Specifying Multi-Threaded Java Programs

A Comparison between JML and Separation Logic

Ronald Burgman
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
r.w.burgman@student.utwente.nl

ABSTRACT

Recently Hurlin designed an extension to separation logic,
that made it possible to specify multi-threaded Java-like
programs with fork/join constructs and reentrant locks.
In this paper we aim to evaluate the usability of Hurlin’s
proposed method. This is done by comparing Hurlin’s
variant of separation logic with JML for the specification
of a well-known multi-threaded design pattern.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs|: Specifying
and Verifying and Reasoning about Programs—Specifica-
tion techniques

General Terms

Experimentation, Verification

Keywords

Program specification evaluation, separation logic, JML,
multi-threading

1. INTRODUCTION

It is generally acknowledged that complex computer soft-
ware is often subject to errors, also known as bugs. The
damage caused by these bugs can be severe. Therefore, the
elimination of bugs from computer software has, since the
beginning of computer science, been an important topic.
Many solutions for this problem have already been pro-
posed, using a wide variety of techniques.

At the basis of most of the proposed solutions stands the
principle of program specification. A program specifica-
tion contains a description of the program’s behavior and
without such a definition it is difficult to decide whether
the program behaves correctly or incorrectly. Modern
approaches to make such specifications often use formal
mathematical-based languages, called model languages, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

12th Twente Student Conference on IT January 22, 2010, Enschede, The
Netherlands.

Copyright 2010, University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science.

describe or model the behavior of computer software. The
mathematical nature of model languages makes them pre-
cise, which makes it easy to automate the validation pro-
cess. In this paper two such modeling languages will be
used, namely the Java Modeling Language and separation
logic.

1.1 Separation logic

Separation logic was introduced by Reynolds [4]. It is
designed as an extension of Hoare logic, a special logic cre-
ated to reason about software properties. Separation logic
distinguishes itself from other logics by the reference to a
stack and a heap, which together represent the memory
being used by the specified program. This explicit way of
referring to the memory gives the opportunity to reason
about the contents of the memory and about the relation
between parts of the memory.

Each thread has a unique stack, which is the basic stack
associated with any program execution. The heap, how-
ever, is the same for all threads and contains the data that
is accessed through pointers and therefore data that can be
shared between threads. Separation logic also introduces
some operations to manipulate and compare the heap.
Specifically these operations allow the heap to be split
in disjoint parts at the specification level. This makes it
possible to determine the parts of the heap that are shared
with other objects and thus which pointers are aliases and
which are not.

The separation logic that is used in this paper is de-
scribed in Hurlin’s recent PhD thesis [3]. In his thesis
Hurlin describes a variant of separation logic that is able to
specify multi-threaded Java-like programs with fork/join
constructs and reentrant locks.

1.2 Java Modeling Language

This research also makes use of another modeling lan-
guage besides separation logic, namely: Java Modeling
Language (JML). JML is, like separation logic, based on
Hoare logic and is able to make specifications of Java pro-
grams. JML aims to be complete, formal, but understand-
able by the average Java programmer. The basis of JML
specifications are assertions, which can be placed in the
Java documentation or a separate specification file. This
approach makes JML suitable for any given Java compiler.
Also, a lot of validation tools for JML are available [1], au-
tomating program validation.

JML is, in contrast to the separation logic variant used,
not suitable for multi-threaded programs, but JML is more
mature and also some practical examples of the use of JML

are available, therefore it will be used in this research as
an example and as a reference.

1.3 Related work

Reynolds [4] introduced separation logic. In his article
he describes the basic concepts of separation logic. The
separation logic we will use is an extension of this separa-
tion logic.

Hurlin [3] describes a way to use separation logic for
specifying modern multi-threaded Java-like programs with
fork/join constructs and reentrant locks. The thesis fo-
cuses a lot on the soundness of the concept and little on
the practical use of the proposed method.

1.4 Problem Statement

In this research the focus is on the method described by
Hurlin. His adaption of separation logic for multi-threaded
programs took separation logic one step closer to an ap-
plication in the ’real world’. But before that goal can
be realized, first the practical characteristics of separation
logic need to be examined. In his thesis Hurlin focuses
on proving the soundness of his theory, but spends little
time on the usability of his method. This resulted in a
relatively complex method of which it is uncertain if it is
usable in a practical situation.

