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ABSTRACT
Hurlin recently proposed a technique for automatic paralleliza-
tion based on separation logic [9]. This paper proposes an en-
hancement of the mechanism for situations where conditional
statements are used in specifications of programs. With the pro-
posed changes, specifications containing conditional statements
are supported and programs can be automatically parallelized.
Two approaches are identified and a preferable one is suggested.
The proposed extension is illustrated by an exemplifying program
and has been implemented.
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1. INTRODUCTION
Current trend of multi-core systems and computational needs have
led to the development of parallel systems. Parallel architectures
are designed to run on multi-core systems as well as across net-
work applications. Since manually writing parallel systems is
much harder than writing sequential systems, automatic paral-
lelization might provide effective and sound speedups [4, 1, 9].

Several techniques are proposed for automatic parallelization [7,
10, 6]. These techniques use pointer analysis to prove that if
mutations on data done by a part of a program do not interfere
with other parts of the program, these blocks can run in parallel.
Once it is known which part of the data is accessed and which
part is not, parallelization can be done in an automatic manner.

Hurlin proposes a new approach to automatic parallelization that
uses separation logic to detect disjoint access to the heap [9].

This paper proposes an enhancement of the mechanism to support
parallelization when conditional statements are used in specifica-
tions.

The following sections are outlined as follows: the mechanism
of automatic parallelization using separation logic is presented
in section 2, the limitations of this mechanism when using con-
ditional statements is described in section 3, an extension to the
mechanism is proposed in section 4 and a conclusion is drawn in
section 5.

2. BACKGROUND INFORMATION
The behavior of a program can be specified by pre- and postcon-
ditions [8]. Pre- and postconditions are formulas describing the
heap and store at method entry and exit. The heap and the store

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission.
11th Twente Student Conference on IT, Enschede 29th June, 2009
Copyright 2009, University of Twente, Faculty of Electrical Engineering, Mathe-
matics and Computer Science

describe the data structure of a program. To check whether the
pre- and postconditions are valid, they should be verified against
the actual code.

Smallfoot is a framework used for automatic verification of a an-
notated programs written in Smallfoot’s language [2, 3]. Small-
foot’s verifier takes an annotated (i.e. pre- and postconditions)
program and returns, if this program is correct, a proof. The an-
notations are written in separation logic, the proof is constructed
using Hoare rules.

A correct program is described by a Hoare triple, written as:

{X}C{Θ}

where X and Θ are formulas and C is a program. Such a triple
states that if program C starts with a heap described by the pre-
condition X, and if C terminates, the resulting heap is described
by postcondition Θ [8].

The proof of a verified program can be transformed by rewrite
rules. These rules induce local changes, which have no effect
on specifications, but change the code. Because the proof of a
verified program consists of Hoare triples, the proof include both
annotations as well as actual commands. By rewriting parts of
the proof the code of the program can be changed [9].

In other words a verified program can be rewritten in such a way
that its pre- and postcondition remain valid, but the code itself
has changed. In this way code can be parallelized.

2.1 Heaps
Heaps and stores describe the data structure of a program.

Heaps are partial functions from pointers (Loc) to finite collec-
tions (Fields) of non-addressable values (Val) and pointers. Stores
are total functions from variables (Var) to non-addressable values
and pointers (see figure 1) [3].

Heaps def
= Loc

lim
⇀ (Fields→ Val ∪ Loc)

Stores def
= Var→ Val ∪ Loc

Figure 1: Definition of the heap

For example, consider a store s that maps variables x and y to
address 42 and 43:

s def
= x 7→ 42, y 7→ 43

Then, consider a heap h that maps fields f and g of the cell at
address 42 to 3 and 5 and maps fields f and g of the cell at address
43 to 1 and 2:

Figure 3 depicts heap h and store s graphically.



h def
= 42 7→

(
f 7→ 3
g 7→ 5

)
, 43 7→

(
f 7→ 1
g 7→ 2

)

Figure 2: Heap h at address 42 and 43

(a) h′ : x 7→ 42 (b) h′′ : y 7→ 43

Figure 3: Heap h = h′ ∪ h′′ and store s

2.2 Separation Logic
In separation logic, formulas describe the heap [12]. This re-
lation between formulas and heaps is given by the semantics of
formulas, i.e. by �’s definition (see figure 4). The syntax of for-
mulas is given in figure 7.

