, l) exists in G for at least one l ∈ L. There
is a path from vertex u to v if there exists sequence of

vertices starting at u and ending at v, such that every
vertex in the sequence is adjacent to the next vertex in
the sequence.

A graph G is connected if there is a path (ignoring edge di-
rection) between any two distinct vertices of G [4]. Our re-
search will be limited to maximal common subgraphs that
are connected. This is because non-connected common
subgraphs could consist of many disconnected edges and
their largest connected component could be much smaller
than the maximal connected common subgraph. Because
of this, only connected common subgraphs are relevant in
many applications [5].

Definition 2. (based on [2]) Let G = (V,E, α, L) and
G′ = (V ′, E′, α′, L′), be graphs; G′ is a subgraph of G,
G′ ⊆ G, if

• V ′ ⊆ V

• α(v) = α′(v) for all v ∈ V ′

• E′ ⊆ E ∩ (V ′ × V ′ × L′)

• L′ ⊆ L

Special cases of the subgraph are the induced subgraph
and the clique. An induced subgraph preserves all edges
between between the vertices in the subgraph: E′ = E ∩
(V ′×V ′×L′) [2]. A clique in graph G is a subgraph of G
that is a complete subgraph (a graph where every vertex
is connected to every other vertex with an edge in both
directions, these edges may have any label) [4].

Definition 3. (based on [2]) Let G and G′ be graphs. A
graph isomorphism between G and G′ is a bijective map-
ping f : V → V ′ such that

• α(v) = α′(f(v)) for all v ∈ V

• for any edge e = (u, v, l) ∈ E there exists an edge
e′ = (f(u), f(v), l′) ∈ E′ such that l = l′

Graph isomorphism is a bijective mapping, this implies
that for any edge e′ = (u′, v′, l′) there exists an edge e =
(f−1(u′), f−1(v′), l) ∈ E such that l = l′.

If f : V → V ′ is a graph isomorphism between graphs G
and G′, and G′ is a subgraph of another graph G′′, i.e.,
G′ ⊆ G′′, then f is called a subgraph isomorphism from G
to G′′. [2]

Definition 4. (based on [2, 12]) Let G1 = (V1, E1, α1, L1)
and G2 = (V2, E2, α2, L2) be graphs. A common subgraph
of G1 and G2 is a graph G = (V,E, α, L) such that there
exist subgraph isomorphisms from G to G1 and from G to
G2. We call G a maximal common subgraph of G1 and
G2 if there exists no other common subgraph of G1 and G2

that has more edges than G.

Definition 4 is the definition for the maximal common sub-
graph used in this paper. A different, very commonly used
definition of the maximal common subgraph is what we
call the maximal common induced subgraph. The latter is
the common induced subgraph of two graphs that has the
largest number of vertices. The difference between these
two kinds of maximal common subgraphs is illustrated in
figure 1.

Figure 1. The difference between a maximal com-
mon connected subgraph (MCCS) and a maxi-
mal common connected induced subgraph (MC-
CIS) [12]. Labels and directions are not shown in
this example. Every edge can be considered bidi-
rectional, and all vertices and edges have the same
label.

2.2 Maximal Clique
One of the algorithms we have benchmarked to solve the
maximal subgraph problem attempts to solve the problem
by transforming it to the maximal clique problem. This
can be done by constructing an edge product graph.

Definition 5. (based on [5]) Let G1 = (V1, E1, α1, L1)
and G2 = (V2, E2, α2, L2) be graphs. The edge product
graph He = G1 ◦e G2 includes the vertex set VH = E1 ×
E2, in which all edge pairs (ei, ej) with 1 ≤ i ≤ |E1| and
1 ≤ j ≤ |E2| have to coincide in their edge labels and
the corresponding end vertex labels. Let ei = (u1, v1, l1)
and ej = (u2, v2, l2), the labels coincide if l1 = L2 and
α1(u1) = α2(u2) and α1(v1) = α2(v2)

There is an edge between to vertices eH , fH ∈ VH with
eH = (e1, e2) and fH = (f1, f2) if the two edge pairs are
compatible, meaning that e1 6= f1 and e2 6= f2, and either

• e1, f1 in G1 are connected via a vertex of the same
label as the vertex shared by e2, f2 in G2 (labeled and
called a c-edge), or

• e1, f1 and e2, f2 are not adjacent in G1 and in G2,
respectively (labeled and called a d-edge).