Determining the usability of Hurlin’s method is done
by using his method for the specification of a well-known
multi-threaded software pattern. Because it will be very
difficult to objectively determine the usability, only the rel-
ative usability of the proposed method will be determined.
This is done by comparing the specification in separation
logic to a specification in Java Modeling Language (JML).

2. RESEARCH APPROACH

2.1 Research Questions

The main research question of this research is:

e What is the usability of the method for program

specification with separation logic described by Hurlin [3]

when compared to JML?

This research question contains two issues, which need
to be addressed before the actual research:

e What is the suitability of JML as a reference lan-
guage?

e How is (relative) usability defined?

2.2 Java Modeling Language

Because Java Modeling Language (JML) is a well-developed

specification language for Java programs, which is used in
practical situations [1] it can be said that JML has a good
usability and therefore it is a good choice as a reference for
comparing the usability of other specification languages.
Another advantage is the prior knowledge of JML with
the researcher, which allows to save a significant amount
of time that is scarce for this project.

Unfortunately JML also has a disadvantage, which is
the poor support for multi-threaded programs. There has
been at least one attempt [5] to add multi-threaded func-
tionality to JML, but this research has not yet advanced
enough to be included in JML for the purpose of this

research. Because the specification method designed by
Hurlin is specifically for multi-threaded programs, this is
a significant deficiency.

However because of the time constraints on the project,
it will not be feasible to replace JML with another, better
suited, specification language.

2.3 Measurement

As stated earlier it is difficult to objectively determine
the usability of the proposed method and therefore the
proposed method will be compared to JML. Both sepa-
ration logic and JML are used to specify the behavior of
some well-known design pattern for multi-threaded pro-
grams. Both specifications are then compared on the fol-
lowing criteria.

e The time it took to make the specification.
e The length of the specification.

e The completeness of the specification

In this case, completeness refers to the precision of the
specification. Because of the differences between separa-
tion logic and JML, situations will arise in which one of the
languages will be more suitable to specify a specific part
of the code, resulting in different contracts. One of these
contracts will specify fewer characteristics and thus is less
complete, which is a disadvantage. A specification is basi-
cally a list of properties and when this list becomes longer
the specification is obviously more complete. Therefore
counting the number of properties in both specifications
will be a good way to measure the completeness of both
specification languages. Because JML is unsuited to de-
scribe multi-threaded programs, it is expected that the
completeness of JML will be lower than the completeness
of separation logic.

It is also likely that the completeness will have an influ-
ence on the other criteria. It is, for example, intuitive to
state that a specification, which is more complete, takes a
longer time to make and also will be longer than a specifi-
cation which is less complete. This should be kept in mind
when comparing the results.

3. THE ALGORITHM

The test specification is written for the mergesort algo-
rithm. This is a well-known divide and conquer type algo-
rithm and it is therefore easy to create a multi-threaded
version of the algorithm. Also, with a few modifications,
as described below, it will contain all the required proper-
ties we need for this example. The complete original and
modified versions of the algorithm can be found online [2].

Because JML will probably perform well in a single-
threaded environment and separation logic will probably
perform well in a multi-threaded environment it will not
be sufficient to only specify the multi-threaded version of
the algorithm. Therefore we will also make a specification
of the single-threaded version of the algorithm.

3.1 Linked List

Both the multi-threaded and the single-threaded version
of the algorithm make use of a linked list, so the algorithm
can retain some efficiency while rearranging the elements.

The nicety of rearranging the elements instead of copy-
ing them is discussed in the next section. The general
structure of the linked list class is found in Appendix B as
Code 3

The implementation of the single-threaded and multi-
threaded version of the linked list does not differ except
for one point. In the multi-threaded version every element
has its own lock. All operations on a single element require
the lock of that element to be acquired before the oper-
ation, therefore all methods will start whit this.lock and
end with this.unlock. The only exception to this is the
addAll method, which looks as follows:

public void addAll (LinkedList 1)
if (next == null)

next = 1;
this.unlock();
else

next.lock();
this.unlock();
next.addAll(1);

As can be seen the addAll method never locks the 'this’
element, but only the next element. This allows for lock
coupling, which means the next element is locked before
the current element is unlocked. This way of locking guar-
antees that while executing the addAll method there will
never be a moment where not a single element is locked.
This, in turn, will guarantee that no two calls to the addAll
method are able to overtake each other.

