Towards a Library of Parallel Graph Algorithms in Java

Marije de Heus
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

m.deheus@student.utwente.nl

ABSTRACT

Despite the wide availability of multi-core processors and
the popularity of Java, there is currently no library for
parallel graph algorithms in Java available. Such a library
would enable all Java programmers, especially those who
work on the verification of programs and model checking to
efficiently use graph algorithms. To find out what would
be a good design for this library, we have made a start
on it. We have created a general design for algorithms
and graphs in the library. We have also implemented the
reachability and connected components algorithms, both
sequential and parallel. In this paper we describe the algo-
rithms we have implemented and our design of the library,
focusing on the design choices we made.

Keywords

Concurrency, graph algorithms, Java, termination detec-
tion.

1. INTRODUCTION

Graphs have a widespread use. Computer networks, chem-
istry, biology and physics all benefit from these models of
pairwise relations between objects. The problems that
arise from the use of graphs are often time consuming be-
cause of the complexity of most graph algorithms and the
great size of the graphs they work on. Luckily, the increas-
ing number of multi-core processors enables algorithms to
execute quicker. However, until now no library for parallel
graph algorithms exists in Java. We have made a start on
a generic library for parallel graph algorithms.

The 6 sections of this paper are divided as following: this
is the introduction which provides a background for our
research; section 2 describes our research approach; sec-
tion 3 is about the graph libraries that are currently avail-
able, these are either not in Java or sequential; in section 4
we descibe the design of our library; section 5 is about our
implementations of the reachability and connected com-
ponents algorithms, and section 6 contains our conclusion
and suggestions for future work.

In this section we will introduce you the concepts of graphs,
describe some frequently used graph algorithms and par-
allel computing. The reader who is already familiar with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

14”” Twente Student Conference on IT January 21“, 2011, Enschede,
The Netherlands.

Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

those concepts may want to skip the introduction and con-
tinue with section 2.

1.1 Graphs

Graphs consist of a number of nodes (vertices) and edges
between pairs of nodes. The edges may be given a value
or they may all be uniform. Directed edges have a start
and end vertex and the relationship between them is only
true in that direction. Undirected edges do not distinguish
between a start and end vertex and the relationship is true
in both directions. If the graph consists of directed edges,
it is a directed graph and vice versa. An edge may start
and end at the same node, which is called a loop [5].

Graphs may be used to represent anything. The nodes
represent objects and edges represent relations between
objects. Some examples of possible applications of graphs
are:

Social networks Graphs can be used to represent net-
works of people. Nodes would be different people,
and edges could be relationships between the peo-
ple. This could for example be used in a family tree
or for a social network like LinkedIn or Facebook.

Computer networks Nodes could be routers or com-
puters and edges could be connections between the
nodes. The edges could be given a weight to rep-
resent the distance between the nodes or the time
needed for a bit to travel between the nodes.

Maps Here nodes could be cities and edges could rep-
resent roads between the cities. The edges could be
given a weight to represent the distance between the
cities.

Also, graphs are of great importance in the field of formal
methods, for example in model checking and the verifica-
tion of programs [1] [6].

1.2 Graph algorithms

There exist numerous useful algorithms for graphs. There
are algorithms available for searching a graph (depth first
search, breadth first search, uniform cost search), sort-
ing a graph (topological sorting, pancake sorting), coloring
graphs, routing, et cetera.

In the rest of this section the terms sequential and parallel
will be used a lot. Sequential means the algorithm is exe-
cuted on one processor, one instruction at a time. Parallel
means the instructions will be distributed among several
processors. Most graph algorithms currently available are
sequential, and even if they are parallel, they are in other
languages than Java, like C++. Below we will look deeper
into some of the most used algorithms.

1.2.1 Reachability

Reachability means being able to get from one vertex in
a graph to another one by following an edge. This is a
simple type of algorithm but still often used in practice.
Reachability can be implemented using depth first search
(DFS) or breadth first search (BFS). Our implementation
of reachability uses a type of DFS.

1.2.2 Depth first search

This type of search is done by starting at the root of the
graph, explore its first child, again explore its first child,
until a goal node is hit or there are no more children to
explore. Then, backtracking is used, returning to the last
node that is not yet completely explored.

It is not certain if depth first search is suitable for use on
multi-core processors. Some say that depth first search
is inherently sequential [25], while others have provided
implementations of parallel DFS that are more efficient
than their sequential variants [24, 19].