~x�s def
= s(x) ~nil�s def

= nil

s, h � Π0 ∧ Π1
def
= s, h � Π0 ∧ s, h � Π1

s, h � E0 7→ [ f1 : E1, . . . , fk : Ek] def
= h = [~E0�s→ r] where

r( fi) = ~Ei�s for i ∈ 1..k

s, h � emp def
= h = ∅

s, h � Σ0 ? Σ1
def
= ∃h0h1.h = h0 ? h1 and

s, h0 � Σ0 and s, h1 � Σ1

s, h � Π ¦ Σ def
= s, h � Π and s, h � Σ

Figure 4: Semantics of formulas

Top-level formulas Ξ and Θ are pairs of a pure formula Π and a
spatial formula Σ. Π represents equality and inequality of expres-
sions (e.g. E , nil). Multiple pure formulas are combined using
the ∧-operator.

Spatial formulas Σ represent facts about the heap. A simple (S )
spatial formula: E 7→ [ρ] represents a heap with one cell at address
E and content ρ. This is formalized in the semantics by imposing
h = [E 7→ ρ]. Here ρ is a sequence of adjacent fields.

To exemplify the relation between heaps and formulas, consider
figure 2 and the following formulas:

X = x 7→ [ f : 3, g : 5] = x 7→ 3, 5

Θ = y 7→ [ f : 1, g : 2] = y 7→ 1, 2

Now the relation is given by the semantics (where h is h′ ∪ h′′):

s, h′ � X and s, h′′ � Θ

The logical operation X?Θ asserts that X and Θ hold for disjoint
portions of the addressable heap. Names for this operator are
separating conjunction, independent or spatial conjunction. X ?
Θ enforces X to be disjoint to Θ: no heap cells found in X are also
in Θ [3].

To illustrate the?-operator, consider a heap h and store s: s, h � X
and s, h � Θ where X = x 7→ 3, 5 and Θ = y 7→ 3, 5:

h def
= A 7→

(
f 7→ 3
g 7→ 5

)
, A′ 7→

(
f 7→ 3
g 7→ 5

)

s def
= x 7→ A, y 7→ A′

In this example two cases are possible depending on the equality
of A and A′:

s, h � X ? Θ : A is not equal to A′ figure 5(a)
s, h � X ∧ s, h � Θ : A is equal to A′ figure 5(b)

(a) s, h � X ? Θ (b) s, h � X ∧ s, h � Θ

Figure 5: A more global view of the heap

Simple spatial formulas S include the tree predicate tree(E),
which is defined by an equivalence (see figure 6). This equiv-
alence states that an expression is a tree when it’s either nil or it
has two children as trees. Thus E = nil ¦ emp can also be written
as tree(E).

tree(τ)⇔ (τ = nil ∧ emp)∨
(∃l, r.τ→ l : l, r : r ? tree(l) ? tree(r))

Figure 6: Tree predicate and its equivalence

x, y, z ∈ Var variables
E, F,G ::= nil | x expressions

b ::= E = E | E , E boolean expressions
Π ::= b | Π ∧ Π pure formulas

f , g, fi, l, r, . . . ∈ Fields fields
ρ ::= f1 : E1, . . . , fn : En record expressions

S ::= E 7→ [ρ] | tree(E) | simple spatial
if Π then Ξ else Θ formulas

Σ ::= emp | S | Σ ? Σ spatial formulas
Ξ,Θ, X, ζ,Φ ∈ Π ¦ Σ formulas

Figure 7: Syntax of formulas

2.3 Hoare Logic
Hoare logic describes the behavior of programs using triples and
rules.

Hoare triples are written {X}C{Θ} where X and Θ are formulas
and C is a program. Such a triple states that if program C starts
with a heap described by the precondition X, and if C terminates,
the resulting heap is described by postcondition Θ [8].

An example of a triple is: {x < N}x := 2 · x{x < 2 · N}.

Triples for sequential programs are built using the sequence rule
(see figure 8), the lower premise can be deduced from the upper
ones. This rule means that if two Hoare triples describe a pair
of adjacent commands, such that the first triple’s postcondition is
equal to the second triple’s precondition (Ξ′), then these triples
can be combined in a single Hoare triple.

2.3.1 Frame Rule



{Ξ}C{Ξ′} {Ξ′}C′{Θ}
Sequence

{Ξ}C; C′{Θ}.

