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ABSTRACT

Planning is the task of finding a sequence of actions which, for an initial state, reach a
predefined goal. A technique to model planning problems is graph transition systems.
Graph transition system are an extension of a transition system in which states are
associated with a unique graph and transitions are expressed by graph transformations
and graph morphisms.

A technique to solve planning problems is forward state space exploration. How-
ever, for large problem instances a state space may become unbearably large and un-
informed state space exploration is no longer feasible. It becomes necessary to have
some functionality which guides the exploration. For with we use a heuristic, which is
a function which estimates the distance of a state to the goal.

In this work we developed and present two distinct domain independent heuristic
approaches which are based on the underlying graph transformation planning problem
modeling paradigm. The first of these is the NENTUPLE approach which is based on
the comparison of graph abstractions. The second approach is linearization abstraction
which is based on calculating distance metrics from linearized abstracted state spaces.

We have furthermore designed and implemented a framework in GROOVE for
heuristics functions. In this framework we have implemented he rustics functions based
on the above mentioned approaches.

To evaluate the effectiveness of the heuristic approaches developed in the thesis
we had run experiments using three planning problems. From the results we found
that our heuristics provide a significant improvement over uninformed exploration and
furthermore perform equal or better than heuristics presented in related work (in our
problem set).

Finally, this work has made a initial classification of distinguishing features of
graph transformation planning problems and correlated these to the effectiveness of
the heuristics approaches presented in this work.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Everyday we make decisions in every aspect of our life, some of these are made au-
tomatically subconsciously and some require a lot of thought. In any case, one can
consider a sequence of decisions (or actions) as a plan to achieve some desired goal
from some starting situation. A trivial example would be putting on ones shoes before
leaving the house. The actions one might take (in order) are: put on left shoe,
put on right shoe, tie left shoe and tie right shoe. The task of coming up
with such a sequence of actions, also called plan or path, to achieve the goal is called
planning. People are generally not aware they are solving planning problems or even
dealing with the complexity involved in planning. In the world of computer science
planning is a research field which is critical to sectors such as manufacturing, space
systems, software engineering, robotics, education, and entertainment [1].

The planning research field formalizes the components that we have intuitively
presented above. There are three components, these are: an initial state, a number of
actions and a goal. These components all exist within the environment of the problem.
Thus, for our example the environment consist of a left and right foot, a corresponding
shoe which may be on or off, and a lace which is either tied or untied. The actions
are those given in the previous paragraph and the initial state is the one with both
shoes off. Finally, the goal is that both shoes are on and tied. These three components
and the environment together are called a planning problem. Furthermore, the set of
combinations of values which each element of an environment can take is known as the
state space of a problem. Intuitively, the state space thus represents all possible states
a problem may be in.

The objective of a planning problem is to determine a plan which leads from the
initial state to some state in the problem state space that meets the goal requirements.
A plan is thus the solution to a planning problem. Planning research concerns itself
with automated methods of solving planning problems. For this reason, planning is
sometimes also referred to as automated planning.
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CHAPTER 1. INTRODUCTION

While our example has a trivial solution, planning can, for larger problems, be-
come complex relatively quickly. This complexity stems from three factors which are
described below.

• The first factor is the number of possible actions, as the number of actions in-
crease more sequences need to be considered in order find a solution. For exam-
ple, if we not only have actions to put on and tie shoes but also for putting on
socks, the number of possibilities increases and thus so does the complexity of
the problem.

• The second factor is the size of the environment, which depends on the first
factor. As the number of elements in the environment increase the more possible
actions become possible. For example, imagine not a single pair of feet and
shoes as in our example but several. In this case there are many more possible
combinations to consider to find a plan, which again increases the complexity of
the problem.

• The third factor is the solution requirements. While some planning may simply
require any plan as solution, one could also introduce additional constraints such
as that the solution should be the shortest in terms of number of actions. Consider
actions have a cost, (i.e. time, distance, currency) a constraint could be to find
the cheapest or most expensive plan. This factor becomes relevant for planning
problems such as routing (i.e. navigation software) or the traveling salesman
problem.