1.2.3 Breadth first search

Breadth first search also starts at the root node, but then
it first explores all of its children, then all of their children,
et cetera. This type of search could benefit more from
parallel computers. The exploration of the children could
be done by different processors. After each level the new
children will be divided among the processors again, so
the work can always be divided equally.

There is a lot of information available on BFS. Most al-
gorithms that use BFS are implementations of Dijkstra’s
shortest path algorithm [29, 11, 9, 17] but BFS has many
more purposes. We have not implemented BFS but this
would probably be a good next step.

1.2.4 Strongly connected components

A part of a graph is called strongly connected if there is
a path from each of the nodes to all other nodes in that
subgraph. If the entire graph has this property, it is a
strongly connected graph.

There are a few different implementations of the (sequen-
tial) strongly connected components (SCC) algorithms.
Kosajuru’s algorithm, Tarjan’s algorithm and Garbow’s
algorithm all compute the SCC’s but the latter two only
require one DFS whereas the first requires two. There has
been a lot of research on how to do this in parallel [21,
16, 12]. We have implemented connected components,
which is a type of strongly connected components that
only works on undirected graphs.

1.2.5 Topological sorting

Topological sorting is a linear ordering of the nodes of a
directed acyclic graph. Each node has to go before all
nodes to which it has outbound edges. For example, when
getting dressed, one would have to put on socks before
putting on shoes, and not the other way around.

This algorithm usually has a good complexity: its run-
ning time is linear in the number of nodes + the num-
ber of edges. Kahn first described such an algorithm in
1962 [18]. Most other graph algorithms (at least BFS
and DFS) usually have a polynomial complexity. We did
not have enough time to implement this algorithm, but it
would be nice if this was added to the library later on.

1.3 Parallel computing

Parallel computing is the simultaneous execution of the
same task on multiple cores, processors or computers in
order to obtain results faster. There are several types of

parallel computing, like distributed-memory computers,
partitioned global address-space computers and shared-
memory computers. Java includes APIs for multithread-
ing which are useful for shared-memory computers with
multi-core processors. We have designed our library to
suit multi-core processors.

2. PROBLEM STATEMENT

There is no (generic) library for parallel graph algorithms
in Java available, even though Java is one of the most pop-
ular programming languages. According to several mea-
sures used by Langpop, Java is in the top 5 of most used
programming languages in June 2010 [10] . In the past,
when Java developers want to use a parallel graph algo-
rithm they need to use an algorithm in another language,
or design one themselves. Both of these options require a
lot of work. We have designed a generic library for parallel
graph algorithms in Java that will solve this problem.

2.1 Goal

Our goal was to enable Java programmers to use graph al-
gorithms that benefit from the multi-core processors with-
out having to reimplement any of the parallel algorithms
or changing existing core data structures. The algorithms
are all generic with the vertices and edges as parameters
in order to let everyone use their own data structures. The
library was written in Java for Java programs to use it.

2.2 Research question
Our main research question is:

Does a generic library of parallel graph algorithms in Java
have practical merit?

The library we have made may have a merit if its speed is
better than sequential algorithms or algorithms in other
languages. However, due to the time constraints we have
not been able to benchmark our library, so we cannot com-
pare it to algorithms in other languages. We can still argue
if our library has practical merit based on some beneficial
characterisitics of our library and Java, and we will do
so in our conclusion and discussion. In order to answer
this question there is a subquestion that also needs to be
answered:

1. What is a clean design of a parallel graph library in
Java?

We expect that some algorithms will be easier to imple-
ment in parallel than others. It is difficult for some algo-
rithms to divide the work equally over several processors.
Algorithms like DF'S are known to have such problems [25]
and will therefore be difficult to implement. Reachability
is a simple algorithm and we expect it will be easiest to
parallelize. Therefore, we have chosen to implement reach-
ability. Connected components requires only a little more
work than reachability because it can take advantage of
reachability’s implementation and that is the reason why
we have also implemented that algorithm.

2.3 Research approach

To answer the research question, we took the following
steps:

2.3.1 Literature study

An extensive literature study was done on the subject of
parallel graph algorithms to get some ideas of what prop-
erties our library should have. Since there are no such
libraries available in Java, we have studied the algorithms

that are available in other languages. We also studied
parallelism and threads in Java. Most of the results of our
studies can be found in the introduction and related work
sections.