Figure 8: A rule used for building sequential programs

The frame rule (see figure 9) extends the local assertions about
the heap to global specifications by using separating conjunction
(?). This rule means that the part of the heap described by Θ is
untouched by C’s execution [11].

{Ξ}C{Ξ′}
Frame

{Ξ ? Θ}C{Ξ′ ? Θ}

Figure 9: Frame rule

As an example, consider a program C that alters the heap by
changing the first cell (from 3 to 8) and adding a cell (2 after
5). C’s precondition is described by Ξ, and C’s postcondition is
described by ζ:

Ξ = x 7→ 3, 5 ζ = x 7→ 8, 5, 2

Using the frame rule C’s pre- and postcondition (Ξ and ζ) can be
extended to (Ξ ? Θ and ζ ? Θ):

Θ = y 7→ 3, 5

{Ξ}C{ζ}
Frame

{Ξ ? Θ}C{ζ ? Θ}

Θ is disjoint to Ξ and ζ, therefore the heap described by Θ is not
accessed by C’s execution (see figure 10).

(a) Ξ ? Θ (b) ζ ? Θ

Figure 10: C is framed by Θ

2.3.2 Parallel Rule
Figure 11 shows the Hoare rule for parallel statements. This rule
shows that if two processes (C and C′) access disjoint parts of the
heap (Ξ and Ξ′) and (Θ and Θ′), they can execute in parallel [12].

{Ξ}C{Θ} {Ξ′}C′{Θ′}
Parallel

{Ξ ? Ξ′}C‖C′{Θ ? Θ′}

Figure 11: Parallel rule

As an example, figure 12 illustrates an update of two disjoint
fields in parallel.

2.4 Smallfoot
Smallfoot is a framework used for automatic verification of a
specified program [2, 3]. Smallfoot consists of three parts: 1)
a while language, shown in section 2.4.1; 2) a set of formulas
that is used to annotate programs written in this language, shown
in section 2.2; and 3) a set of Hoare rules to verify that anno-
tated programs are correct. Some of these rules are shown in
section 2.3.

[x 7→ 3 ? y 7→ 3]
[x 7→ 3] [y 7→ 3]

C ‖ C′

[x 7→ 4] [y 7→ 5]
[x 7→ 4 ? y 7→ 5]

Figure 12: An update of two fields in parallel

p(E1; E2)[Ξ]C[Θ]

Figure 13: Smallfoot’s program specification

A Smallfoot program is specified as shown in figure 13; where p
is the program name; Ξ and Θ are formulas describing the heap;
Ξ is the precondition; Θ is the postcondition; E1 and E2 are a
comma-separated group of expressions (the former is passed by
reference, the latter by value); and C is the actual program (writ-
ten in the Smallfoot language).

2.4.1 Smallfoot language
Smallfoot’s language specification is shown in figure 14.

r ∈ Resources
x, y, z ∈ Var

E, F,G ::= nil | x
b ::= E = E | E , E

f , g, fi, l, r, . . . ∈ Fields

A ::= x := E | x := E→ f | E→ f := F
| x := new() | dispose(E)

C ::= A | empty | if b then C else C′

| while(b){C} | lock(r) | unlock(r)
| p(E1; E2) | C; C | C‖C′

Figure 14: Smallfoot’s language specification

The language specifies several atomic commands A: x := E
makes x an alias of E; x := E → f assigns the content of field
f at address E to x; E→ f := F mutates the content of field f at
address E to F; x := new() assigns the address of a new cell to x;
and dispose(E) disposes the cell at address E.

Other commands C are: conditionals if b then C else C′;
procedure calls p(E1; E2); sequential execution C; C; concurrent
execution C‖C′; loops while(b){C}; and resources acquirement
and releasing lock(r) | unlock(r).

Smallfoot’s resources sharing mechanism goes beyond the scope
of this paper, see Berdine et al. for further references [3].

2.4.2 Verification mechanism
The Smallfoot verifier has information about how the heap is
changed by each atomic commands, and it tries to compose a
proof using Hoare rules. The atomic commands are described by
the leaves of a proof tree and the top level annotation is described
by the root.

Intuitively, Smallfoot’s verifier has a Hoare rule for each atomic
and non-atomic command (see figure 14). Hoare triples for com-
mands are then combined by using the sequence rule (see fig-
ure 8) [2, 3].

If a program can be verified, a proof tree is generated, as the next
section exemplifies.