The first two factors cause the phenomenon known as state space explosion to
occur in planning problems. State space explosion occurs when the size of the state
space grows out of control due the increase of combination between states and actions.
In this work we are not concerned with the third factor and will only be interested in
finding any solution to for a planning problem.

This increased complexity means that finding a solution to a planning problem
becomes increasingly more difficult (in terms of time and memory) as the problem
size increases. To deal with this issue one typically makes use of heuristics which are
used as a form of artificial intelligence and aid in the automated solving of planning
problems. Heuristics assist by estimating which actions, for some state, lead to a state
more closely resembling a state which satisfies this goal. The number of actions is
known as the distance from a state to the goal. To develop a heuristic one should
determine metrics which can be used to estimate this distance.

Heuristics are not an exact science and thus, predicting or determining whether a
heuristic is effective is not trivial. One approach is to design a heuristic explicitly for a
problem, making it rely on problem specific knowledge. The drawback of this however
is that a new heuristic is needed for each problem. A second approach is to use a more
catch-all approach in which the heuristic is based on underlying problem modeling
knowledge. This also known as a domain independent heuristic.

This thesis is on planning, particularly the goal is to develop domain independent
heuristics to solve planning problems that are modeled as graph transition systems. The
following section gives the context in which we attempt to achieve our goal.

2



CHAPTER 1. INTRODUCTION

1.2 PROBLEM CONTEXT

In order to formalize the planning components of real-life problems and systems, we
will use model representations of those systems. Modeling, in the scientific sense, is a
technique of formally and systematically representing concepts in an abstracted manner
for the purpose of getting a better understanding of those concepts. Within computer
science, modeling and models have varying definitions. In essence, modeling is a broad
and general term which is used to indicate a technique in which one can emulate reality
within some boundaries. Starfield et al. [2] give a general definition of a model which
captures how broadly the field of modeling can be applied, while still expressing what
modeling achieves. The definition is as follows:

A model is a representation of a concept. The representation is pur-
poseful: the model purpose is used to abstract from the reality the irrele-
vant details.[2]

In this work we will use modeling to create formal and abstracted representations of
systems relevant for planning problems. The model is formal in the sense that we have
mathematically defined the environment and other components of a planning problem.
The model is abstracted in the sense that we have limited the scope of the planning
problems environment.

A technique for modeling is transition systems. A transition system is a mathemat-
ical model which can be used to describe the behavior of discrete systems. It consists
of states and transitions between states. A state represents some situation of the system
and transitions correspond to actions which change the situation of the system (and
thus lead to another state).

There is a clear correlation between transition systems and planning problems. In
both cases, states amount to the same thing, and actions are in fact transitions. Finally,
we only require to specify an initial state, which is the start situation in a planning prob-
lem, and define some method in order to determine if a goal condition has been met. A
transition system is thus another way of representing the state space of a problem. One
can solve planning problems modeled as transition system by exploring the transition
system in search for a state that satisfies the goal condition of the planning problem.
The result would then be the path taken during the exploration.

We have now given a technique in which we can represent the components for a
planning problem. However, we still need to actually represent these components, i.e.
define the environment of the problem. Intuitively, we need a way to formally represent
how a state or action models some real-life state or action. In this work we will do this
by using graphs. Every state has an associated graph which models its situation.

The use of graphs to represent states in a transition system is called a graph tran-
sition system (GTS). Graph transition systems extend traditional transition systems
by associating a graph representation with states and representing transitions as graph
transformations combined with graph morphisms. Intuitively, a state of a system is
modeled as a graph and a transition to another state is modeled as a graph transfor-
mation. Planning problems modeled using graph transition systems are called graph

3



CHAPTER 1. INTRODUCTION

transformation planning problems. In this thesis, we use the underlying graph struc-
ture for modeling the planning problems as a basis for domain independent heuristics.

In this work we use the tool GROOVE1 [3] to model and solve graph transforma-
tion planning problems. GROOVE is a graph transformation tool that offers modeling
and model checking capabilities for graph production systems. A production system
consists of a set of graph transformation rules and an initial graph, referred to as the
start graph. A graph transformation system can be generated in GROOVE given a
production system. GROOVE generates the state space of the system by iteratively
applying all valid graph transformation rules to the graphs associated to known states.
GROOVE currently supports some basic exploration strategies, without heuristics, for
finding goal states in a graph transition system.