To get a common subgraph in G1 and G2 each edge pair
in G1 and G2 (vertex pair in He) has to be compatible
to all other edge pairs in G1 and G2 (edges in He), which
are forming a common subgraph. Thus, a clique in He
corresponds to a common subgraph in G1 and G2. [5]

If this clique is spanned by c-edges (there is a path from
every vertex in He to every other He consisting of only
c-edges), then the clique corresponds to a connected com-
mon subgraph. The maximal clique corresponds to the
maximal common subgraph.

Figure 2. Two graphs G1 and G2 with their edge
product graph. In this example, the size and
colour of a vertex, and the style of an edge line
(dotted or not) identify the labels.

2.3 Categories of graphs
We have benchmarked our algorithms on a randomly gen-
erated database of graphs. These graphs are generated to
form some different structures. We have chosen for these
structures to be able to compare the performance of the
algorithms for graph that are more structured or less struc-
tured. These graph categories will be introduced in this
section.

Randomly connected graphs are connected graphs where
edges connect vertices without any structural regularity .
In these graphs, the probability that there exists an edge
connecting two distinct vertices is independent the vertices
themselves. [2].

Regular Meshes are structured graphs. In a 2D mesh,
every vertex (except for those at the border of the mesh)
is connected with its 4 neighbour vertices. In 3D or 4D
meshes, every vertex is connected with all 6 or 8 neighbour
vertices. [2].

3. EXPERIMENTAL SETUP
The research will be a performance analysis of two com-

Algorithm 1 MAXIMAL C CLIQUE(), the initializa-
tion algorithm for algorithm 2 [5]

. returns the set R containing the vertices of the maximal
clique in a graph G
T : set of vertices which have already been used for the ini-
tialization of EXPAND C CLIQUE V : set of all vertices
in edge product graph G
C: set of vertices belonging to the current clique
P : set of vertices which can be added to C, because they
are neighbours of all vertices ∈ C, and for every vertex
u ∈ P there exists at least one other vertex v ∈ C such
that u and v are connected via a c-edge
D: set of vertices which cannot directly be added to C, be-
cause they are neighbours of all vertices ∈ C via d-edges
E: set of vertices resulting from a recursive call of EX-
PAND C CLIQUE
largest: the size of the largest clique found so far
N [u] = {v ∈ V |{u, v} ∈ E} this is the set of neighbours of
a vertex u in G

1: T ← ∅
2: R← ∅
3: largest← 0
4: for all u ∈ V do
5: P ← ∅
6: D ← ∅
7: for all v ∈ N [u] do
8: if v and u are adjacent via a c-edge then
9: if v /∈ T then

10: P ← P ∪ {v}
11: end if
12: else if v and u are adjacent via a d-edge then
13: D ← D ∪ {v}
14: end if
15: end for
16: E ← EXPAND C CLIQUE({u}, P,D, largest)
17: if |E| > |R| then
18: R← E
19: largest← |E|
20: end if
21: T ← T ∪ {u}
22: end for
23: return R

monly used graph algorithms. The algorithm by Koch
[5], which uses clique detection, has proven to be efficient.
The backtrack search algorithm by McGregor [7] is very
widely used. Many other algorithms exist, but they all use
an approach similar to these algorithms.

This section will give an overview of how the two algo-
rithms work. We will then explain how we created our
graph generators. In order to benchmark the algorithm,
we created a database we will explain how this database
had been created. Finally we will explain how we executed
the benchmarks.

3.1 Algorithms
We have selected two algorithms. The algorithm by Mc-
Gregor [7] is a backtrack search algorithm. The algorithm
by Koch [5] is an algorithm that transform the maximal
common subgraph problem to the maximal clique problem
and searches for the maximal clique using a branch-and-
bound algorithm.

