
Evaluation of a Cache-Oblivious Data Structure

Maks Verver
m.verver@student.utwente.nl

ABSTRACT
In modern computer hardware architecture memory is organized in

a hierarchy consisting of several types of memory with different

memory sizes, block transfer sizes and access times. Traditionally,

data structures are evaluated in a theoretical model that does not

take the existence of a memory hierarchy into account. The cache-

oblivious model has been proposed as a more accurate model. Al-

though several data structures have been described in this model

relatively little empirical performance data is available. This pa-

per presents the results of an empirical evaluation of several data

structures in a realistic scenario and aims to provide insight into

the applicability of cache-oblivious data structures in practice.

Keywords
cache efficiency, locality of reference, algorithms

1. INTRODUCTION
A fundamental part of theoretical computer science is the study

of algorithms (formal descriptions of how computations may be

performed) and data structures (descriptions of how information

is organized and stored in computers). Traditionally, algorithms

have been evaluated in a simplified model of computation. In this

model it is assumed that a computer executes an algorithm in dis-

crete steps. At each step it performs one elementary operation (e.g.

comparing two numbers, adding one to another, storing a value in

memory, et cetera). Each elementary operation is performed within

a constant time. In this model, both storing and retrieving data val-

ues in memory is considered to be an elementary operation.

This model is close enough to the way computers work to be ex-

tremely useful in the development and analysis of data structures

and algorithms that work well in practice. However, like every

model, it is a simplification of reality. One of the simplifications

is the assumption that data can be stored or retrieved at any loca-

tion in a constant amount of time, which is why we will call this the

uniform memory model. Advancements in software and hardware

design over the last two decades have caused this assumption to be

increasingly detached from reality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission.
9th Twente Student Conference on IT, Enschede, June 23rd , 2008

Copyright 2008, University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science

Figure 1: Schematic depiction of the memory hierarchy

The main cause for this is the increasing difference between pro-

cessor and memory speeds. As processor speeds have increased

greatly, the time required to transfer data between processor and

main memory has become a bottleneck for many types of compu-

tations. Hardware architects have added faster (but small) cache

memory at various points in the computer architecture to reduce

this problem. Similar developments have taken place on the bound-

ary between main memory and disk-based storage.

As a result, a modern computer system lacks a central memory stor-

age with uniform performance characteristics. Instead, it employs a

hierarchy of memory storage types. Figure 1 gives a typical exam-

ple of such a hierarchy. The processor can directly manipulate data

contained in its registers only. To access data in a lower level in the

memory hierarchy, the data must be transferred upward through

the memory hierarchy. Memory is typically transferred in blocks

of data of a fixed size (although bulk transfers involving multiple

blocks of data at once are also supported at the memory and disk

level).

In the memory hierarchy, every next level of storage is both signifi-

cantly slower and significantly larger than the one above it and with

increasing memory sizes, the block size increases as well. Table 1

gives an overview of typical memory sizes, block sizes, and access

times. The values for the (general purpose) registers, L1 cache and

L2 cache are those for the Pentium M processor as given in [1];

other values are approximate.

To conclude: the memory model used in real computer systems

is quite a bit more complex than the uniform memory model as-

sumed. Given this reality, the performance of many existing algo-

rithms and data structures can be improved by taking the existence

of a memory hierarchy into account. This has prompted research

into new memory models that are more realistic. We will consider

Type Total Size Block Size Access Time

Registers 32 bytes 4 bytes 1 cycle

L1 Cache 32 KB 64 bytes 3 cycles

L2 Cache 1 MB 64 bytes 9 cycles

RAM ± 2 GB 1 KB 50-100 cycles

Disk ± 300 GB 4 KB 5,000-10,000 cycles

Table 1: Sizes and access times of various types of storage

three classes of data structures and algorithms, depending on the

assumptions that are made about the environment in their defini-

tion:

Cache-unaware data structures and algorithms are designed

for the traditional uniform memory model, with no consider-

ation of the existence of a memory hierarchy.

Cache-aware (or cache-conscious) data structures and al-

gorithms are designed to perform optimally in the external

memory model (described below) but require parametriza-

tion with some or all properties of the cache layout (such as

block size or cache memory size).

Cache-oblivious data structures and algorithms are designed

to perform optimally in the cache-oblivious model (explained

below) which does not allow parametrization with properties

of the cache layout.

A great number of cache-unaware and cache-aware data structures

has been developed and these are also widely used in practice. Al-

though some research has been done on cache-oblivious data struc-

tures, there is currently no evidence that they are used in practice.

Consequently, it is unclear if they are suitable for practical use at

all. The main goal for this paper is to give some insight in the

practical merit of cache-oblivious data structures.

In the following pages we will give an overview of the different

available memory models and explain why the cache-oblivious mod-

el is of particular interest. We will then describe what our goals for

this research project were and how our work relates to previous re-

search. A large part of the paper will be dedicated to a description

of our research methodology. Finally, we will present and discuss

our results, and draw a conclusion on the applicability of cache-

oblivious data structures.

2. PREVIOUS WORK
The cache-oblivious memory model is not the only or the first mod-

el that was developed as a more realistic alternative to the uniform

memory model. We will briefly describe some of the alternatives.

2.1 External Memory Model
One of the earliest models to take the differences in memory ac-

cess cost into account is the external memory model, described by

Aggarwal and Vitter [2]. They make a distinction between inter-

nal memory (which is limited in size) and external memory (which

is virtually unlimited). The external memory is subdivided into

blocks of a fixed size and only entire blocks of data can be trans-

ferred between the two memories; additionally, consecutive blocks

can be transferred at reduced cost (so-called bulk transfer). Al-

though Aggarwal and Vitter focus on magnetic disk as a storage

medium for external memory, the model can be generalized to ap-

ply to every pair of adjacent levels in the memory hierarchy. In that

case, the possibility of bulk transfer may have to be dropped.