2.4.3 Shallow
Shallow is a small program written in the Smallfoot language and
shall be used for illustrative purposes (see figure 15). The pro-
gram takes three trees (tree(t), tree(p) and tree(q)) and an
expression (d) as input. This is formalized by Shallow’s pre and
postcondition (enclosed in square brackets) 1.

Shallow updates tree(p) and tree(q) using the method update
(see figure 16). The recursive method mirror (see figure 17) dis-
poses nodes in tree tree(t) lower than depth d and mirrors the
resulting subtree (see figure 18).

The correctness of Shallow is described in figure 26 (see ap-
pendix B, upper tree). The tree shows applications of Hoare rules:
frame and sequence (the or-rule will be explained in section 3).
The root node of the proof tree is equal to the specification (see
figure 15), showing that Shallow’s specification is correct:

{tree(t) ? tree(p) ? tree(q)}
update(p; ); mirror(t, d; ); update(q; )

{tree(p) ? tree(q) ? if d == 0 then emp else tree(t) }

shallow(t,p,q,d;)[tree(t) * tree(p) * tree(q)]{

update(p;);

mirror(t,d;);

update(q;);

} [ tree(p) * tree(q) *

(if(d==0) then emp else tree(t))]

Figure 15: Shallow, executes on three disjoint trees.

update(t;)[tree(t)]{

..

}[tree(t)]

Figure 16: Update, increases all values in the tree by 1.

mirror(t,d;)[tree(t)]{

..

if(d==0){

tree_deallocate(t);

} else {

t->l = tl; t->r = tr;

mirror(tl, d-1;);

mirror(tr, d-1;);

t->l = tr; t->r = tl;

}

..

}[if(d==0) then emp else tree(t)]

Figure 17: Mirror, mirrors a subtree (with depth d) of a tree.

2.5 Proof Rewriting
The concept of proof rewriting is based upon the idea that Small-
foot proofs contain information about how the heap is accessed
(because of the ?-operator). By combining and shifting code in
an intelligent and automatic manner, verified programs can be
optimized and parallelized [9].

Proof trees are rewritten using a set of local updates that are de-
fined by rewrite rules (see figure 19). A rewrite rule consist of two
proof trees, the upper tree describes a pattern to be matched (of
1Recall that the definition of a tree predicate was defined in fig-
ure 6.
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Figure 18: Mirror, executed on some tree with d = 3.

the input), the lower describes the output to be generated when
the pattern matches.

The proof of a verified program can be transformed by rewrite
rules. These rules induce local changes, but have no effect on
the code’s specification. Because the proof of a verified program
consists of Hoare triples, the proof includes both annotations as
well as actual commands. By rewriting parts of the proof the
program’s code can be changed.

The whole procedure is as follows: given a program C, C is
proven using Smallfoot, a proof tree P is generated if C can be
verified. Then, P,C is rewritten into P′,C′, such that P′ is a
proof of C′ and C′ is a parallelized and optimized version of C.
This procedure has been implemented in a tool called éterlou [9].

A rewrite rule will be explained in section 2.5.2.

2.5.1 Frames and Anti-frames
Proof trees of verified programs contain information about 1)
parts of the heap which are accessed by commands, called anti-
frames; and 2) parts of the heap which are not touched, called
frames [5].

The proof tree of the Shallow program (see appendix B, figure 26,
upper tree) contains an explicit description of frames and anti-
frames. The anti-frames can be found in the pre- and postcon-
ditions of the leaves (e.g. tree(p)), the frames are indicated in
applications of the frame rule (e.g. Frame tree(t) ? tree(q)).

2.5.2 Parallelization
The rewrite rule for parallelization (see figure 19) can be under-
stood as follows: Given a proof of the sequential program C; C′

this proof is rewritten into a proof of the parallel program C‖C′.
The newly obtained proof stays valid because it is a valid instance
of the Hoare rules and its leaves are included in the leaves of the
input tree [9].

The rewrite rule for parallelization uses the information of frames
and anti-frames, for example the postcondition of C is matched
against the frame of C′ (Θ).

Application of this rule on Shallow’s proof tree (see figure 15) is
shown in figure 26 (appendix B, third and fourth tree). The upper
postcondition of the left frame’s update(p; ) of Seq (tree(p)) is
equal to the frame in the right node of Seq. Also the upper pre-
condition of the right frame’s mirror(t, d; )‖update(q; ) of Seq
(tree(t) ? tree(q)) is equal to the frame in the left node of Seq.
This implies that the left and right node of Seq can be parallelized.
The rewritten tree is depicted in the last tree of (see appendix B,
figure 26).