1.3 PROBLEM STATEMENT

In this research we work towards a framework in which different domain independent
heuristics can be used to solve planning problems in the context of graph transition
systems. These heuristics can be used to guide forward state space exploration, which
is an approach for solving planning problems.

In the context of graph transformation planning problems and domain independent
graph heuristics we formulate the following problem statement:

To develop heuristic approaches for the purpose of planning using graph transforma-
tions and implement these in GROOVE as a framework for solving planning problems.

1.3.1 RESEARCH QUESTIONS

To achieve the desired objective we propose the following research questions to aug-
ment the problem statement.

RQ1. How can we define and solve planning problems in the context of graph tran-
sition systems and what advantages and disadvantages does this provide?

RQ2. In which ways can we exploit the underlying structure and formalisms of
graphs and graph transformations in a graph transition system to develop
meaningful metrics to estimate distances between a state and a goal?

RQ3. How can we implement planning in GROOVE with sophisticated problem
solving techniques supported by a framework of heuristics?

The first research question focuses on how planning fits within the paradigm of
graph transition systems. We need to consider the aspects of a planning problem and
how they can be modeled using graphs and graph transformations. Furthermore, we
must look into techniques to solving planning problems modeled as graph transition

1http://groove.cs.utwente.nl/
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CHAPTER 1. INTRODUCTION

systems. And finally, we have to consider what form the solution of such a problem
takes. This research question is examined and answered in Chapter 2 of this work.

The second research question deals with the development of domain independent
graph-based planning heuristics. We consider aspects of the underlying modeling
paradigm (graph transition systems) and determine universal characteristics which can
be used to define distance metrics. Furthermore, we consider an abstraction of the
original problem as an approach to reduce the problem state space. The answer to
this research question is a collection of heuristic schemes which, given a graph and a
goal, can estimate the distance from the state associated with the graph to a state which
satisfies the goal. This research question is answered in Chapter 3 of this work.

The third research question considers the implementation of planning as defined
according to RQ1 and heuristics as defined for RQ2 in the graph transformation tool
GROOVE. We aim to design and implement a simple and extensible framework in
GROOVE for heuristic functions and extend the exploration capabilities in GROOVE
to support informed search strategies. This research question is answered in Chapter 4
of this work.

In order to evaluate the effectiveness of the to be developed heuristics we will at-
tempt to solve a variety of planning problems using the GROOVE implementation.
In this way can measure and compare how different heuristic approaches are suited
for different problems. Furthermore, we will compare our results to those presented
in papers which also promote graph transformation based planning tools. Finally, we
compare the results of our approach to planners developed for the established planning
language PDDL.

1.4 OUTLINE

The remainder of this thesis is structured as follows:

Chapter 2 gives an introduction to the central concepts of this work. This includes
formal definitions pertaining to graph transition systems and planning, as well as the
establishment of planning and exploration in the context of graph transformations. Fi-
nally, in the chapter we provide an overview and example of the GROOVE tool.

Chapter 3 presents two domain independent graph heuristic approaches developed
within this final project. In this chapter we give a theoretical definition of each approach
and define concrete heuristic functions, this is followed by a practical example and
concluded with a discussion of the approaches advantages and disadvantages.

Chapter 4 presents the development and implementation of planning functionality and
a framework for heuristics in the GROOVE tool.

Chapter 5 presents a set of test problems we have used for evaluation and, furthermore,
discusses some distinguishing features of these test problem. Following this we present
the results of planning in GROOVE using the heuristic functions developed in this

5
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work. Finally, we provide an evaluation of the results and compare these to the results
of other work.

Chapter 6 gives an overview of work related to this thesis.

Chapter 7 gives the conclusions and final remarks of this works. It reiterates and
summarizes the answers to the research questions, discusses the contributions of this
work to the field of planning and heuristic and closes with possibilities for future work.

1.5 AVAILABILITY

It is possible to obtain the source and/or binary files of the implementation presented in
work as well as the GROOVE files of the planning problems used for experimentation
by directly contacting the author2 or through the FMT research group at the University
of Twente3.