3.1.1 Koch
In the Koch algorithm, several sets are remembered: The
set C contains all vertices that belong to the clique which
the algorithm is currently expanding. The set P contains
vertices that can directly be added to C, because these
vertices are adjacent to all vertices in C and adjacent to
at least one of the vertices in C via a c-edge. The set D
contains vertices that can not directly be added, they are
adjacent to all vertices in C via d-edges.

Algorithm 2 is the recursive clique search algorithm. It
checks if set C can be expanded, if so then the algorithm
will expand try to expand the set for every vertex in P
(algorithm 2, line 5), the algorithm recursively calls itself
for every expansion of the set C.

In order to initialize all sets in the Koch algorithm there
is another algorithm. Algorithm 1 initializes the sets C,
P and D for every vertex in the edge product graph.

Algorithm 2 EXPAND C CLIQUE(C,P,D, largest) [5]

. returns the set R such that C ⊆ R and R contains the
vertices of the maximal clique (limited to the vertices in
C) in a graph G

1: R← C
2: if P = ∅ OR (|P |+ |C|+ |D| ≤ largest) then
3: return R
4: else
5: for all u ∈ P do
6: P ← P \ {u}
7: P ′ ← P ∩N [u]
8: D′ ← D ∩N [u]
9: for all v ∈ D′ do

10: if v and u are adjacent via a c-edge then
11: P ′ ← P ′ ∪ {v}
12: D′ ← D′ \ {v}
13: end if
14: end for
15: E ← EXPAND C CLIQUE(C ∪

{u}, P ′, D′, largest)
16: if |E| > |R| then
17: R← E
18: largest← |E|
19: end if
20: end for
21: end if
22: return R

The algorithm we use is slightly modified from the original
algorithm by Koch. The original algorithm enumerates all
cliques in the edge product graph, we only need to find
the maximal clique. Therefore we have implemented a
test: we remember the size of the maximal clique found
so far in largest, this is supplied as an argument for the
EXPAND C CLIQUE procedure. At the beginning of this
procedure (algorithm 2, line 2) we check if the sizes of the
sets C, P and D together are bigger than largest. If this
total size is not bigger than largest then the current clique
can never become the largest and the algorithm can stop
expanding C. This check can significantly reduce the size
of the recursion tree, allowing the algorithm to run much
faster. In the optimal case, the maximal clique is the first
clique that is found. When looking for other cliques the
size of |P | + |C| + |D| (which is the maximum size the
current clique may become) will eventually be smaller than
or equal to the size of the largest clique. The algorithm
will immediately stop expanding the current clique and try
another, leading to a significant reduction of the recursion
tree.

3.1.2 McGregor
The McGregor algorithm [7] attempts to tentatively pair
vertices from G1 to vertices from G2. A matrix medges
keeps track of which edges of G1 and G2 might still corre-
spond to each other. Every time a vertex G1 and a vertex
from G2 are tentatively paired, medges is refined. For ex-
ample when vertex i from G1 is tentatively paired with
vertex j in G2, then any edge r connected to vertex i can
correspond only to edges which are connected to vertex j
in G2.

The call allPossibleVerticesPaired() (line 16) returns true
when there are no more unpaired vertices left with a sim-
ilar label, this means that no more vertices can be tenta-
tively paired. The state of medges at this point represents
the edges of the common subgraph.

In order to reduce the size of the search tree, the algorithm
checks if the number of edges left in medges is still higher
then the number of edges in the best result so far. The call
getEdgesLeft() (line 14) returns the number of edges that
the current common subgraph may have at maximum, this
is the number of rows in medges that contain at least one
1. To find only connected subgraphs the call getConnect-
edEdgesLeft() (line 17) returns the number of edges in the
largest connected graph generated by the edges that are 1
in medges.

The algorithm keeps track of the number of vertices that
have been tentatively paired for each label. This is because
at some point, it may be possible that for a vertex i in G1

there is no unpaired node j in G2 with the same label.
The noLabelMatch flag (line 10, 30) keeps track of this
special case. When this flag is set, it means that there are
still untried vertices for vertex i, but with a different label.
This prevents the algorithm from backtracking when there
are still vertices to be paired.

Backtracking is simple, whenever two vertices have been
tentatively paired a copy of medges is stored in the work-
space associated with the next vertex i, when the algo-
rithm must backtrack, the current vertex value is decre-
mented to vertex v, medges is restored from workspace
associated with vertex v.