2.5.3 Common frames
Every leaf in a proof tree is preceded by an application of frame
(see section 2.5.1). When multiple commands are present, redun-



{Ξ}C{Θ}
Frame Ξ′

{Ξ ? Ξ′}C{Θ ? Ξ′}

{Ξ′}C′{Θ′}
Frame Θ

{Θ ? Ξ′}C′{Θ ? Θ′}
Seq

{Ξ ? Ξ′}C; C′{Θ ? Θ′}

↓Parallelize

{Ξ}C{Θ} {Ξ′}C′{Θ′}
Parallel

{Ξ ? Ξ′}C‖C′{Θ ? Θ′}

Figure 19: Rewrite rule for parallelization

dancy in frames can appear. This redundancy should be removed
for the rewrite rules to work [9].

For example, consider the rewrite rule for parallelization (see fig-
ure 19): C’s postcondition is matched against C′’s frame (Θ).
When C′’s frame contains more elements (i.e. Θ ? ζ) the match-
ing fails. Even though C and C′ can be parallelized.

A solution is to move the redundant frame ζ to a separate frame-
node by applying a separate frame rule, this solution is imple-
mented by the rewrite rule illustrated in figure 20. This rule
means that when ζ is present in both frames of the input tree,
ζ is moved to a separate application of the frame rule at the root
in the output tree [9].

{Ξ}C{Θ}
Fr

{Ξ ? Ξ′ ? ζ}C{Θ ? Ξ′ ? ζ}

{Ξ′}C′{Θ′}
Fr

{Θ ? Ξ′ ? ζ}C′{Θ ? Θ′ ? ζ}
Seq

{Ξ ? Ξ′ ? ζ}C; C′{Θ ? Θ′ ? ζ}

↓Factorize
{Ξ}C{Θ}

Fr
{Ξ ? Ξ′}C{Θ ? Ξ′}

{Ξ′}C′{Θ′}
Fr

{Θ ? Ξ′}C′{Θ ? Θ′}
Seq

{Ξ ? Ξ′}C; C′{Θ ? Θ′}
Fr

{Ξ ? Ξ′ ? ζ}C; C′{Θ ? Θ′ ? ζ}

Figure 20: Rewrite rule for removing redundancy

An example of this redundancy can be found in the proof tree
of the Shallow program (see appendix B, figure 26, first tree).
This tree contains the frames tree(q) ? tree(p) (in the cen-
ter) and tree(p) ? tree(t) (on the right), these frames share
tree(p) 2. Consequently tree(p) is moved to a separate frame-
node by applying the rewrite rule for factorization (see figure 26,
appendix B, second tree).

3. FINDINGS
The rewrite rules for factorization and parallelization, described
by Hurlin, have several limitations [9]. This paper proposes an
extension to support conditional annotation of programs. Shal-
low (see section 2.4.3) is an example where the proposed solution
solves this problem.

Smallfoot’s annotation includes conditional statements described
as:

if b then Φa else Φb

The approach based on Hurlin’s work, does not handle such for-
mulas.

As an example, consider a program C, where Ξ describes C’s
precondition; and if b then Φa else Φb describes C’s postcondi-
tion. Then, Φa describes C’s postcondition when b is true; and
Φb describes C’s postcondition when b is false.
2Note that tree(p) is also the anti-frame of update(p; ) (see sec-
tion 2.5.1).

Conditional statements in postconditions are handled by Small-
foot’s verifier using a case split:

P P′
Or

{Ξ}C{Θ}

This rule means that {Ξ}C{Θ} can be proven either by P or by P′.

The relation between conditional statements in postconditions and
frames is shown in figure 25 (appendix B). C’s postcondition (Φ)
induces a split case on C′’s frame. C’s frame is either Φa (in the
center) or Φb (on the right).

The proof tree (see appendix B, figure 26, first tree, on the right)
of the Shallow program, contains such a split case on the frame
of update(q; ). This split case is induced by mirror(t, d; )’s con-
ditional postcondition:

if d == 0 then emp else tree(t)

The generated proof describes that update(q) is framed condi-
tionally by either (tree(p)) or (tree(p) ? tree(t)). Note that
mirror(t, d; )’s and update(q; )’s common frame is tree(p). This
common frame should be factorized before other rewrite rules can
be used.