It is the hope that at some point the work presented in this thesis will be integrated
into the main GROOVE tool.

2j.w.elsinga@student.utwente.nl
3http://fmt.cs.utwente.nl/contact/

6

http://fmt.cs.utwente.nl/contact/


CHAPTER 2. BACKGROUND

CHAPTER 2

BACKGROUND

In Section 2.1 we provide a series of formal definitions of concepts concerning graph
transition systems and graph transformation planning problems. These concepts are
also intuitively described. Furthermore this section serves as an introduction to the
basic concepts of state space exploration in Section 2.2 and planning in Section 2.3.
In Section 2.4 the graph transformation tool GROOVE is discussed and some insight
into the basics of modeling graph transition systems with the tool is given. Finally this
chapter also introduces a running example system modeled in GROOVE, which will be
used to demonstrate the possibilities of planning in GROOVE. The concepts discussed
in this chapter should be seen as a reference point for the remainder of this work.

2.1 DEFINITIONS

We begin by setting up the concept of production systems, which consist of a set of
graph transformation rules and an initial graph. The graph transformation rules can be
applied to the initial graph and its successors to construct the graph transition system
of the production system. The theory of these concepts is based on graphs and graph
morphisms.

Notation 1. L denotes the universal set of all labels.

Definition 1 (Graph). A graph G = 〈V,E,src, tgt, lbl〉 consists of a set of nodes V ,
a set of edges E, a source and target functions src, tgt : E → V and a label function
lbl : E→ L .

Notation 2. G denotes the universe of graphs. Components of a graph G∈G are often
denoted VG,EG, etc.

In a graph, nodes may be labeled by a self-loop edge with a label. We thus partition
L into the label set for nodes LV and the label set for edges LE , such that LV ⊂ L and
LE = L \LV , where LV is only used for self-loops.

7



CHAPTER 2. BACKGROUND

Definition 2 (Domain,Range,Image). Let f : X → Y be the function. We say X is
the domain of a function, also written as dom( f ), Y is the range of the function, also
written as rg( f ), and { f (x) | x ∈ X} is the image of the function, also written as im( f ).

Definition 3 (Graph Morphism). A graph morphism ψ : G1→G2 between two graphs
is a pair of mappings ψ = (ψE ,ψV ) with ψE : EG1 → EG2 and ψV : VG1 →VG2 such that
ψV ◦ srcG1 = srcG2 ◦ψE , ψV ◦ tgtG1 = tgtG2 ◦ψE and lblG1 = lblG2 ◦ψE . We say ψ is
partial if both ψE and ψV can be partial functions.

Graph morphisms are used in graph transformation rules to indicate which graph
elements are created, destroyed or preserved in a graph transformation.

Definition 4 (Graph Transformation Rule). A simple graph transformation rule r =
〈L,R, p〉 consists of two graphs L and R, called left-hand side (LHS) and right-hand
side (RHS), and a partial graph morphism p : L→ R.

Notation 3. R is used to denote a set of rules.

Notation 4. Lr,Rr and pr are used to denote the left-hand side graph L, right-hand side
graph R and partial graph morphism p of a graph transformation rule r = 〈L,R, p〉.

The application of a rule r to a graph G requires finding a match µ : L→ G, which
typically is a morphism from L to G (note this assumes a rule of this simple form).

Notation 5. M is used to denote the set of matches.

The applicability of a rule r to a graph G thus depends on whether a match µ from
Lr to G can be found. The application of rule is called a graph transformation.

Definition 5 (Graph Transformation). Given a graph G, a rule r = 〈L,R, p〉 and a match
µ : L→ G, a graph transformation is a tuple G

r,µ
=⇒ H where H is a graph uniquely

determined by G,r and µ.

L R

G H

p

µ µ′

f

Figure 2.1.1: Graph Transformation

Intuitively, H is equal to G where an image of L, determined by µ, has been replaced
by R. For the purpose of this thesis, it is not necessary to go into any detail about how
this is done precisely. The relation between graphs and graph morphisms involved a in
graph transformation are shown in Figure 2.1.1.

The applicability of a rule may be restricted by the uses of negative application
conditions (NACs).