2.3.2 Implementing part of the library

We selected two algorithms to implement: reachability and
connected components. We have created the design for a
parallel graph algorithm library and implemented sequen-
tial and parallel versions of both algorithms. By doing so,
we got first hand experience of the advantages and disad-
vantages of implementing the algorithms using the design
we made. Also, our research question is about the practi-
cal merit of the library and we would not have been able to
answer it without using it ourselves. We did not just im-
plement the algorithms but also created a design for other
algorithms to use so other people will be able to extend
this library.

2.4 Evaluation

We have written Reachability and Connected Components
in Java, both sequential and parallel. In this paper we will
shown the design of the library and we will evaluate the
design choices we made. We cannot give a yes or no answer
to our main research question, but we can name the ad-
vantages and disadvantages. We do this in our discussion,
which can be found in section 6.1.

3. EXISTING GRAPH LIBRARIES

While no other parallel graph library in Java exist, there
are sequential graph libraries for Java (JgraphT, yFiles),
graph libraries for other languages like C++ and Objec-
tive Caml (STAPL and Ocamlgraph) and perhaps most
interestingly, an open source generic parallel graph library
in C++ (Parallel Boost Graph Library). Here we describe
these libraries, as they might be useful when we need to
make design decisions for our library. Perhaps we could
even use an available library in Java like JGraphT to build
our own library on.

3.1 Parallel Boost Graph Library

The Parallel Boost Graph Library (PBGL) is developed
by a part of the Pervasive Technologies Institute at In-
diana University. There are numerous graph algorithms
available as well as some data structures for graphs, but
since it is a generic library one could use their own data
structures [15]. The library is built on a sequential library
and they have explained how to build a parallel library on
a sequential one in [14].

3.2 JGraphT

JGraphT is a free Java graph library that contains several
algorithms and types of graphs. It uses Java generics to
enable its users to use their own data structures. They
implemented more than 15 algorithms, but all of these are
sequential.

One of the choices we had to make is whether we wanted
to build our library on an existing library like JGraphT
or start from scratch. We have started a completely new
library for two reasons. Firstly, it is a lot of work to build
on an existing library. Even though it seems like it should
make things easier, we expect that we would spend a lot
of time on studying the library. And perhaps more impor-
tantly, we wanted to make some conscious, well-thought
design choices. If we would have used someone else’s li-
brary we could not have made those choices ourselves.

3.3 Other related (graph) libraries

An overview of the related (graph) libraries is given in
Table 1. In this table, there are columns specifying the
language, whether it is parallel or sequential, generic or
not, and if it contains data structures and graph algo-
rithms. Also, we mention if they are available or not; if
the table says it is not available it means we could not
download the library at all. Our own library has the fol-
lowing properties: it is written in Java, the algorithms
are available parallel and sequential form, the algorithms
are generic, and there should be many graph algorithms
and some data structures. Furthermore, it should be easy
for the user to implement their own algorithms and data
structures in our library.

4. DESIGN OF THE LIBRARY

In our research we made a start on a library in Java with
parallel graph algorithms. Here we will describe the de-
sign of the library and the design choices we made. The
(documented) code is available as well.

The two packages that are most relevant to describe are
the Graphstructures (section 4.2) and the Algorithms (sec-
tion 4.1). The Graphstructures package contains mostly
interfaces for different types of graphs and one implemen-
tation called SimpleGraph. Algorithms contains inter-
faces, abstract classes and default implementations of se-
quential and parallel reachability. It should be noted that
every class mentioned in this section is generic with param-
eters for the vertices and edges of the graph, and therefore
users can easily use this library with their own graphs.
The parameters are left out of the class diagrams to make
them more readable.

4.1 Design for algorithms

The algorithms package is designed to enable others to
extend this library with their own algorithms. We have
implemented the reachability and connected components
algorithm. A class diagram for the algorithms package
can be found in Figure 1. In the class diagrams, the inter-
faces are represented as << Inter facename >> and the
abstract classes all start with the word Abstract.

The interface Algorithm contains the methods that should
be implemented by any algorithm. An algorithm knows on
which graph it works, which vertex its start vertex is and
it can change the start vertex. Also, there are the meth-
ods preprocessVertex() and postprocessVertex, which
should be called when a vertex is entered respectively has
been finished. What happens here will likely vary among
the algorithms but these methods are often needed.

AbstractAlgorithm implements the methods that are de-
fined by Algorithm. The reason why we did not leave out
the interface Algorithm, is that we want to allow the user
to implement their own version of Algorithm as well.