Current rewrite rules do not match proof trees containing condi-
tional statements and split cases. The shape of current rules (e.g.
figure 20) describe proof trees containing only applications of se-
quence and frame rules, thus excluding proof trees having split
cases. Éterlou’s rewrite engine stops when split cases are found.

4. SOLUTION
There are two rewrite rules responsible for automatic paralleliza-
tion: Factorize, which prepares the proof tree by removing com-
mon frames and Parallelize, the actual parallelization rewrite rule
[9]. Both rewrite rules need to be extended for the procedure to
work with conditional statements (see section 3).

4.1 Factorization
There are two possible locations where an split case (see ap-
pendix B, figure 25) can be factorized.

1. at the root of the split case’s application, this shall remove
the common frame ζ1 of Φa and Φb, followed by a second
factorization at the root of the sequence-node, removing the
common frame of Ξ f and ζ2 (see appendix C, figure 27).

2. at the root of the sequential’s application, this shall remove
the common frame ζ of Ξ f , Φa and Φb in a single pass (see
figure 21).

The first type of factorization involves a smaller part of the proof
tree than the second one. When choosing for simplicity type one
is preferable. Note that ζ1 and Ξ f might not share a common
frame ζ2. In that case a second factorization cannot be applied,
which results in an unnecessary frame-node ζ1.

The second type will factorize the three frames (Ξ f , Φa and Φb)
at once. In the case the three trees share a common frame (ζ), the
resulting proof tree will have four frames (against five frames in
the case of successful application of type one). More importantly,
type two does include split cases containing a possible continua-
tion (sequences will be explained in section 4.2).

Because factorization of type two is more general this rewrite rule
is preferable. Besides, other rewrite rules will become smaller



{Ξ}C{Θ}
Fr

{.. ? ζ}C{.. ? ζ}

{Ξ′}C′{Θ′}
Fr

{.. ? ζ}C′{.. ? ζ}
{Ξ′}C′{Θ′}

Fr
{.. ? ζ}C′{.. ? ζ}

Or
{.. ? ζ}C′{.. ? ζ}

Seq
{.. ? ζ}C; C′{.. ? ζ}

↓FactorizeOrFrames

{Ξ}C{Θ}
Fr

{..}C{..}

{Ξ′}C′{Θ′}
Fr

{..}C′{..}
{Ξ′}C′{Θ′}

Fr
{..}C′{..}

Or
{..}C′{..}

Seq
{..}C; C′{..}

Fr
{.. ? ζ}C; C′{.. ? ζ}

Figure 21: Rewrite rule for removing redundancy including
split cases, type two

when factorization of type two is used, which is further explained
in section 4.3.

The simplified rewrite rule for factorization of type two is given in
figure 21 (see appendix C). A more complete rewrite rule, includ-
ing a possible continuation, is given in figure 23 (see appendix B).

As an example Shallow’s proof tree (see appendix B, figure 26,
first tree) is factorized by applying FactorizeOrFrames (see ap-
pendix A. The resulting tree (the second tree) after applying Fac-
torizeOrFrames shows that tree(p) is the common frame:

Ξ f ⇔ tree(q) ? tree(p)
Φa ⇔ tree(p) Φb ⇔ tree(p) ? tree(t)

ζ ⇔ tree(p)

4.2 Sequences
The rewrite rule shown in figure 21 is too restrictive, because
it does not consider a possible continuation after C′. The rule
shown in figure 23 (see appendix A) does consider a possible
continuation after C′ (C′′).

FactorizeOrFrames’s input tree includes a split case for C′’s frame
(Θ f a or Θ f b) and C′′’s precondition (Θp ? Θ f a or Θp ? Θ f b).
FactorizeOrFrames’s output tree includes two split cases: one
for C′’s frame (Θ f a0 or Θ f b0); and one for C′′’s precondition
(Θp ? Θ f a or Θp ? Θ f b).

FactorizeOrFrames’s output tree includes an application of the
frame rule for C and C′’s common frame; and a separate applica-
tion of the split case for C′′’s precondition; allowing continuation
as C′′’s frame is left unchanged.

See Hurling for further references about continuation [9].

4.3 Parallelization
In Hoare logic, the parallel rule describes that when two com-
mands (C and C′) do not interfere then they can be executed con-
currently (see section 2.3.2). Consider that when C’s postcondi-
tion is described by a conditional statement 3, C and C′ can only
be parallelized, when C’s access to the heap (Ξ, Φa and Φb) are
disjoint to C′’s access to the heap (Ξ′ and Θ′).