Definition 6 (Negative Application Condition, Satisfies). Let r = (L,R, p) be a graph
transformation rule, G a graph and µ : L→G a match. A negative application condition
(NAC) is a graph morphism n with dom(n) = L. If there is no graph morphism m :
rg(n)→ G such that m◦n = µ, then µ satisfies NAC, this is written as µ |= n.

8
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A graph transformation for a given G,r and µ is only valid if µ |= n for all NACs
n in r. The relation between all graphs and morphisms involved in determining the
satisfiability of NACs are shown in Figure 2.1.2. The morphism m is shown as a dotted
line since its own existence determines if µ |= n.

L G

N

n

µ

m

Figure 2.1.2: Satisfiability of a NAC

We now have all components necessary to define the concept of a graph transition
system (GTS).

Definition 7 (Graph Transition System). A graph transition system S = 〈Q,A,→,q0〉
is an extension of a transition system where,

– Q is a set of states ranged over by q. Each state q ∈ Q has a uniquely defined
associated graph representation Gq;

– A, derived from R ×M , is the alphabet of S;

–→⊆ Q×A×Q is a set of labeled transitions, elements of which are written as
q α−→ q′. Each transition q α−→ q′ implies Gq

r,µ
=⇒ Gq′ , where α = (r,µ);

– q0 ∈ Q is an initial state.

Notation 6. The elements of the transition relation→ in a graph transition system are
called actions.

Graph transition systems are generated from so-called production systems.

Definition 8 (Production System). A production system is a tuple P = 〈R ,G0〉 con-
sisting of a set of graph transformation rules R and an initial graph G0.

In addition to the production system we require the notion of a control program to
generate the graph transition system S of the production system. A control program is a
mechanism which schedules graph transformation rules. By applying the graph trans-
formation rules r ∈ R of a production system to the initial graph G0 and its resulting
successor graphs, in combination with a control program, one is able to generate S. S
is also known as the state space of the production system.

We have now defined all the concepts related to graphs, graph transformations and
production systems. We use these concepts to define planning problems in the context
of graph transformations. Graph transformation planning problems consist of a pro-
duction system and a goal and results in a solution. These notions are defined below.

Definition 9 (Goal,Goal State). A goal is a predicate φgoal over graphs. A goal graph
Ggoal is a graph which satisfies φgoal . A goal state q is a state for which Gφ is a goal
graph.

9
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Definition 10 (Path). Given a transition system and two states qs,qt , a path is a finite
sequence of successive actions from qs to qt .

Definition 11 (Graph Heuristic). A graph heuristic is a function H : G → R+
0 .

Definition 12 (Distance). Given a transition system and two states p,q, the distance
from p to q is the number of actions required to reach q from p.

A graph heuristic H typically represents an estimated distance measure between a
graph G ∈ G and a predefined goal φH . We can estimate the distance from some state
q to some goal state in a state space by using H to estimate the distance between the
graph representation Gq and φH . The estimated distance from some state q to some
goal is called the heuristic value of q.

Definition 13 (Graph Transformation Planning Problem, Solution). A graph transfor-
mation planning problem consists of a production system P and a goal φgoal . A solution
for such a problem is a path in the state space generated from P, from q0 to an arbitrary
goal state qgoal .

2.2 EXPLORATION

In this section we explain and discuss the concept of state space exploration in the
context on graph transformation systems and planning problems.

Given a production system, state space exploration is the process of systematically
and iteratively calculating the successors (also known as expanding) of known states,
thereby generating new states until a newly generated state satisfies some predefined
condition or until there are no more new successor states. Exploration can thus be used
to generate the graph transition system corresponding to a production system.

Definition 14 (Successor). The successor set of a state q is the set of states Q′ for
which there exists an action α such that q α−→ q′ for q′ ∈ Q′.

In this work we consider exploration with input a production system and is param-
eterized by an acceptor that represents the condition on which exploration should be
halted and a strategy that specifies how and in which order states are expanded. In
Algorithm 1 we give a pseudo code algorithm which serves as the basis of a single
iteration of state space exploration.