The subclasses of AbstractAlgorithm are AbstractReach-
ability and AbstractConnectedComponents. Reacha-
bility contains the method defaultReachability () which
is already implemented. This forms the basis of the reach-
ability algorithm. It takes a vertex, calls preprocessVer-
tex (), gets the vertices that are reachable from here, calls
the processReachableVertices() with this set of ver-
tices, calls the postprocessVertex() method. For a more
indepth explanation of the algorithms we refer to section 5.
The important thing here is that only the global structure
of the algorithm is defined. One can implement this class
and define all of the methods that are called to make it
suit any purpose.

Table 1. Related libraries

Name Language Parallel/Sequential Generic Data structures Algorithms Available
yFiles for Java [4] Java Sequential No Yes Yes Commercial
JGraphT [23] Java Sequential Yes Yes Yes Open source
JDSL [28] Java Sequential Yes Yes Yes Open source
PBGL C++ Parallel Yes Yes Yes Yes
STAPL (3, 2] C++ Parallel Yes Yes No No
GTL [13] C++ Sequential No Yes Yes No
LEDA [22] C++ Sequential No Yes Yes Open source
BGL [27] C++ Sequential Yes Yes Yes Open source
Ocamlgraph [7, §] Ocaml Sequential Yes Yes Yes Yes
MLRisc [20] SML Sequential No Yes No Open source

AbstractConnectedComponents, the other class that im-
plements AbstractAlgorithm, is designed in a similar way.
It takes a vertex, calls reachability with that vertex and
calls the finishedCC() method with the connected com-
ponent that was found by reachability. The finishedCC()
method can be implemented by the user.

Apart from the interfaces, this library also contains de-
fault implementations of the algorithms. Four algorithms
have been implemented: sequential reachability, parallel
reachability, sequential connected components and paral-
lel connected components. Parallel reachability is proba-
bly the most interesting one. It implements the Paralle-
1Algorithm interface, which specifies the basics that are
needed to make an algorithm parallel. Because Reacha-
bility uses a stack, which is not synchronized, there are
also synchronized methods needed for access to the stack,
so getNewUnexplored() is synchronized and pops a ver-
tex from the stack, and stackEmpty() is synchronized as
well. The instance variables load, waiting and done are
all needed for termination detection, which is described in
section 5.

4.2 Design for graph structures

The graphs package contains many interfaces containing
methods that are used by the algorithms. Apart from
the general Graph interface and the UndirectedGraph, Di-
rectedGraph and AdjustableGraph interfaces, each algo-
rithm has a corresponding interface that specifies the re-
quired methods for this algorithm. A class diagram de-
scribing the graphs package can be found in Figure 2.

The Graph interface contains the most general methods,
that any graph should have, at least for the algorithms
that are designed now. Graphs should know for example
how many edges and vertices they have, which vertices
these are and the vertices that are connected to an edge.

The DirectedGraph interface is currently not used but
might be used in future algorithms which require a di-
rected graph, like strongly connected components. The
methods that are specified return this extra information
about the edges.

The UndirectedGraph interface does not have any meth-
ods yet, but it exists for classes to implement it to make
clear that they are undirected. It would not make sense
to implement both DirectedGraph and UndirectedGraph,
because a graph cannot be both directed and undirected
at the same time.

Like we mentioned above, each algorithm has a corre-
sponding graph interface in our library. Reachability-
Graph is such an interface. It contains one method that
is used by reachability, namely reachableVertices(). A
ReachabilityGraph may be either undirected or directed.

The ConnectedComponentsGraph is a subclass of Reach-
abilityGraph and UndirectedGraph. Connected compo-
nents does not work on a directed graph right now but
can be easily adapted to change it to a strongly connected
components algorithm. It is a subclass of Reachabili-
tyGraph because connected components uses the reacha-
bility algorithm, and should therefore have access to the
same methods that reachability has access to. There is
also an extra method called getAVertex() which returns
a random vertex, so connected components can be used
without specifying a start vertex.

The AdjustableGraph interface represents a graph that
can be adjusted by adding vertices and edges to it. This
can be useful for generators of graphs that add vertices
and edges one by one to the graph.

We have implemented a default implementation of a graph
that is a ConnectedComponentsGraph, and can therefore
be used by both algorithms that we implemented. Besides
the methods from the implemented interfaces, there are no
other methods in SimpleGraph. There are five variables to
store the edges and vertices. This might seem superfluous
because a graph can be stored by just a set of edges, but
it makes the methods of the graph faster. For example,
it is very easy to get the vertices that are reachable from
a certain vertex v, we can just use verticesWithReach-
ables.get(v). This method is used a lot by reachability.