The simplified rewrite rule for parallelization is given in figure
22. The fact that C and C′ access disjoint parts of the heap is
formalized by the tree applications of frame (Ξ′, Φa and Φb). A
complete rewrite rule, including a possible continuation, is given
in appendix B, figure 24.

3if b then Φa else Φb

ParallelizeOr’s guard ensures that the two processes (C and C′)
access disjoint parts of the heap (see section 2.3.2).

{Ξ}C{Φ}
Fr Ξ′

{..}C{..}

{Ξ′}C′{Θ′}
Fr Φa

{..}C′{..}
{Ξ′}C′{Θ′}

Fr Φb
{..}C′{..}

Or
{.. ? Φ}C′{.. ? Φ}

Seq
{..}C; C′{..}

↓ParallelizeOr

{Ξ}C{Φ} {Ξ′}C{Θ′}
Parallel

{Ξ ? Ξ′}C‖C′{Φ ? Θ′}

Guard: Φ⇔ if β then Φa else Φb

Figure 22: Rewrite rule for parallelization including split
cases

As an example Shallow’s proof tree (see section 2.4.3) is par-
allelized by applying ParallelizeOr (see appendix A, figure 24)
on Shallow’s factorized proof tree (see appendix B, figure 26,
second tree). The resulting tree shows that mirror(t, d; ) and
update(q; ) are parallelized. In this case the guards are instan-
tiated as follows:

Θ′ ⇔ t(q) The anti-frame of update(q; ) is equal to the frame
of mirror(t, d; )

Φa ⇔ emp The frame of the left leaf of the split case is equal to
the first part of the conditional anti-frame (Φ) of
mirror(t, d; )

Φb ⇔ t(t) The frame of the right leaf of the split case (Φb) is
equal to the second part of the conditional anti-frame (Φ)
of mirror(t, d; )

One can note that ParallelizeOr is not able to parallelize update(p; )
and mirror(t, d; ), this is done in the last rewrite step using the
Parallelize rule (see figure 19).

In practise should the proposed rewrite rule for parallelization be
applied after the rule for factorization of type two. Using the rule
for factorization of type one is cumbersome, because it requires to
write a dedicated parallelization rule (to match frame ζ2). Hence,
factorization of type two is preferable.

5. CONCLUSION
The mechanism proposed by Hurlin where separation logic is
used for automatic parallelization has several limitations. This
paper addressed one of these limitations: we allow the usage of
conditional statements in annotations.

With the proposed changes a specification’s proof tree contain-
ing conditional statements is supported and the program can be
automatically rewritten to parallelize it. Two approaches for fac-
torization of conditional statements have been described, and the
factorization of type two is identified as the preferable one.

Shallow, an example program, has been used to illustrate this pa-
per findings and proposed solution. This solution has been im-
plemented in the éterlou tool and tested for soundness. There are
other rules than factorization and parallelization and they might
have to be changed to allow conditional statements. This is left
open for further research.
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APPENDIX C: AN ALTERNATIVE FOR THE FACTORIZATION REWRITE RULE

{Ξ′}C′{Θ′}
Fr

{.. ? ζ1}C′{.. ? ζ1}

{Ξ′}C′{Θ′}
Fr

{.. ? ζ1}C′{.. ? ζ1}
Or

{.. ? ζ1}C′{.. ? ζ1}

↓FactorizeOrFrames

{Ξ′}C′{Θ′}
Fr

{..}C′{..}
{Ξ′}C′{Θ′}

Fr
{..}C′{..}

Or
{..}C′{..}

Fr
{.. ? ζ1}C′{.. ? ζ1}

(a) Factorizing ζ1

{Ξ}C{Θ}
Fr

{.. ? ζ2}C{.. ? ζ2}

..
Or

{..}C′{..}
Fr

{.. ? ζ2}C′{.. ? ζ2} Seq
{.. ? ζ2}C; C′{.. ? ζ2}

↓FactorizeFrames

{Ξ}C{Θ}
Fr

{..}C{..}

..
Or

{..}C′{..}
Fr

{..}C′{..}
Seq

{..}C; C′{..}
Fr

{.. ? ζ2}C; C′{.. ? ζ2}

(b) Factorizing ζ2

Figure 27: Rewrite rule for removing redundancy including split cases, type one