We will call algorithms that are designed to minimize the num-

ber of transfers in a two-level memory hierarchy “cache-aware”

(as opposed to traditional “cache-unaware” algorithms) or “cache-

conscious”. These algorithms typically rely on knowledge of the

block size to achieve optimal performance.

2.2 Hierarchical Memory Model
The external memory model has the limitation that it only describes

two levels of storage, while we have seen that in practice the mem-

ory hierarchy contains more than just two levels. Even though the

external memory model can be used to describe any pair of adja-

cent levels, a particular algorithm can only be tuned to one. Ag-

garwal, Alpern, Chandra and Snir [3] addressed this shortcoming

by introducing a hierarchical memory model in which the cost of

accessing values at different memory addresses is described by a

non-decreasing function of these addresses, which means that ac-

cessing data at higher addresses can be slower than at lower ad-

dresses. This is a very general model that can be applied to the

real memory hierarchy, but it assumes that the application has full

control over which data is placed where, which is usually not the

case in practice. As a result, the applicability of their model to the

design and evaluation of practical algorithms is limited.

2.3 Cache-Oblivious Memory Model
A different approach to generalizing the external memory model

was taken by Prokop [4] who proposed the cache-oblivious model.

In this model, there is an infinitely large external memory and an

internal memory of size M which operates as a cache for the ex-

ternal memory. Data is transferred between the two in aligned data

blocks of size B. In contrast with the hierarchical memory model,

the application does not have explicit control over the transferring

of blocks between the two memories. Instead, it is assumed that

an optimal cache manager exists which minimizes the number of

block transfers over the execution the program. Additionally (and

in contrast with the external memory model) the values of parame-

ters like M and B are not known to the application, so they cannot

be used explicitly when defining algorithms and data structures. Of

course, analysis in terms of memory transfers does involve these

parameters, so the number of memory transfers performed is still a

function of M and B (and other parameters relevant to the problem).

Algorithms that perform optimally in this model are called “cache-

oblivious” and they distinguish themselves from cache-aware algo-

rithms in that they cannot rely on knowledge of the block size or

other specific properties of the cache configuration. The key advan-

tage of this class of algorithms is that, even though they are defined

in a two-level memory model, they are implicitly tuned to all levels

in the memory hierarchy at once. It has been conjectured that these

algorithms may therefore perform better than algorithms that are

tuned to a specific level in the hierarchy only.

The cache-oblivious model is very similar to the real memory hi-

erarchy, which means that algorithms designed for this model can

easily be implemented in practice. This property, combined with

the promise of cache-efficiency across multiple levels of the mem-

ory hierarchy, makes it a promising model for the development of

low-maintenance, high-performance data structures for use in real-

world applications.

3. RESEARCH GOALS
Several cache-oblivious data structures and algorithms have been

proposed. Complexity analysis shows that the proposed solutions

are asymptotically optimal. However, in software engineering prac-

tice we are not only interested in computational complexity, but

also in the practical performance of data structures and algorithms.

Indeed, many algorithms that have suboptimal computational com-

plexity are actually widely used because they perform well in prac-

tice (for example, sorting algorithms like Quicksort and Shell sort)

and the converse is true as well: some algorithms, although theo-

retically sound, are unsuitable for practical use because of greater

memory requirements, longer execution time, or difficulty of im-

plementation (for example: linear-time construction of suffix arrays

is possible, but in practice slower alternatives are often preferred

that are easier to implement and require less memory).

This raises the question whether cache-oblivious data structures are

actually preferable to traditional data structures in practice. To de-

termine if cache-oblivious data structures have practical merit, em-

pirical performance data is required, which is scarce, as existing

research has focused mainly on theoretical analysis. This paper

addresses the question by reporting on the performance of a newly

implemented (but previously described) cache-oblivious data struc-

ture and two of its traditional counterparts (both cache-aware and

cache-unaware data structures).

4. RELATED WORK
Many data structures and algorithms have been analyzed in the

cache-oblivious model. Several new data structures and algorithms

have been developed that perform optimally in this model as well.

Prokop presents asymptotically optimal cache-oblivious algorithms

for matrix transposition, fast Fourier transformation and sorting [4].

Demaine gives an introduction into the cache-oblivious memory

model and an overview of a selection of cache-oblivious data struc-

tures and algorithms [5]. He also motivates the simplifications

made in the cache-oblivious memory model, such as the assump-

tion of full cache associativity and an optimal replacement policy.

Bender, Demaine and Farach-Colton designed a cache-oblivious

data structure that supports the same operations as a B-tree [6]

achieving optimal complexity bounds on search and nearly-optimal

bounds on insertion. Later, Bender, Duan, Iacono and Wu simpli-

fied this data structure [7] while preserving the supported opera-

tions and complexity bounds and adding support for additional op-

erations (finger searches in particular). This data structure will be

explained in detail in Section 5.3.5. The authors note that a chief

advantage of their data structure over the previously described one

is that it is less complex, more easily implementable and therefore

more suitable for practical use.

Several data structures were proposed by Rahman, Cole and Raman

[8] amongst them a cache-oblivious exponential search tree with a

similar structure as the static search tree proposed by Prokop. In

their experimental results the cache-oblivious tree performs worse

than the (non-oblivious) alternatives. Nevertheless, they conclude

that “cache-oblivious data structures may have significant practi-

cal importance”.