5. ALGORITHM IMPLEMENTATION

In this section we describe the algorithms we have already
implemented. This may be helpful for implementing other
algorithms to extend the library.

5.1 Sequential reachability

Reachability uses a ReachabilityGraph, which may be
directed or undirected. A start vertex is specified in the
constructor. The algorithm then finds all the reachable
vertices from that start vertex.

5.1.1 Pseudocode: sequential reachability

Stack<Vertex> unexplored;
Vertex v;

ReachabilityGraph g;
unexplored.push(start vertex);

while(!'unexplored.empty()){
v = unexplored.pop();
preprocessVertex(v);
processReachableVertices(g.reachableVertices);
postprocessVertex(v);

}

<<Algorithm>>

Graph getGraphi)

Vertex getStartVertex()

Vold setStanVertex()

Void preprocess\artex(V v}
Void postprocessVertex(Vv v)

A

Hbstractﬁ.lgorithrn
- Graph g
-Verax v
AbstractReachability ‘ AbstractConnectedCom
ponents
= ReachabilityGraph g —
Absiract Set<\> gelReachables() - Reachability r
Void defaultReachabillty findConnectedComganents(}
Abstract Void Abstract void finishedCC()
processReachableVertices(Sat<\=) ‘I'fr\‘
-'Ql DefaultConnectedComp
DefaultReachabilit onents
ySequential - Stack<Set<\>> cCs
. getConnectedComponentsi)
DefaultReachabilityParallel ?
- int numberProcessors DefaultConnectedComp
- List<VertexProcessor> threads onentsParallel
- Stack=\> unexplored
- Atomiclnteger(] load DefaultReachahilit el
- AtomicBooclean(] waiting auliReachabilityParallel r

- AtomicBoolean done

- Set=\V=> reachable

Verex getMewlnexplorad()
Boolean stackEmgty()

v

ParallelAlgorithm

Int gethumberProcessors()
VartexProcessor getThreadAt{int i)
Void initialize Threads))

Figure 1. Algorithms

5.1.2 How it works

The reachability algorithm finds all the vertices that are
reachable from a certain vertex. That means, it finds the
connected component in which that vertex is situated. In

this

pseudocode, unexplored is a stack with unexplored

vertices, and result is a set of reachable vertices from a
certain start vertex.

The algorithm does the following:

1.

2.

Take an unexplored vertex

Call the preprocessVertex(). Here the user can
specify what to do. In our default implementation
of reachability, the vertex will be added to the set of
reachable vertices.

. The reachableVertices() method from the graph

is called. This returns all the vertices that are reach-
able from v. How this is done can be specified by
the user; in our implementation of the graph, a Map
<Vertex, Set<Vertex> > is used to keep the num-
ber of calculations needed to a minimum.

. Call the processReachableVertices () with the ver-

tices that were found. Here, vertices that have not
yet been explored will be added to unexplored.

. Call the postprocessVertex(). The user can define

<<Graph>>

Sei<E> edgesOfertex(V)
 otherEndOfEdge(E, V)
Sat=\> gefVertex3al()

Int getNumberEdges()

Int getNumbereriices(}

<<DirectedGraph>> ? \\

Set<E> incomingEdges(y) || <<UndirectedGraph>> || <<ReachabilityGraph>>

Set<E> ouigoingEdges
\ startVertex(E) - Set=V> reachableVertices
W endVertex(E) [i f]

<<AdjustableGraph>> <<ConnectedComponentsGraph>>

Boolean addVertex(V) V getAVertex(}

Boolean addEdge(E, V., V) ‘f

SimpleGraph
Set<E> edges

Set=\'> vertices

Map<V, Set<E>> verticesAndEdges
Map=E, GraphEdga<\/ E>>
edgesAndGraphEdges

Map<V, Sat<\=
vertices\WithReachables

Figure 2. Graphs

what this method does. Our default reachability im-
plementation does not do anything here.

It repeats steps 1 to 5 until unexplored is empty.