Lock coupling, in this example, makes sure that ele-
ments, which are added first, will actually be appended
first at the end of the list. This is not a necessary prop-
erty in this example, but lock coupling is part of Hurlin’s
thesis and it is added to be able to test the usability of all
the properties described in the thesis.

3.2 Multi-threaded Mergesort

For the merge sort algorithm to be interesting to test
Hurlin’s method, it needs to contain the basic structures
which were the focus of Hurlin’s thesis. This means it
must be multi-threaded and needs to contain some shared
resource, which can be locked. This shared resource will
be the list, which is to be sorted. As a consequence the
merge method will no longer be allowed to copy the list,
instead it rearranges the elements. To keep the algorithm
as efficient as possible we will explicitly make use of a
linked list. A linked list does not require element shifting
as will be required for an array-based structure.

The algorithm is made multi-threaded by replacing the
recursive calls in the sort method by a fork/join pair. The
new threads will receive two parameters, namely the first
element of the linked list to be sorted and the number of
elements to be sorted. This second parameter is necessary
because we can no longer cut the list in smaller pieces
and therefore can no longer derive the number of argu-
ments to be sorted from the size of the list. The code of
the sort method with these modifications can be found in
Appendix B as Code 1.

As said above, the merge method of the algorithm is
modified in such a way that the elements of the linked
list are rearranged instead of copied to a new list. To
efficiently do this, a reference to the last element in the
merged list is stored, so we can easily add extra element(s)

at the end of the list. The pseudo-code of the merge
method can be found in Appendix B as Code 2.

3.3 Single-threaded Mergesort

The single-threaded version is made to resemble the
modified multi-threaded version of the algorithm as much
as possible, instead of the original single-threaded version.
This makes it easier to compare the multi-threaded and
single-threaded versions. Because the multi-threaded ver-
sion is used as a basis, the biggest difference between the
single-threaded and multi-threaded version is that fork/joins
in the multi-threaded sort method are replaced by recur-
sive calls in the single-threaded version.

4. SPECIFICATIONS

This section discusses the specifications. Because of size
constraints the complete specifications are omitted from
this paper, however the most important and interesting
parts are presented for discussion. The complete specifica-
tions and separation logic proofs can be found online [2].
The JML specifications used in this paper are validated
with the ESC/Java [6] tool and the separation logic spec-
ifications are manually proven correct.

4.1 Single-Threaded Specifications
4.1.1 JML

For the contract of the linked list we introduce a model
method isSorted, a model variable size and an invariant.
The model method isSorted is used to specify that a list
is sorted. This makes the contracts of the methods that
work with sorted lists considerably more readable. The
model variable size makes it possible to refer to the size
of the list, without referring to the implementation of the
list. We also introduce an invariant that specifies that
the size is at least one. In this context its meaning is
not particularly useful, but because we want to compare
the ability of JML and separation logic to make complete
contracts it is still added. This part of the specification is
found in Appendix C as Specification 4.

Most of the contracts of the linked list methods are triv-
ial and generally they look as follows.

/%@
@ ensures this.getNext() == next;
@x/

public void setNext(LinkedList next)

The only contract that is more complicated is the con-
tract of the addAll method, which can be found in Ap-
pendix C as Specification 5.

The contract of addAll has three parts. The first simply
specifies that the list size increases with the size of the
added list. The second part is a bit more difficult to read,
but specifies that the elements which were in the original
list are not altered. Finally, part three ensures that the
new elements are added at the end of the list, but are not
further edited.

The contract of the sort method in the merge sort algo-
rithm contains three parts and looks as follows:

/*@
@ (1) requires list != null;
@ (2) ensures list.isSorted();

@ (3) ensures list.get(size-1).getNext() ==
null;
@x/
public LinkedList sort(LinkedList list, int
size)

The sort method (1) requires that the list parameter is
not null, meaning there actually is a list to be sorted. In
turn it (2) ensures that the list is sorted and (3) that the
last element of the sorted list has a null reference to the
next element. The last property is a requirement of the
merge method. This method assumes that the lists, which
need to be merged, end with a null reference. An alterna-
tive would be to explicitly pass the size of the sorted ele-
ments to the merge method, then the list may end without
a null reference. One of these two properties is necessary,
because it is possible for loops to exist in the list as a result
of the rearranging of the elements and without explicitly
declaring the end of the list the algorithm can get stuck
in an endless loop.