3.1.3 Implementation
The two algorithms have been implemented in Java us-
ing the JGraphT library [9]. The graphs in JGraphT use
LinkedHashSets in which the order of elements of the set

Algorithm 3 MCGREGOR(G1, G2) [7]

. returns the maximal common subgraph of G1 and G2

V1: the set of vertices of G1

V2: the set of vertices of G2

E1: the set of edges of G1

E2: the set of edges of G2

medges: a boolean matrix, medges[d][e] is true of edge d
in G1 is permitted to correspond to edge e in G2

medgesCopies[i]: an array that stores copies of medges,
these copies are restored when the algorithm backtracks
T [i]: the set of vertices from G2 that have been tried for
vertex i from G1

noLabelMatch[i]: a boolean flag, corresponding to vertex
i from G1, initialized to false

1: let a = (va, ua, la) and b = (vb, ub, lb), set medges[a][b]
to contain la = lb for all a ∈ E1 and all b ∈ E2

2: i← 0
3: bestEdgesLeft ← 0
4: T [i]← ∅
5: while i ≥ 0 do
6: if |T [i]| < |V2| then
7: xi← getUntriedVertex(i)
8: T [i]← T [i] ∪ {xi}
9: if α1(i) 6= α2(xi) then

10: noLabelMatch[i]← true
11: else
12: medgesCopies[i]← medges
13: refineMedges(i, xi)
14: edgesLeft ← getEdgesLeft()
15: if edgesLeft > bestEdgesLeft then
16: if allPossibleVerticesPaired() then
17: if medges.getConnectedEdgesLeft()

> bestEdgesLeft then
18: bestMedges← medges
19: bestEdgesLeft ← edgesLeft
20: end if
21: else
22: i← i+ 1
23: medgesCopies[i]← medges
24: T [i]← T [i] ∪ {xi}
25: end if
26: else
27: medges← medgesCopies[i]
28: end if
29: end if
30: else if noLabelMatch[i] and i 6= |V1| − 1 then
31: noLabelMatch[i]← false
32: i← i+ 1
33: medgesCopies[i]← medges
34: T [i]← T [i] ∪ {xi}
35: else
36: i← i− 1
37: medges← medgesCopies[i]
38: end if
39: end while

remains constant. Our implementations of the two algo-
rithms use ArrayLists and LinkedHashSets to contain ver-
tices and edges. Since the order of these sets is always the
same, the algorithms are deterministic. For benchmarking
this is important because this greatly reduces the variance
of subsequent benchmark results.

3.2 Graph Generators
In order to get a dataset to benchmark the algorithm on we
have chosen to use graph generators to create a dataset for

Figure 3. The tools we used, from graph genera-
tion to benchmark

our benchmarks. Another possibility would to use existing
graphs from applications where finding the maximal com-
mon subgraph is relevant. However gathering this data
is extremely time consuming, therefore we chose to use
graph generators to create our dataset.

We have written two graph generators: one generates ran-
domly connected graphs, the other generates regular mesh
graphs. Both generators take the supergraph size N (in
edges), subgraph size s (as a percentage of the supergraph
size), and label alphabet size L as parameters. The graph
generators have the possibility to to ensure that the pair of
supergraphs generated have a maximal common subgraph
which is exactly the specified size, by testing the maximal
common subgraph size with one of the algorithms.

The randomly connected graph generator generates graphs
with a fixed number of vertices and edges. The number
of edges is defined in the total size and subgraph size ar-
guments. The number of vertices is defined by the edge
density. The edge density is the percentage of edges from
the complete (undirected) subgraph that should be in the
graph. The number of vertices |V | for a graph with |E|
edges and an edge density of η is calculated as follows:

|V | =
√

2|E|
η

. If |V | > |E| + 1 then it is not possible

to generate a graph for the provided values of |E| and η.
The graph generator ensures that the resulting graphs are
connected.

The regular mesh generator has a dimension d as an extra
parameter. Every vertex will have a maximum of 2 · d
neighbour vertices, in a 2d mesh, every vertex is connected
to its north, east, south and west neighbour (if these exist),
this way a structured graph is generated.