Askitis and Zobel [9] propose a way to optimize separate-chaining

hash tables for cache efficiency by storing the linked lists that con-

tain the contents for a bucket in contiguous memory. Their exper-

iments show a performance gain over traditional methods, espe-

cially when the hash table is heavily loaded.

Vitter presents a theoretical survey of algorithms evaluated in a par-

allel disk model [10], which is a refinement of the external memory

model described by Aggarwal and Vitter, but only allows parallel

transfer of multiple blocks from different disks, which is more re-

alistic. Unfortunately, his survey lacks empirical results.

Olsen and Skov evaluated two cache-oblivious priority queue data

structures in practice [11] and designed an optimal cache-oblivious

priority deque. Their main result is that although the cache-obliv-

ious data structures they examined make more efficient use of the

cache, they do not perform better than traditional priority queue

implementations.

From the available publications we can conclude that only a mi-

nority of the research on the cache-oblivious memory model com-

pares the practical performance of newly proposed data structures

with that of established data structures. Contrary to what theoret-

ical analysis suggests, the practical results that are available so far

fail to show the superior performance of cache-oblivious data struc-

tures. Therefore, additional research is needed to determine more

precisely to which extent cache-oblivious data structures are useful

as a building block for practical work; this paper will provide some

insight in this regard.

5. RESEARCH METHODS
In order to gather empirical data, the research approach must be

made more concrete. We will need to limit ourselves to a spe-

cific class of data structures, since algorithms and data structures

offering different functionality cannot be compared in a meaning-

ful way. Furthermore, we will need to select a proper scenario in

which the data structures are evaluated, as conclusions on the prac-

tical merit of the data structures depend on the degree to which the

test scenario is realistic.

We also need to define more accurately what we mean by practical

performance. Our experiments are performed by running a test ap-

plication (which will be described in detail below) and measuring

two properties: primarily the execution time, and secondarily the

memory in use. The rationale for selecting these metrics is that if

the data structures perform identical functions and enough memory

is available, the only observable difference in running a program

using different data structures will be the execution time. Mem-

ory use is of secondary interest because in practice memory may

be limited, which would preclude the use of data structures that

require a large amount of memory to function.

5.1 State Space Search
The test application that we used to gather performance data imple-

ments a state space search algorithm. This is a suitable scenario for

two reasons. First, it is commonly used as a practical component

of formal methods for software verification, and therefore good al-

gorithms are of great practical significance. Second, as we will

explain below, the performance of state space search algorithms

depends for a large part on the performance of the data structures

that are used to implement them; therefore, research into efficient

data structures is of particular interest to this application.

State space search can be used to verify the correctness of software

programs. For this purpose, programs are first modeled using a for-

mal language, that is also used to specify properties of the program

that should hold during its execution. An executing program can

Program 1 Pseudo-code for a simple state search algorithm

Queue queue = new Queue;

Set generated = new Set;

queue.insert(initial_state);

while (!queue.empty()) {

State state = queue.extract();

for (State s : successors(state)) {

if (generated.contains(s) == false) {

generated.insert(s);

queue.insert(s);

}

}

}

be in a (possibly infinite) amount of states, one of which is usually

designated the initial state. If a transition from one state to another

is possible (according to the rules of the formal language used) the

latter state is said to be a successor state of the former. Generating

the successors of a particular state is also called expanding the state.

Of course, the the execution model must include some form of non-

determinism to allow more than one successor to exist for a single

state. In practice, this non-determinism usually comes from pro-

cesses that execute in parallel, where the precise interleaving of the

execution of instructions in these processes is non-deterministic,

unless synchronization primitives (such as channels, semaphores,

atomic execution blocks, et cetera) are used to enforce a particular

ordering.

The set of all states reachable by transitions from the initial state is

called the state space of a model, and it is the goal of a state space

search algorithm to generate all of these states, in order to check

that desired properties hold in all of them. This approach usually

requires the state state space to be finite, although exhausting the

entire state space is not necessary for our experiments.

The outline of a state space search algorithm is given in Program 1.

Note that in addition to the initial state and a function to generate

successors, a queue and a set data structure are used. The queue

holds states that have been generated but not yet expanded and is

used to determine what state to expand next. The set holds all states

that have been generated so far and is used to prevent a single state

from being expanded more than once.

Although other behavior is possible, our queue operates by a first-

in, first-out principle, meaning that all states that are reachable in

N steps from the initial state are expanded before any states that

require more than N steps.

From the pseudo-code it is clear that the state space search algo-

rithm does not accomplish much by itself; instead, the real work

is done by the successor function and the queue and set data struc-

tures. Queues can easily be implemented efficiently (adding and

removing states takes O(1) time). The efficiency of the successor

function depends on the execution model used, but is typically lin-

ear in the number of states produced. In practice, therefore, the

bottleneck of the algorithm is the set data structure.

5.2 Experimental Framework
For our experimental framework, we needed a collection of formal

models that are representative of those typically used for formal

verification, and a way to execute them. For the first part, we have

looked at Spin [12], a widely used model checking tool. Spin uses

a custom modeling language (called PROMELA) to specify mod-

els and is distributed with a collection of example models that are

suitable for our experiments.

For the execution of these models we used the NIPS VM [13], a

high-performance virtual machine for state space generation that

is easily embeddable in our framework. Although the NIPS VM

only executes bytecode in a custom format, a PROMELA compiler

is also available to generate the required bytecode from the Spin

models [14]. The NIPS VM is preferred to the Spin tools because

it was designed to be embedded in other programs and as such is

more easily integrated in our framework.