As said in the last paragraph the merge method requires
that the list in its parameters end with a null pointer,
furthermore it requires that the parameters are sorted and
ensures that the result again ends with a null pointer and
is sorted. The contract looks as follows:

/*@

@ requires ll.sorted &&
ll.get(l1l.size-1).getNext() == null;

@ requires 12.sorted &&
12.get(l2.size-1).getNext() == null;

@ requires \result.sorted &&
\result.get(\result.size-1).getNext() ==
null;

@*/

4.1.2 Separation Logic

The JML contracts above are also specified in separation
logic to be able to compare the contracts. Some properties
turned out to be easier to specify in separation logic, while
others were considerably more difficult. In this section we
will show some examples of both.

A good example property is the sorted predicate. This
predicate is used as the counter part to the isSorted model
method in the JML specification and is able to show the
differences between JML and separation logic clearly. The
property looks as follows.

public pred sorted = (ex Perm p)
(fa LinkedList 1)
PointsTo(next, p, 1) -*
(this.value <= l.value * l.sorted);

The predicate consists of two parts separated by a magic
wand. The first part in front of the magic wand specifies a
possible next element. When this next element exists, the
second part specifies that the value in the current element
is smaller than or equal to the value in the next element,
meaning these two elements are sorted. Then a recursive
call is made to the next element, specifying the sorted
property for the rest of the list.

The sorted predicate contains some of both the advan-
tages and disadvantages. Because in separation logic it
is easy to reason about explicit memory structures, such

as linked lists, it is easy to specify properties about such
a structure. The result is a sorted predicate that is eas-
ier to read than the model method that is the counter
part in the JML specification. A disadvantage is that of-
ten variables have to be explicitly quantified. While in
this example the issue is not very important because we
do not use many variables, it greatly reduces readability
when more variables are needed, while it adds little or
none to the meaning of the predicate. A solution could be
to implicitly quantify the unknown variables.

The sorted predicate can also be used to show some
weak points in separation logic, for example when the
predicate needs to be defined for an array. An array with
five elements is modelled in separation logic as a list of
adjacent cells. According to Reynolds [4] it looks like this.

array a +— ai, a2,as, a4, as;

In this case the array definition is fairly simple, but only
because it is short and we know the length. If the array
would be much longer or would have an unknown size, this
will no longer be a usable way to define an array.

Besides the simple definition of the array, it is also quite
hard to make statements about the array because of the
lack of indexing. Indexing would make it possible to spec-
ify a list is sorted in one statement instead of a separate
statement for every adjacent pair in the array.

Both problems are absent in JML, in which memory
structures do not have to be defined and where elements
can be quantified with a universal or an existential quanti-
fier. Although both quantifiers are available in separation
logic they cannot be used in this context. Adding some
syntax so the above statements can be described with the
use of quantifiers will make them more flexible and easier
to read. But because separation logic always needs a refer-
ence to the memory, a specification in separation logic will
always be more complicated than a similar specification in
JML.

4.2 Multi-Threaded Specifications
4.2.1 JML

It is impossible to make a specification in standard JML
for a multi-threaded program. A large part of a JML
specification consists of constraints on variable contents
through pre- and post conditions. As long as these vari-
ables are not locked, which is generally the case at the
start and the end of a method call, the content of these
variables can be modified by other threads making pre- or
post conditions invalid.

4.2.2 Separation Logic

As said earlier in the algorithm section: the multi-threaded
version of the algorithm uses a linked list of which al indi-
vidual elements can be locked separately. Separation logic
implements a lock by associating a lock with a resource
invariant. When you acquire the lock you also acquire the
invariant and visa versa. In our algorithm if we acquire a
lock on an element, we also want to have complete access
to the object. This means that the lock invariant must
contain write permissions to all the fields of a linked list
element. In separation logic the invariant looks as follows.

pred inv = Perm(value, 1) *

(ex List L) PointsTo(next, 1, L);

This invariant contains all the permissions we need, namely

write permission to the value in this element and write
permission for the reference to the next element.