3.3 Database
The graph generators were used to generate a database.
As values for the supergraph size we chose {10, 20, 30}, for
the label alphabet the values {10, 20, 40, 60} were chosen.
The values {20%, 40%, 70%, 90%} were chosen as maximal
common subgraph sizes. For regular meshes, the dimen-
sions {2, 3, 4} were chosen. Randomly connected graphs
have edge densities {0.1, 0.25, 0.5}. Some randomly con-
nected graphs could not be generated, because for small
graphs, it is not always possible to guarantee a low edge
density. For every set of parameters, we have generated 10
graph pairs. The database contains a total of 2040 graph
pairs.

It should be noted that the values for the supergraph sizes
are not bigger because the running times of the algorithms

could become very high in some cases. In our preliminary
benchmarks there were some specific cases with graph with
40 edges and few labels where the running time of the
algorithm would be in the order of hours. We could not
include larger sizes because the total time it would take to
complete a full benchmark would become too long.

3.4 Test Setup
A benchmark program has been created, which runs each
algorithm 10 times on every graph pair. To prevent a
high variance the test program calculates the relative stan-
dard deviation σ

average
. If the relative standard deviation

is higher then 0.20, the test is run again until the relative
standard deviation is low enough. All results are stored in
a comma separated value file.

While running the benchmark, we discovered that for some
graph pairs, the algorithms could take extremely long to
finish. Therefore we implemented a time-out. if a graph
algorithm does not find any results before the time-out,
then the algorithm is stopped and the next test is started.

4. BENCHMARK RESULTS
For every graph pair, both algorithms have been bench-
marked ten times (unless the benchmark could not com-
plete before the time-out). Since the variance is low for
these results, we have calculated the mean value for the
execution time for each algorithm for all graph pairs. For
every set of parameters for the graph generator, there were
ten graphs of this type in the database. Even for graphs
generated with the same parameters, the variance of the
algorithm execution times may be quite high in some cases.
Therefore we have calculated the median value for both al-
gorithms for each graph parameter set. The median value
is a measure where 50% of the graph pairs of the same type
would take longer to execute, and the other 50% would ex-
ecute faster. In order to see which parameters have most
effect on the algorithm performance we have calculated a
ratio r = time of McGregor algorithm

time of Koch algorithm
. This ratio makes com-

paring the performance easier. Tables 1 and 2 show the
ratios for all generated graph pairs. In table 1 a ’ - ’ means
that this graph pair was not in the database, because the
subgraph was too small to be able to create a graph for
the specified edge density. There were some cases where
more than half of the tests could not be completed before
the time-out for the McGregor algorithm, the table shows
>9999 for these cases.

In the two tables, the cells where the ratio is lower then
1 are coloured, these represent the graph pairs where Mc-
Gregor performs faster than Koch. We notice that McGre-
gor only performs better in situations where the subgraph
percentage is 70% or 90%. For the randomly connected
graphs, we see that a higher edge density, leads to better
results for the McGregor algorithm. This is most likely
because a higher edge density means fewer vertices (since
the number of edges is constant). The McGregor algo-
rithm attempts to pair vertices of the two supergraphs,
the fewer vertices there are to pair, the less time it will
take to try all possible pairs. So the McGregor algorithm
will finish faster.

The label alphabet size also has some influence on the ra-
tios: for a smaller label size, the Koch algorithm performs
relatively better than for large label sizes. This is most
likely because in the McGregor algorithm, only vertices
with the same label are tentatively paired. When there
are more labels, the chance that two vertices have the
same label is smaller. This results in less pairs of vertices
that may be paired, which leads to a faster search. For

Table 1. Randomly connected graphs. In this table N is the total size of the two supergraphs, s is the size
of the subgraph in relation to the supergraph, L is the size of the label alphabet, η is the edge density.
The results in this table are the ratio’s between the time taken to calculate the result for the graph pair.
Let tK be the time needed for the Koch algorithm to find a result, and let tM be the time needed for the
McGregor algorithm to find a result, the ratio r will then be r = tM

tK
. If r > 1 then the Koch algorithm is

faster for graphs generated with the parameters of r.
N 10 20 30

η L \s 70% 90% 40% 70% 90% 20% 40% 70% 90%

0.1

10 - - - - - - - - 171.9
20 - - - - - - - - >9999
40 - - - - - - - - 14.34
60 - - - - - - - - 2.811