5.2 Sequential connected components

5.2.1 Pseudocode: sequential connected compo-
nents

Vertex v;

Reachability r;

Stack<Vertex> unexploredVertices;
Set<Vertex> graphVertices

while(there are unexplored vertices in this
graph){

v = unexploredVertices.pop();
r.setStartVertex(v);
r.reachability();
Set<Vertex> reachables = r.getReachables();
finishedCC(reachables);
graphVertices.removeAll(reachables);

5.2.2 How it works

This algorithm finds all the connected components of a
undirected graph. It uses a reachability instance. This
could be our sequential or parallel default implementation
of reachability, or an implementation by the user.

The algorithm does the following:

1. Take a new, unexplored vertex;

2. Set this new vertex as the start vertex for reachabil-
ity.

3. Perform reachability with this start vertex

4. Ask reachability for the connected component

5. Call the finishedCC() with this connected compo-
nent. The user can define what happens here. Our
default implementation pushes every connected com-
ponent on a stack.

6. Remove this connected component from the set of
vertices.

It repeates steps 1 to 6 untill all of the vertices of the graph
have been explored.

5.3 Parallel reachability
5.3.1 the algorithm

The algorithm consists of two important parts. The con-
structor of ParallelReachability calls startReachabil-
ity (), which then starts all of the threads and waits until
they are finished. The run() method of the threads per-
form the termination detection, which in turn calls the
reachability algorithm.

Pseudocode: startReachability.

int numberProcessors;

for(int i = 0; i < numberProcessors; i++){
getThreadAt(i).start();

for(int i = 0; i < numberProcessors; i++){
getThreadAt(i).join();

Pseudocode: doReachability.

int doReachability(){
Vertex v = getNewUnexplored();
if(v!=null){
preprocessVertex(v);
processReachableVertices(
g.reachableVertices);
postprocessVertex(v);
return getStackSize();
} else return 0;

How it works.
The algorithm does the following;:

1. Start all of the threads and wait until they are fin-
ished.

2. All of the threads run the termination detection which
is described below.

3. Termination detection calls the reachability algorithm
described above

4. doReachability() tries to get a new vertex, when

this is not possible (v == null) 0 will be returned
to indicate that the stack is empty and this method
exits.

5. If v!=null, the reachability algorithm is executed just
like in sequential reachability.

6. The stack size is returned, and this will be used as
the new load for this thread.

5.3.2 Termination detection

A termination detection algorithm is needed for the algo-
rithm to terminate normally. A lot of research has been
done on termination detection. Users can implement their
own version of termination detection since this algorithm
works indepent of the reachability algorithm. Of course,
one can also use the algorithm we provided. We used the
algorithm described by Sanders [26], and altered it slightly
to make it work in Java. Here we explain how this algo-
rithm works.

Pseudocode: termination detection [26].

AtomicInteger[numberProcessors] load;
AtomicBoolean[numberProcessors] waiting;
AtomicBoolean done;

while(!done){
load[threadNumber] = reachability();
for(int i = 1; load[i-1]==0 && 1i <
numberProcessors; i++){
if (i== (numberProcessors-1) && load[i]==0)
done = true;
}
if(load[threadNumber]==0)
waiting[threadNumber]=true;
else
for(int i = 0; i < numberProcessors; i++)
waiting[i]=Ffalse;
while(waiting[threadNumber] && !'done) ;
}

How it works.

This algorithm is called by every thread performing reach-
ability.

The algorithm does the following;:

1. Call reachability. Reachability returns the number
of vertices that are left on the stack at the end, this
will be the new load for this thread.

2. If the load of every single thread is 0, it sets done to
true.

3. If the load of this thread is 0, it sets waiting to true
for this thread. Else, it sets waiting to false for all
other threads. Since there are more vertices on the
stack no thread should be waiting.

4. If this thread is waiting and the algorithm is not done
yet, it will stay in this while loop.

5. This algorithm keeps calling reachability until one of
the threads sets done to true.

5.4 Parallel connected components

Our default parallel connected components algorithm ex-
tends the default sequential connected components algo-
rithm. The only thing that is changed is the type of
reachability it uses: instead of a Reachability, it uses
DefaultReachabilityParallel.

This is the only way we could make connected compo-
nents parallel. We cannot, for example, work on several
connected components at once, because we do not know
beforehand which vertices will be in which connected com-
ponent. Therefore using the parallel reachability was the
only thing we could do to make connected components
parallel, but this should be good enough, especially for
large graphs.

6. CONCLUSION

We conclude this paper with a discussion and some sug-
gestions for future work.

6.1 Discussion
6.1.1 Design choices

Here we reflect on some of the design choices we made.

Reuse of reachability.