It is the task of the constructor to initialize the element
and guarantee the lock invariant. This is made explicit
in the contract of the constructor by adding an initialized
post condition and the execution of the commit instruc-
tion. The constructor and the proof of its contract are
added in Appendix section D as Specification 6 and as
Proof 7.

Most other contracts are simple; they require that the
element is unlocked but lockable and that the lockset at
the method’s end equals the lockset at the method’s start.
In separation logic this contract is formalized as follows.

/*

* requires LockSet(S) * ! (S contains this) *
this.initialized;

* ensures LockSet(S) = ! (S contains this);

*/

The only exception to this is again the contract of the
addAll method, which is more complicated because of the
lock coupling within this method. This is expressed in the
contract as follows:

/*

* requires LockSet(this .
next.initialized;

* ensures LockSet(S) x !(S contains this);

*/

public void addAll(LinkedList 1)

S) *x inv x

The use of lock coupling requires that this element is
already locked when the addAll method is called. This
can be seen in the contract in the LockSet(this . S) part,
meaning the lockset contains the locks of this and some un-
known set of objects S. Because this element is locked, the
lock invariant is also required and because we intent to lock
the next element it needs to be lockable: nezt.initialized.
Although at first glance this contract looks fine, it lacks
one important property, namely that the next element is
currently unlocked. This can be easily seen in the proof of
the addAll method, which is added in Appendix section D
as Proof 8.

When we want to lock the next element it is not known
if it is already locked by this thread or not, so the method
might fail. In his thesis Hurlin [3] solves this problem by
introducing the property traversable. This property uses
a class parameter to specify an owner object, which owns
this element. The traversable property uses this param-
eter to specify that no element owned by a certain ob-
ject or thread is in the locksetof the current thread. The
traversable property can then be used to prove that the
call to the lock method will succeed.

However the traversable property cannot be used in this
way in our specification. This is because of the way owner-
ship is specified, through a class parameter, which makes
the ownership static. Since our list is passed between dif-
ferent threads, the ownership needs to be more dynamic
and needs to be able to be altered. Although it is beyond
the scope of this paper to find a solution for this problem,
we still considered a few possible solutions: to allow reas-

signment of the ownership, to specify a predicate and to
adapt the contract of the addAll method.

The first attempt was simply to allow the ownership
to be altered. This is however still not dynamic enough.
Ownership is past between elements in a recursive man-
ner, which would mean that a change of ownership would
require the whole list to change ownership. Because the
list is split between different threads, which work on this
list simultaneously, different parts of the list need to have
different ownerships. Therefore it is not enough to simply
allow a reassignment of the ownership, but a different way
of defining ownership for multiple elements at once is also
necessary.

As a second attempt we tried to specify a recursive pred-
icate which defined the traversable property, but this is
not possible. Any such property requires read permissions
for every element in the list, or at least for each element
for which the ownership will be defined by this predicate.
These permissions are however associated with the lock
invariant and can never be acquired without the lock. So
to specify that an element is unlocked, first the lock needs
to be acquired, after which the element is obviously not
locked anymore.

As a last attempt we tried to add the condition /('S con-
tains next) to the requirements. In this specific case it
is allowed because we already acquired the lock invari-
ant of this element, so we have permissions to reference
the next element. This solves the problem with the call
to the next.lock method, but creates another one. When
the next.addAll method is called, its precondition requires
that the mext.next object is unlocked, which is unknown
at this point in execution.

Although multiple attempts have been made, a sim-
ple solution cannot be found. Therefore more research
is needed to develop a way to assign ownership more dy-
namically.

S. COMPARISON OF JML AND SEPARA-
TION LOGIC

As said, JML and separation logic are compared on
three properties: completeness, the time it took to make
a specification and the length of the specifications.

The number of properties can be found in Table 1 and
they are split in the following categories: class, JML or
separation logic (SL) and single-threaded (SL) or multi-
threaded (MT). In this count three kinds of properties
are taken into account: preconditions, postconditions and
invariants.

The predicates in separation logic and the model dec-
larations in JML are not counted as properties, because
in their own they do not have a meaning. Instead they
are counted if they are used in an invariant or a pre-
/postcondition. If a property occurs in multiple contracts
it is counted multiple times. In \forall quantifiers in JML
we do not see the first two parts of the statement, which
specify the range of the quantifier, as a property, but only
the third part.