0.25

10 - - - 2.885 2.504 - 206.0 5.650 0.013
20 - - - 1.921 1.488 - 8.258 2.572 0.019
40 - - - 1.941 0.963 - 5.252 1.289 0.609
60 - - - 1.752 1.043 - 4.644 1.202 0.652

0.5

10 2.011 1.752 2.696 1.006 0.099 9.543 1.873 0.055 0.001
20 1.929 1.459 4.197 0.975 0.585 8.066 2.510 0.441 0.011
40 1.921 1.313 2.828 0.901 0.532 7.945 2.395 0.584 0.346
60 2.028 1.305 2.995 0.889 0.482 6.936 2.182 0.614 0.307

Table 2. Regular meshes. The results in this table are the ratio’s between the time taken to calculate the
result for the graph pair. The value d stands for the dimension of the mesh.

N 10 20 30
d L \s 20% 40% 70% 90% 20% 40% 70% 90% 20% 40% 70% 90%

2

10 13.93 9.135 4.369 2.807 148.9 12.29 3.228 0.740 >9999 11.46 1.915 0.044
20 7.120 7.008 3.711 2.368 44.92 15.02 3.315 2.113 642.6 23.13 4.210 1.833
40 7.130 6.329 3.100 2.279 24.77 8.919 3.383 1.591 77.62 14.00 3.509 1.381
60 6.988 6.679 3.354 2.167 21.88 8.000 2.901 1.656 31.93 9.828 3.192 1.622

3

10 11.17 9.439 4.392 2.716 76.06 247.6 5.276 2.410 >9999 2869 0.574 0.003
20 9.120 7.948 3.833 2.811 31.97 14.93 4.629 2.049 111.9 196.5 4.186 2.091
40 8.913 6.420 3.996 2.549 30.60 9.731 3.440 1.901 51.78 13.85 3.769 1.493
60 7.233 6.306 3.808 2.452 25.18 10.05 3.114 1.740 41.95 14.19 3.083 1.613

4

10 15.00 9.350 4.976 2.930 82.68 95.30 6.045 1.884 >9999 >9999 5.543 0.039
20 10.56 8.068 3.438 2.403 39.01 16.03 4.097 2.183 102.7 60.31 4.550 2.339
40 8.048 5.577 3.583 2.056 28.20 12.95 3.472 2.006 66.43 14.54 3.382 1.840
60 7.362 6.584 3.631 2.352 28.14 10.74 3.543 2.218 45.81 13.70 3.585 1.809

the Koch algorithm all edge and vertex labels are checked
during the construction of the product graph; more labels
means a smaller product graph, which also results in a
faster search. From our results in tables 1 and 2 we can
see that the McGregor algorithm benefits more from larger
label sizes in relation to the Koch algorithm.

The tables in appendix A show a selection of the exact
running times of the algorithms. In tables 3-6 we can see
that for the results with label alphabet sizes 40 and 60,
there is little difference in the running times. It seems
that when the label alphabet size becomes significantly
larger than the graph size, a change in the label alphabet
size has little to no effect on the running time.

We can see in tables 8-10 that a larger subgraph per-
centage has a negative influence on the performance of
the Koch algorithm. This is most likely because the edge
product graph that is created for these graph pairs is very
connected, so many more potential cliques must be evalu-
ated. The recursion tree for this algorithm becomes signif-
icantly bigger causing longer running times for larger sub-
graph percentages. For the McGregor algorithm a larger
subgraph percentage does not have a clear effect on the
running times of the algorithm.

We see that the algorithm by Koch performs better in most
cases. This is because during the construction of the edge

product graph, the edge and vertex labels are checked,
and all incompatibilities are eliminated. The labels greatly
reduce the size of the product graph, and they are only
evaluated during the construction of the product graph.
It appears that the time it takes to construct the product
graph is regained by a faster search.

5. RELATED WORK
Several authors have compared and analysed maximal com-
mon induced subgraph algorithms. These authors have
used algorithms similar to ours, but search for induced
subgraphs only.

5.1 Bunke et al.
Bunke et al. [1] performed a benchmark of two algorithms
that find maximal common induced subgraphs. One of
these is a modified version of the McGregor algorithm for
induced subgraphs. The other algorithm reduces the max-
imal common induced subgraph problem to the clique de-
tection problem and uses clique detection to solve the max-
imal common induced subgraph problem (like the Koch
algorithm). Bunke et al. have used a database containing
generated randomly connected graphs.

In the paper Bunke et al. concluded that for graphs with
a high edge density it is efficient to build a vertex product
graph and use clique detection to solve the problem. This

is the opposite of what we have seen. For cases with a high
edge density the McGregor algorithm performs relatively
better.

Further research would be needed to find the exact cause
of this difference. It should be noted though that the im-
plementations of the algorithms are very different, because
they search for induced subgraphs. Another major differ-
ence is that we have defined the size of a graph by the
number of edges (because a maximum common subgraph
is maximal when it has the maximal number of edges),
and Bunke et al. have defined the size of a graph by
the number of vertices (because an induced subgraph is
maximal when the number of vertices is maximal). This
difference changes the effect of modifying the edge density.
If the number of vertices is kept constant, increasing the
edge density means increasing the number of edges. In our
study, we kept the number of edges constant, so increasing
the edge density means reducing the number of vertices.
This difference may be a cause of the difference in results.

5.2 Conte et al.
Conte et al. [2] have researched the performance of three
maximal common induced subgraph algorithms. A modi-
fied version of the McGregor algorithm, a (relatively sim-
ple) clique detection algorithm and a clique detection algo-
rithm with more advanced heuristics. Conte et al. also use
a database with artificially generated graph pairs. Conte
et al. conclude that the algorithm derived from McGre-
gor is more suitable for regular graphs such as meshes.
Conte states that for graphs with a non-regular structure,
the efficient response time of the simple clique algorithm
makes it repay the time spent to construct the product
graph. The clique algorithm with complex heuristics is
most efficient for the largest graphs according to Conte et
al.

6. CONCLUSION
In this paper we have presented two algorithms which have
been thoroughly benchmarked, on graph pairs that we
generated using our own graph generators. We created
a large database of graph pairs and executed a bench-
mark using these graph pairs. The database, graph gen-
erators and implementation of the algorithms have been
made available publicly for future benchmarking activities
at http://home.student.utwente.nl/r.h.a.welling/bref.zip

Our results show that the algorithm by Koch, which searches
for the maximal clique, performs better in most cases. The
time spent constructing an edge product graph is repaid
because of the faster search algorithm. The McGregor al-
gorithm performs more efficiently in cases with a high edge
density and a high label alphabet size.

Results show that for most cases the Koch algorithm per-
forms better. For that reason Koch is the preferred choice
for as a maximal common subgraph algorithm.

For future work, we could extend the database with more
graph categories and we could generate larger graphs and
graphs with less labels. It would also be interesting to
implement more algorithms to compare performance, for
example a clique algorithm with more advanced heuristics.
It would also be interesting to extend the database with
real life graphs, such as protein molecules.

7. REFERENCES
[1] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone,

and M. Vento. A comparison of algorithms for
maximum common subgraph on randomly
connected graphs. Structural, Syntactic, and
Statistical Pattern Recognition, pages 85–106, 2002.

[2] D. Conte, P. Foggia, and M. Vento. Challenging
complexity of maximum common subgraph
detection algorithms: A performance analysis of
three algorithms on a wide database of graphs.
Journal of Graph Algorithms and Applications,
11(1):99–143, 2007.

[3] S. Förtsch and B. Westfechtel. Differencing and
merging of software diagrams - state of the art and
challenges. In J. Filipe, B. Shishkov, and M. Helfert,
editors, ICSOFT (SE), pages 90–99. INSTICC
Press, 2007.

[4] R. P. Grimaldi. Discrete and Combinatorial
Mathematics: An Applied Introduction, Fifth
Edition. Addison Wesley, 2003.