Algorithm 1: Single Exploration Iteration

1 select state q to expand;
2 if q fulfills acceptor then
3 break;
4 end
5 expand state q by calculating all its successors Q′;

10
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2.2.1 ACCEPTOR

The acceptor is a condition that is used to specify the aim of exploration. After a state q
is selected to be expanded the acceptor condition is check in the exploration algorithm,
if it is met (termed fulfilled) then exploration ends and otherwise continues. This is
seen on lines 2 in Algorithm 1.

An acceptor is not stateless, or intuitively, the acceptor remembers previous itera-
tions in exploration. An acceptor condition can range from a requirement on the state
space (e.g. x number of states generated), to a requirement on the transitions outgoing
from (or incoming to) a state (e.g. final state or certain transition possible) and finally a
requirement on the representation of the state (e.g. a predicate over graphs, in the case
each state q has a corresponding graph representation Gq).

It is also possible to set the acceptor unfulfillable. In this case exploration continues
uninterrupted until the full graph transition system corresponding to the initial produc-
tion system is generated. Furthermore, it is possible to specify how often an acceptor
condition should be fulfilled before halting exploration. For example in the case of
a final state acceptor one could specify that n number of final states should be found
before halting.

2.2.2 STRATEGY

The exploration strategy, also known in literature as a search or traversal strategy, has
two responsibilities within exploration. Both of these responsibilities pertain to the
arrangement of generating successor states.

The first responsibility specifies whether all successor states of a state should be
generated in a single exploration iteration or if a single successor state should be gen-
erated per iteration. For both cases there are advantages and disadvantages in terms
of calculation time, size of explored subspace and implementation. For example, an
advantage of the second approach is that only the minimum number of states are gen-
erated, the drawback however is that the algorithm needs to keep track of how far a
certain state has been expanded. An extensive discussion of all benefits and disad-
vantages of both approaches falls outside the scope of this work. We have chosen to
generate all successor states in a single iteration. This can be seen in the pseudo code
of Algorithm 1 on line 5.

The second responsibility specifies the order in which states should be explored.
There are many well known exploration strategies with a varied range of approaches
to this specification. This is implemented on line 1 in Algorithm 1. For this work they
can be divided into two categories, uniformed and informed strategies. Uninformed
exploration can be classified by the fact that the algorithm is given no information
about the problem other than its definition. This means that the algorithm does not
know if one state is more promising than another state in terms of fulfilling the acceptor
condition. Some well known uniformed strategies are breadth-first search, depth-first
search and random search.

In contrast to uninformed exploration, informed exploration do use addition prob-
lem knowledge in order to find a solution. Having additional problem knowledge al-
lows the algorithm to find solutions (i.e. states that fulfill the acceptor) more efficiently
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than uninformed algorithm. Informed search algorithms follow the same general ap-
proach with the addition an informed method of choosing the next state to expand.
Additional problem knowledge can come from two sources. The first (which is the
one we consider in this work) is from the problem itself, specifically we will consider
the underlying graph structure and graph transformation rule applicability to the graph
G corresponding to a state q. The second source is problem context provided in ad-
dition to the problem specification. The additional information provided is processed
by a function known as a heuristic function. As we are considering graph based tran-
sition systems we use graph heuristic functions defined in Definition 11. Given the
two sources of knowledge we can define problem independent and problem dependent
graph heuristics, respectively.

The heuristic makes an estimation on how near a state is to a state in which the
acceptor condition is satisfied. The informed strategy then uses this information to
decide which state should be expanded first. Some well known informed strategies are
greedy best-first search, A* search and hill-climbing search.

The exact specification, advantages and implementations of each exploration strat-
egy fall outside of the scope of this work. For a detailed explanation of exploration
strategies see [4]. This work will focus on exploration using informed search algo-
rithms, specifically the greedy best-first search strategy. Greedy best-first search sim-
ply defines that the state with the best heuristic value is expanded first. Note that the
reason we only consider a single exploration strategy is that previous research in the
field of graph transformation planning problems has shown that choosing different in-
formed exploration strategies has only a minor effect on the planning result, in contrast
to the choice of heuristic function [5, 6, 7].