As can be seen, the difference between the numbers of
the single-threaded version of the algorithm is small. The
cause of this difference is the absence of the \old and the
pure keywords in separation logic. Therefore properties,
which make use of these keywords, cannot be defined in

separation logic. The reason for the difference in numbers
for the multi-threaded version of the algorithm is as dis-
cussed in the previous section; it is impossible to describe
any JML property in the multi-threaded version of the
algorithm, because the way JML specifies variable con-
tent does not work in a multi-threaded environment. This
clearly shows that this variation of separation logic was
designed for multi-threaded programming and JML was
not.

In Table 2 the time taken to make the specifications
is shown. The difference in the time taken is actually a
bit larger, because of some problems with the ESC/Java
tool, which did not validate the specifications correctly.
The time taken to solve the problems with the tool are
partially included in this count, but the exact amount of
time spend on this problem is unknown.

The difference in time is not big, but in favor of JML.
Part of this difference is related to the inexperience of the
researcher with separation logic, but it probably still is
possible to say that it is easier to make a specification in
JML than it is in separation logic.

Finally the length of the specifications is measured. For
this we count the number of characters in the specification
excluding whitespace. The results are as shown in Table 3.
Of cource no numbers are available for the multi-threaded
specification in JML. The last big difference in the table
is between the single-threaded specifications of the linked
list class. But as is seen in Table 1 this specification is not
complete in separation logic, which explains the difference.

6. CONCLUSION

JML and separation logic are two specification languages,
which rely on two completely different models. JML is
used to specify the contents of variables and return values
and because the input and output of a program rely on
these variables, JML can also specify a program’s behav-
ior. In a multi-threaded environment, however, processes
can be arbitrary interleaved and it becomes difficult, or
even impossible to make claims about variable contents,
which completely nullifies JML’s ability to make program
specifications.

Separation logic, in contrast to JML, does not try to
specify input and output, but focuses on actions and per-
missions to perform these actions. Therefore separation
logic is still able to make claims in a multi-threaded envi-
ronment where the content of variables cannot always be
guaranteed.

While separation logic is specially designed to work in a
multi-threaded environment, it can also be used together
with or instead of JML in a single-threaded environment.
But the abilities of separation logic are less compared to
JML. Separation logic uses a more complicated model than
JML and therefore the use of separation logic will result in
a more complicated specification. The support to describe
variables on a high level, like with quantifiers in JML, is
also absent.

Finally it can be concluded that separation logic and
JML both have their advantages and disadvantages and
that they mainly support each other, but not replace each
other.

7. FUTURE WORK

Throughout this paper two issues have been identified,
which still need more research: the traversable property
and ownership and the use of arrays. The traversable
property is a good solution to specify a certain set of
objects is unlocked, but it cannot be used yet in every
situation because the ownership, which is used by the
traversable property, is only assigned at object creation
and can no longer be altered at a later time. Therefore
a different way of dynamically assigning this ownership is
needed. Also a different way of assigning the ownership of
multiple objects at the same time is needed. This is now
done through recursion, which for example does not allow
for elements of the same list to have different owners.

The second issue is the support for arrays, which is still
poor. To easily work with arrays a better syntax is needed
to define arrays and indexing is needed to easily make
statements about arrays.

8. REFERENCES

[1] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. Leavens, K. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT),
7(3):212-232, dec 2005.

[2] R. Burgman. Specifications and code.
http://purl.org/burgman/separation-logic.

[3] C. Hurlin. Specification and Verification of
Multithreaded Object-Oriented Programs with
Separation Logic. PhD thesis, I’'Université de
Nice-Sophia Antipolis, sep 2009.

[4] J. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer
Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55—74, 2002.

[5] E. Rodriguez, M. Dwyer, C. Flanagan, J. Hatcliff,
G. Leavens, and Robby. ECOOP 2005 -
Object-Oriented Programming, volume 3586/2005,
chapter Extending JML for Modular Specification
and Verification of Multi-threaded Programs, pages
551-576. Springer Berlin / Heidelberg, 2005.

[6] K. Software. ESC/Java2, version 2.0.5.
http://secure.ucd.ie/products/opensource/ESCJava2/.