The NIPS VM represents program state as a binary string; the size

of the state depends (amongst others) on the number of active pro-

cesses in the program, which may change over the execution of the

program. A typical state size is in the order of a few hundred bytes.

5.3 Data Structures
In the introduction we identified three classes of data structures.

For our evaluation we have implemented a single representative

data structure for each class:

• Cache-unaware: hash tables. Hash tables are widely used in

practice and noted for good performance if the data set fits in

main memory, although they have also been used as an index

structure for data stored on disk.

• Cache-aware: B-trees. The B-tree is the standard choice for

storing (ordered) data on disk, and depends on a page size

being selected that corresponds with the size of data blocks

that can be efficiently transferred.

• Cache-oblivious: the data structure proposed by Bender, Duan,

Iacono and Wu. Since it provides functionality comparable

to that of a B-tree, this seems like a fair candidate for a com-

parison. For brevity, this data structure will be referred to as

a Bender set.

Cache-oblivious data structures are not yet commonly used in prac-

tice and to our knowledge there are no high-quality implementa-

tions publicly available. The Bender set therefore had to be imple-

mented from scratch.

In contrast, both hash tables and B-trees are widely used and there

are several high quality implementations available as software li-

braries. It is, however, undesirable to use existing libraries for a

fair comparison, for two reasons. First, many existing implementa-

tions support additional operations (such as locking, synchroniza-

tion, atomic transactions, et cetera) which are not used in our exper-

iments, but which may harm the performance of these implemen-

tations. Second, many established libraries have been thoroughly

optimized while our newly implemented data structures have not.

This may give the existing libraries an unfair advantage.

In an attempt to reduce the bias caused by differences in function-

ality and quality between existing and newly developed libraries,

all data structures used in the performance evaluation have been

implemented from scratch.

5.3.1 Set Operations
Dynamic set data structures may support various operations, such

as adding and removing elements, testing if a value is an element of

the set, finding elements nearby, succeeding or preceding a given

value, counting elements in a range, et cetera. However, our state

space search algorithm only needs two operations: insertion of new

elements (in a set that is initially empty) and testing for the exis-

tence of elements. In fact, these two operations can be combined

into a single operation. We call this operation insert(S,x). If

an element x does not exist in S, then insert(S,x) inserts it and

returns 0. If x is already an element of S, insert(S,x) returns 1

and no modifications are made. The inner loop of our state space

algorithm can then be rewritten as follows:

for (State s : successors(state)) {

if (generated.insert(s) == 0) {

queue.insert(s);

}

}

We now have a single operation that must be implemented by all set

data structures. Recall that the values to be stored are virtual ma-

chine state descriptions, which are variable-length binary strings.

All data structures must therefore support storing strings of vary-

ing length efficiently.

5.3.2 Common Implementation Details
All data structures were implemented in C using a common inter-

face. For memory management, the data structures make use of a

single memory mapped data region, bypassing the C library’s allo-

cation functions and giving the implementer complete control over

how data is arranged in memory.

In principle, this also means the operating system has control over

when and which data pages are transferred from main memory to

disk storage and back. However, our experiments (which were per-

formed on a system without a swap file) were limited to using main

memory only.

It should be noted that since we only need a limited subset of the

functionality offered by the set data structures for our test applica-

tion, we did not implement any operations that were not required to

perform our experiments. However, we did not change the design

of the data structures to take advantage of the reduced functional-

ity. That means that additional operations could be implemented

without structural changes to our existing implementation.

5.3.3 Hash Table Implementation
In its simplest form, a hash table consists of an index array (the

index) with a fixed number of slots. A hash function is used to map

values onto slot numbers. If the slot for a value is empty, it may be

inserted there. Queries for the existence of an element in the hash

table similarly see if the queried value is stored at its designated

slot.

When several values are inserted, some values may map to the same

slot, which is problematic if each slot can only store one value.

There are many different ways to resolve this collision problem;

we use separate chaining, which means that slots do not store val-

ues directly, but instead each slot stores a pointer to a singly-linked

list of values that map to that slot. This particular implementa-

tion technique is well-suited to the scenario where values may have

Figure 2: Depiction of a separate-chaining hash table

different sizes (as the slots only need to store a fixed-size pointer

and not a variable-size value) and maintains relatively good perfor-

mance when the number of values stored exceeds the size of the

index array [15]. Figure 2 shows a hash table (with an index size

of four, storing three values) and the way it is stored in consecutive

memory.

Our hash table implementation uses a fixed size index which must

be specified when creating the hash table, as this simplifies the im-

plementation considerably. The index is stored at the front of the

file, after which values are simply appended in the order in which

they are added. Note that we do not support removing elements

from the hash table, which means we do not have to deal with holes

that would otherwise occur in the stored file.

For our experiments the FNV-1a hash function [16] is used (modulo

the size of the index) to map values to slots.

5.3.4 B-tree Implementation
The B-tree data structure was first proposed by Bayer and Mc-

Creight [17] and is widely implemented and often described in text-

books. Our implementation is based on the description by Kifer,

Bernstein and Lewis [18].

B-trees are similar to other search tree data structures in the sense

that they store ordered values hierarchically in such a way that ev-

ery subtree stores consecutive values. A key property of B-trees

is that (unlike most in-memory tree structures) they do not fix the

number of children per node, but instead organize data in pages of

a fixed size, each containing as many values as will fit. This makes

them especially suitable for purposes of on-disk storage where read-

ing and writing data in a few large blocks is relatively cheap com-

pared to accessing several smaller blocks.

B-tree pages are ordered in a tree structure. Figure 3 depicts a B-

tree of height two storing eight values. In each page the values are

stored in lexicographical order, and the values in the first leaf page

are lexicographically smaller than “John”, the values in the second

leaf page are between “John” and “Philip” and the values in the

third leaf page are greater than “Philip”. Note that since the page

size is fixed, not all pages are completely filled.

Figure 3: Depiction of a B-tree

Since every page can store many values, the resulting tree is typi-

cally very shallow, which is beneficial as the number of pages that

need to be retrieved is equal to the height of the tree (worst case).

New values are inserted into a leaf page which can be determined

by traversing the tree. If this leaf page does not have enough free

space to insert the new value, the page will have to be split: the

median value is selected, and the old page is replaced by two new

pages containing the values less than respectively greater than this

median value, while the median value itself is moved to the parent

page. When the top-most page needs to be split, a new (empty)

top-level page is created and the height of the B-tree is increased

by one. As a result, all leaf nodes in a B-tree are at the same depth,

and all pages stored are at least half full, except possibly the root

page.

B-trees can easily support the insertion of variable-length values, as

long as each individual value fits in a single page. However, values

with a size larger than the size of a single page must be handled

separately. Our implementation does not support this and therefore

requires all stored values to be smaller than the pages.

5.3.5 Bender Set Implementation
The first implementation challenge for the Bender set is that the

description given by Bender et al assumes that all values stored in

the set are of a fixed size, which is not the case in our experimental

framework. To work around this, we create several separate in-

stances of the Bender set with different value sizes which are pow-

ers of two. When a value is to be inserted, its size is rounded up to

a power of two and it is inserted in the corresponding set instance.

This ensures that the amount of space wasted remains below 50%

while still allowing values of various sizes to be inserted. The fol-

lowing description will be of a single Bender set instance, and it

will therefore be assumed that values do have a fixed size.

A Bender set has a capacity C that is a power of two. Its imple-

mentation consists of two parts: a sparse array storing the values

in order, and a binary tree stored in van Emde Boas layout that is

used to search for values efficiently. Both the tree and the array

may contain special empty values.

Initially, the array stores only empty values and is partitioned into

windows on several levels. On the highest level, there is a single

window of size C. Each subsequent level has twice as many win-

dows of half that size, and the lowest level has size log2C (rounded

up to the next power of 2). For each level a maximum density is

chosen, with the lowest level having density 1, the highest level

having density δ, and the density for the intermediary levels ob-

tained by interpolating linearly between 1 and δ.

A depiction of a Bender set storing four values (with a capacity for

eight) is given in Figure 4, with the window population counts for

the sparse array given on the left (density thresholds not shown)

and the index tree on the right.

The top-level density must be a number between 0 and 1; the op-

timal value depends on practical circumstances such as available

memory and the relative cost of rebuilding the data structures. When-

ever the fraction of non-empty values stored in a window (the win-

dow’s population count divided by the size of the window) ex-

ceeds its maximum density, the window is said to be overflowing.

Overflows are resolved when a higher-level window is rebalanced,

meaning that the values in the window are redistributed evenly over

Figure 4: Depiction of a Bender set

the window, which will cause some of the values to be moved out

of the lower-level windows which are too full.

To insert a value, the index tree is used to find the position of the

smallest existing value that is greater than the new value (i.e. the

value’s successor); the new value will be inserted right before its

successor. Then, the windows overlapping the goal position are

considered from bottom to top. The lowest (smallest) window that

can support another element without overflowing is selected, and

then rebalanced (thereby resolving the overflow in the overlapping

lower level windows).

If all windows, including the topmost window spanning the entire

array, would overflow upon insertion of the new element, the ca-

pacity of the data structure must be increased to make room for

more elements. When this happens, the capacity is doubled, a new

top level is created and then the entire array is rebalanced. Since in-

creasing the capacity causes all values in the array to be moved and

the entire index tree to be recreated, this is an expensive operation;

however, it only occurs infrequently.

According to this description (which follows the paper by Bender

et al) a window is rebalanced every time an element is inserted. As

an optimization, our implementation does not always rebalance a

window. When there is free space between the successor and pre-

decessor of the value to be inserted, the value is simply inserted in

the middle. In our experiments, this optimization yielded a reduc-

tion in execution time.

A detail that is not specified in the paper by Bender et al, is how

the population count for windows is kept. The simplest option is to

keep no such information and simply scan part of the array when-

ever a population count is required. Another extreme is to keep

population counts for all windows on all levels, and update these

counts whenever values are inserted or moved. In our experiments

a compromise seemed to work best: keep population counts only

for the lowest-level windows, and recompute the counts for higher-

level windows when required. This prevents a lot of recomputation,

while keeping the additional costs of updating low.

Finally, the Bender set uses a complete binary tree as an index data

structure to efficiently find the successor element for a given value.

The tree is stored in memory in van Emde Boas layout to allow

cache-oblivious traversal. This layout is named after the data struc-

ture described in [19] and determines an order in which the nodes

of a tree can be stored in a contiguous block of memory, in such a

way that traversing a tree with N nodes from root to leaf requires

only O(logB N +1) pages to be fetched from memory.

In van Emde Boas lay-out, which is defined recursively, a tree with

N nodes is divided in half vertically, creating a small subtree at the

top and a number of subtrees (approximately
√

N) at the bottom.

Figure 5: A binary tree in van Emde Boas layout

Each subtree has a size of approximately
√

N nodes and is stored

in van Emde Boas layout in a contiguous block of memory; these

blocks are then stored consecutively.

In Figure 5 a binary tree is shown, with the nodes labeled with their

positions according to the van Emde Boas layout. In this example,

only two levels of recursion are needed. If we suppose that every

page stores three nodes, then the highlighted path from node 1 to

12 visits only two pages.

In the index tree used for the Bender set, the leaf nodes store the

same values as the sparse array (including empty values). Interior

nodes store the maximum value of their two children (or an empty

value, if both children store an empty value). This tree can be used

in a similar way as a binary search tree: by examining the two

children of a node, we can determine whether a searched-for value

belongs in the left or right subtree. See the right side of Figure 4

for an example.

Note that the structure of the tree is static and only changes when

the capacity of the set is increased (in which case the tree is recre-

ated from scratch). Of course, the values stored in the tree have to

be updated when the corresponding elements of the array change.

5.4 Measurements
Measuring the memory usage of a process can be done by retrieving

how much of the address space has been allocated by a process;

called the virtual set size. This does not necessarily correspond

one-to-one with memory being allocated for the process, but since

the majority of the memory used by the data structures is mapped

at exactly one location, this metric is suitable for our experiments.

There are several ways of measuring the time a process takes to

execute. The simplest is counting the number of seconds elapsed

since the start of the program (called wall clock time). This has the

disadvantage that concurrently executing processes affect the tim-

ing of the process being measured, so on a busy system the reported

time may vary over different executions.

A different way to measure time is using the statistics the ker-

nel collects of how many seconds the processor spends execut-

ing instructions for the process (both in user space and in kernel

space). These values are independent of what other processes are

doing, which makes them more consistent across multiple execu-

tions. However, these values do not account for the time the system

spends waiting (for example, for data to be read from disk) or the

time spent by other processes on behalf of the executing process

(for example, the kernel swap daemon on Linux). Since these fac-

tors may have a large effect on the total running time of the algo-

rithm, it is undesirable to leave these out.

Therefore, we decided to measure wall clock time and deal with

variations across multiple executions by running each experiment

seven times and using the median value for further analysis.

5.4.1 Framework Overhead
Finally, there is another factor that must be taken into account: the

test framework uses several components (such as the NIPS VM and

a queue) that are not being evaluated, yet which do contribute to the

memory use and runtime of the process. In order to discount these

factors, tests are performed using a mock set implementation that

gives a near-minimal overhead. This works by first running with a

real set implementation and logging all results (the return values of

the insert(S,x) calls) to a file, and then running a second time

while reading the stored values. In the second run, the mock set

implementation does not have to actually store or retrieve data and

consequently has negligible memory and runtime overhead.

In the results below, all values are reported relative to the values ob-

tained using the mock set implementation, which means the over-

head of the test framework is removed from the results. Although

the extra memory used by the test framework is relatively small

(less than 10% in all cases) and primarily caused by the queue data

structure, the overhead in terms of execution time was quite signif-

icant: close to 70% on the worst case. This does mean that the set

data structure accounts for at least 30% of the execution time of the

search algorithm in all cases (and much more for the slower data

structures).

5.4.2 System Configuration
The experiments where performed on a 64-bit Linux system (kernel

version 2.6.18) with an Intel Xeon E5335 processor (2 GHz, 4 MB

cache) and 8 GB of main memory (no swap file). Although the

system is a multiprocessor system (and the E5335 is a dual-core

processor) all code is single-threaded so only a single core is used

when executing tests.

The following models are used for benchmarking:

• Eratosthenes is a parallel implementation of the sieve of Er-

atosthenes which is used to find prime numbers up to a given

maximum. It has a single parameter N: only integers from 2

to N (exclusive) are tested. A new process is created for ev-

ery prime number found, and as a result the state space can

only be exhaustively searched for relatively small values of

N (e.g. N < 40). Because processes are dynamically created,

state size increases during execution.

• Leader2 is a leader election algorithm with a configurable

number of processes competing for leadership (N). Since a

constant number of processes will be created and these pro-

cesses cannot make progress until all of them are created,

almost all states have the same size.

• Peterson N is Peterson’s solution to the multi-process mu-

tual exclusion problem (using global variables instead of chan-

nels for communication) with a configurable number of pro-

cesses (N). The processes are created atomically, so the state

size is constant after initialization.

In Table 2 an overview is given of the parameters of the models

used and the resulting properties of the state space search. Note that

the number of transitions relative to the number of iterations gives

Model Parameters Iterations Transitions

Eratosthenes N = 40 1,019,960 4,923,218

Leader2 N = 5 5,950,945 23,856,363

Peterson N N = 4 10,000,000 37,434,411

Table 2: Properties of test cases used

an indication of the ratio of value look-ups (insertions of values

that are already present in the set) and actual insertions, ranging

approximately from 4 to 2.7 look-ups per insertion.

6. RESULTS
Each of the tree data structures has some configurable parameters.

The hash table needs to be parametrized with the size of the index,

the B-tree with the size of the pages, and the Bender set with the

density parameter (δ). To determine which parameters to use, var-

ious different parameters were first tried on the first (and smallest)

test case. In this case, a million relatively small states need to be

stored.

Figure 6(a) shows the execution times for the hash table. The hash

table with a small index (100,000 slots) performs well initially, but

gets slower as it becomes too full, at which point each slot in the

hash table has to store a long list of values that map to that slot.

As Figure 7(a) shows, the only difference in memory usage of the

different hash tables is in the (fixed) size of the index. We will

use the hash table with an index size of 10 million slots for further

experiments, as it performed best in this case, and seems suitable

for other cases (which require storing more values) as well.