For our connected components algorithm, we use the reach-
ability we have implemented. The parallel connected com-
ponents uses parallel reachability and does not need any
other parallelization. Because of this, very little extra lines
of code had to be written for connected components.

Graph structures.

We have designed a graph interface for every type of al-
gorithm. In Figure 2 this can be seen: there is a Reach-
abilityGraph and a ConnectedComponentsGraph. This
makes explicit which methods in a graph are needed by
the algorithm. It is also clear from the class diagram that
the connected components algorithm needs an undirected
graph, whereas both directed and undirected graphs can
be used for reachability. These interfaces make it easier
to define a graph structure for a certain algorithm, and
we recommend providing a new interface for every new
algorithm.

Interfaces and abstract classes.

We have used a lot of interfaces and abstract classes, as
can be seen in the class diagrams 1 and 2. This might seem
overly complex, but it helps when one wants to implement
their own classes. For example, there is an interface Algo-
rithm and an abstract class AbstractAlgorithm. Without
the interface, it would not be able to make another imple-
mentation of the methods in AbstractAlgorithm without
significant code changes. Without the abstract class, there
are no default methods that can be used for algorithms
that are added in the future, and everyone would have to
implement the methods by themselves, creating a lot of
duplicate code.

6.1.2 Java programmers

An obvious advantage for Java programmers is that this
library saves them a lot of work. Without a parallel graph
library in Java they would have to implement their own
algorithms or use algorithms in other languages. It would
require a lot of work to do so.

6.1.3 Use and maintenance of the library

The advantages of Java over other languages are valid for
our library as well. Java is rather easy to understand
and makes maintaining and extending programs easy, at
least for Java programmers. This is true for our library as
well. Also, because the entire library is generic, any the
algorithms can be used for any type of graphs.

6.1.4 Speed

One of the things that would help answering our research
question, is benchmarking our parallel algorithms and com-
paring them to parallel algorithms in other languages. If
our algorithms are faster, then that would contribute to
the practical merit of our library, but of course speed is
not the only thing that matters. For now we cannot say
anything about the speed (dis)advantages of parallel over
sequential algorithms and our library versus libraries in
other languages.

6.2 Future work
6.2.1 Benchmarking

Due to the limited time of our research, we have designed
the algorithms but have not benchmarked them. Bench-
marks can be performed to see how the parallel algorithms
compare to their sequential variants. Also, our parallel al-
gorithms could be compared to other parallel algorithms
in other languages like C++, to see if a parallel graph li-
brary in Java has a speed advantage or disadvantage over
one in another language.

6.2.2 Proving termination detection

The termination detection that we used has not formally
been proved. We have reason to believe that it works
because it ran for many hours without showing errors, and
we took an existing algorithm [26] which we slightly altered
to make it work in Java. Although we have let it run for
many times without errors, a formal proof is needed to be
sure that the algorithm always terminates normally and
gives the expected results.

6.2.3 Extending the library

We have only implemented two algorithms: reachability
and connected components. The library can be extended
with other parallel graph algorithms, such as topological
sort and breadth first search. The design of our interfaces
and algorithms can be used to implement other algorithms.
The easiest way to add an algorithm is by extending the
AbstractAlgorithm class and adding the algorithm spe-
cific methods to it. To make a parallel algorithm, our ter-
mination detection algorithm can be used. Make sure all
access to shared data structures is synchronized. We also
suggest adding a graph interface for each algorithm, so it
is clear what methods are required in a graph to perform
the algorithm.

7. REFERENCES

[1] W.R. Adrion, M.A. Branstad, and J.C. Cherniavsky.
Validation, verification, and testing of computer
software. ACM Computing Surveys (CSUR),
14(2):159-192, 1982.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,

G. Tanase, N. Thomas, N. Amato, and

L. Rauchwerger. Stapl: an adaptive, generic parallel
c++ library. In Proceedings of the 14th international
conference on Languages and compilers for parallel
computing, LCPC’01, pages 193-208, Berlin,
Heidelberg, 2003. Springer-Verlag.

[3] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,

G. Tanase, N. Thomas, and N.M. Amato. Stapl: A
standard template adaptive parallel c++ library. In
Proceedings of the 14th international conference on
Languages and compilers for parallel computing,
page 10, 2001.

[4] M.Y. Becker and I. Rojas. A graph layout algorithm
for drawing metabolic pathways. Bioinformatics,
17(5):461, 2001.