APPENDIX
A. TABLES

JML SL
ST MT | ST MT
Mergsort 9 0 9 34
LinkedList | 19 0 11 9

Table 1: No. of Properties

JML 74
Separation logic | 80

Table 2: Time taken in min.

JML SL
ST MT | ST MT
Mergsort 300 0 264 203
LinkedList | 763 0 | 521 614

Table 3: Specification Length in characters

B. CODE

public void sort()
if (list.size > 1)
mid = list.size / 2;
threadl = new MergeSort(list, mid);
thread2 = new MergeSort(list.get(mid),
size-mid);
threadl.fork(); thread2.fork();
threadl.join(); thread2.join();
list = merge(threadl.list, thread2.list);
else
//already sorted

Code 1: MergeSort, Sort Method

public List merge (List 11, List 12)
if (11 < 12)

result = 11;

11 = 11.next;
else

result = 12;

12 = 12.next;
last = result;
while (11 != null AND 12 !'= null)

if (11 < 12)

last.next = 11;
11 = 11.next;
else
last.next = 12;
12 = 12.next;
last = last.next;
if (11 !'= null)

last.next = 11;
else

last.next = 12;
return result;

Code 2: MergeSort, Merge Method

public class LinkedList
int value;
LinkedList next;

public LinkedList(LinkedList next, int value);
public void setNext(LinkedList next);

public LinkedList get(int i);

public int size();

// Adds 1 at the end of the list

public void addAll(LinkedList 1);

Code 3: LinkedList

C. JML SPECIFICATIONS

/%@

@ ensures (\result == true) <==> (next ==
null) || (this.getValue() <=
this.getNext().getValue() &&
next.isSorted());

@ public model boolean isSorted();

@x/

//@ public model int size;

//@ private represents size = (next == null)

1 : 1+ next.size;
//@ invariant size >= 1;

Specification 4: JML spec, LinkedList

/*@
@ (1) ensures size == \old(size) + l.size;
@ (2) ensures (\forall int j; 0 < j &&
j < \old(size);
this.get(i) == \old(this.get(1i)));
@ (3) ensures (\forall int i; 0 < 1 &&
i< l.size;
this.get(i+\old(size))
l.get(i));

@x/
public void addAll(LinkedList 1)

Specification 5: LinkedList, addAll Method

D. SEPARATION LOGIC SPECIFICATIONS
AND PROOFS

/%
* requires init x fresh;
* ensures initialized
*/

public
this.
this.
this

}

LinkedList (LinkedList next, int value){
next = next;

value = value;

.commit();

Specification 6: LinkedList, Constructor Contract

{init * fresh}
public LinkedList (LinkedList next, int value){

{PointsTo(this.next, 1, null) x*
Perm(this.value, 1) * fresh}
this.next = next;
{PointsTo(this.next, 1, next) x*
Perm(this.value, 1) x fresh}
this.value = value;
{PointsTo(this.next, 1, next) x*
Perm(this.value, 1) * fresh}

{inv x fresh}
this.commit();

}

{initialized}

Proof 7: LinkedList, Constructor Proof

/*

* requires LockSet(this .

S) * inv x l.initialized;

* ensures LockSet(S) = !(S contains this);

*/

public void addAll(LinkedList 1){
{LockSet(this.S) * inv x l.initialized}
{LockSet(this.S) * (ex LinkedList n) PointsTo(next, 1, n) >
if (next == null){

}

//Case 1: n null

{LockSet(this.S) * (ex LinkedList n) PointsTo(next, 1, n
next = 1;

{LockSet(this.S) * PointsTo(next, 1, 1) x Perm(value, 1)
{LockSet(this.S) * inv}

this.unlock();

{LockSet(S) = !'(S contains this)}

else {

//Case 2: n != null

{LockSet(this.S) * (ex LinkedList n) PointsTo(next, 1, n
(Open/Close) {LockSet(this.S) * inv * l.initialized}
next.lock();

{LockSet(this.S.next) * inv *x next.inv *x l.initialized}
this.unlock();

{LockSet(S.next) * !(S contains this) x next.inv x 1.inif
next.addAll(1);

{LockSet(S) = !'(S contains this)}

{LockSet(S) x !'(S contains this)}

}

Proof 8: LinkedList, addAll method