2.3 PLANNING

Automated planning is a discipline within artificial intelligence which concerns finding
a sequence of actions to achieve some goal. A planning problem is solved by using a
planning strategy. The problem is defined in a planning language. Beside the problem
definition it is possible to define additional problem context, which could speed up
the problem solving time and reduce memory use. The information presented in this
section is primarily taken from [4].

Planning problems are modeled by states, actions and goals. A planning strategy
explores the planning state space in search of a goal state. The solution of a planning
problem is then a sequence of actions which from a start state leads to a goal state.
How the states, actions and goals are represented is called the language of the planning
problem. In this project, we will represent planning problems using graph transforma-
tion systems. This means planning problems will be modeled using graphs and graph
production systems. This allows us to solve planning problems using GROOVE. We
refer to these as graph transformation planning problems.

What differentiates planning from straightforward problem solving is that the plan-
ning strategy has planning language (domain-independent) and possible problem con-
text (domain-dependent) knowledge. This enables a strategy to apply heuristics to
guide exploration and make educated decisions when searching for a solution.
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In the following subsections, we will consider the implementation of planning prob-
lems as graph production systems. These sections make use of the definitions presented
in Section 2.1. In Section 2.3.1, we will discuss the language in which these problems
will be modeled. In Section 2.3.2, we discuss different planning approaches and con-
sider which is most suited for graph transformation planning problems. In Section 2.3.3
we will consider what effect the definition of the goal has on the performance of solv-
ing planning problems. Finally, in Section 2.3.4, we will discuss what a solution to a
graph transformation planning problem looks like.

2.3.1 PLANNING LANGUAGE

In the field of artificial intelligence and planning there already exist some well known
planning languages used to represent planning problems. One such language is the
STRIPS language [8] which was first presented in the 1970s. Another such language is
PDDL [9] which attempts to standardize planning languages. The most current version
of PDDL is v3.1.

In this research we will step away from the standard planning languages and use
graph transformation to represent planning problems. This is not a new idea and has
already been explored in literature. Edelkamp et al. show for the Gossiping Girl prob-
lem that GROOVE without any planning heuristics performs better than the heuristic
search planner FF [11]. Furthermore a link between graph transformation systems and
PDDL is presented by Meijer to transform planning problems in PDDL to graph trans-
formation systems as implemented in GROOVE. Tichy et al. presents techniques to
transform self-adaptive systems modeled as graph transformations to the PDDL lan-
guage.

The advantage of using graph transformation as a basis for the planning language
is the intuitive nature in which systems can be modeled using graphs and graph trans-
formations. Furthermore, this thesis hopes to show how problem domain-independent
knowledge obtained from graph transformation systems can be advantageous in deter-
mining a good heuristic. A reason why graphs and graph transformations are used to
represent planning problems instead of well established languages such as PDDL is
because PDDL does not allow for the dynamic creation of objects (in terms of graphs
these would be nodes). Formal definitions of how planning problems are expressed
using graphs and graph transformations are given in Section 2.1.

2.3.2 PLANNING STRATEGY

In this section we introduce different approaches one can take to solving planning prob-
lems. A planning strategy consists of an algorithm to systematically work towards
finding a solution.

The three planning well known strategies are: forward state space search, back-
ward state space search and partial-order planning. In forward state space search, also
known as progression planning, the algorithm starts in the initial state and considers
sequences of actions until it finds a sequence that reaches a goal state. Backward state
space search, also known as regression planning, starts from a goal state and then by
applying the inverse of actions looks for a sequence which reaches a start state. Finally
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partial-order planning is an approach which allows decomposition of the problem.
The algorithm delays the decision of ordering actions until it becomes absolutely nec-
essary. This allows the algorithm to create subgoals and solve these independently
without worrying about the order in which actions are applied.

In this work we will implement graph transformation planning problems with pro-
gression planning. Specifically this corresponds to the exploration as described in Sec-
tion 2.2. As mentioned in the section on exploration we will use the greedy best-first
search exploration strategy, and as acceptor we use goal conditions as defined in the
following section.

For a more complete overview of why a progression planning approach is chosen
to solve graph transformation planning problems see the research topics related to this
work.

2.3.3 GOAL

In Definition 9 and Section 2.3.1 we defined a goal as a predicate over graphs. This
is a very broad definition for a goal with respect to graph transition systems. