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Abstract

There are a lot of different tools used for formal verification of hard- and software. Both for the scientific
purpose of comparing methods and tools, as well as the industrial use cases which may require combining
various methods, a uniform interface for state space generation would improve the applicability of model
checkers. One such interface is the partitioned next state interface (PINS) [5] which is an abstraction
layer between the model and the algorithms used for state space generation. In this thesis we develop a
partial order algorithm that works using a minimal extension of the PINS interface, and is developed in
a modular fashion.
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1.1 Background Introduction

1.1 Background

Model checking is an important technique when it comes to verification of hardware and software. In short,
model checking is the automatic verification that some property p holds in some model M . Typically,
these properties specify a requirement such as the absence of deadlocks, a safety property ("bad things
do not happen") or a liveness property ("eventually good things will happen"). The term model checking
was introduced by Clarke and Emerson [15], and was meant as an efficient, practical, algorithmic method
to verify a model specification. Since then, various model checkers (SPIN [28], mCRL2 [24], nuSMV [8, 9],
LTSmin [5]) have been implemented. Companies apply the technique to increase their confidence in the
correctness of software. Safety-critical control software used in avionics nowadays is required to be verified
using model checkers. Other industries report success stories using model checking as well. Nevertheless,
the use of formal methods like model checking in the industry can still be improved. Two key ingredients
that may contribute to this are improving the accessibility/usability of model checkers together with the
development of new methods to verify larger, more complex systems. The number of states in complex
systems can quickly explode when multiple subcomponents are combined into one global system. This
phenomenon is referred to as the state space explosion, where the exponential blowup in the size of the
state space can make full exploration infeasible. The best known methods to counter the state space
explosion can be summarized in three categories: partial order reduction [22, 15], symbolic representation
[9], special purpose techniques [15]. The special purpose techniques include abstraction [11], compositional
reasoning [15], symmetry reduction. Abstraction focuses on proving a simplification of a system such that
the properties that hold in the simplified system hold in the original system too. Sometimes incremental
refinement of the abstraction is used (CEGAR [10]). Compositional reasoning decomposes the system into
small parts on which local properties must hold for the global property to be true. Symmetry reduction
defines an equivalence relation between identical subcomponents in a global system. These techniques are
valuable alternatives when both partial order reductions and symbolic representation do not significantly
reduce time nor memory.

Symbolic techniques as introduced by Ken McMillan make use of binary decision diagrams (BDD)
to implicitly store the state space, represented as boolean function. The benefit of using BDD based
structures is that an exponential blowup can be avoided in a proper BDD encoding. Besides the BDD
based approach it is possible to unroll a program to a certain bound, encode it as a binary problem and
use a SAT solver [8] to verify it. The technique called partial order reduction [22, 12, 37] exploits the fact
that independent transitions of the system components do not need to be ordered, and therefore do not
all need to be explored. The SPIN [28] model checker is well known for the use of this technique.

The above mentioned methods all have been implemented in different research projects and model
checkers, but lack uniformity in specification language making it difficult to combine, compare and use
the techniques together. Uniform tool support would improve the applicability of model checkers for both
scientific and industrial purposes, but requires a more modular approach to model checking. In this view,
the PINS interface [5] has been designed. The interface splits the responsibilities of state space generation
and exploration. The back-end algorithms take care of state space exploration, exploiting the information
provided through the PINS interface. This directly enables symbolic-, distributed- and multi-core state
space exploration. The goal of this research is to make a generalized partial order reduction algorithm
able to work with the abstracted data provided by (an extension of) the PINS interface.

1.2 Related work

Partial Order Reduction is a very well known technique, introduced around 1980 by Overman [34], Valmari
[41], Godefroid and Wolper [23] and Holzmann and Peled [28]. In explicit state space exploration, partial
order reduction usually refers to the specific technique of expanding a representative subset of all enabled
transitions of a particular state. This technique has also been described as model checking using repre-
sentatives [37]. Valmari uses stubborn sets for partial order reduction. Godefroid [22] presented a similar
approach using persistent sets, and later defined a dynamic approach where dependencies are tracked on
the fly [17]. The most well known implementation uses the ample set approach, and is available in SPIN

2



Introduction 1.3 Research questions

[28]. The ample set has many of the same features of the persistent set, plus extra conditions needed
for validation of temporal logic. Twophase, an algorithm of Nalumasu and Gopalakrishnan [33] embeds
this proviso in the algorithm. Kurshan et al [30] apply the reduction into the model before the actual
exploration (static partial order reduction). Recently, the POR techniques have been used in symbolic,
sat based exploration strategies too [29, 42]. This is done by forcing processes to execute in a particular
order.

1.3 Research questions

All partial order reduction algorithms mentioned in the related work heavily depend on the notion of
processes. The PINS interface is an abstraction without processes. The process algebraic front-ends
µCRL and mCRL2 do not rely on the notion of processes, thus adding processes to the PINS interface
will limit its power. Therefore two main research questions must be answered. First

“How to design a partial order reduction algorithm without the notion of processes?”

Together with the question

“What is a minimal extension of the PINS interface to support this algorithm?”

Besides that the partial order reduction algorithms rely heavily on processes, they usually are inter-
mingled with the search algorithms. From a tool designer’s point of view, this makes it hard to reason
about and maintain the back-end algorithms. Furthermore, all back-end algorithms need to be aware of
partial order reduction, which makes it difficult to make changes in the interface or the algorithms. A
more modular approach could potentially solve this.

“Is it possible to design this partial order reduction algorithm in a modular fashion, such that
it can be implemented on top of the normal search algorithms?”

Besides modularity, ideally the partial order reduction algorithm is accessible with the least amount of
work for any front-end using it. It should be both easy to extract, and pass the extra information through
the PINS interface.

“What is the least amount of information needed to achieve a reasonable state space reduction?”

Finally, since the PINS back-end algorithms already support symbolic model checking using BDDs, the
addition of a partial order reduction algorithm makes it possible to compare the two techniques. Currently
this question is difficult to answer because there exists no tool that supports both techniques. Comparing
the techniques using different tools is not fair with respect to time nor memory, since this requires different
specification languages, different compilers, different optimizations and so forth.

“How does partial order reduction compare to symbolic model checking?”

1.4 Summary of contributions

1. A modular partial order reduction layer for an extension of PINS (i.e. language independent).
(Section 3.2 to 3.7).

2. Improvement on stubborn set algorithm. (Section 3.6).

3. A modular LTL layer for PINS. (Section 4.4).

4. Couvreur’s algorithm combined with General State Expanding Algorithms. (Section 4.6).

5. A modular proviso implementation. (Section 4.5 and 4.6.3 to 4.6.7).

3



Chapter 2

The PINS architecture

In this chapter the PINS architecture is introduced, as
is described in the original tool paper by Stefan Blom,
Michael Weber and Jaco van de Pol. The PINS archi-
tecture is an abstract interface through which state space
generation is enabled. This chapter introduces the con-
cept of the interface as well as the implementation in the
LTSmin toolset and the front-ends connecting to it.

4



The PINS architecture 2.1 The Partitioned Next State Interface

2.1 The Partitioned Next State Interface

The PINS interface [5] is an Interface based on a Partitioned Next-State function. It separates the re-
sponsibility for state generation from the state space exploration tools by providing a layered architecture
(see Figure 2.1) with front-ends, wrappers and back-ends. Front-ends provide the next state information
while encapsulating language details of the specific tool through the PINS interface. Using PINS2PINS
wrappers, various optimizations can be made at the level of the PINS interface. The back-end algorithms
are based purely on the information provided by the PINS interface, and are completely unaware of the
wrappers and details of the languages. Interestingly the interface often allows existing enumerative tools
to connect easily, instantly providing explicit, symbolic and distributed state space generation. An im-
plementation of the PINS interface exists in the LTSmin toolset [5].

Currently the following front-ends are connected to the LTSmin toolset through the PINS interface:

1. ETF [5], the Extended Table Format is an in- and output language for PINS.

2. DiVinE [2], a tool for LTL model checking and reachability analysis of discrete distributed systems.

3. CADP [20], a toolbox designed to analyze protocols and distributed systems. LTSmin also im-
plements the Cæsar/Open [19] interface to CADP’s on-the-fly model checking and bisimulation
reduction algorithms.

4. µCRL [3], is a process algebraic language that was especially developed to take account of data in
the study of communicating processes.

5. mCRL2 [24], the successor of µCRL.

6. NIPS [43], a virtual machine able to handle a large subset of Promela [28].

7. SpinJa [13], a Java implementation of Spin supporting a large subset of Promela.

Front-ends

Wrappers

Back-ends

PINS

PINS

ETF Process Algebras State Based

Local Transition Caching Regrouping LTL POR

Symbolic Distributed Sequential

Figure 2.1: The PINS architecture

5



2.1 The Partitioned Next State Interface The PINS architecture

2.1.1 The PINS front-end interface

A PINS front-end or language module is responsible for the translation of the model specification (usually
some textual description of the model) to the PINS interface. The underlying semantic model of the PINS
interface is a transition system with edge- and state labels. We elide from the edge labels as these are not
used for our purposes.

Definition 1. A transition system (TS ) is a structure 〈S,→, ŝ, L〉, where S is a set of states, → ⊆ S×S
is a transition relation, ŝ is the initial state and L is an indexed vector of M state labeling functions
λi : S → N for (1 ≤ i ≤M). We refer to the ith state labeling function as state label i.

The PINS interface exports functionality describing the TS; initial_state() returns ŝ and next_all(s)
returns all successor states of s, state_label_all(s) returns all evaluations of theM state labeling functions.
The heart of the PINS interface however lies in a more fine grained view of the transition system, which
is used for exploiting event locality: a set of states is a Cartesian product of elements; transitions usually
just depend on few of these. For example, the transition system may be a (asynchronous) product of
multiple smaller transition systems each describing a process. These processes usually have their own
local variables and communicate using global variables or channels. The behavior of each process depends
solely on just these parts of the state, not on the local state of other processes. This is formalized by
partitioning the transition system as follows:

Definition 2. A partitioned transition system (PTS ) is a structure P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉,
〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. The sets of elements E1, . . . , EN define the set of states SP = E1 × . . .×EN .
The transition groups →i⊆ SP ×SP , (1 ≤ i ≤ K) define the transition relation →=

⋃K
i=1 →i. The initial

state is ŝ = 〈ê1, . . . , êN 〉 ∈ SP and LP = 〈λ1, . . . , λM 〉. The defined TS of P is 〈SP ,→, ŝ, LP 〉.

The front-end must translate the model specification to a fixed length state vector of N slots describing
the global state of a system, and split the next state function into K groups (transition groups) over sub-
vectors of the state vector. The PINS interface provides the next_long(s, i) = {s′ | s→i s

′} function for
accessing the transition relation of each group.

Transitions are grouped based on the slots in the state vector they read or write to. For each transition
group, its sub-vector (slots used by the transition group) is stored in the pins dependency matrix (K×N).

The pins dependency matrix can be obtained from analyzing the complete state space. This informa-
tion usually is not available beforehand, but it is possible to provide an overestimation based on syntactic
analysis of the model specification.

Definition 3. Given a TS T = 〈S,→, ŝ, L〉, the reachable states in T denoted Reach(TS) = Sreach are
defined as the set Sreach ⊆ S such that ŝ ∈ Sreach and for each state s ∈ Sreach, if (s, s′) ∈→ then
s′ ∈ Sreach.

The reachable states of a partitioned transition system, Reach(PTS ) is given by the reach of its
transition system Reach(TS ).

Definition 4. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. Transition
group i is independent of state slot j if for all 〈e1, . . . , eN 〉 and 〈e′1, . . . , e′N 〉 ∈ Reach(P ), whenever
(〈e1, . . . , ej , . . . , eN 〉 × 〈e′1, . . . , e′j , . . . , e′N 〉) ∈→i, then

1. ej = e′j
(i.e. state slot j is not modified in transition i)

2. for all rj ∈ Ej , we also have (〈e1, . . . , rj , . . . , eN 〉 × 〈e′1, . . . , rj , . . . , e′N 〉) ∈→i,
(i.e. the value of state slot j is not relevant in transition i)

Using this independence relation the pins dependency matrix is described as follows:

Definition 5. A pins dependency matrix DK×N = DM(P ) for PTS P is a matrix with K rows and N
columns containing {0, 1} such that if Di,j = 0 then group i is independent of element j.
For any transition group 1 ≤ i ≤ K, we define πi as the projection πi : S → Π{1≤j≤N | Di,j=1}Sj .

6



The PINS architecture 2.1 The Partitioned Next State Interface

state vector

dependency matrix

state label matrix

next_short

next_all
next_long

N

→3

→2

→1

K
X X

X X
X X

λ1 X

s

t1 t2

Figure 2.2: The PINS front-end interface

The PINS interface function next_short uses only the sub-vectors πiS to compute sub-vector of the
next state for a particular transition group. By providing implementations for either next_short or
next_long the PINS interface can supply the default implementation for the other next state functions.

In a similar fashion, the state labeling functions are split into state_label_all(s), state_label_long(s, i)
and state_label_short(s, i). The state labeling functions can be used to associate a particular label to a
state, such as an atomic proposition. Similar to the pins dependency matrix a pins state label matrix is
defined. Note that state labels are always read only.

Definition 6. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. State la-
bel i is independent of state slot j if 〈λ1, . . . , λi, . . . , λM 〉 for all 〈e1, . . . , eN 〉 ∈ Reach(P ), whenever
λi(〈e1, . . . , ej , . . . , eN 〉) = n ∈ N then

1. for all rj ∈ Ej , we also have λi(〈e1, . . . , rj , . . . , eN 〉) = n,
(i.e. the value of state slot j is not relevant for evaluation of state label i)

And the pins state label matrix now follows from this. An overestimation for the state label matrix
can also be used.

Definition 7. A pins state label matrix SLM×N = SLM (P ) for PTS P is a matrix with M rows and N
columns containing {0, 1} such that if SLi,j = 0 then state label i is independent of element j.
For each state label 1 ≤ i ≤M , we also define πi as the projection πi : S → Π{1≤j≤N | SLi,j=1}Sj .

Example. A model specification is translated to a transition system (see left side of Figure 2.2). A
particular transition t1 might be in relation→1, while another transition t2 might be from another process
(which uses different state slots) and is in →2. A call to next_long(s, 1) for the source state s of both t1
and t2 highlighted in Figure 2.2 will result in the successor state of t1 while the call next_long(s, 2) will
result in just the successor state produced by t2. A call to next_all(s) will produce both successor states,
and calls to next_short(π1s, 1) and next_short(π2s, 2) will produce the sub-vectors of the successor
states. Similarly, calls to state_label_all(s), state_label_long(s, i) and state_label_short(s, i) produce
the evaluation of state label i using state labeling function λi on s.

2.1.2 PINS back-ends and algorithms

Currently, LTSmin has various back-end algorithms that can directly be used through the PINS interface.
Explicit enumerative methods such as depth first search and breadth first search are implemented using
different storage mechanisms (BDD based [9], hash table, tree compression [4]). Besides this, distributed
and multi-core-, as well as symbolic state space exploration strategies are available. The symbolic tools
learn the transition relations on the fly and use a BDD/MDD to store the state space and transition
relations in memory.

7
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2.1.3 PINS wrappers

A PINS interface wrapper is an intermediate layer between the front-end and the back-end algorithms.
The layer is modular and wraps the PINS interface such that neither the back-end, nor the front-end has
knowledge of the extra layer.

Local Transition Caching

If the language module is fairly slow, the back-ends might benefit from caching the transition vectors.
The cache layer uses the pins dependency matrix to cache only the sub-vectors used by each transition
group. Therefore the layer usually won’t have a drastic memory overhead.

Regrouping

Through smart reordering of the transition groups and slots in state vector, BDD-based state represen-
tations greatly benefit from the resulting variable ordering. In combination with the symbolic search
strategies some models with 1050 states can be generated in a matter of seconds. Reordering the tran-
sition groups itself may have a positive effect on the symbolic chaining algorithm and combining groups
limits the overhead needed to store transition relations both for the symbolic algorithms and the transition
caching layer.

LTL and POR

The dashed (see Figure 2.1) PINS wrappers are are contributed by this work. The LTL (linear temporal
logic) wrapper is described in chapter 4 and is used to produce the synchronous product automata of the
states provided by the front-end and a büchi automaton generated from a given LTL formula.

The POR (partial order reduction) wrapper is the topic of both chapter 3 and 4, and is used to explore
a representative subset of the state space when finding deadlocks or verifying LTL formulas.

8



Chapter 3

Partial Order Reduction for Deadlocks

Partial order reduction is a well known technique in the
field of model checking. In this chapter we explain the
technique and show how to extend the PINS interface such
that a modular partial order reduction algorithm can be
implemented as PINS wrapper. The algorithm is based
on the stubborn set algorithm or Valmari and is adapted
to work without the notion of processes.

9
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3.1 Theory of partial order reduction

In the field of model checking, it is quite common that a system is described as a composition of multiple
subsystems or components. As the number of components grow, the number of states in the combined
global system grows exponentially with it because all different interleavings of the components lead to
new states. Thus, even with very small components, the number of states in combined systems quickly
blows up. This is the so called state space explosion.

For some safety critical systems, an important property is the absence of deadlocks.

Definition 8. Given a TS T = 〈S,→, ŝ, L〉, a state s ∈ S is in a deadlock iff there is no transition starting
from s, ∃s ∈ S : (∀s′ ∈ S : (s, s′) /∈→).

A deadlock is an unwanted situation where the global system waits indefinitely, and no progress can
occur. To verify that a transition system T contains no deadlocks a straightforward method is to generate
all possible global states and check that each state has at least one outgoing transition. This however
becomes quickly infeasible due to the state space explosion. Now consider the asynchronous composition
of any transition system T with a process P with precisely one state s and one transition from s to s
(self-loop). For this composition, we can readily say that the global system contains no deadlock, because
for every global state, process P can execute its self loop. This example shows that if one or multiple
components together can never lead to a deadlock state and are independent of the rest of the system,
then there is no deadlock in the global system, and hence, it is enough to verify only this part of the
state space. More formally, partial order reduction exploits independence between concurrently executed
transitions. Two independent transitions will result in the same global state when executed in any order.
Therefore, these events really are only partially ordered. Furthermore, the order of occurrence is irrelevant
to the property being checked (in this case the absence of deadlocks). For example, the execution of two
independent transitions α and β, (see Figure 3.1) from state s will, in any order, lead to the same state
s′, and hence, no deadlock can occur on the intermediate states. This fact is exploited by a technique
know as partial order reduction. The independence and commutativity of system components is used to
compute a representative subset of traces (sequences of transitions) through the complete state space,
preserving all deadlock states.

3.1.1 Semantic and structural transitions

s

s′

α β

αβ

Figure 3.1: Two indepen-
dent transitions α and β

As shown in Figure 3.1, two independent transitions α and β can lead to a
transition system with 4 states. Note that this transition system has four
elements in its transition relation, which we refer to as semantic transitions,
i.e. transitions t that model actual changes in the transition system t =
(s, s′) ∈→. For partial order reduction we need to refer to transitions on
another level, namely the level of system components. This reveals extra
information on the internal structure to the transition system. We refer to
α and β in Figure 3.1 as structural transitions. Hence, a semantic transition
is an occurrence of a structural transition, and a structural transition α can
have multiple semantic transitions α = {(s, s′) | (s, s′) ∈→}. A structural
transition can be viewed as a transition in a system component that can only
occur if some guard condition evaluates to true. For a transition system we
can define such a guard condition:

Definition 9. Given a TS 〈S,→, ŝ, L〉, a guard g : S → {true, false} is a
total function that maps each state to a boolean value. We write g(s) to denote the evaluation of the
guard g in state s ∈ S.

A transition group can be seen as guarded by a conjunction of multiple guards:

Definition 10. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. A transition
group →i (1 ≤ i ≤ K) is guarded by a non-empty set of guards G if

10
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1. ∀s ∈ Reach(P ) : (∃g ∈ G : g(s) = false) =⇒ ¬∃s′ ∈ Reach(P ) : (s, s′) ∈→i

(i.e. existence of a false guard implies there is no successor state)

2. ∀s ∈ Reach(P ) : (∀g ∈ G : g(s) = true) =⇒ ∃s′ ∈ Reach(P ) : (s, s′) ∈→i

(i.e. all guards true implies at least one successor)

Note that for each transition group we can define a trivial guard that is true whenever there is a
successor and false otherwise, thus each transition group is always guarded by its trivial guard.

From now on, when we refer to a transition we refer to a structural transition. Furthermore we assume
that a structural transition is a deterministic transition, i.e. it has a unique successor state.

For a partitioned transition system, a quite natural way to model structural transitions of a system
component is to use one transition group for each structural transition. Since we need the structural
transitions for partial order reduction it would be natural to use transition groups that represent structural
transitions. Transition groups in PINS however do not need to conform to this assumption, thus may not
model a deterministic transition.

Definition 11. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. A transition
group →i (1 ≤ i ≤ K) is singleton if for each state s ∈ Reach(P ) there is at most one successor state, i.e.
¬∃s, s′, s′′ ∈ Reach(P ) : s′ 6= s′′ ∧ (s, s′) ∈→i ∧(s, s′′) ∈→i.

We will now proof by construction that a singleton transition group can always be seen as a structural
transition without knowing to which subcomponent of the system it belongs to.

Theorem 1. A singleton transition group in a PTS P represents a deterministic structural transition in
a (strong) bisimulation equivalent PTS P ′.

Proof. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. From this, define a
new PTS P ′ = 〈〈E1, . . . , EN , EN+1, . . . , EN+K〉, 〈→′1, . . . ,→′K〉, 〈ê1, . . . , êN , êN+1, . . . , êN+K〉, 〈λ′1, . . . , λ′M 〉〉
with K components and N global variables. Each component (1 ≤ i ≤ K) has precisely one local state
ên+i ∈ En+i, and one structural transition α that models a self-loop on ên+i and is guarded by guard g. De-
fine g(s) = ∃s′ ∈ SP : (s, s′) ∈→i, for s ∈ SP ; i.e. the guard is true if the ith transition group of P produces
a successor state. We define the transition groups of P ′ as →′i= 〈E1, . . . , EN , EN+1, . . . , ei, . . . , EN+K〉 ×
〈E′1, . . . , E′N , EN+1, . . . , ei, . . . , EN+K〉 such that 〈E1, . . . , EN 〉 × 〈E′1, . . . , E′N 〉 ∈→i of P . Since none of
the components i (1 ≤ i ≤ K) of P ′ changes its local state, EN+1, . . . , EN+K is constant. Therefore,
there is a (strong) bisimulation equivalence relation P ≡ P ′ by the one-to-one correspondence between
the prefix E1, . . . , EN . If a transition group in P is a singleton transition group, it is a singleton transition
group in P ′ too. Therefore it must be a deterministic structural transition in P ′.

A non-singleton transition group can be seen as a non-deterministic structural transition in P ′.
Since a singleton transition group in a PTS represents a deterministic structural transition in an

equivalent PTS , we proved that if partial order reduction is correct for structural transitions in the PTS
P ′, its equivalent original PTS can be reduced in a similar fashion.

To reference the transition groups or structural transitions, we introduce the following notation which
we will use from now on. We assume that each TS has a known underlying PTS which we can always
reference to, and that all transition groups in the PTS are singleton.

Definition 12. Given a TS T = 〈S,→, ŝ, L〉 and its underlying PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉,
〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉, such that each transition group →i is singleton and guarded by Gi,
with (1 ≤ i ≤ K). Let s, s′ ∈ Reach(T ).

1. We write α, β or γ to denote a structural transition of the form α = {(s, s′) | (s, s′) ∈→i}.

2. We write α ∈→ when we mean that α is a structural transition represented by a singleton transition
group in the underlying partitioned transition system.

3. The enabled transitions of s are enabled(s) = {α | ∃s′ ∈ Reach(T ) : (s, s′) ∈ α} with α ∈→.

4. The disabled transitions of s are disabled(s) = {α | ∃α /∈ enabled(s)} with α ∈→.

11
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5. We write s α→ when ∃s′ ∈ Reach(T ) : (s, s′) ∈ α with α ∈→.

6. We write s α→ s′ when (s, s′) ∈ α with α ∈→.

7. We write s α1,α2,α3,...−→ when ∃s1, s2, . . . ∈ Reach(T ) : s
α1→ s1

α2→ s2
α3→ . . ..

8. We refer to s′ in s α→ s′ by α(s).

9. We refer to the set of guards guards(α) = Gi when α represents the structural transition of transition
group →i.

Besides the need for the structural transitions, more fine grained information about what parts of the
state are read and written is needed. We define the following sets:

Definition 13. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉 such that
each transition group in the PTS is singleton. Let the set of reachable states be Sr = Reach(P ), and let
SP be the states from the TS of P . Given two states s ∈ Sr, s′ ∈ SP , for 1 ≤ i ≤ N :

1. ei, e′i denotes the value of Ei in s, and

2. δ(s, s′) = {i | ei 6= e′i} is the set of indices on which s and s′ disagree.

Let α = {(s, s′) | (s, s′) ∈→k} be the structural transition of some transition group (1 ≤ k ≤ K).

1. The test set of a guard g ∈ guards(α) is
Ts(α, g) = {i | ∃s ∈ Sr, s′ ∈ SP : δ(s, s′) = {i} ∧ g(s) 6= g(s′)}.

2. The write set of α is
Ws(α) =

⋃
s∈Sr

δ(s, α(s)).

3. The read set of α is
Rs(α) = {i | ∃s ∈ Sr, s′ ∈ SP : δ(s, s′) = {i} ∧ ∃j ∈Ws(α) : j ∈ δ(α(s), α(s′))}.

4. The variable set of α is
Vs(α) =

⋃
g∈Gk Ts(α, g) ∪ Rs(α) ∪Ws(α).

The test set is the set of variables used for the guard evaluation. The write set is the set of variables
changed by the application of a transition, and the read set is the set of variables that influence the effect
of the application of the transition, but not necessarily the evaluation of the guards. For example, a global
variable might be in the read set of a transition but not in the test set, i.e. if pc(s) is the only guard of
the transition, and the effect reads and writes a global variable.

The above sets are computed in the context of the complete state space, thus after state space gener-
ation. An over-approximation can usually be provided beforehand, by syntactical analysis of the model.
The pins dependency matrix in the PINS architecture is an over-approximation of the variable set.

3.1.2 Independence

As noted at the start of this chapter, interleavings of independent transitions can be pruned from the
state space when searching for deadlocks. Clearly, two transitions α and β with disjoint variable sets are
independent because execution of one transition can never change the evaluation of the guards, nor effect
the state slots used by the other transition. An example of two independent transitions α, β is shown
in Figure 3.1. Note that no deadlock can occur on the intermediate states. A formal definition of the
independence relation is given by:

Definition 14. Let T be a TS 〈S,→, s0, L〉. An independence relation I ⊂ (→ × →) is symmetric, re-
flexive relation, satisfying the following two conditions for each state s ∈ S and for each pair of transitions
(α, β) ∈ I.

Enabledness If α ∈ enabled(s) then β ∈ enabled(s)↔ β ∈ enabled(α(s)).
Commutativity If α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

The dependency relation D is the complement of I, D = (→ ×→)\I.
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Note that the dependency relation is closely related to the pins dependency matrix, but is different
in that the pins dependency matrix refers to the dependency of a transition to the state vector whereas
the dependency relation is used to describe a dependency between two transitions. The pins dependency
matrix can however be used to extract the independence/dependency relation between two transitions.
Two transitions are independent if they have disjoint variable sets, i.e. use disjoint parts of the state
vector. This is the (in)dependence relation used in the algorithms described from now on.

Definition 15. Given a pins dependency matrix DK×N = DM(P ) for PTS P . Two transitions α, β ∈→
are in the independence relation if their variable set is disjoint: V s(α) ∩ V s(β) = ∅ ⇐⇒ (α, β) ∈ I.

Besides transitions with disjoint variable sets, more fine grained syntactic properties can be used to
extract the independence relation, for example two transitions that only read from a shared variable
are independent too. A larger independence relation (more independence) will usually result in better
reduction of the state space. The maximal independence relation for the the matrix in Figure 2.2 would
only contain the tuple (→1,→2) ∈ I.

3.1.3 Equivalence classes

The independence relation can be used to define equivalent transition sequences in the state space, known
as Mazurkiewicz’s traces [22, 31].

"Two sequences of transitions are equivalent if they can be obtained from each other by
successively permuting adjacent independent transitions"

Example. Consider the set of transitions {α, β, γ}, and assume that α is dependent with both β and
γ, while β and γ are independent. The sequence of transitions ω = αβγ is in the equivalence class
{〈αβγ〉, 〈αγβ〉}. The second sequence can be obtained from the first sequence by permuting the two
adjacent transitions β and γ. It is however not equivalent to the sequence βαγ. This sequence may not
even be possible; since α and β are dependent execution of β may disable α.

To preserve deadlocks, it is enough to explore precisely one trace in each distinct equivalence class.

3.1.4 Reduction function

Partial order reduction is most useful when applied on-the-fly, during the generation of the model. There-
fore, at each encountered state s a decision must be made on which transitions to explore, and which to
ignore. Obviously, this becomes a subset of all transitions that can possibly be explored from s, thus from
enabled(s).

Partial order reduction restricts the exploration of all possible transition sequences, to a subset of all
transition sequences such that at least one transition sequence in each distinct equivalence class is explored.
This reduction must be achieved on-the-fly. To do this one can delay execution of some transition to a
future state. The decision to do this must however be made based on information provided at each state
s ∈ SP because it must be computed on-the-fly. This is formalized through a reduction function as follows:

Definition 16. A reduction function for a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ŝ1, . . . , ŝN 〉, 〈λ1, . . . , λM 〉〉
where each transition group →i, (1 ≤ i ≤ K) is singleton, is a mapping r from a state s ∈ S to a set of
transition groups (2K) such that for all s ∈ SP : r(s) ⊆ enabled(s).

I.e., selectively using transition groups (the structural transitions) for each state s ∈ SP .
By applying such a reduction function, one can construct a reduced graph.

Definition 17. Let P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ŝ1, . . . , ŝN 〉, 〈λ1, . . . , λM 〉〉 be a partitioned tran-
sition system and let r be a reduction function on P . A reduced PTS Pr = 〈〈E1, . . . , EN 〉, 〈→′1, . . . ,→′K〉,
〈ŝ1, . . . , ŝN 〉, 〈λ1, . . . , λM 〉〉 of P by r is defined such that:

1. s ∈ SPr iff there is a finite execution sequence s0
α0→ . . .

αn−1→ sn such that s = sn and αi ∈ r(si),
∀si ∈ {s0, . . . , sn−1}. Hence Reach(Pr) ⊆ Reach(P ).

2. (s, s′) ∈→i of Pr iff (s, s′) ∈→i of P and (s, s′) ∈ r(s).
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3.1.5 Persistent set

In order for the reduction function to precisely preserve the properties of interest (in this case the absence
of deadlocks), there are some conditions that the subset must adhere to. Godefroid [22] defined the
persistent-set selective search through the state space, in which each state s that is reached by the search
explores only a set T of the enabled transitions. This set T must be persistent (defined below), and must
be non-empty if there exist transitions enabled in s. Using these definitions, the reduced state space is
trace equivalent to the unreduced state space, i.e. each equivalence class in the original state space is also
present in the reduced state space. A similar notion of an ample set was defined by Clarke, Grumberg
and Peled [12]. The main difference between the ample set and the persistent set is that the ample set
is a set that has to be used with a particular algorithm in order to work. A slightly less restricting
notion of independence is used (where transitions can disable each other) which has to be "corrected" by
the algorithm. Furthermore the ample set usually refers to a set that also preserves temporal properties
(LTL). The persistent set is a more general definition of the restriction the reduction function r must
adhere to in order to preserve deadlocks in the reduced state space.

Definition 18. Given a TS 〈S,→, s0, L〉. A set T of transitions enabled in a state s ∈ S is persistent in
s iff for all non-empty sequences of transitions s α0→ s1

α1→ s2...
αn−1→ sn

αn→ sn+1 with s, s1, . . . sn, sn+1 ∈ S
from s and including only transitions αi ∈→ such that αi /∈ T , 0 ≤ i ≤ n, αn is independent in sn with
all transitions in T .

Note that this definition precisely resembles condition C0 and C1 of the ample set (Clarke, Grumberg
and Peled [12]) when using the stronger definition of independence:

C0 ample(s) = ∅ ↔ enabled(s) = ∅
C1 Along every path in the full state graph that starts at s, the following condition holds:

a transition that is dependent on a transition in ample(s) cannot be executed
without a transition in ample(s) occurring first.

Theorem 2. Using definition 14 of independence, ample set condition C1 is equal to a persistent set.

Proof. Note that the set enabled(s) trivially is both a persistent set and an ample set. In case of a deadlock
in state s, enabled(s) = ∅. Since r(s) ⊆ ∅, r(s) is a persistent set since there are no non-empty sequences
from s, i.e. no path starting from s. If there is no deadlock, enabled(s) 6= ∅, and r(s) ⊂ enabled(s), then
all paths from s start with a transition either from r(s) or from enabled(s)\r(s).

Suppose r(s) is a persistent set. All paths starting from enabled(s)\r(s) contain only transitions
independent with r(s) or in r(s). So along all these paths no transitions are dependent on r(s), or they
are in r(s), hence r(s) is an ample set. Suppose r(s) is not a persistent set. Then there path starting
from enabled(s)\r(s) leading to a transition that is not in r(s) and that is dependent on a transition in
r(s). This violates the ample set condition C1, so r(s) is not an ample set either. Suppose r(s) is an
ample set, then all paths starting from enabled(s)\r(s) are independent with transitions in r(s), or they
are dependent with transitions in r(s) but a transition from r(s) occurred first. Hence, all transitions of
the non-empty sequence of transitions not in r(s) are independent with transitions of r(s), thus r(s) it
is a persistent set too. Suppose r(s) is not an ample set, then there is a path starting with a transition
from enabled(s)\r(s) containing only transitions not in r(s) and leading to a transition dependent on a
transition in r(s). By definition of a persistent set, r(s) is not a persistent set.

By restricting the reduction function r(s) to persistent sets that are non-empty if there are transitions
enabled in s, we can explore only a subset of the full state space while preserving a trace in each equivalence
class (and therefore all deadlocks, for a formal proof, see [22]).

3.2 A modular PINS POR wrapper

In general, a partial order reduction algorithm selects a subset of all enabled transitions (i.e. application of
the reduction function r(s)), such that the resulting subset forms a persistent set. Because the persistent
set preserves a trace through the state space such that there is an equivalent trace (with respect to
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Back-end (search algorithm) POR wrapper Front-end (language module)

initialize()

next_all(s)

r(s)

Persistent Set SearchPersistent Set Search

next_long(s,i),. . .

Selective SearchSelective Search The exploration algorithm

Figure 3.2: A POR wrapper for PINS

deadlocks) in the unreduced state space, deadlocks are preserved. Since we use a transition group as a
structural transition, the partial order reduction algorithm should select a subset of the transition groups
for each state s encountered. Therefore, the idea is use a PINS wrapper which can be activated without
the knowledge of the underlying search algorithm. In principle, the PINS wrapper can select a subset
of the transitions generated by the front-end, and pass this through to the back-end algorithm. Figure
3.2 shows how a PINS POR wrapper would work. The back-end search algorithm requests the states
reachable from some state s by calling next_all. Then, the PINS POR wrapper intercepts this call and
selects a subset of the transition groups. This subset of transition groups must be carefully selected. The
PINS POR wrapper then forwards the request for the next states to the front-end which provides new
states to the back-end search algorithm by calling a callback. This way, a subset of the enabled transitions
is selected. The PINS POR wrapper thus serves as a filter.

Note that the POR wrapper requires the front-end to have a next_long(s, i) or next_short(s, i)
function. Furthermore, the POR wrapper is called using next_all(s) in the search algorithm, however
some search algorithm might require next_long(s, i) or next_short(s, i) calls. Since the POR wrapper
needs a subset of the enabled transition for this it either needs to recompute this subset of each call
to next_long(s, i) or next_short(s, i), or needs to cache the generated persistent set. Furthermore,
since computing the persistent set requires the set enabled(s), the POR wrapper minimally needs a pins
dependency matrix in which each transition group reads the guards of all other transition groups, i.e.
each transition group (1 ≤ i ≤ K) is guarded by a set of guards Gi in the front-end, and all transition
groups must be guarded by the set

⋃
i∈{1...K}Gi after application of the POR wrapper. Adding these

guards to transition groups affects the pins dependency matrix, which in turn limits the effect of POR in
combination with the symbolic tool.

3.3 Conflicting transitions

To have a baseline for the partial order reduction algorithm, the conflicting transitions algorithm has been
implemented. The conflicting transitions algorithm is a very simple partial order reduction algorithm. It
was first described by Godefroid and Wolper in 1993 [23]. The algorithm used here is from Godefroid
[22].
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ŝ = 〈a1, a2, 0, 0〉 ∈ S, S = EP1 × EP2 × Ex × Ey

EP1 = {a1, b1, c1}, EP2 = {a2, b2}

Ex, Ey ∈ {0, 1}

α = (〈a1, ∗, ∗, ∗〉 × 〈b1, ∗, ∗, 1〉) ∈→1

β = (〈b1, ∗, ∗, ∗〉 × 〈c1, ∗, 0, ∗〉) ∈→2

γ = (〈∗, a2, ∗, ∗〉 × 〈∗, b2, 1, ∗〉) ∈→3

s1

s2

ŝ

s3

α, y := 1

β, x := 0

γ, x := 1

Figure 3.3: Example conflicting transitions

3.3.1 Theory and algorithm

To implement the conflicting transitions algorithm, the notion of processes and process local states is
needed. Each process has a special variable (state slot) called process counter used to encode the local
state the process is in.

Definition 19. Given a TS T = 〈S,→, ŝ, L〉, let C = {1, . . . , C} the set of C processes (components) and
let α ∈→ be a transition. We define a mapping proc(α) = Cα such that ∅ 6= Cα ⊆ C.

Note that a transition can be synchronized and belong to multiple processes. In our benchmark sets,
a transition belongs to at least one, and at most two processes.

Definition 20. Given a singleton PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ŝ1, . . . , ŝN 〉, 〈l1, . . . , lM 〉〉, and
the set of processes C = {1, . . . , C}, each process has a program counter in some state slot Ei (1 ≤ i ≤ N)
of the PTS , containing local states e ∈ Ei. Each transition α is guarded by G and contains for each
process j ∈ proc(α) a guard of the form (Ei = e). We denote this guard by pcj ∈ G.

The conflicting transitions algorithm will try to find a non-trivial subset of all enabled transitions
satisfying the constraints imposed by a persistent set.

Definition 21. A transition α is conflicting with transition β either if it starts from the same local
state (∃pc ∈ guards(α) ∩ guards(β)) or if it belongs to a parallel process (proc(α) ∩ proc(β) = ∅) and is
dependent on α (thus (β, α) ∈ D).

The algorithm starts with a set T containing a single transition enabled in state s, and continues by
adding to T all transitions that conflict with transitions in T until either no more conflicting transitions
exist or a disabled transition is added to T . In the latter case the algorithm fails to find a non-trivial
persistent set and returns all enabled transitions, while in the case no disabled transition is encountered,
the set T is returned. A proof of the algorithm is given in [22]. The intuition behind the algorithm is
that, if a transition shares a local state, obviously executing either α or β changes the local state and
disables the other. For transitions within a single process (not parallel), all transitions disabled because
their local state guard evaluates to false, can in all possible traces from the current state s only become
enabled if some other transition from the same process executes and changes the local state. Thus,
disabled transitions within a process already selected are handled by the algorithm. When a disabled
parallel transitions is added however, the algorithm doesn’t know what traces lead to enabling it because
it doesn’t use the internal process structure.
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Partial Order Reduction for Deadlocks 3.3 Conflicting transitions

Theorem 3. Any set of transitions returned by the conflicting transitions algorithm is a persistent set.

For the proof we refer to the thesis of Godefroid [22].
Proof sketch. If a disabled transition is encountered enabled(s) is returned, which is trivially persistent.
The set T thus contains only enabled transitions. Suppose T is not a persistent set. Then there must exist
a shortest sequence ω = s1

α1→ s2 . . . sn
αn→ sn+1 of transitions α1, . . . , αn /∈ T , such that α1, . . . , αn−1 are

all independent with all transitions in T , and αn is dependent with at least one transition α in T . Given is
that αn is not added to T by the algorithm, thus it doesn’t conflict: it is not parallel and dependent, nor
shares a local state. Thus α is enabled in s, and αn shares a process, but not a local state with α. Since
the local state of this process must change before αn can become enabled after execution of α1, . . . , αn−1.
Therefore, one of these transitions must change the local state of this process, and hence, is dependent
with α. This contradicts that α1, . . . , αn−1 is independent with all transitions in T , thus sequence ω can’t
exist.

Example. Figure 3.3 illustrates a system configuration with two processes P1 and P2 and two shared
variables x and y. In this case α and γ are enabled in ŝ while β is disabled. Selecting α as initial transition
will result in a singleton persistent set {α}. If γ is selected on the other hand, it is dependent with β
and there may exist a trace such that γ is executed before β, and one where γ is executed after β. But
since β is disabled the algorithm can’t simply try both orders. It must know which transition starting
from ŝ leads to a state where β is enabled, i.e. it must select α. This information is not available to the
algorithm, therefore it returns enabled(ŝ).

3.3.2 Modifications to PINS

As described in the theory, the conflicting transition algorithm relies on knowledge about structural
enabled/disabled transitions of a single process, the process id and the local state of a process. Therefore,
this information must be passed through the PINS interface. In order for the conflicting transitions
algorithm to work with the PINS interface, the following restrictions and additions are made:

1. All transition groups are singletons (return at most one next state).

2. All transition groups have a guard for enabledness/disabledness.

3. All transition groups have a set of processes associated to it.

4. Each process has a process counter in the state vector, which records the local state.

Note that these restrictions apply only for the input of the POR wrapper, not to the PINS interface
in general.

The first restriction makes it possible to see a transition group as structural transition, which makes it
possible to apply it in the context of a partial order reduction algorithm. The guard to determine whether
a transition is enabled or disabled is needed to allow the algorithm select the enabled transition to start
with. This (trivial) guard doesn’t need to be explicitly implemented. The POR wrapper can execute a
next_long call on the front-end and see whether this results in a new state. We chose to implement this
guard explicitly instead. The advantage of this is that we don’t need to cache or regenerate the next states
after evaluation of the guards. The process ids and local states are needed to determine the conflicting
transition groups.

3.3.3 Evaluation

The implementation of the conflicting transitions algorithm successfully shows that it is possible to build
a PINS wrapper for partial order reduction preserving deadlocks. From a tool designers point of view this
is a very modular approach, since the POR wrapper is completely independent from the back-end search
algorithms. The downside however is that it requires information about processes and local states that is
not available in all possible front-ends (for example not in mCRL2 [24], and µCRL [3]). These front-ends
thus require a more general solution.
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Table 3.1: Conflicting transitions algorithm

model algorithm states transitions walltime [sec]
count percent count percent

firewire_link.5 18553032 100.0 59782059 100.0 180.91
conflict 17020279 91.7 53925483 90.2 733.47

iprotocol.4 3290916 100.0 11071177 100.0 23.52
conflict 773823 23.5 1788848 16.2 5.31

iprotocol.5 31071582 100.0 104572634 100.0 259.32
conflict 7364208 23.7 17066341 16.3 59.66

lann.7 160025986 100.0 944322648 100.0 1505.77
conflict 159956844 100.0 899143733 95.2 1939.58

peterson.4 1119560 100.0 3864896 100.0 5.20
conflict 969649 86.6 3258303 84.3 5.80

peterson.5 131064750 100.0 565877635 100.0 829.76
conflict 127647114 97.4 520299577 91.9 945.35

Table 3.1 shows some results of the conflicting transitions algorithm applied using the DiVinE 2.2
[2] front-end on models from the BEEM [35] database. Not shown here is that of the 277 models that
completed with a 8 gigabyte memory- and a 2 hour time limit, only 42 had some reduction (average
about 20 percent) in the number of states. But even with 20 percent reduction, the runtime can still be
significantly larger. For 198 out of 277 models, the runtime with partial order reduction was more than
the runtime without partial order reduction, while for only 16 models it was less then 95 percent of the
original runtime, of which 13 had less then 25 percent runtime.

All in all, the algorithm is not very effective (average runtime went up from 167.6 seconds to 219.51
seconds) except for a small set of models. Most notably, the iprotocol-family benefits from the algorithm,
with about 76 percent reduction. For the iprotocol-family, there is also beneficial effect on memory usage,
while for most of the other models the memory usage is roughly the same.

There can be multiple reasons for the lack of reduction by the algorithm. First, the dependency
relation used is rather coarse. A more refined dependency relation could improve the reduction. Secondly,
as Godefroid [22] mentions in his thesis, it might be useful to run the algorithm multiple times with
transitions not selected in the non-trivial persistent set. The current implementation runs the algorithm
only once, with the first enabled transition.

As seen in the examples, the algorithm barely benefits to any model.

3.4 Stubborn set

A more sophisticated algorithm is the stubborn set algorithm of Valmari [41]. As described in the thesis
of Godefroid [22], this algorithm uses more knowledge of the internal structure of processes to generate
better persistent sets. Although the algorithm as described by Godefroid is still based on processes, we
will show that is is possible to describe a similar algorithm on a more abstract level such that the notion
of processes disappears and the algorithm can be applied in a more general context.

3.4.1 Theory

A necessary enabling set for a disabled transition α is a set of transitions such that α cannot become
enabled before at least one transition in the set is executed. This set depends on the current state s and
does not need to be uniquely defined.

Definition 22. Given a TS T = 〈S,→, ŝ, L〉. Let α be a transition that is disabled in state s ∈ S. A
necessary enabling set for α in s, denoted NES (α, s), is a set of transitions such that, for all states s′ ∈ S
in all sequences s ω→ s′ in TS such that α is enabled in s′, ω contains at least one transition of NES (α, s).

The necessary enabling set is used to find a stubborn set, from which a persistent set can be derived.
To define a stubborn set we first define a may be co-enabled relation. Suppose two transitions α and

β are dependent, but transition β can’t be simultaneously enabled with α and α is enabled in state s. In
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this case, there is no trace from s to some s′ where both α and β are enabled, thus β won’t influence the
execution of α. The may be co-enabled relation is defined as:

Definition 23. Given a TS T = 〈S,→, ŝ, L〉. The may be co-enabled relation MC ⊆ (→ × →) is a
symmetric, reflexive relation, such that two transitions α, β ∈→ may be co-enabled iff there is a state in
the state space where they are both enabled: ∃s ∈ Reach(T ) : α, β ∈ enabled(s) =⇒ (α, β) ∈MC.

Note that it is possible to over-approximate the relation. A stubborn set is now defined as follows:

Definition 24. A set Ts of transitions is a stubborn set in a state s if Ts contains at least one enabled
transition, and if for all transitions α ∈ Ts, the following conditions hold:

1. If α is disabled in s, then all transition in one necessary enabling set NES (α, s) are also in Ts,

2. If α is enabled in s, then all transitions β that are dependent and may be co-enabled with α are
also in Ts.

Using the stubborn set, a persistent set can be found using the following theorem:

Theorem 4. Let T be the set of all transitions in a stubborn set Ts in state s that are enabled in s. Then
T is a persistent set in s.

For the proof we refer to the thesis of Godefroid [22].
Proof sketch. All enabled transitions in Ts will be in the persistent set T . For all disabled transitions
in Ts, all transition of one NES are also in Ts, thus by definition any trace leading to a state in where
the transition is enabled, will contain a transition from this necessary enabling set. For all transitions
in the NES , again either the transitions are enabled, and thus in the persistent set, or disabled, and by
induction on the length of the path have a NES that is also in Ts.

3.4.2 The algorithm

Godefroid describes in his thesis [22] an algorithm to use the stubborn set theory with simple static
analysis. The stubborn set algorithm works like the conflicting transitions algorithm, but instead of
building a persistent set, it builds a stubborn set. This means that it can handle disabled transitions. For
disabled transitions, instead of returning the trivial persistent set enabled(s), a NES (α, s) is added to the
set and the search is continued. In the end, all enabled transitions in the stubborn set are returned. To
find a necessary enabling set for a disabled transition α, Godefroid uses heuristics similar to the following
two, either:

1. If α has a process that isn’t in the local state in state s, (∃pc ∈ guards(α) : pc(s) = false) , then
use as NES all transitions that change the local state this process to the state where α might be
enabled, NES (α, s) = {β | ∃s ∈ S : pc(s) = false ∧ pc(β(s)) = true}.

2. Choose a guard g of transition α that evaluates to false in s. Then, use all transitions that write
to state slots the guard reads. Remember Ws(α) denotes the write set and Ts(α, g) the test set :
NES (α, s) = {β | Ts(α, g) ∩Ws(β) 6= ∅} with α, β ∈→.

The first heuristic basically uses knowledge about the process structure to find all transitions β that
occur before α within the process. All transitions β lead to a local state where α can be enabled. This
heuristic can however only be applied when a local state guard of α is false. The other heuristic can be
applied in all cases where some guard, including the local state guard, evaluates to false. In this case, all
transitions β that may change the evaluation of this guard to true because transition β writes to variables
used in the guard, are added to Ts. Note that in fact Godefroid makes a distinction between guards and
local states, while we see the local state simply as guard. Therefore, we can always apply the second
heuristic without knowing details about the process structure, which makes the algorithm applicable in a
more general setting.
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3.4 Stubborn set Partial Order Reduction for Deadlocks

Guards for PINS

To implement the stubborn set algorithm we must have access to a set of guards for each transition.
Besides this we must be able to access a may be co-enabled relation for each pair of transitions. A guard
maps a state to a boolean function. The closest functionality already available in the PINS interface
is a state label, which maps a state to a natural number. Using a mapping from a natural number to
boolean (for instance zero is false, all non-zero numbers represent true), a state label can be used for guard
evaluation. Besides that this doesn’t require changing the PINS interface, it also provides an immediate
mapping from a guard to its test set by using the pins state label matrix. Since the guard state label’s test
set can be obtained from the pins state label matrix (thus without knowledge of the associated transitions)
we introduce a new notation for the test set of a guard:

Definition 25. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉 where each
transition group (1 ≤ k ≤ K) is singleton and represents a transition αk with a set of guards guards(αk) =
Gk.

1. Define GP =
⋃
k∈{1...K}Gk, G = |GP |.

2. Each guard g ∈ GP is represented in PINS by state labels λi, (1 ≤ i ≤ M), G ≤ M such that a
mapping function gsl : GP ×L maps the guard to a state label, ∀g ∈ GP : ∃i ∈ {1, . . . ,M} : gsl(g) =
λi.

3. The test set of a guard g and its state label gsl(g) = λi is defined as:
Ts(∗, g) = {j | ∃j ∈ {1, . . . , N} : SLi,j = 1} where SL = SLM(P ).

From now on we assume that the mapping guards(α) represents the mapping to state labels and is
also supplied by the PINS interface.

The may be co-enabled relation MC between transitions α and β can be constructed from a may
be co-enabled relation between guards. Therefore, instead of adding a may be co-enabled matrix for the
transition groups, we chose to add this for the guards.

Definition 26. Given a TS T = 〈S,→, ŝ, L〉. Two guards g, g′ ∈
⋃
α∈→ guards(α) of the transitions in

T may be co-enabled iff there exist a state where they both evaluate to true: ∃s ∈ Reach(T ) : g(s) =
true ∧ g′(s) = true =⇒ (g, g′) ∈MCg.

Note that the MCg relation may be an over-approximation. The relation between the may be co-
enabled relation of transitions and guards is now as follows:

Definition 27. (α, β) ∈ MC ↔ ∀g ∈ guards(α), g′ ∈ guards(β) : (g, g′) ∈ MCg where MCg is the may
be co-enabled relation of the guards, and MC is the may be co-enabled relation of transitions.

Finally, the write set of a transition is needed to find a NES . To do this we implemented more fine
grained versions of the pins dependency matrix, separating it into a pins read dependency matrix and a
pins write dependency matrix.

Definition 28. Let P be a PTS where each transition group i (1 ≤ i ≤ K) is singleton and represented
by transition αi. The refinement of the pins dependency matrix is defined such that:

1. The pins read dependency matrix Dr
K×N = DM r(P ) is a matrix with K rows and N columns

containing {0, 1} such that if Dr
i,j = 0 then j /∈ Rs(αi).

2. The pins write dependency matrix Dw
K×N = DMw(P ) is a matrix with K rows and N columns

containing {0, 1} such that if Dw
i,j = 0 then j /∈Ws(αi).

3. The pins dependency matrix DK×N = DM(P ) is related to Dr
K×N and Dw

K×N such that
Di,j = 0 ⇐⇒ Dr

i,j = 0 ∧Dw
i,j = 0.
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Stubborn sets for PINS

With these additions to PINS, it is possible to compute a NES for each guard beforehand. For any
transition system T , there is a finite set of transitions α ∈→ which have predefined read and write
sets exported through the pins read- and write dependency matrices. Furthermore each guard has some
associated state label for which the test set can be obtained through the state label matrix. Hence, if
some guard fails, all information to form a NES is statically available, thus this NES can be precomputed
before the exploration starts. We first define what a necessary enabling set for a guard is:

Definition 29. Given a TS T = 〈S,→, ŝ, L〉. Let g be a guard of transition α ∈→ that evaluates to false
in state s. A necessary enabling set for g in s, denoted NES (g, s), is a set of transitions such that, for all
sequences s ω→ s′ in TS where g evaluates to true in s′, ω contains at least one transition of NES (g, s).

In our implementation, we calculate beforehand the following sufficient (unique) NES for a guard in
any state:

∀s ∈ S : NES (g, s) = {β | ∃β ∈→: Ts(∗, g) ∩Ws(β) 6= ∅}

Note that the information of the test set and write set is extracted from the pins write dependency matrix
and the pins state label matrix. There are now several necessary enabling sets for any transition α, namely
one for each disabled guard. In our implementation we collect these into a set. This set does depend on
the current state s and can only be assembled during the search.

Definition 30. Given a TS T = 〈S,→, ŝ, L〉. Let α ∈→ be a transition and let guards(α) be the set of
guards of transition α. Now GNES (α, s), is a set of necessary enabling sets for each guard of transition
α that evaluates to false in state s. GNES (α, s) = {NES (g, s) | ∃g ∈ guards(α) : g(s) = false}

The final algorithm looks like this.

1 function stubborn_set(s)
2 Twork = {α} such that α ∈ enabled(s)
3 Ts = ∅
4 while Twork 6= ∅ do
5 β ∈ Twork, Twork = Twork − β, Ts = Ts ∪ {β}
6 if β ∈ enabled(s) then
7 Twork = Twork ∪ {α ∈→ | (α, β) ∈ D ∩MC} \ Ts
8 else
9 Twork = Twork ∪ (nes ∈ GNES (β, s)) \ Ts

10 return Ts ∩ enabled(s)

Algorithm 1: A stubborn set algorithm for PINS

3.4.3 Modifications to PINS

The stubborn set algorithm for PINS is now a generalized version of the stubborn set algorithm as
proposed by Godefroid [22]. It does not require knowledge of processes, but uses guards instead.

For the implementation, the following restrictions and additions have been made to the interface:

1. All transition groups are singletons (return at most one next state).

2. All transition groups are associated to a set of guard state labels.

3. A may be co-enabled matrix for guards MCg is added.

The singleton restriction again is needed to see the transition group as structural transition. Enabled-
ness of a transition can be deduced from the conjunction of the guards. The guard state labels have the
same requirements as normal state labels with respect to the pins state label matrix. In addition the may
be co-enabled matrix provides an abstract insight on the composition of the transition system.
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Table 3.2: Stubborn set algorithm

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 18206917 100.0 86996322 100.0 119.78 485468KB
conflict 18206917 100.0 86996322 100.0 150.10 485524KB

stubborn-set 13510727 74.2 58399022 67.1 115.66 327672KB
at.6 160589600 100.0 697096560 100.0 808.42 3202196KB

conflict 160589600 100.0 697096560 100.0 1278.33 3202360KB
stubborn-set 160232958 99.8 691058033 99.1 1890.70 3202308KB

brp2.6 5742313 100.0 9058624 100.0 15.81 221128KB
conflict 5742313 100.0 9058624 100.0 23.41 221180KB

stubborn-set 5204363 90.6 7970060 88.0 26.21 200688KB
exit.3 2356294 100.0 7047332 100.0 27.42 99492KB

conflict 2356294 100.0 7047332 100.0 37.42 99692KB
stubborn-set 2356235 100.0 7047186 100.0 37.33 99560KB

extinction.4 2001372 100.0 7116790 100.0 19.81 81368KB
conflict 2001372 100.0 6444463 90.6 31.92 81760KB

stubborn-set 1382570 69.1 2647195 37.2 15.61 73508KB
firewire_link.5 18553032 100.0 59782059 100.0 180.91 468188KB

conflict 17020279 91.7 53925483 90.2 733.47 473356KB
stubborn-set 18538624 99.9 58933708 98.6 1977.71 470092KB

iprotocol.7 59794192 100.0 200828479 100.0 544.95 1695048KB
conflict 13924014 23.3 32341127 16.1 116.98 349480KB

stubborn-set 41078037 68.7 101990547 50.8 387.95 1046772KB
lann.4 966855 100.0 3189852 100.0 6.21 80116KB

conflict 954288 98.7 2981886 93.5 8.71 80216KB
stubborn-set 391131 40.5 846273 26.5 2.40 59052KB

leader_election.6 35777100 100.0 233195212 100.0 3850.76 2289068KB
conflict 35777100 100.0 233195212 100.0 4183.44 2290088KB

stubborn-set 32400204 90.6 44693743 19.2 944.46 2081964KB
leader_filters.7 26302351 100.0 91692858 100.0 181.43 839208KB

conflict 26074330 99.1 89458207 97.6 242.85 839284KB
stubborn-set 26074330 99.1 89458207 97.6 307.38 839196KB

peg_solitaire.2 187636299 100.0 1487175000 100.0 4613.12 5309800KB
conflict 187636299 100.0 1487175000 100.0 5710.90 5310832KB

stubborn-set
peterson.6 174495861 100.0 747072150 100.0 1091.93 3218568KB

conflict 154606103 88.6 631631896 84.5 1150.26 3218544KB
stubborn-set 153103069 87.7 603909316 80.8 1226.22 3218564KB

phils.8 43046720 100.0 459165008 100.0 960.12 1817408KB
conflict 43046720 100.0 459165008 100.0 1080.59 1817528KB

stubborn-set 14733803 34.2 56023811 12.2 154.52 548644KB
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3.4.4 Evaluation

Table 3.2 contains the results of the stubborn set algorithm and of the conflicting transitions algorithm. In
general, the stubborn set is able to reduce the state space more then the conflicting transitions algorithm
(101 of the 277 models have some reduction, average reduction of these models is about 20 percent too).
The more complicated stubborn set algorithm thus achieves more reduction, at the cost of spending
more time to compute a persistent set. As shown in Table 3.2, the at.6 model with about 0.2 percent
reduction, takes more then 2 times as long to complete. Some models even fail to run within the given
time and memory constraints (peg_solitaire.2). This factor is not constant (see exit.3) but seems to
depend mostly on the number of transition groups. Furthermore, even with about 30 percent reduction
(anderson.6), the runtime doesn’t improve using the implemented stubborn set algorithm. Interesting to
see in Table 3.2 is that a) the algorithm never uses more memory b) a reduction in the number of states
is more or less proportional to the memory used c) the runtime benefits most from a reduction in the
number of transitions (leader_election.6 v.s. brp2.6). Therefore, we might conclude that the stubborn set
algorithm always helps to reduce the memory needed. The benefit in runtime can be explained because
tree compression [4] is used. Packing and unpacking a compressed state takes relatively long, therefore
when the number of transitions is less, less states are unpacked resulting in better runtimes. This effect
likely becomes less prominent when states are stored in a hash table. The stubborn set algorithm is not
always better then the conflicting transitions algorithm (see iprotocol.7). This may happen because the
algorithm uses heuristics and will not necessarily find the best solution.

3.5 Better necessary enabling sets

The stubborn set algorithm doesn’t yet give satisfactory reduction. The algorithm of Godefroid [22] uses
fine grained information about the structure of a process and operations used in transition effects to find
a small NES , while the adapted algorithm simply marks all transitions that write to some part of the
state vector. This is a crude overestimation which makes the necessary enabling sets too large for a good
reduction.
Example. Suppose a process has 10 sequential transitions α1, . . . , α10. A NES for a transition αn
currently not in its local state would, with exception of the first, be {αn−1}. But since all transitions
write to the same local state (same part of the state vector). The NES selected by the adapted algorithm
would be {α1, . . . , α10}.

A simple solution to both these problems is to let the front-end provide a more detailed NES for
each guard. Front-ends that use processes can now statically precompute a NES and use all underlying
information of process structure and operations available. Precomputation of a NES , especially the local
state, is still rather straightforward, and not nearly as involved as writing a partial order reduction tool.
With this optimization, the stubborn set algorithm for PINS should behave the same as the stubborn set
algorithm of Godefroid [22], and give a decent reduction. In case the front-end doesn’t provide the NES
for a guard, it is possible to fall back on the NES as computed in the previous section. Hence, the more
information the front-end provides, the better the reduction will become.

3.5.1 Modifications to the algorithm

The PINS stubborn set algorithm is not changed, only the preprocessing is. In the previous section, a
NES was precomputed for each guard before the exploration took place. The new algorithm will still do
this, but intersect it with the NES provided by the front-end. We denote the provided NES by NES fe(g).

∀s ∈ S : NES (g, s) = {β | ∃β ∈→: Ts(∗, g) ∩Ws(β) 6= ∅} ∩NES fe(g)

The NES that is provided by the front-end must be a valid necessary enabling set.

Definition 31. Given a TS T = 〈S,→, ŝ, L〉, the front-end provided NES for each of the G guards in
the TS is a G×K matrix NES i,j (1 ≤ i ≤ G), (1 ≤ j ≤ K) such that NES i,j = 1 iff transition j is in the
necessary enabling set of guard i, computed by the front-end.
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Besides the addition of the provided NES , a further change has been made to the algorithm. Instead
of taking the first enabled transition and computing the stubborn set once, multiple stubborn sets are
computed, one for each enabled transition. Then the stubborn set with the smallest persistent set is
emitted. Note that there is some non-determinism involved in computing the stubborn set. Starting
the search twice from the same enabled transition may result in a different set because there is no
selection criteria for choosing the NES to add. Starting the search from a different enabled transition the
implementation likely uses a different NES for a transition and therefore might find a different stubborn
set. There is however no guarantee that this is the case. The algorithm does not compute all possible
stubborn sets, nor does it exclude doing possibly redundant computations.

3.5.2 Modifications to PINS

Since the only change compared to the stubborn set algorithm is that the front-end now provides the
NES , the changes to the PINS interface are the following.

1. All transition groups are singletons (return at most one next state).

2. All transition groups are associated to a set of guard state labels.

3. A may be co-enabled matrix for guards MCg is added.

4. A NES fe matrix for each guard state label is added.

The NES fe matrix is a matrix that assigns to each guard the transition groups that can enable it.

3.5.3 Evaluation

Because two changes have been made to the algorithm, they must be evaluated separately. Table 3.3
contains the results of the stubborn set algorithm, the stubborn set algorithm with the NES provided by
the front-end (nes1), the stubborn set algorithm executed for each enabled transition (stubborn-all) and
the stubborn set algorithm with the NES provided by the front-end executed for each enabled transitions
(nes). For most of the models in the BEEM database, the additional information provided by the front-
end (nes1) results in a reduction more or less the same as without it (stubborn-set). For some models
however the extra information gives a significantly more reduction (iprotocol, production_cell).

The second modification to the algorithm is running the stubborn set algorithm for each enabled
transition (stubborn-all). This results in a far better reduction. Comparing this to the algorithm that
has the extra information provided by the front-end (nes), we see that in most cases the results are
similar in terms of reduction. Hence, the extra information provided by the front-end only helps in some
cases (iprotocol, phils). For some models the extra work pays off (extinction.4 ) while for others there
is just more overhead (at.6, needham.4, lamport_nonatomic.5). Interestingly, the stubborn-all and nes
algorithm are executing exactly the same code. In some cases, they both give the same result, but the
nes algorithm is faster (lann.7). The extra information provided by the front-end thus appears to improve
the performance of the algorithm instead of the reduction. This is likely because the necessary enabling
sets are smaller, thus require less work.

Based on Table 3.3, we can conclude that most of the difference in reduction between algorithm
stubborn-set and algorithm nes comes from executing the stubborn set algorithm multiple times, not
from extra information provided by the front-end.

3.6 Necessary disabling sets

In the stubborn set algorithm, we observe that whenever a disabled transition is added to the stubborn
set, a NES must also be added and chances are that this set too contains disabled transitions. This
cascading effect might cause a lot of transition groups to be selected, which in turn gives rise to a lots
of dependencies to other transition groups. Ideally, we would limit this cascade. Imagine the following
scenario with processes such as they are defined for the conflicting transitions algorithm:
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Table 3.3: Stubborn-set with NES algorithm

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 18206917 100.0 86996322 100.0 119.78 485468KB
stubborn-set 13510727 74.2 58399022 67.1 115.66 327672KB

nes1 13510727 74.2 58399022 67.1 109.66 327672KB
stubborn-all 4858411 26.7 16898226 19.4 71.94 171448KB

nes 4858411 26.7 16898226 19.4 70.75 171448KB
at.6 160589600 100.0 697096560 100.0 808.42 3202196KB

stubborn-set 160232958 99.8 691058033 99.1 1890.70 3202308KB
nes1 157642038 98.2 663556258 95.2 1539.60 3202308KB

stubborn-all 148884155 92.7 616793155 88.5 4819.76 3202312KB
nes 148826634 92.7 604298885 86.7 4265.48 3202308KB

brp.6 42728113 100.0 89187437 100.0 152.90 946328KB
stubborn-set 42683473 99.9 89032341 99.8 310.88 946188KB

nes1 42090177 98.5 86473543 97.0 265.95 946188KB
stubborn-all 40551877 94.9 80120333 89.8 842.29 946532KB

nes 33682079 78.8 54392322 61.0 335.10 737516KB
extinction.4 2001372 100.0 7116790 100.0 19.81 81368KB

stubborn-set 1382570 69.1 2647195 37.2 15.61 73508KB
nes1 1509720 75.4 3026478 42.5 18.92 81628KB

stubborn-all 327647 16.4 479654 6.7 10.21 55168KB
nes 284469 14.2 409965 5.8 6.41 54624KB

iprotocol.7 59794192 100.0 200828479 100.0 544.95 1695048KB
stubborn-set 41078037 68.7 101990547 50.8 387.95 1046772KB

nes1 9720456 16.3 19201940 9.6 79.08 267676KB
stubborn-all 12996668 21.7 29115750 14.5 213.93 349452KB

nes 9667540 16.2 19122279 9.5 124.09 267736KB
krebs.4 1047405 100.0 5246321 100.0 6.61 76436KB

stubborn-set 1047245 100.0 5153420 98.2 8.71 76268KB
nes1 1046921 100.0 4998014 95.3 8.21 76268KB

stubborn-all 897482 85.7 2922675 55.7 10.81 65348KB
nes 897653 85.7 2922770 55.7 10.71 65348KB

lamport_nonatomic.5 95118524 100.0 505734961 100.0 1034.97 2855088KB
stubborn-set 95118524 100.0 505734961 100.0 3602.42 2855484KB

nes1 95118524 100.0 499299259 98.7 4533.82 2855484KB
stubborn-all

nes
lann.7 160025986 100.0 944322648 100.0 1505.77 3206496KB

stubborn-set 149890075 93.7 509618588 54.0 1159.35 3206484KB
nes1 149910575 93.7 510345108 54.0 1238.79 3206592KB

stubborn-all 89028594 55.6 214370864 22.7 1711.13 1982388KB
nes 89028594 55.6 214370864 22.7 1523.40 1982388KB

leader_election.6 35777100 100.0 233195212 100.0 3850.76 2289068KB
stubborn-set 32400204 90.6 44693743 19.2 944.46 2081964KB

nes1 32691072 91.4 45096417 19.3 1030.36 2082372KB
stubborn-all 280446 0.8 356341 0.2 15.01 62324KB

nes 280446 0.8 356341 0.2 13.31 62316KB
needham.4 6525019 100.0 22203081 100.0 41.13 163544KB

stubborn-set 6288225 96.4 20217909 91.1 98.47 163756KB
nes1 6328616 97.0 20396912 91.9 143.41 163692KB

stubborn-all 6525019 100.0 22202721 100.0 720.93 163700KB
nes 5918126 90.7 18399892 82.9 450.00 163692KB

phils.8 43046720 100.0 459165008 100.0 960.12 1817408KB
stubborn-set 14733803 34.2 56023811 12.2 154.52 548644KB

nes1 14448128 33.6 27504194 6.0 91.56 548724KB
stubborn-all 504639 1.2 1086478 0.2 11.01 70544KB

nes 55575 0.1 92945 0.0 1.10 48424KB
production_cell.6 14520700 100.0 45593810 100.0 78.86 326336KB

stubborn-set 14520700 100.0 45557720 99.9 149.39 326064KB
nes1 8160831 56.2 19069040 41.8 63.84 253060KB

stubborn-all 6218940 42.8 9615480 21.1 95.48 173800KB
nes 1716280 11.8 2273470 5.0 26.82 84896KB

synapse.5 83263 100.0 189639 100.0 0.50 48464KB
stubborn-set 83263 100.0 189639 100.0 1.60 48952KB

nes1 83071 99.8 188439 99.4 2.30 48952KB
stubborn-all 83263 100.0 189639 100.0 8.21 48964KB

nes 80723 96.9 174123 91.8 5.10 48912KB
train-gate.7 50199556 100.0 106056460 100.0 257.21 962644KB

stubborn-set 50199556 100.0 106056460 100.0 484.72 962496KB
nes1 50199556 100.0 105837268 99.8 527.05 962496KB

stubborn-all 26785155 53.4 55720696 52.5 801.49 751700KB
nes 16921595 33.7 37089426 35.0 390.21 477928KB
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Example. Suppose a process i has a disabled transition α with two guards guards(α) = {pci, g}. The
process counter guard pc and another guard checking a shared variable v, g = "(v = 1)". Moreover, let
pc(s) = true and g(s) = false, i.e. the transition is in its local state but has a guard that evaluates to false
because the value of v is not 1 in s. Suppose α is the only transition which has the local state guard pc.
The best NES that can be selected for this transition would be all transitions that can assign 1 to v. It
could be the case that process i has a transition β which has an effect that assigns 1 to v, and thus would
be selected as NES , and hence this transition is disabled because it belongs to process i and process i is
in another local state (pc(s) = true). If β now has a guard with a NES that contains transition groups
of other processes, this could cascade to even more transition groups later on in the selection, while in
fact, it could also be argued that α is a NES for β because β can’t become enabled without a local state
change, and α is the only transition that can do this in s.

In the above example, a disabled transition α that is already selected for the stubborn set can serve as
a NES for other transitions β, since the local state of process i must change and α is the only transition
able to do this. An "optimal" scenario for the stubborn set algorithm in the above example would be that
the NES for β would give only disabled transitions of process i, and for these disabled transitions again a
NES with only transitions of process i would be selected. This would go on until all disabled transitions
of process i that can occur before β are selected, including transition α. The only way that this cascade
could stop before all these transitions are added is when an intermediate transition selects a guard that
is not guarding the local state, and for this guard the NES has already been selected. It is however more
likely, that such a guard would trigger transitions in other processes causing the NES cascade to spread
over more transition groups initiating more cascades. Therefore it would be nice to shortcut this and
detect that in case there is a single disabled transition for which the local state guard evaluates to true, it
can serve as a NES for other transitions in this process. Even if multiple transitions have gi as guard, as
soon as they are all selected, they together form a NES . Typically, it is the case that for any local state
the number of outgoing transitions is small. Since a small NES is empirically a good heuristic for a small
persistent set, which in turn is a good heuristic [22] for a good reduction, using this will likely pay off.

The reason that α can be used as NES for β in the same process, is that β can’t become enabled
without α executing first. This is because the local state guards of α and β are different and disjoint,
thus can’t be enabled at the same time. Since α is the only transition of process i that can execute, it is
the only transition that can disable the local state guard of α. Therefore, it must execute before the local
state guard of β can possibly become enabled. We can extend this notion to guards in general, without
the need for processes.

Take all transitions β that use some guard g′ that can’t be co-enabled with a guard g that currently
is enabled in state s. We can now conclude that all transitions β must be disabled, and can’t become
enabled before the enabled guard g becomes disabled. Hence, the set of transitions needed to disable
guard g is a necessary enabling set for all transitions β.

We define this set similarly to the necessary enabling set:

Definition 32. Given a TS T = 〈S,→, ŝ, L〉. Let g be a guard of transition α that evaluates to true in
state s. A necessary disabling set for g in s, denoted NDS (g, s), is a set of transitions such that, for all
sequences s ω→ s′ in TS where g evaluates to false in s′, ω contains at least one transitions of NDS (g, s).

In our implementation, we calculate beforehand the following sufficient (unique) NDS for a guard in
any state:

∀s ∈ S : NDS (g, s) = {β | ∃β ∈→: Ts(∗, g) ∩Ws(β) 6= ∅} ∩NDS fe

Note that the NDS is equivalent to the default NES if the front-end doesn’t provide a more detailed
version.

As with the necessary enabling sets, we group the necessary disabling sets per transitions:

Definition 33. Given a TS T = 〈S,→, ŝ, L〉. Let α ∈→ be a transition and let guards(α) be the set of
guards of transition α. Now GNDS (α, s), is a set of necessary disabling sets for each guard of transition
α that evaluates to true in state s. GNDS (α, s) = {NDS (g, s) | ∃g ∈ guards(α) : g(s) = true}.
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3.6.1 The algorithm

To define the algorithm, we group the necessary enabling sets, i.e. the union of the necessary enabling
sets and the necessary disabling sets that can’t be co-enabled:

Definition 34. A necessary set (NS) for a transition α is defined as GNS (α, s) = GNES (α, s) ∪
{nds | ∃β ∈→: (α, β) /∈MC ∧ nds ∈ GNDS (β, s)}.

The necessary set is a simply a set of necessary enabling sets, just using the disabled guards as well
as the enabled guards. Because of this addition, there are more necessary enabling sets to choose from
and therefore it is more likely that it is possible to select a small set. To select a small set, another simple
improvement over the previous approach is to predict the effect of using a certain NES on the resulting
stubborn set.

We will define a selection heuristic to find the "best" one. The best heuristic for selecting a persistent
set is to select a small persistent set [22]. Therefore we want a stubborn set with the least possible amount
of enabled transitions. Furthermore, if no enabled transitions are found, we try to select the smallest set
because this will add the least amount of work (i.e. other necessary enabling sets). We achieve this by
penalizing the transitions in the necessary enabling sets.

The heuristic h used to select a NES works as a cost function:

1. For each disabled transition in the NES and not in Twork ∪ Ts add 1 to the costs

2. For each enabled transition in the NES and not in Twork ∪ Ts add n to the costs

The proposed algorithm will select the NES with the lowest cost on the heuristic function. Because
enabled transitions weight more then disabled transitions, the algorithm is less likely to select a NES with
enabled transitions, thus more likely to find a small persistent set.

To select a good necessary enabling set, we define a set of the "best" available necessary enabling sets:

best_nes = {nes | ∃nes : ∀nes′ ∈ GNS (β, s) | h(nes) <= h(nes′)}

The algorithm is now defined as follows:

1 function stubborn_set_ns(s)
2 Twork = {α} such that α ∈ enabled(s)
3 Ts = ∅
4 while Twork 6= ∅ do
5 β ∈ Twork, Twork = Twork − β, Ts = Ts ∪ {β}
6 if β ∈ enabled(s) then
7 Twork = Twork ∪ {β ∈→ | (α, β) ∈ D ∩MC} \ Ts
8 else
9 Twork = Twork ∪ (nes)\ Ts where nes ∈ best_nes

10 return Ts ∩ enabled(s)

Algorithm 2: A stubborn set nes/nds algorithm for PINS
The actual implementation of the algorithm knows all NES before it starts the search, and can

associate precomputed initial values for the heuristic function before the exploration starts since Twork is
empty. These values are stored for each NES . In total, there are at most the number of guards times two
(enabled/disabled) different NES .

Then, the algorithm will evaluate all the guard state labels and for each enabled transition set up a
special search context. This context is initialized by copying the initial values of the heuristic functions.
During the search, each time the algorithm adds a transition to the set Twork, the associated heuristic
values are updated. The update will cost at most linear time (two times the number of guards). The
lookup of h(nes) can occur in constant time. The algorithm is a best-first search that will search in the
search context with the least amount of enabled transitions in it. If it finds a stubborn set with one
enabled transition it will stop the search directly. Otherwise it will continue until no smaller persistent
set can be found.
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3.6.2 Modifications to PINS

The only extra modification on top of the previous algorithm is the addition of the extra NDS fe matrix.

1. All transition groups are singletons (return at most one next state).

2. All transition groups are associated to a set of guard state labels.

3. A may be co-enabled matrix for guards MCg is added.

4. A NES fe matrix for each guard state label is added.

5. A NDS fe matrix for each guard state label is added.

3.6.3 Evaluation

The effect of the additional NDS fe matrix is shown in Table 3.4. The table contains the results of the
previous algorithm (nes), the nes/nds algorithm where the NES/NDS information is not provided by the
front-end (nes/nds*), and the nes/nds algorithm where the front-end provides the NES/NDS matrix.
As can be seen from the table, the nes/nds algorithm can help to reduce the state space (needham.4,
public_subscribe.4).

There are however also cases where it performs similar to the nes algorithm (anderson.6). As with the
last algorithm, the extra information provided by the front-end doesn’t seem to have the biggest impact
on the reduction. Most of the models run with the algorithm nes/nds*, where the front-end didn’t provide
the extra information, result in similar reductions as the nes/nds algorithm with the extra information.
The small variations are likely caused by a minor variation in the choice of a NES somewhere during the
search. Again, the extra information does seem to help for the runtime. This might be because it needs
to update less values for the heuristic function h or finds a persistent set of size one faster.

Geldenhuys, Hansen and Valmari [21] recently presented empirical upper bounds for partial order
reduction using Ample sets [28, 26], based on the best possible (conditional) dependency relation derived
after computation of the full state space. Since these reductions are computed after generation of the
full state space, it is likely that they never occur in practice. The experiments they performed were done
using models from the BEEM [35] database as well, and are directly comparable to the reductions found
by our partial order reduction algorithm. The ample set implementation in [21] is roughly comparable
to the partial order reduction implemented in SPIN [28]. The maximal reduction based on the full state
space, as computed in [21] (AMPLE2, Df/Rf ) is shown next to reduction achieved based on static data
by the nes/nds algorithm.

Note that the stubborn set nes/nds algorithm uses only static, precomputed data and in 5 of the cases
shown in Table 3.5, still outperforms the maximum reduction achievable using the ample set algorithm.
Furthermore note that the results in Table 3.5 are ordered using the maximum possible reduction of the
models in the BEEM database using the ample set algorithm, not by the performance of the stubborn set
nes/nds algorithm. The reason that the nes/nds algorithm is able to achieve better reduction is that the
ample set algorithm selects as persistent set the transitions of either one or all processes in a system. It
will never find a subset some containing some of the processes. The stubborn set nes/nds algorithm on
the other hand is able to select such a subset and therefore can outperform the ample set algorithm in
terms of reduction.

3.6.4 Future optimizations

Some remarks must be made regarding the extra overhead.

1. The models use the next_long functions instead of next_all, which is slower. This is because the
next_long callback needs to check guard conditions on each call while next_all can combine these
checks and perform them only once for a set of transition groups.

2. The guard evaluation is performed twice. The next_long call performs the guard evaluation but
this has already been performed by the exported guards.
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Table 3.4: Stubborn set with NES/NDS algorithm

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 18206917 100.0 86996322 100.0 119.78 485468KB
nes 4858411 26.7 16898226 19.4 70.75 171448KB

nes/nds* 4858411 26.7 16898226 19.4 108.67 171480KB
nes/nds 4858411 26.7 16898226 19.4 94.26 171476KB

at.6 160589600 100.0 697096560 100.0 808.42 3202196KB
nes 148826634 92.7 604298885 86.7 4265.48 3202308KB

nes/nds*
nes/nds 148690835 92.6 595369635 85.4 6299.36 3202360KB

brp.6 42728113 100.0 89187437 100.0 152.90 946328KB
nes 33682079 78.8 54392322 61.0 335.10 737516KB

nes/nds* 22735728 53.2 30084951 33.7 285.73 468404KB
nes/nds 21985368 51.5 29001591 32.5 213.33 466304KB

collision.4 41465543 100.0 113148818 100.0 172.11 930996KB
nes 35080093 84.6 64504078 57.0 476.90 723744KB

nes/nds* 10712473 25.8 16455778 14.5 167.19 295924KB
nes/nds 10712473 25.8 16455778 14.5 139.29 295920KB

cyclic_scheduler.4 473414 100.0 1736712 100.0 3.60 58364KB
nes 395834 83.6 1066338 61.4 7.21 53952KB

nes/nds* 29971 6.3 32276 1.9 0.50 47924KB
nes/nds 29971 6.3 32276 1.9 0.50 47920KB

driving_phils.4 265262511 100.0 695149567 100.0 1671.19 5303484KB
nes 265262511 100.0 413840931 59.5 2898.90 5303548KB

nes/nds* 265262511 100.0 413840931 59.5 7026.39 5303752KB
nes/nds 182293923 68.7 302267279 43.5 4529.43 5303584KB

exit.3 2356294 100.0 7047332 100.0 27.42 99492KB
nes 2356235 100.0 7047186 100.0 111.07 99560KB

nes/nds* 2356207 100.0 7047158 100.0 132.61 99712KB
nes/nds 2356207 100.0 7047158 100.0 105.67 99692KB

extinction.4 2001372 100.0 7116790 100.0 19.81 81368KB
nes 284469 14.2 409965 5.8 6.41 54624KB

nes/nds* 96470 4.8 125532 1.8 4.70 49588KB
nes/nds 82265 4.1 104273 1.5 2.70 49600KB

firewire_tree.5 3807023 100.0 18225703 100.0 580.23 258920KB
nes 3240623 85.1 15383113 84.4 2582.06 246172KB

nes/nds* 348633 9.2 495815 2.7 674.94 137564KB
nes/nds 348709 9.2 495932 2.7 542.74 137080KB

iprotocol.7 59794192 100.0 200828479 100.0 544.95 1695048KB
nes 9667540 16.2 19122279 9.5 124.09 267736KB

nes/nds* 9640730 16.1 13114368 6.5 141.59 267412KB
nes/nds 9640730 16.1 13114368 6.5 112.31 267408KB

krebs.4 1047405 100.0 5246321 100.0 6.61 76436KB
nes 897653 85.7 2922770 55.7 10.71 65348KB

nes/nds* 870660 83.1 2801870 53.4 13.31 65416KB
nes/nds 874192 83.5 2807131 53.5 11.01 65412KB

lamport_nonatomic.5 95118524 100.0 505734961 100.0 1034.97 2855088KB
nes

nes/nds*
nes/nds 40472911 42.5 105095256 20.8 7033.05 1340124KB

leader_election.6 35777100 100.0 233195212 100.0 3850.76 2289068KB
nes 280446 0.8 356341 0.2 13.31 62316KB

nes/nds* 232398 0.6 301559 0.1 18.11 61296KB
nes/nds 232398 0.6 301559 0.1 13.51 61252KB

needham.4 6525019 100.0 22203081 100.0 41.13 163544KB
nes 5918126 90.7 18399892 82.9 450.00 163692KB

nes/nds* 2040051 31.3 3367460 15.2 142.00 81312KB
nes/nds 2050399 31.4 3377808 15.2 95.57 81284KB

pgm_protocol.8 3069390 100.0 7125121 100.0 62.55 173060KB
nes 1923190 62.7 2722351 38.2 63.06 132084KB

nes/nds* 1334438 43.5 1634677 22.9 74.05 114780KB
nes/nds 1310300 42.7 1543991 21.7 48.54 114628KB

phils.8 43046720 100.0 459165008 100.0 960.12 1817408KB
nes 55575 0.1 92945 0.0 1.10 48424KB

nes/nds* 69056 0.2 117936 0.0 1.20 49692KB
nes/nds 722 0.0 976 0.0 0.10 3688KB

public_subscribe.4 1846603 100.0 6087556 100.0 13.01 84776KB
nes 344089 18.6 637134 10.5 9.01 55888KB

nes/nds* 206013 11.2 334536 5.5 23.32 53848KB
nes/nds 206013 11.2 334536 5.5 9.31 53704KB
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Table 3.5: Ample set v.s. stubborn set NES/NDS

model ample stubborn-set nes/nds

cyclic_scheduler.1 1.19 1.2
mcs.4 4.13 16.4
firewire_tree.1 6.25 99.3
phils.3 10.84 10.8
mcs.1 18.35 88.6
anderson.4 22.78 46.5
iprotocol.2 25.97 15.7
mcs.2 34.45 64.6
phils.1 47.50 47.5
fwlink.2 50.66 18.8
krebs.1 51.09 93.4
leader_election.3 54.26 5.5
telephony.2 59.55 99.9
leader_election.1 60.52 10.4
szymanski.1 62.98 71.5
production_cell.2 63.12 22.1

The remarks show that there is some opportunity to optimize the runtimes for our partial order reduction
algorithms. We however take this penalty for granted and try to optimize the reduction instead.

All the partial order reduction strategies described here were optimized to get more reduction in the
number of states and transitions. As can be seen from experiments shown, this is not always beneficial
for the runtime of the algorithm. There is however still some room to improve this, some suggested
optimizations are:

1. Move evaluation of guards entirely to the back-end algorithms, such that the next_long call doesn’t
need to perform them anymore. Alternatively one might extend the PINS interface with a call similar
to next_long with doesn’t perform the guard evaluation.

2. When large persistent sets are found, the partial order reduction layer might call next_all instead
of next_long, and filter the resulting successor states. This would require the front-end to provide
the transition group of each generated successor state.

3. The precomputed NES of several guards might be exactly the same. By preprocessing one can
merge multiple necessary enabling sets into one. Doing this leads to the same reduction however
requires less work when updating the heuristic function. If updating the heuristic function appears
to costs too much time, alternatively several necessary enabling sets can be merged together when
some NES subsumes another, or just by taking the union of the sets. Doing this will likely result
in less reduction but might speed up the search algorithm.

4. At the moment the search algorithm will directly stop whenever it finds a persistent set with just
one transition in it. Adjusting this threshold to two or more will likely be beneficial for the runtime,
while trading in some of the reduction. An alternative could be to dynamically adjust this, and
maybe other search parameters based on the effectiveness of the algorithm in other states (i.e. on
the fly).

5. Some guards are dependent on each other, for example guard i = 1 and a[i] = 3. The second guard
can not be evaluated without the first guard. Therefore, these two guards must be combined into
a single guard i = 1 ∧ a[i] = 3. It may be beneficial to the reduction to, besides this guard, also
include the i = 1 guard. This results in more necessary enabling sets, making it more likely that a
small NES is found.

6. Currently the algorithms is run once for each enabled transition in some state s. When the state
vector is long, there are likely a lot of enabled transitions. Geldenhuys, Hansen and Valmari [21]
suggest that running the ample set on a random subset of the enabled transitions will result in similar
reductions. It might be worthwhile to investigate this and see whether taking a semi-random (based
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on the current state) subset of the enabled transitions results in similar reduction yet improves the
runtime. The number of semi-random enabled transitions can also be determined on the fly.

3.7 Partial order reduction with non-deterministic transitions

Until now, we assumed that transition groups must be singleton (return at most one successor state) to
represent deterministic structural transitions. This restriction is a real limitation to the PINS interface,
and it would be nice if it could be removed.

Theorem 5. The proposed algorithms are also correct without the singleton constraint

Proof. Given a PTS P = 〈〈E1, . . . , EN 〉, 〈→1, . . . ,→K〉, 〈ê1, . . . , êN 〉, 〈λ1, . . . , λM 〉〉. Let each transition
group →i (1 ≤ i ≤ K) be guarded by a non-empty set of guards Gi. Let a transition group j return two
successor states s α→ s′ and s β→ s′′. Since both α ∈→j and β ∈→j , and transition group j is guarded
by Gj , both α and β are guarded by the same set of guards. Therefore, for all guards g ∈ Gj such that
g(s) = false in some state s ∈ SP , the necessary enabling set NES (g, s) is a necessary enabling set of
both α and β. Similarly, for all guards g ∈ Gj such that g(s) = true in some state s ∈ SP , the necessary
disabling set NDS (g, s) is a necessary disabling set of both transitions. Since this holds for any two
transitions α, β ∈→j , the singleton constraint is irrelevant.

3.8 Partial order reduction v.s. symbolic reachability

The availability of the partial order reduction PINS layer enables us to compare it against the symbolic
reachability tools. Table 3.6 shows the effect of using partial order reduction versus the effect of using
symbolic reachability when the goal is deadlock checking. The symbolic reachability was run with regroup-
ing (optimizing the variable ordering of the BDD/MDD structures together with the chaining heuristic).
Interestingly enough, both techniques seem to work well on different classes of models.

For example, exit.3 doesn’t seem to benefit from partial order reduction, while the symbolic reachability
seems to work well on it. On the other hand, partial order reduction reduces the runtime for anderson.6
while symbolic reachability is much slower. Symbolic reachability does however use less memory. Note,
that the comparison isn’t entirely fair. The partial order reduction algorithms have more information
available for the reduction than the symbolic reachability. The symbolic reachability may be improved by
adding the guard information. Therefore there might be cases where partial order reduction wins it from
symbolic reachability in the comparison. On the other hand, the cases where symbolic reachability wins
it from partial order reduction can be coincidental. It might be that some other run of the algorithm,
or some other partial order reduction algorithm is able to achieve more reduction on the same model.
Nevertheless, since usually there is no optimal partial order reduction algorithm, it is useful to have both
techniques available.

3.9 Discussion and future work

To improve confidence in the correctness of the implementations, the implementations have been tested
against the full BEEM [35] database. All implementations preserved all deadlocks.

The additional information that is added to the PINS interface has some down sides too. The addition
of guards to each transition group would require changes in the way regrouping currently works. Currently
regrouping can combine transition groups into a new transition group. This would require combining the
guards of the transition group. The guards must be conjunctive, while combining the guards would require
a disjunction. Happily, the symbolic optimizations on BDD level come from reordering the state vector.
The PINS caching layer and the symbolic tools benefit from combining the transition groups too, but this
is because less transition relations over sub-vectors need to be stored. Combining the transition groups
for this purpose can also be implemented in a different manner, however it would be less elegant.

Last, the matrix is heavily affected by the POR layer. Since each state now uses all the guards of all
transition groups to determine a subset of the enabled transitions, each transition group should mark all
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Table 3.6: Partial order reduction v.s. symbolic reachability

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 18206917 100.0 86996322 100.0 119.78 485468KB
nes/nds 4858411 26.7 16898226 19.4 94.26 171476KB

reach 18206917 100.0 0 0.0 241.41 124012KB
at.6 160589600 100.0 697096560 100.0 808.42 3202196KB

nes/nds 148690835 92.6 595369635 85.4 6299.36 3202360KB
reach 160589600 100.0 0 0.0 476.50 229400KB

exit.3 2356294 100.0 7047332 100.0 27.42 99492KB
nes/nds 2356207 100.0 7047158 100.0 105.67 99692KB

reach 2356294 100.0 0 0.0 5.91 64160KB
lamport.5 1066800 100.0 3630664 100.0 3.40 70300KB

nes/nds 998746 93.6 3173546 87.4 24.82 70400KB
reach 1066800 100.0 0 0.0 4.71 58220KB

leader_election.6 35777100 100.0 233195212 100.0 3850.76 2289068KB
nes/nds 232398 0.6 301559 0.1 13.51 61252KB

reach 35777100 100.0 0 0.0 28.02 61360KB
leader_filters.7 26302351 100.0 91692858 100.0 181.43 839208KB

nes/nds 25130516 95.5 79009993 86.2 825.97 839284KB
reach 26302351 100.0 0 0.0 176.61 316568KB

peterson.7 142471098 100.0 615983127 100.0 1096.91 3313560KB
nes/nds 93246567 65.4 388201901 63.0 2106.05 2089468KB

reach 142471098 100.0 0 0.0 397.00 150064KB
phils.8 43046720 100.0 459165008 100.0 960.12 1817408KB

nes/nds 722 0.0 976 0.0 0.10 3688KB
reach 43046720 100.0 0 0.0 0.60 57248KB

schedule_world.3 166649331 100.0 2020849194 100.0 4377.84 3205884KB
nes/nds

reach 166649331 100.0 0 0.0 13.72 92856KB
synapse.4 2292286 100.0 4921830 100.0 7.61 104152KB

nes/nds 2188566 95.5 4138700 84.1 133.29 104892KB
reach 2292286 100.0 0 0.0 68.46 456208KB

32



Partial Order Reduction for Deadlocks 3.10 Conclusion

slots used by a guard as read. This has serious implications on using POR combined with the symbolic
tool, or with the incremental hashing that depends on the pins dependency matrix. The latter can be
solved by splitting the dependency matrix into two matrices, read and write. This can also improve the
dependency relation D as defined in section 3.1.2, since two transitions that only read variables can now
be considered independent too. An implementation of this has been made and tested on the BEEM
database. There appeared to be little effect for most of the examples as most of the transitions in the
BEEM database both read and write to elements of the state vector. It might however still be beneficial
to other front-ends.

3.10 Conclusion

The proposed stubborn set algorithm using necessary sets successfully manages to reduce the state space.
It is implemented as a PINS layer and therefore can work for any front-end connecting to PINS, and
supplying guards labels and the extra matrices. The static analysis used in the front-end to supply the
matrices needed for the partial order reduction will determine the amount of reduction one will get.

Since the partial order reduction algorithm is implemented modularly, the algorithm will also work
on the multi-core and distributed implementations. The wrapper however results in a very dense pins
dependency matrix and will therefore not combine well with the symbolic tools, with the exception of the
cases where there is a lot of reduction or where the matrix was dense already.

The most important changes for the PINS interface needed for the partial order reduction to work is
a) guards b) the may be co-enabled relation of guards.

Adding more fine grained guards will provide more and smaller necessary enabling sets to choose from
and will likely result in better reduction. The NES and NDS matrix can automatically be computed
from the provided guards but can manually be improved for better reduction. The results of last chapter
suggest that the reduction gained by improving these matrices will not be as significant for most of the
models, although there might be large improvements for some.
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Chapter 4

Partial Order Reduction for LTL

This chapter the focus lies on model checking linear tem-
poral logic. We develop a PINS wrapper to compute the
synchronous product automata of the model as given by
some front-end with a büchi automaton generated from an
linear temporal time formula. We show how this wrap-
per can be used independently with the back-end search
algorithms, and give a modular approach to implement
an accepting-cycle search algorithm. Furthermore it is
shown how the partial order reduction wrapper developed
in the previous chapter can be used in combination with
the LTL wrapper and the back-end algorithms, such that
the reduced state space preserves the LTL properties.
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4.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is a logic for expressing properties over paths in computation trees. A
computation tree can be seen as a tree that has an initial state as its root, and then an infinite unwinding
of all transitions that can be taken from there as branches. In LTL it is possible to express properties
with respect to the path using temporal operators. It is a formalism that is used to express the safety
and liveness properties, and was first proposed for the verification of computer programs by Amir Pnueli
in 1977 [39].

4.1.1 LTL semantics

LTL properties can be used to reason about labels associated with each state s ∈ S from a TS
T = 〈S,→, ŝ, L〉. To do this a set of atomic propositions Π is needed, together with a labeling function
λ : S → 2Π that assigns a truth value for each proposition in Π to each state s ∈ S. LTL [32] is
defined from atomic propositions p1, . . . , pn by means of boolean connectives, X ("next"), � ("always"),
♦ ("eventually") and U ("until") operators. If ω = s0, s1, . . ., where s0, s1, . . . ∈ S is an infinite sequence
of states for which the truth values p1, . . . , pn are assigned by the labeling function λ, then let ω, i |= φ
denote that the LTL formula φ holds at index i for sequence ω, and let ω(i) denote the state si in ω.

Table 4.1: LTL

ω, i |= p where p ∈ Π, iff p ∈ λ(ω(i))

ω, i |= φ iff ω, i 6|= φ
ω, i |= φ ∨ ϕ iff ω, i |= φ or ω, i |= ϕ
ω, i |= Xφ iff ω, i+ 1 |= φ
ω, i |= �φ iff for all k ≥ i holds that ω, k |= φ
ω, i |= ♦φ iff there exists k ≥ i such that ω, k |= φ
ω, i |= φ U ϕ iff there exists k ≥ i such that ω, k |= ϕ

and for all i ≤ j < k ω, j |= φ

For a sequence of states ω, the LTL formula φ holds when ω, 0 |= φ. For a transition system T , we
denote that T |= φ is true iff for each sequence ω generated by T from the initial state ŝ, ω, 0 |= φ.

4.1.2 On the fly LTL model checking

The DFS or BFS search algorithm can be used to generate all states s in the state space. After this, the
property φ can be verified. For small models this is no problem, for larger models however, creating the
entire state space might not be possible. To still get some meaningful results, it would be better to verify
the truth value of the property during the generation of the state graph. This is known as on-the-fly
model checking. If the truth value of the property is violated before the entire state graph has been built,
a trace to this error can be reported before the generation of the state space is finished.

An important way to check properties is using LTL without next-time operator (X), LTLx. For
all LTLx formula there exists a corresponding Büchi automaton, which can be seen as the automata-
theoretic version of the LTL formula. It is an extension of a finite state automaton to infinite words.
Most importantly Büchi automata have an acceptance condition such that it accepts infinite sequences
that go infinitely often through an accepting state.

Definition 35. A Büchi automaton is a tuple B = 〈Q, q0,Σ,∆, F 〉 where Q is the set of states, q0 is the
initial state, Σ is the alphabet, ∆ ⊆ Q×Σ×Q is a nondeterministic transition relation, and F ⊆ Q is the
set of final (accepting) states. A run of B on an ω-word α = α(0)α(1) . . . from Σω (the set of infinite words
over Σ) is an infinite sequence of states σ = σ(0)σ(1) . . . such that σ(0) = q0 and (σ(i), α(i), σ(i+1)) ∈ ∆
for all i ≥ 1. A run of B is accepting if some s ∈ F appears infinitely many times in the sequence of states
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σ, i.e. there exists a cycle though an accepting state. The infinite word ω is accepted by B if there is an
accepting run of B over ω. The language of infinite words accepted by B is denoted L(B).

The model checking problem, T |= φ, may be viewed as an automata-theoretic verification problem,
L(BT ) ⊆ L(Bφ) (the language accepting the transition system should be included in the language accept-
ing all words for which φ holds). The question L(BT ) ⊆ L(Bφ) can be answered by constructing the state
graph of the synchronous product of BT and B¬φ, S = BT ⊗B¬φ. (There should not be a word in L(BT )
that is not in L(Bφ), thus that is in L(B¬φ)). If any strongly connected components (cycles) of the graph
represented by S satisfies the acceptance condition of B¬φ then and only then φ is violated in T .

Several algorithms exist to find infinite paths satisfying a Büchi acceptance condition (NDFS, SCC)
[40, 18].

4.2 The ignoring problem for partial order reduction

Besides checking the absence of deadlocks in a model, there are two important classes of properties, that
both can be expressed using LTL:

1. Safety properties ("bad things do not happen")

2. Liveness properties ("eventually good things will happen")

Application of partial order reduction while preserving these properties is more complicated than preserv-
ing just deadlocks. Using only the persistent set technique the state space is reduced too aggressive.

4.2.1 Preserving safety properties

A safety property asserts that nothing bad happens on a finite trace.

“if something bad happens on an infinite run, then it happens on a finite prefix of this run too”

The persistent set (section 3.1) preserves enough information to keep all deadlocks in the state space.
It may however prune too much of the state space to preserve safety or liveness properties. For example,
when there are no deadlocks in the state space, due a cycle in one or multiple subcomponents that
together are independent of the rest of the system. Consider again the asynchronous composition of a
transition system T and process P with a self loop from s to s. As concluded in 3.1, the combined system
has no deadlock, independent of the transition system T . A typical safety property however concerns
reachability of some local state of a process (for instance, an assertion on a local variable). Note that
in T , the reachability of local states in the components of T can be irrelevant to the deadlock property.
Transitions in T can be delayed, and a global cycle can be found in P before any other local state in T is
reached. Thus, for safety properties the persistent set alone is not enough. This problem was first identified
by Valmari [41] and is named the "ignoring-problem" (by the fact that some processes/transitions can be
ignored).

Transitions outside a persistent set can be seen as delayed. As soon as a global cycle is found, some
delayed transitions can become delayed indefinitely. To solve the ignoring problem one needs to make
sure that in the reduced state space Sr, no transition is delayed indefinitely:

C3S For any state s ∈ Sr, if transition α ∈ enabled(s) there
is a state s′ ∈ Sr reachable from s such that α ∈ r(s′) [16].

Now, all possible finite traces will be included in the reduced state space. With this extra condition
C3S , called proviso, added as a condition that must hold for each state in the reduced state space, safety
properties concerning reachability of a local state of a process are preserved.

Theorem 6. Let T be a TS and let r be a reduction function on T such that T ′ is the transition system
of T by r. If for T ′ conditions C0, C1 and C3S hold, then for all processes p for all local states l reachable
from the initial state s0 in T iff l is reachable from the initial state s0 in T ′.

Proof. For the proof we refer to Godefroid [22], Evangelista [16], Peled [37].
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Figure 4.1: Stuttering equivalent paths

4.2.2 Preserving liveness and LTL properties

Both safety and liveness properties work under fairness assumptions on the environment. For example,
one might want to assume that the scheduler never ignores a process forever (infinite times). The actual
implementation might take more then a lifetime to schedule it, however eventually it will do so. Hence,
whatever finite prefix is used, there may be an extension in which the liveness property does hold under
the fairness assumption. Therefore, contrary to safety properties liveness properties need infinite traces.

“no matter what happens along a finite run, something good can still happen later”

Both for safety and liveness properties, fairness plays a role. However, it has been shown that all fair
executions of a program satisfy a safety property iff all executions, fair and unfair satisfy the property
[37]. This means that for safety properties we do not need to be concerned about fairness. For liveness
properties however fairness is essential. Combining partial order reduction and fairness for liveness prop-
erties is a bit more complex.

C3L A cycle is not allowed in the reduced state space if it contains a state in which some
transition α is enabled, but never included in r(s) for any state s on the cycle. [16]

Peled uses a stronger proviso that ensures that all fair runs in the original state space have at least
one (stuttering) equivalent fair run in the reduced state space: For each cycle in the reduced state space,
there exists one state s that is fully explored (all enabled transitions are explored in s) [22, 41, 16].

LTL can express safety and liveness properties, thus when applying partial order reduction for LTL
we need at least the proviso for liveness properties. The liveness proviso alone however is not enough.
The checked property might be sensitive to the choice of successor states in the persistent set. The
property might use multiple propositions, for instance p1 ∧ p2, while a single transition might just alter
the evaluation of either p1 or of p2, and might be independent of other transitions that have an effect on
the property. What is actually important for LTL is that the checked property remains the same along
paths that are pruned. For this we need some definitions.

A transition α ∈ T is invisible [36, 12] in respect to a set of propositions Π if for each pair of states
s, s′ ∈ S such that s α→ s′, λ(s)∩Π = λ(s′)∩Π. In other words, a transition is invisible when its execution
from any state does not change the value of the propositional variables. A transition is visible if it is not
invisible.

Closely related to the concept of (in)visibility is that of stuttering. Stuttering refers to a sequence of
identically labeled states along a path. A finite sequence of identically labeled states is called a block.
Intuitively, two paths are stuttering equivalent when they can be partitioned into (in)finitely many blocks
such that the states in the kth block of each path have the same label. For example, Figure 4.1 has two
stuttering equivalent paths, divided into three blocks (p, p, p) [36, 12].

It can be proven that any LTLx formula is invariant under stuttering (i.e. formulas are not affected
by repeating similar states) [12]. Conversely, every property that is stuttering closed can be expressed in
LTLx [38, 12].

Besides the liveness proviso, to preserve LTLx the persistent set needs to prune only stuttering equiv-
alent traces. The following condition does this:

C2 All transitions in r(s) are invisible, except when r(s) = enabled(s) [36, 16, 37, 1].
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This extra condition allows on-the-fly LTL model checking in combination with partial order reduction.
Applying the partial order reduction algorithm with these constraints preserves the LTLx properties in the
reduced state space. The reduced state space contains traces all stuttering-equivalent to a trace from the
original state space. Therefore the normal accepting cycle search algorithms can now be applied without
knowledge of the partial order reduction [36].

Theorem 7. Let T be a transition system and let r be a reduction function. The reduced transition system
T ′ produced from T by r is stuttering equivalent to T if conditions C0, C1, C2, C3L hold.

Proof. C0, C1 are equivalent to the persistent set generated by the stubborn algorithms of chapter 3 by
theorem 2. See Katoen [1] theorem 8.13 for the proof.

4.3 Safety and liveness proviso

Several strengthened versions of the safety- and liveness proviso exist, trading implementation efficiency
against state space reduction. Because safety and liveness proviso both require knowledge on cycles in
the state space, the search order is very important. In general, depth first search is better to detect cycles
as a trace of the cycle is on the stack. Moreover, the acceptance cycle detection algorithms are based on
depth first search. Therefore the focus lies on proviso for depth first search.

The safety and liveness provisos are defined to hold globally in the reduced state space. The reduction
function however requires the proviso to be locally checkable for individual states. The provisos presented
here are all locally checkable.

4.3.1 The stack/queue proviso

The best known proviso is the stack proviso [22, 28], as implemented in the SPIN model checker [28],
and the BFS queue variant [6]. Let Sr denote the reduced state space obtained by applying a reduction
function r.

Safety

(stack proviso) For any s ∈ Sr, there exists at least one transitions α ∈ T (s) and state s′ ∈ Sr such
that s α→ s′ and s′ is not on the DFS stack, i.e. s′ /∈ Stack. Otherwise T (s) = enabled(s).

(queue proviso) There exists at least one transition α ∈ T (s) and a state s′ ∈ Sr such that s α→ s′, s′

is in the BFS queue, i.e. s′ ∈ Queue. Otherwise, T (s) = enabled(s).

Liveness

(stack proviso) For all transitions α ∈ T (s) and states s′ ∈ Sr such that s α→ s′, s′ is not on the DFS
stack, i.e. s′ /∈ Stack. Otherwise, T (s) = enabled(s).

(queue proviso) For all transitions α ∈ T (s) and states s′ ∈ Sr such that s α→ s′, s′ is in the BFS
queue, i.e. s′ ∈ Queue. Otherwise, T (s) = enabled(s).

4.3.2 The closed set proviso

Bosnacki, Leue and Lluch-Lafuente developed General State Expanding algorithms [7] (see section 4.6.1).
The algorithms captures both the DFS and BFS search order by changing just the underlying data
structure. It uses the notion of open- and closed sets of states. An additional advantage of the algorithm
is that it can be used for directed searches (best first, A*) as well. Because the data structure describes the
search order the notion of stack and queue is replaced by the open- and closed set. Therefore expressing
a proviso in these terms is useful as well. The main idea is that a transition can be delayed as long as the
next states are new (thus not yet visited, visited set proviso [14]). A slightly improved version called the
closed set proviso [7] states that states can be delayed as long as they are not handled by the algorithm
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(It is better because states that are visited might still be in the open set). Since the stack proviso may
include states that are closed and off the stack, it is expected that the stack proviso results in a better
reduction for most models.

Safety

(closed set proviso) For any s ∈ Sr, there exists at least one transition α ∈ T (s) and state s′ ∈ Sr such
that s α→ s′ and s′ /∈ Closed. Otherwise T (s) = enabled(s).

Liveness

(closed set proviso) For all transitions α ∈ T (s) and states s′ ∈ Sr such that s α→ s′, s′ /∈ Closed.
Otherwise, T (s) = enabled(s).

4.3.3 The color proviso

The color proviso by Evangelista and Pajault [16] can be used only for liveness properties in a depth first
search. The proviso exploits the fact that cycles that lead back to the stack may contain a fully expanded
state already, i.e. the state that closes the cycle doesn’t need to be fully expanded. This is done by
coloring the states red, green or orange. Green states are safe states, and may be reached by any other
state without risking of closing an invalid cycle. Orange states are potentially dangerous states still on
the stack. Red states are dangerous states that have left the stack, that may close a "bad" cycle. When
encountering a red successor a state must be fully expanded. For an orange state, it must be checked
whether the cycle contains a fully expanded state. This is done by counting the number of fully expanded
states between the orange state and the state that closes the cycle. If the count is the same, no fully
explored state is on the cycle and the orange state is dangerous. If a fully explored state is on the cycle
however, it is save to go back to the stack. A large difference between this proviso and the stack proviso
is that using the stack proviso, states off the stack are all save to reach, while for the color proviso, red
states may exist off the stack. Nevertheless, the color proviso seems to result in better reductions for
various examples [16].

4.4 A PINS LTL wrapper

The two main ingredients for LTL model checking are a) the synchronous cross product of the model
with the negated büchi automata b) the search algorithm for accepting cycles. Usually model checkers
have intermingled implementations of both these components. Using the PINS interface it is possible to
separate these two. The search algorithm can be implemented as back-end PINS algorithm like the dfs-
and bfs searches, while the cross product with the büchi automaton can be hidden inside a PINS wrapper.
The wrapper can intercept the next state call and combine the next state generated by the front-end with
the büchi automaton. The PINS wrapper adds a state label for accepting/non-accepting büchi states.
This is used by the back-end algorithm to find the accepting cycles. The additional advantage of this
setup is that it is still possible to let the front-end compute the cross product and provide the accepting
state label. In other words, if the front-end provides an interface for LTL or büchi automata this can still
be used. To combine the LTL wrapper with the POR wrapper, partial order reduction must occur before
the cross product with the büchi automaton [36]. As shown in Figure 4.2, the POR wrapper executes
between the LTL wrapper and the front-end. Thus the POR wrapper produces a reduced state space
preserving LTL, then the LTL wrapper combines the state with the büchi automaton and finally the
back-end searches for accepting cycles.

Theorem 8. Let T be a transition system, and let T ′ be the reduced transition system of T by some
reduction function r, satisfying conditions C0, C1, C2 and C3. The intersection of the buchi automaton
G of T with the buchi automaton of a property ¬φ is empty iff the intersection of the büchi automaton G′

of T ′ with ¬φ is empty, i.e. LT ∩ L¬φ = ∅ iff LT ′ ∩ L¬φ = ∅.

Proof. For the proof, see [36].
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Figure 4.2: The LTL and POR wrapper for PINS
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Figure 4.3: LTSmin framework class diagram

4.5 Observations

As with partial order reduction for deadlocks, the reduction for LTL should be modular too. Information
on (in)visibility can be statically obtained and passed from the LTL wrapper to the POR wrapper.

The safety- and liveness proviso however requires knowledge about cycles in the state space. This
knowledge can be made available in the search algorithm, but is not available in the POR wrapper.
Therefore, a clean separation where the search algorithm is unaware of the PINS wrapper is very hard.

As written in the previous section, we know that the stuttering requirement (invisible condition), as
well as the liveness proviso are based on just the current and the next states. Shown in Figure 4.2 is
how the PINS wrapper passes along the next state to the search algorithm. Because this happens in a
callback, there is an information flow in both ways: from the POR wrapper to the back-end algorithm, and
from the back-end algorithm to the POR wrapper. This information flow covers precisely the interesting
states (current and next) for which information is needed in the POR wrapper. To make a modular POR
wrapper for LTL, the idea is that the search algorithm can pass along information on cycles using the
callback dataflow.

Another observation is that both for safety and liveness properties, the same information needs to be
passed to the POR wrapper for each transition. The difference between safety and liveness is that for
safety properties there must be at least one transition that doesn’t close a cycle on which no state is fully
expanded, while for liveness properties this must hold for all transitions. Hence that the extra information
needed for each transition is a boolean flag (from here on called por_proviso) that says:

Definition 36. Given a TS T and a TS T ′ reduced by the reduction function r. The por_proviso(s→ s′)
holds for a transition currently being explored if there exist no cycle s0, s1, . . . , sn ∈ ST ′ with s0, sn = s′

and sn−1 = s where on each state of the cycle r(si) 6= enabled(si) for 0 ≤ i ≤ n.

A clean separation can now be defined between the POR wrapper and the back-end search algorithm,
by annotating the successor state s′ with the value of the por_proviso function. The search algorithm
is in charge of setting the por_proviso flag, while the POR wrapper can check that for safety properties
there exist a successor state for which the flag is set, and for liveness properties the flag is set for all
successors. Note that false is chosen as default value for this flag. Algorithms that do not support partial
order reduction do not touch the flag, and therefore there will not be reduction.

4.6 Implementation

As observed, the detection of cycles is needed for partial order reduction to work with LTL, and there
is a direct connection to the search algorithm used. However, the search algorithm used is less tightly
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coupled to the acceptance cycle search. From the perspective of a tool designer, it would be nice to have
a framework in which this is exploited such that code can be reused in a modular fashion.

4.6.1 General State Expanding Algorithms

As a starting point for such a framework we use General State Expanding Algorithms (GSEA) [7]. In
short, this algorithm (algorithm 3) can do both the dfs- and bfs exploration strategy depending on the
data structure chosen to represent the Open set. If the open set is represented as a queue, the search
order is bfs, while it is dfs if the open set is represented as a stack.

1 function GSEA(s)
2 Closed = {};
3 Open = {s};
4 foreach s ∈ Open do
5 Open = Open− {s};
6 Closed = Closed ∪ {s};

// generate next states
7 foreach s′ ∈ s→ s′ do
8 state_process(s′);
9 if s′ /∈ Closed ∧ s′ /∈ Open then

10 Open = Open ∪ {s′};

Algorithm 3: General State Expanding Algorithm

The LTSmin implementation

It is possible to use an object-oriented approach to implement the General State Expanding Algorithm.
The functionality of each line of code of algorithm 3 can be mapped to a function that belongs to a
GSEA object. Then a more specialized objects for DFS- and BFS searches can inherit from this and
reuse/share code. From these objects again more specialized versions can be used with different storage
mechanisms to represent a state. Figure 4.3 shows this setup. Each more specialized class can be used to
overwrite behavior and add extra work before or after the original function call. The foreach statements
in Algorithm 3 can be replaced by a function call and a callback representing the underlying code block.
An example of such an implementation is shown in Algorithm 4 where the foreach (line 4 Algorithm 3) is
replaced by a while statement (line 4,5 Algorithm 4). Line 6 to 12 are put in a callback function such that
sets more suitable for a different foreach implementation can reuse the same callback code. Similarly, the
foreach used to generate the next states is a combination of a wrapped PINS next_all call and a callback
(see Figure 4.2).

1 function GSEA(s)
2 init();
3 open_insert(s);
4 while has_open() do
5 s = open_extract();
6 closed_insert(s);

// generate next states (next_all + callback)
7 foreach s′ ∈ s→ s′ do
8 state_process(s′);
9 if open_insert_condition(s′) then

10 open_insert(s′);

11 else
12 state_matched(s′);

Algorithm 4: LTSmin GSEA Framework
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s0 s1 s2 s3 s10 s11 . . .

frame s3 → s10

s3 → s11

Figure 4.4: A stack with frames

The DFS implementation

The framework described in Algorithm 4, Figure 4.3 can be used to share code at different levels. As an
example, a generalized implementation for a DFS search is given below. It can be used to share a stack
but still represent the states using different storage mechanisms.

1 function closed_insert(s)
2 return Closed = Closed ∪ {s};
3 function open_insert_condition(s)
4 return s /∈ Closed;
5 function open_insert(s)
6 return push(Stack, s);

7 function has_open()
8 while peek(Stack) ∈ Closed do
9 pop(Stack)

10 return !empty(Stack);

11 function open_extract()
12 return pop(Stack);

Algorithm 5: DFS configuration
Note that the real implementation in LTSmin uses a framed stack, where each of the generated

successors s′ of a state s are put on a new stack frame (see Figure 4.4). Using the frame information it
is possible to generate traces, i.e. the last state on the frame is a state currently being explored. The
downside of this approach is that it is possible that some state occurs multiple times on the stack. The
has_open function will take care of this by popping it off the stack when it is closed already. There can
thus be two events leading to a pop operation in has_open. Either a state is popped directly after closing
a frame, which means that all successor states are closed and the algorithm is backtracking, or a state is
popped in between a frame (the last action was a pop, not closing a frame) which means that the state
must have been closed in some future execution of the DFS search. Both these events provide valuable
information for some algorithms. Therefore, two extra calls (state_backtrack, state_backtrack_drop) are
added to be able add some extra code on these events.

4.6.2 Couvreur

For LTL model checking, efficient acceptance cycle detection algorithms exists. Most notably the Nested
DFS and SCC variants [40, 18]. Both algorithms rely on the DFS post-order to detect accepting cycles.
Ideally, these algorithms are implemented on top of the DFS search implemented in the GSEA framework
described in the previous section, such that the acceptance cycle detection works whenever a new DFS
algorithm is implemented. There are however some known problems with LTL in combination with partial
order reduction. NDFS and some variants of SCC require a state s to be explored more then once. Since
with LTL the result depends on the search order this might select different subsets of enabled(s) each
call, and give invalid results [25]. There are solutions [40] to overcome these problems, but the easiest
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solution is to use an algorithm that requires just a single exploration of each state. This makes the SCC
based algorithms better candidates. The Amendment of Couvreur’s algorithm as described by Gaiser and
Schwoon [18] is very well suited. It explores each state only once, and needs some extra work only in well
defined places of the DFS search: when a search is started for a state, when a state is popped off the
stack, and when a state is matched. Using the GSEA framework (Figure 4.3), it is possible to add an
SCC component that uses a generalized DFS search and overwrites precisely these functions to add some
extra behavior needed to turn the DFS search into an SCC algorithm.

1 function open_extract()
2 s = dfs.open_extract();
3 count = count+ 1;
4 s.dfsnum = count;
5 s.current = true;
6 push(Roots, (s, is_accepting(s)));
7 push(Active, s);
8 return s;

9 function state_backtrack(s)
10 if top(Roots) == (s, ?) then
11 pop(Roots);
12 repeat
13 u = pop(Active);
14 u.current = false;
15 until u = s;

16 return dfs.state_backtrack(s);

17 function state_matched(s)
18 if s.current then
19 repeat
20 (u, accept) = pop(Roots);
21 if accept then
22 report cycle

23 until u.dfsnum ≤ s.dfsnum;
24 push(Roots, (u, false));

25 return dfs.state_matched(s);

Algorithm 6: Couvreur’s algorithm for GSEA framework

4.6.3 Combining POR with LTL

Using the partial order reduction wrapper works well for deadlocks. For LTL extra constraints on the
persistent sets are needed (section 4.2.2). Safety and liveness properties depend on the search order and
need extra information for each generated successor. Shown in Figure 4.2, there exists a path through
which the data can flow from the POR wrapper to the back-end algorithms and back, that can be used
to provide the POR wrapper with the extra information needed. By letting the algorithm annotate each
transition with a boolean flag to detect improperly closed cycles, the POR wrapper can select a persistent
sets for safety and liveness properties as well. Furthermore, preserving all LTL requires that none of the
transitions in the persistent set is visible.

Adding invisible constraint for LTL

The LTL wrapper can determine the set of transition groups that modify (write to) the slots of the state
vector that are used for the evaluation of the predicates on the edges of the büchi automaton. These
transition groups are marked visible, the others are marked invisible. On initialization, this information is
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passed to the POR wrapper which from then on uses the static visibility information to find a persistent
set with only invisible transitions in it.

The NES/NDS algorithm of section 3.6.1 can easily be modified to return either only invisible transi-
tions or all transitions. Because the algorithm uses a heuristic function h(nes) to select the best persistent
set, a minor change in the heuristic function can steer the algorithm away from selecting visible transitions.

The new heuristic h used to select a NES is computed as follows.

1. For each disabled transition in the NES and not in Twork ∪ Ts add 1 to the cost

2. For each enabled invisible transition in the NES and not in Twork ∪ Ts add n to the cost

3. For each enabled visible transition in the NES and not in Twork ∪ Ts add n2 to the cost

Now, after selecting the persistent set the algorithm can simply confirm that no visible enabled transi-
tion has been selected. If this is the case, it will return T (s), otherwise it must return enabled(s). Hence,
the extra condition on visibility can easily be incorporated in the original algorithm (for deadlocks, all
transitions are invisible). Information regarding the visibility of transition groups can be passed from the
LTL wrapper to the POR wrapper on initialization.

Communicating the safety and liveness proviso

To communicate the safety and liveness proviso with the back-end algorithm the algorithm needs to pro-
vide the por_proviso flag for each successor state. How this is done will be discussed in the next section.
Enforcing the constraint is now a matter of verifying a simple condition on the persistent set or returning
enabled(s).

Preserving safety properties For safety properties, the following condition must hold for each transi-
tion α = s→ s′ generated

∃α ∈ T (s) : por_proviso(α) ∨ T (s) = enabled(s)

This is a simple as verifying that one of the generated successor states has the por_proviso flag set to
true. If this is not the case, one might consider adding an unselected transition to the emitted persistent
set and recomputing a smallest set.

Preserving liveness properties For liveness properties, the extra condition is that each transition
α = s→ s′ needs to have the por_proviso flag set:

∀α ∈ T (s) : por_proviso(α) ∨ T (s) = enabled(s)

4.6.4 Implementing the proviso

The algorithm is responsible for setting the por_proviso flag for each of the successor states. The value
of the flag can depend on the chosen version of the proviso: the closed set proviso, the stack proviso or
the color proviso.

To set the proviso flag for the successor state, the LTSmin framework is adapted as follows:
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1 function GSEA(s)
2 init();
3 open_insert(s);
4 while has_open() do
5 s = open_extract();
6 closed_insert(s);

// generate next states (next_all + callback)
7 foreach s′ ∈ s→ s′ do
8 state_process(s′);
9 s′.por_proviso = por_proviso(s′);

10 if open_insert_condition(s′) then
11 open_insert(s′);

12 else
13 state_matched(s′);

Algorithm 7: General State Expanding Algorithm + Proviso
Depending on the implementation of the por_proviso function, the proviso flag can now be set. Note

that a different proviso can be chosen without changing the search algorithm, while still being compatible
with the SCC algorithm.

4.6.5 The closed set proviso

This is the default proviso

1 function por_proviso(s)
2 return s /∈ Closed;

Algorithm 8: The closed set proviso
This proviso is the most straightforward proviso and works well with other search strategies for GSEA,

like best-first and A* [7]. It is however not necessary the best proviso for a good reduction when using a
DFS search.

4.6.6 The stack proviso

The stack proviso is the best known proviso [23, 22, 27]. It is likely to result in a better reduction than
the closed set proviso because more states in the state space will lead to a por_proviso flag that is set
to true. Only successor states that are on the current search stack set the proviso flag to false. Contrary
to the closed set proviso, closed states that are not on the stack will set the proviso flag to true too. In
order to implement the stack proviso we keep the set of closed states that are not on the stack anymore.
These are precisely the states that have been backtracked. By overwriting the state_backtrack function
we create a set Offstack of all the states that are not on the stack anymore. These states either do not
form a cycle of are in a cycle with a fully expanded state.

1 function state_backtrack(s)
2 Offstack = Offstack ∪ {s};
3 function por_proviso(s)
4 return s /∈ Closed ∨ s ∈ Offstack ;

Algorithm 9: General State Expanding Algorithm
Due to the framed stack implementation where more then one successor state is pushed on the stack

at once, it might be the case that a successor state is generated and put on the stack more then once.
This is popped off (state_backtrack_drop) again by the implementation of has_open (see section 4.6.1),
but might have consequences for the validity of the persistent set that was generated. In the following
section it is proven that the generated persistent set is always correct:
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s

s′

s′′

Figure 4.5: The off-stack proviso

Proof of correctness

The following assumption holds:

1. For each state, the state_backtrack function is called precisely once, when it is popped off the stack

We use an Offstack set that marks states as closed and off the stack. Each time a successor state is
generated, one of the following possibilities hold.

1. The successor state is new (s /∈ Closed)

2. The successor state is on the stack, in the current trace (being explored) (s ∈ Closed, s /∈ Offstack)

3. The successor state is off the stack and backtracked (s ∈ Closed, s ∈ Offstack)

In the last two cases (2 and 3), no future execution can change the result of the por off-stack proviso.
In both cases the successor state is added to the Closed set, thus will never be pushed to the stack in any
future execution (see 4.6.1). Only when a state is new, future executions may regenerate the same state
(see Figure 4.5) which might interfere with the correctness of the persistent set.

We will show that a new state can only change to closed and off the stack. In any future trace starting
from s, for each successor s′′ from s that is new, either there exist some state s′ reachable from s that
regenerates s′′ (Figure 4.5), or s′′ doesn’t reappear in the trace. In the latter case, s′′ will still be new
when backtracking. In the first case, since s′′ has been regenerated in some trace via s′, it must have
been backtracked before s′. Without loss of generality, we assume s → s′ is explored before s → s′′

(otherwise, s′′ wouldn’t be pushed on the stack since it was closed already). Since transition s → s′

is searched before s → s′′, and s′′ is backtracked precisely once, and before s′, in proper dfs postorder
s→ s′′ should result in s′′ being closed and backtracked (s ∈ Offstack) instead of being new (s /∈ Closed).
Therefore, the valuation of the por_proviso might have been invalid while generating the successor. But
since the valuation of por_proviso for new (case 1) and closed, off the stack (case 3) states is the same,
the generated persistent set is still correct.

4.6.7 The color proviso

The color proviso [16] needs to keep track of the color of each state. Note that states that are not on the
stack can either be red or green, and only states that are on the stack can be orange. Furthermore, for
each state still on the stack the number of fully expanded states must be stored. This makes it possible
to detect that a cycle back to the stack contains a fully expanded state (s.expanded > s′.expanded). The
number of fully expanded states must be assigned to a each state in the order the states are explored
by the dfs algorithm. Therefore overwriting the state_next function is suitable for assigning it. There
is however not easy way to mark a state as fully expanded, except by explicit communication with the
POR wrapper. Alternatively, it is possible to assume that no state is fully expanded. In this case the
algorithm will still be correct but will not result in better reduction than the stack proviso. A third option
is to approximate the knowledge of fully expanded by evaluating the liveness condition that all successor
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states must have the por_proviso flag set to true. In case there exist a successor which has the flag set
to false it is certain that the POR wrapper must return enabled(s). This has been implemented to make
the implementation of the proviso completely independent with the POR wrapper. Contrary to the stack
proviso, the generated persistent set is not always a valid one. It can happen that a successor state s′′ is
generated from s and is regenerated from s′ like is the case with the off stack proviso (Figure 4.5). The
first time it is generated s′′ is new and will have the orange color. Then, the second time, on backtracking
this color can change to either green or red. Whenever it turns out green it is fine, but when it becomes
red the persistent set generated from s was invalid. To overcome this problem it is possible to regenerate
the successors of s using the new information available, replacing the successor states on the stack frame
(this can only add successors). The implementation can overwrite the state_backtrack_drop to detect
this. Experiments of Evangelista and Pajault [16] show that this will happen in few occasions during
exploration of the state space. Note that this implementation differs from the original implementation
because the detection of the red successor is delayed, which likely results in a bit less reduction. Another
difference is that the information that a state is fully expanded is not available, and under-approximated,
resulting in less reduction, too.
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1 function state_next(s)
2 global .fully_expanded = false;
3 parent.state_next(s);
4 expanded = s.expanded;
5 if global .fully_expanded then
6 s.color = green;
7 expanded+ +;

// mark all successors on the stack
8 foreach s′ ∈ s→ s′ do
9 s′.expanded = expanded;

10 function state_backtrack(s)
11 if ¬s.color = green then
12 if s.all_successors_green then
13 s.color = green;

14 else
15 s.color = red;

16 function state_backtrack_drop(s′)
17 peek s off the previous stack frame;
18 if ¬s′.color = green then
19 if s.color = orange then

// clear stack frame
20 while stack_frame_size() > 0 do
21 pop(Stack)

22 this.state_next(s);
23 s.color = green;

// push successor to drop it again
24 push(Stack, s′);

25 function por_proviso(s′)
26 peek s off the previous stack frame;
27 proviso = s′ /∈ Closed ∨ s′.color = green ∨ (s′.color = orange ∧ s ′.dfsnum < s.dfsnum);
28 if s′.color = orange ∧ s ′.dfsnum = s.dfsnum then
29 s.all_successors_green = false

30 global .fully_expanded = global .fully_expanded ∨ ¬proviso;
31 return proviso;

Algorithm 10: Color Proviso

4.7 Evaluation

To evaluate the effectiveness of the partial order reduction algorithm in combination with on the fly
LTL model checking, LTL formulas (Table 4.2) extracted from the BEEM database have been used in
combination with the corresponding models. Table 4.3 shows the results of a) just the LTL wrapper in
combination with the model b) a breadth first exploration where the closed set proviso is used c) a depth
first exploration where the closed set proviso is used. As can be seen from the table, the closed set proviso
works best for breadth first search exploration of the state space. For depth first search there is little
to no reduction, with some exceptions where there is a lot of reduction. Since verifying LTL on the fly
requires either a SCC or NDFS algorithm, and both are based on DFS, the lack of reduction for DFS
makes the closed set proviso unsuitable for most models. The benefit of the proviso is that there is little
to no extra overhead, and it does work for some models.

Since a DFS search is required for on the fly LTL model checking, we compare the different DFS
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Table 4.2: LTL properties

name ltl property

anderson.prop2.ltl ! ([] ( (P_0 == 1 | P_0 == 2 | P_0 == 3) -> <> P_0 == 4) )
anderson.prop3.ltl ! ([] ( (P_0 == 0 | P_0 == 4) -> <> (P_0 == 1 | P_0 == 2 | P_0 == 3)) )
at.prop2.ltl ! ([] ( (P_0 == 2) -> <> (P_0 == 9) ) )
bakery.prop2.ltl ! ([]( ( (P_0 == 1) | (P_0 == 2) | (P_0 == 3) ) -> <> (P_0 == 4) ) )
bopdp.prop1.ltl ! ([] ( ((sleeping == 0) & (sleep_op == 0)) ->

((! (sleep_op == 0)) R ((sleeping == 0) | (! (sleep_op == 0)))) ) )
brp.prop2.ltl ! ([]( (Producer == 2) -> <> (Producer == 3) ))
elevator2.prop1.ltl ! ([]((req[0] == 1)->(<>((p==1) & (cabin == 2)))) )
iprotocol.prop3.ltl ! ([] (<> (Consumer == 1)))
lann.prop3.ltl ! ([] <> (P_0 == 1) )
leader_election.prop2.ltl ! (<> !(nr_leaders == 0) )
lifts.prop2.ltl ! ( ([] <> ( Environment == 1)) -> ([] <> ( Wheels == 2)))
pgm_protocol.prop3.ltl ! ([] ( ((receiver == 6) & (RXW_LEAD == 2)) -> <> ((sender == 1) & (packet == 3) )))
phils.prop1.ltl ! ([] <> (phil_0 ==2))
protocols.prop2.ltl ! (<> ((Consumer == 2) | (Consumer == 3)))
train-gate.prop2.ltl ! ([] ( (Train_1 == 3) -> <> (Train_1 == 2)))

proviso as discussed in this chapter. Table 4.4 shows a) the unreduced state space b) a depth first search
exploration with closed set proviso c) a depth first search exploration with stack proviso d) a depth first
search exploration with color proviso. Table 4.4 shows that the stack proviso in general improves the
reduction a lot over the closed set proviso. This was to be expected as states that are off the stack are
closed, and the closed set proviso can’t distinguish these from closed states on the stack. The color proviso
(with the LTSmin adaptations) in general results in a comparable result to the stack proviso. There are
some models where results in more reduction (dining philosophers, anderson).

Although the results shown in Table 4.4 do not seem to be extraordinary, the appear to be better
than the results obtained by the DiVinE-2.4 native POR algorithm (shown in Table 4.5). There is no
reduction for models not in this table.

4.8 Discussion and future work

The modular algorithm described here makes it possible to easily switch between different provisos.
Nevertheless, the reduction is not as convincing as it could be. One of the reasons why the reduction is
not good enough might be the restricted communication with the search algorithms, effectively limiting
knowledge available to compute persistent sets satisfying conditions C2 and C3. One major limitation
currently is that (in)visibility is statically computed. It might be beneficial to compute (in)visibility of a
transition group on the fly. This however requires constant communication with the LTL wrapper, making
the wrappers more intermingled. Similarly, knowing in advance the evaluation of the por_proviso flag
could improve the reduction, yet requires communication with the back-end algorithm.

Note that the implementation of the color proviso would be much easier if the computation of the
persistent set could be delayed as long as states are on the stack. In other words, the POR wrapper
should emit one successor state and then the back-end search should continue. When backtracking the
POR wrapper should be asked to emit a state again. This way the POR wrapper will not emit erroneous
persistent sets (i.e. sets for which condition C3L doesn’t hold).

The modular approach where the proviso can be switched can pay off. Using partial order reduction,
the resulting error traces are usually a lot shorter, and that errors are detected much sooner in the model
checking process. A nice side effect of the ability to change the proviso is that the different proviso can
lead to different error traces and the user can easily switch proviso to find the most readable trace. Having
the closed set proviso as default will result in less overhead and possibly a nice reduction. If this is not the
case, a better proviso such as the stack- or color proviso can be chosen. Although the cost of calculating
the color proviso may be excessive for some models while it may help for others. We do not observe the
same amount of improvement using the color proviso as seen by experiments by Evangelista and Pajault
[16], but this might be caused by the changes needed for the modular implementation. Preliminary results
seem to indicate that adding a communication channel to the POR wrapper to obtain the fully_expanded
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Table 4.3: Closed set proviso

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 29315027 100.0 181632960 100.0 272.52 809120KB
+ prop2 bfs+por 6396905 21.8 26105842 14.4 116.98 183944KB

dfs+por 27716425 94.5 159337550 87.7 491.99 954932KB
anderson.6 27088324 100.0 165086026 100.0 252.41 774544KB
+ prop3 bfs+por 8317813 30.7 40803840 24.7 165.34 257684KB

dfs+por 26096976 96.3 148189066 89.8 497.99 908320KB
at.5 58764238 100.0 234503620 100.0 317.78 1511156KB
+ prop2 bfs+por 52408658 89.2 191806454 81.8 1425.04 938092KB

dfs+por 55742666 94.9 212550310 90.6 1556.04 1587960KB
bakery.7 51104603 100.0 248438907 100.0 379.02 1020000KB
+ prop2 bfs+por 49414239 96.7 218146564 87.8 924.75 1020056KB

dfs+por 51104603 100.0 246481911 99.2 1001.01 1062196KB
bopdp.3 1414004 100.0 4603047 100.0 8.51 84260KB
+ prop1 bfs+por 1187988 84.0 2796778 60.8 19.42 74748KB

dfs+por 1363961 96.5 3947860 85.8 23.71 78408KB
brp.6 84553381 100.0 262786191 100.0 394.23 1979276KB
+ prop2 bfs+por 48101417 56.9 102214733 38.9 402.72 935688KB

dfs+por 83768893 99.1 244292444 93.0 812.30 1989396KB
elevator2.1 3292 100.0 16280 100.0 0.10 3688KB
+ prop1 bfs+por 3189 96.9 11419 70.1 0.10 3688KB

dfs+por 3263 99.1 14030 86.2 0.10 3688KB
iprotocol.6 62195661 100.0 258517149 100.0 654.83 1535884KB
+ prop3 bfs+por 35566810 57.2 74147439 28.7 380.05 954720KB

dfs+por 58663962 94.3 190513741 73.7 795.77 1538304KB
lann.5 1986963 100.0 10368751 100.0 23.92 82844KB
+ prop3 bfs+por 668349 33.6 1681005 16.2 8.01 63216KB

dfs+por 1982265 99.8 9333477 90.0 33.92 84960KB
leader_election.6 35773430 100.0 233181690 100.0 4136.49 2287700KB
+ prop2 bfs+por 231005 0.6 299749 0.1 10.81 59544KB

dfs+por 31352420 87.6 178259472 76.4 3841.73 2082432KB
lifts.7 10150585 100.0 41100242 100.0 101.67 246792KB
+ prop2 bfs+por

dfs+por
pgm_protocol.3 201298 100.0 389567 100.0 3.60 59584KB
+ prop3 bfs+por 139670 69.4 174490 44.8 4.30 55240KB

dfs+por 139670 69.4 174912 44.9 4.40 57868KB
phils.5 1062879 100.0 11849119 100.0 18.41 80384KB
+ prop1 bfs+por 1037387 97.6 8831073 74.5 19.52 81232KB

dfs+por 1062879 100.0 10735859 90.6 24.62 100344KB
protocols.2 1464 100.0 3241 100.0 0.10 3688KB
+ prop2 bfs+por 127 8.7 202 6.2 0.10 3688KB

dfs+por 129 8.8 208 6.4 0.10 3688KB
train-gate.5 1389185 100.0 3055280 100.0 6.20 80880KB
+ prop2 bfs+por 547794 39.4 1269138 41.5 9.81 58344KB

dfs+por 595992 42.9 1390114 45.5 10.41 61336KB
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Table 4.4: POR proviso

model algorithm states transitions walltime [sec] memory [vsize]
count percent count percent

anderson.6 29315027 100.0 181632960 100.0 272.52 809120KB
+ prop2 dfs+por 27716425 94.5 159337550 87.7 491.99 954932KB

dfs+stack-por 9264497 31.6 34982375 19.3 163.23 332860KB
dfs+color-por 6768620 23.1 28941520 15.9 140.71 256948KB

anderson.6 27088324 100.0 165086026 100.0 252.41 774544KB
+ prop3 dfs+por 26096976 96.3 148189066 89.8 497.99 908320KB

dfs+stack-por 11048925 40.8 48885316 29.6 214.07 357416KB
dfs+color-por 10390873 38.4 49317882 29.9 223.55 349180KB

at.5 58764238 100.0 234503620 100.0 317.78 1511156KB
+ prop2 dfs+por 55742666 94.9 212550310 90.6 1556.04 1587960KB

dfs+stack-por 51624514 87.9 184132445 78.5 1468.27 1037352KB
dfs+color-por 51458556 87.6 190004430 81.0 1525.87 1238048KB

bakery.7 51104603 100.0 248438907 100.0 379.02 1020000KB
+ prop2 dfs+por 51104603 100.0 246481911 99.2 1001.01 1062196KB

dfs+stack-por 49236840 96.3 216835275 87.3 953.09 1062020KB
dfs+color-por 49236028 96.3 218969626 88.1 977.27 1269300KB

bopdp.3 1414004 100.0 4603047 100.0 8.51 84260KB
+ prop1 dfs+por 1363961 96.5 3947860 85.8 23.71 78408KB

dfs+stack-por 1048757 74.2 2336657 50.8 17.61 78920KB
dfs+color-por 1048853 74.2 2338536 50.8 17.71 84052KB

brp.6 84553381 100.0 262786191 100.0 394.23 1979276KB
+ prop2 dfs+por 83768893 99.1 244292444 93.0 812.30 1989396KB

dfs+stack-por 43219019 51.1 85372935 32.5 372.98 946744KB
dfs+color-por 43218991 51.1 85372879 32.5 376.96 1136280KB

elevator2.1 3292 100.0 16280 100.0 0.10 3688KB
+ prop1 dfs+por 3263 99.1 14030 86.2 0.10 3688KB

dfs+stack-por 3181 96.6 10526 64.7 0.10 3688KB
dfs+color-por 3182 96.7 10959 67.3 0.10 3688KB

iprotocol.6 62195661 100.0 258517149 100.0 654.83 1535884KB
+ prop3 dfs+por 58663962 94.3 190513741 73.7 795.77 1538304KB

dfs+stack-por 13054116 21.0 26620599 10.3 141.68 306776KB
dfs+color-por 13118506 21.1 27059315 10.5 145.70 369372KB

lann.5 1986963 100.0 10368751 100.0 23.92 82844KB
+ prop3 dfs+por 1982265 99.8 9333477 90.0 33.92 84960KB

dfs+stack-por 16628 0.8 27082 0.3 0.20 49364KB
dfs+color-por 15909 0.8 25941 0.3 0.20 50652KB

leader_election.6 35773430 100.0 233181690 100.0 4136.49 2287700KB
+ prop2 dfs+por 31352420 87.6 178259472 76.4 3841.73 2082432KB

dfs+stack-por 231005 0.6 299749 0.1 10.91 63876KB
dfs+color-por 231005 0.6 299749 0.1 10.91 64908KB

lifts.7 10150585 100.0 41100242 100.0 101.67 246792KB
+ prop2 dfs+por

dfs+stack-por
dfs+color-por

pgm_protocol.3 201298 100.0 389567 100.0 3.60 59584KB
+ prop3 dfs+por 139670 69.4 174912 44.9 4.40 57868KB

dfs+stack-por 139670 69.4 174283 44.7 4.40 59924KB
dfs+color-por 139670 69.4 174283 44.7 4.40 60696KB

phils.5 1062879 100.0 11849119 100.0 18.41 80384KB
+ prop1 dfs+por 1062879 100.0 10735859 90.6 24.62 100344KB

dfs+stack-por 387921 36.5 1839551 15.5 5.21 66304KB
dfs+color-por 167362 15.7 531127 4.5 1.90 57400KB

protocols.2 1464 100.0 3241 100.0 0.10 3688KB
+ prop2 dfs+por 129 8.8 208 6.4 0.10 3688KB

dfs+stack-por 129 8.8 208 6.4 0.10 3688KB
dfs+color-por 127 8.7 208 6.4 0.10 3688KB

train-gate.5 1389185 100.0 3055280 100.0 6.20 80880KB
+ prop2 dfs+por 595992 42.9 1390114 45.5 10.41 61336KB

dfs+stack-por 552215 39.8 1277980 41.8 9.81 62832KB
dfs+color-por 548309 39.5 1270415 41.6 9.81 67196KB
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Table 4.5: DiVinE 2.4 POR

model states transitions

count percent count percent

brp.6.prop.2 84553381 100 263092767 100
52964221 62 122582742 46

iprotocol 6.prop3 62195661 100 258517149 100
28077744 45 95705273 37

leader_election.6.prop2 35773430 100 233181690 100
4532159 12 8093347 3

pgm_protocol.3.prop3 201298 100 388004 100
187780 93 348306 89

protocols.2.prop3 1464 100 3241 100
761 51 1348 41

flag does not improve the reduction a lot. An interesting alternative to set the por_proviso flag may be
provided by the extra information obtained through the SCC computation. Another interesting question
to answer in future research is whether it is possible to switch the order of the POR and LTL wrapper
(Figure 4.2). This way, the POR wrapper could be used both in combination with the LTL wrapper,
or directly with a front-end providing the cross product with the büchi automata. The reason that this
currently is not possible is that the LTL wrapper extends the state vector with the büchi automaton,
and marks this part as write for all transition groups. The partial order reduction wrapper is not able to
compute a proper dependency relation. Another application of the POR wrapper would be LTL model
checking in a multi-core or distributed setting.

4.9 Conclusion

The LTL model checking algorithms and PINS wrapper can successfully be combined with a PINS partial
order reduction wrapper. For some models the reduction provided through this setup results in a lot of
reduction, either in memory or in speed. Besides the advantage of the memory reduction, the partial
order reduction wrapper may cause the traces found by the SCC algorithm to be much shorter, and errors
to be found much faster.

For partial order reduction to be applicable in general, it is best to use the stack set implementation.
This seems to be easy to implement, require a reasonable amount of memory and produce a good reduction
where possible. The color set proviso can be used in some rare cases to get more reduction, but it requires
a more involved implementation and uses more memory. The closed set proviso integrates best with the
GSEA algorithm and can be used for other types of searches such as A* and best first search as well.
Besides these advantages for some models it provides a reduction comparable to the stack proviso.

To improve the partial order reduction in combination with LTL it is likely needed to have more
communication with the algorithm and LTL wrapper. Several things may improve the reduction: a) on
the fly (in)visibility computation b) communicating the next states with the algorithm before emitting a
persistent set. These modifications are likely to cause more intermingled code for the proviso or persistent
set computations.
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