[5] J.A. Bondy and U.S.R. Murty. Graph theory with
applications. MacMillan London, 1976.

[6] J.R. Burch, E.M. Clarke, et al. Symbolic model
checking: 1020 States and beyond* 1. Information
and computation, 98(2):142-170, 1992.

[7] S. Conchon, J.C. Fillidtre, and J. Signoles.
OcamlGraph. http://ocamlgraph.lri.fr/.

[8] S. Conchon, J.C. Fillidtre, and J. Signoles.
Designing a generic graph library using ML functors.
TFP, 7:124-140, 2008.

[9]

[13]

[14]

A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders.

A parallelization of dijkstra’s shortest path
algorithm. In Lubos Brim, Jozef Gruska, and Jir{
Zlatuska, editors, Mathematical Foundations of
Computer Science (MFCS), volume 1450 of Lecture
Notes in Computer Science, pages 722—-731.
Springer, 1998.

DedaSys. Programming Language Popularity, 2010.
http://www.langpop.com/.

N. Edmonds, A. Breuer, D. Gregor, and

A. Lumsdaine. Single-source shortest paths with the
parallel boost graph library. The Ninth DIMACS
Implementation Challenge: The Shortest Path
Problem, 2006.

L. Fleischer, B. Hendrickson, and A. Pinar. On
identifying strongly connected components in
parallel. Parallel and Distributed Processing, pages
505-511, 2000.

M. Forster, A. Pick, and M. Raitner. Graph
Template Library.
http://www.infosun.fmi.uni-passau.de/GTL/.
D. Gregor and A. Lumsdaine. Lifting sequential
graph algorithms for distributed-memory parallel
computation. In Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
page 437. ACM, 2005.

D. Gregor and A. Lumsdaine. The Parallel BGL: A
generic library for distributed graph computations.
Parallel Object-Oriented Scientific Computing
(POOSC), 2005.

J. Greiner. A comparison of parallel algorithms for
connected components. In Proceedings of the sixth
annual ACM symposium on Parallel algorithms and
architectures, pages 16-25. ACM Press, 1994.

M. Hribar, V. Taylor, and D.E. Boyce. Performance
study of parallel shortest path algorithms:
Characteristics of good decompositions. In
Proceedings from ISUG 97 Conference, 1997.

A.B. Kahn. Topological sorting of large networks.
Commaunications of the ACM, 5(11):558-562, 1962.

[19]

20]

21]

28]

V. Kumar and V.N. Rao. Parallel depth first search.
Part II. analysis. International Journal of Parallel
Programming, 16(6):501-519, 1987.

A. Leung and L. George. MLRISC Annotations.
2007.

S.S. Lumetta, A. Krishnamurthy, and D.E. Culler.
Towards modeling the performance of a fast
connected components algorithm on parallel
machines. In Proceedings of the 1995 ACM/IEEE
conference on Supercomputing (CDROM), pages
32-49. ACM Press, 1995.

K. Mehlhorn, S. Nédher, and C. Uhrig. The LEDA
platform for combinatorial and geometric
computing. Automata, Languages and Programming,
pages 7-16, 1997.

B. Naveh. JGraphT, 2008.
http://jgrapht.sourceforge.net/.

V.N. Rao and V. Kumar. Parallel depth first search.
Part I. implementation. International Journal of
Parallel Programming, 16(6):479-499, 1987.

J.H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229-234, 1985.
P. Sanders. Load Balancing Algorithms for Parallel
Depth First Search. PhD thesis, University of
Karlsruhe, 1997. Number 463 in
Fortschrittsberichte, Reihe 10. VDI Verlag.

J. Siek, L.Q. Lee, A. Lumsdaine, L.Q. Lee, L.S.
Blackford, J. Demmel, J. Dongarra, I. Duff,

S. Hammarling, M. Heroux, et al. The Boost Graph
Library: User Guide and Reference Manual. In
Proceedings of the, volume 243, pages 112-121. ACM
Press, 2002.

R. Tamassia, M.T. Goodrich, L. Vismara,

M. Handy, G. Shubina, R. Cohen, B. Hudson, R.S.
Baker, N. Gelfand, and U. Barandes. JDSL: The
data structures library in Java. Dr. Dobb’s Journal,
26(4):21-31, 2001.

J. Traff and C. Zaroliagis. A simple parallel
algorithm for the single-source shortest path
problem on planar digraphs. Parallel algorithms for
irregularly structured problems, pages 183—194, 1996.