Figure 6(b) and Figure 7(b) show the execution time and memory

usage for the B-tree with page sizes ranging from 1 kilobyte to

16 kilobyte. The execution platform maps memory in 4 KB pages,

which would suggest that using pages less than 4 KB makes little

sense. Indeed, the B-tree with 1 KB pages seems to perform worst,

but if we take the memory use into account, this is most likely due

to the fact that fewer items fit on a single page, which means a rel-

atively large portion of the page remains unused. The difference

between 4 KB and 16 KB pages is relatively small (both in exe-

cution time and memory usage); we select the 16 KB page size for

further experiments because state sizes are larger in other test cases,

in which case the 4 KB page size may cause similar problems as

the 1 KB page size here.

Finally, in Figure 6(c) the execution times for the Bender set with

several different density parameters are given. With a lower den-

sity, more space is required, but new insertions less frequently cause

large windows to be rebalanced. The execution times for the den-

sity values of 0.5 and lower are almost the same while larger den-

sity values are slower. Figure 7(c) shows that the lower the density

value, the more memory is used. It appears that the advantage of

low density is negated by the overhead of constructing increasingly

large data structures. The set with δ = 0.125 cannot even finish the

test case in the memory that is available. We select δ = 0.5 for fu-

ture experiments, which strikes a good balance between execution

time and memory requirements.

Now that we have established the parameters to use for the other

test cases, we can run final experiments on all three test cases. The

execution times for these cases are presented in Figure 8 and the

corresponding memory usage is presented in Figure 9.

7. DISCUSSION
The three test cases paint a very similar picture: in all cases, the

hash table offers the best performance in terms of both execution

time and memory usage, followed by the B-tree. In all cases, the

Bender set performs worst by a large margin.

It should be noted that the Bender set is the only data structure that

shows abrupt changes in both the execution time and memory usage

graphs. These jumps in the graph occur whenever the capacity of

the Bender set is increased; this causes the memory allocated for the

set to be doubled and the array and tree structures to be recreated,

which is a relatively expensive operation.

The difference in execution time between the hash table and B-tree

increases as the size of the states becomes larger. This is explained

by the fact that the height of the B-tree depends on the average

number of values per page; larger values means less values per

page, and therefore a deeper tree, and as a result more pages to

be fetched for a query. The hash table does not have such a limi-

tation, as every value in the bucket must be fetched independently,

regardless of the size of these values.

With respect to memory usage the B-tree and hash table have sim-

ilar requirements; the B-tree has slightly larger overhead per value

stored, but initially the hash table uses more memory because of

the space allocated for the index.

The performance of the Bender set does not seem to depend on the

page size, and as a result the difference between the Bender set and

the B-tree is smallest when the page size is largest. Unfortunately,

even then it requires about three times as much time (and 5–6 times

as much memory).

The increased memory requirements of the Bender set can in part

be explained by our implementation of variable-length values, which

wastes some space by storing them in fixed-size slots. This over-

head should be around 25% on average.

The test cases used all have a relatively high ratio of value inser-

tions to look-ups. This may explain the good performance of the

hash table (for which insertions are barely more expensive than

look-ups) as well as the bad performance of the Bender tree (for

which insertions are relatively expensive, especially when a win-

dow is rebalanced). Unfortunately, our experiments do not give

enough data to determine how the relative performance of the data

structures changes when this ratio changes.

7.1 Implementation Complexity
Since all data structures included in the experiments were imple-

mented from scratch, our research also yields some insight in the

implementation complexity of the different data structures.

Table 3 gives the number of lines of source code used to implement

various part of the test application, after removing comments and

blank lines (which amount to about 25% of the code). Common

code includes allocation functions, interface descriptions and com-

parison and hashing functions. The framework includes not just the

search algorithm, but also the functionality to report various met-

rics while running a test case.

Although not a perfect metric of implementation complexity, the

lines of code required for the various components of the test appli-

cation do give some insight in the relative complexity of the data

Purpose Lines Percentage

Common code 433 18.21%

Hash table 146 6.14%

B-tree 299 12.57%

Bender set 623 26.20%

Queue 184 7.74%

Search Framework 693 29.14%

Table 3: Source lines of code of the test application

structures. It is clear why hash tables are a popular choice: they

are easy to implement yet perform very well. The Bender set not

only uses more lines of code, but in our experience also required a

greater amount of effort to implement correctly.

8. FUTURE WORK
It should be noted that in our experiments only part of the memory

hierarchy was used (up to the use of main memory). This still in-

volves several levels of processor cache, but it is not a very deep

hierarchy. In a deeper memory hierarchy, with greater differences

in access times between the levels, the cache-efficient data struc-

tures (the B-tree and the Bender set) should perform better. Specif-

ically, using disk-based storage as the lowest level of storage seems

a logical extension of our research.

In our experiments we did not measure cache efficiency specifi-

cally; instead, we measured total execution time only, which is

affected by several different factors of which cache efficiency is

only one. To better understand how different factors influence per-

formance, it would be interesting to measure cache efficiency sepa-

rately and report on actual cache hits and misses on different bound-

aries of the memory hierarchy.

Finally, we only evaluated a single data structure in a single test en-

vironment (even though we used more than one model to perform

experiments). To draw more general conclusions about the practi-

cal merits of cache-oblivious data structures, it will be necessary to

perform experiments at a larger scale, comparing multiple cache-

oblivious data structures and using scenarios that differ more.