[5] I. Koch. Enumerating all connected maximal
common subgraphs in two graphs. Theoretical
Computer Science, 250(1-2):1–30, 2001.

[6] I. Koch, T. Lengauer, and E. Wanke. An algorithm
for finding maximal common subtopologies in a set
of protein structures. Journal of Computational
Biology, 3(2):289–306, 1996.

[7] J. McGregor. Backtrack search algorithms and the
maximal common subgraph problem. Software:
Practice and Experience, 12(1):23–34, 1982.

[8] A. Mehra, J. Grundy, and J. Hosking. A generic
approach to supporting diagram differencing and
merging for collaborative design. In Proceedings of
the 20th IEEE/ACM international Conference on
Automated software engineering, pages 204–213.
ACM, 2005.

[9] B. Naveh. JGraphT. Internet:
http://jgrapht.sourceforge.net, 2010.

[10] V. Nicholson, C. Tsai, M. Johnson, and M. Naim. A
subgraph isomorphism theorem for molecular
graphs. Graph Theory and Topology in Chemistry,
(51):226–230, 1987.

[11] J. Raymond and P. Willett. Maximum common
subgraph isomorphism algorithms for the matching
of chemical structures. Journal of Computer-Aided
Molecular Design, 16(7):521–533, 2002.

[12] P. Vismara and B. Valery. Finding Maximum
Common Connected Subgraphs Using Clique
Detection or Constraint Satisfaction Algorithms.
Modelling, Computation and Optimization in
Information Systems and Management Sciences,
pages 358–368, 2008.

APPENDIX
A. RUNNING TIMES
Here we provide a selection of our results in tables as run-
ning times in microseconds. In these tables L is the label
alphabet size, N is the number of edges in the supergraphs
and s is the percentage of edges from the supergraph that
is in the maximal common subgraph. Cells are marked
with a ’ - ’ if the parameter combination was not in the
database.

Table 3. Koch algorithm results in microseconds
for randomly connected graphs with edge density
0.5 and subgraph size 70%.

HHH
HHL
N

10 20 30

10 521 5 635 707 722
20 388 2 162 11 534
40 355 2 202 7 674
60 352 2 133 7 347

Table 4. McGregor algorithm results in microsec-
onds for randomly connected graphs with edge
density 0.5 and subgraph size 70%.

HHH
HHL
N

10 20 30

10 1 047 5 670 38 792
20 749 2 109 5 083
40 682 1 985 4 485
60 714 1 897 4 514

Table 5. Koch algorithm results in microseconds
for three dimensional regular meshes with sub-
graph size 40%.

HH
HHHL
N

10 20 30

10 138 620 2 389
20 138 502 1 505
40 137 505 1 447
60 138 490 1 461

Table 6. McGregor algorithm results in microsec-
onds for three dimensional regular meshes with
subgraph size 40%.

HH
HHHL
N

10 20 30

10 1 305 153 526 6 855 645
20 1 096 7 495 295 849
40 884 4 918 20 042
60 871 4 928 20 731

Table 7. Koch algorithm results in microseconds
for randomly connected graphs with edge density
0,5 and label alphabet size 10.

HHH
HHs
N

10 20 30

20% - - 580
40% - 796 6 080
70% 521 5 635 707 722
90% 614 31 528 6 291 900

Table 8. McGregor algorithm results in microsec-
onds for randomly connected graphs with edge
density 0,5 and label alphabet size 10.

HH
HHHs
N

10 20 30

20% - - 5 543
40% - 2 148 11 387
70% 1 047 5 670 38 792
90% 1 076 3 131 8 194

Table 9. Koch algorithm results in microseconds
for two dimensional regular meshes with label al-
phabet size 20.

HH
HHHs
N

10 20 30

20% 85 167 335
40% 138 503 1 428
70% 353 2 260 7 898
90% 633 4 790 18 420

Table 10. McGregor algorithm results in microsec-
onds for two dimensional regular meshes with label
alphabet size 20.

H
HHHHs

N
10 20 30

20% 611 7 534 215 628
40% 968 7 564 33 037
70% 1 312 7 491 33 248
90% 1 500 10 121 33 758