9. CONCLUSION
The experimental results clearly show that the cache-oblivious data

structure proposed by Bender, Duan, Iacono and Wu is outper-

formed by traditional data structures in our test scenario, in terms

of both execution time and memory use. The advantage of more

cache-friendly behavior does not appear to be large enough to com-

pensate for the increased complexity of the data structure, which re-

sults in higher memory requirements and increased computational

overhead. If the data structure does have asymptotic performance

benefits, then realistic work loads on current hardware systems are

not enough to reveal this. These findings are consistent with earlier

results, such as obtained by Rahman, Cole and Raman, and Olsen

and Skov (see Section 4).

Of course, this does not prove conclusively that cache-oblivious

data structures are entirely without merit. Our experiments are lim-

ited in scope: only a single cache-oblivious data structure has been

examined, in a single test scenario, on a single platform. In a differ-

ent setting, different cache-oblivious data structures might compare

favorably to their traditional counterparts. However, since the ob-

served differences in performance are fairly large, it is unlikely that

small changes are enough to close the performance gap.

We hope that future research on cache-oblivious data structures will

not focus on theoretical performance alone, but will also compare

performance in practice with existing alternatives. Although theo-

retical results are invaluable, newly developed data structures and

algorithms should, preferably, have demonstrable practical merit as

well.

10. REFERENCES
[1] Intel Corporation. IA-32 Intel Architecture Optimization

Reference Manual, 2004.

[2] A. Aggarwal and S.V. Jeffrey. The input/output complexity

of sorting and related problems. Communications of the

ACM, 31(9):1116–1127, 1988.

[3] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model

for hierarchical memory. ACM Press New York, NY, USA,

1987.

[4] H. Prokop. Cache-Oblivious Algorithms. Master’s thesis,

Massachusetts Institute of Technology, 1999.

[5] E.D. Demaine. Cache-oblivious algorithms and data

structures. Lecture Notes from the EEF Summer School on

Massive Data Sets, 2002.

[6] M.A. Bender, E.D. Demaine, and M. Farach-Colton.

Cache-Oblivious B-Trees. SIAM Journal on Computing,

35(2):341–358, 2005.

[7] M.A. Bender, Z. Duan, J. Iacono, and J. Wu. A

locality-preserving cache-oblivious dynamic dictionary.

Journal of Algorithms, 53(2):115–136, 2004.

[8] N. Rahman, R. Cole, and R. Raman. Optimised Predecessor

Data Structures for Internal Memory. Algorithm

Engineering: 5th International Workshop, WAE 2001,

Aarhus, Denmark, August 28-31, 2001: Proceedings, 2001.

[9] N. Askitis and J. Zobel. Cache-Conscious Collision

Resolution in String Hash Tables. String Processing and

Information Retrieval: 12th International Conference,

SPIRE 2005, Buenos Aires, Argentina, November 2-4, 2005:

Proceedings, 2005.

[10] J.S. Vitter. External Memory Algorithms and Data

Structures: Dealing with massive data. ACM Computing

Surveys, 33(2):209–271, 2001.

[11] J.H. Olsen and S.C. Skov. Cache-Oblivious Algorithms in

Practice. Master’s thesis, University of Copenhagen,

Copenhagen, Denmark, 2002.

[12] G.J. Holzmann. The Spin Model Checker: Primer and

Reference Manual. Addison-Wesley Professional, 2004.

[13] Michael Weber. An embeddable virtual machine for state

space generation. In SPIN, pages 168–186, 2007.

[14] M. Weber. NIPS VM.

http://www.cs.utwente.nl/˜michaelw/nips/.

[15] R. Sedgewick. Algorithms in C++. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1992.

[16] L.C. Noll. Fowler/Noll/Vo (FNV) hash, 2004.

http://isthe.com/chongo/tech/comp/fnv/.

[17] R. Bayer and E. McCreight. Organization and Maintenance

of Large Ordered Indices. 1970.

[18] M. Kifer, A. Bernstein, and P.M. Lewis. Database Systems:

An Application-Oriented Approach. Addison-Wesley, 2006.

[19] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and

implementation of an efficient priority queue. Theory of

Computing Systems, 10(1):99–127, 1976.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

capacity=100,000
capacity=1,000,000

capacity=10,000,000

(a) B-tree

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

pagesize=1 KB
pagesize=4 KB

pagesize=16 KB

(b) Hash table

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

δ=0.125
δ=0.25
δ=0.5

δ=0.667
δ=0.75

(c) Bender set

Figure 6: Execution times per data structure on Eratosthenes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200

M
em

or
y

(M
B

)

Iterations (x1000)

capacity=100,000
capacity=1,000,000
capacity=10,000,000

(a) B-tree

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

M
em

or
y

(M
B

)

Iterations (x1000)

pagesize=1 KB
pagesize=4 KB

pagesize=16 KB

(b) Hash table

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200

M
em

or
y

(M
B

)

Iterations (x1000)

δ=0.125
δ=0.25
δ=0.5

δ=0.667
δ=0.75

(c) Bender set

Figure 7: Memory usage per data structure on Eratosthenes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

Hash table
B-tree

Bender set

(a) Eratosthenes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

Hash table
B-tree

Bender set

(b) Leader2

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

Iterations (x1000)

Hash table
B-tree

Bender set

(c) Peterson N

Figure 8: Execution times per test case

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200

M
em

or
y

(M
B

)

Iterations (x1000)

Hash table
B-tree

Bender set

(a) Eratosthenes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000

M
em

or
y

(M
B

)

Iterations (x1000)

Hash table
B-tree

Bender set

(b) Leader2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
em

or
y

(M
B

)

Iterations (x1000)

Hash table
B-tree

Bender set

(c) Peterson N

Figure 9: Memory usage per test case

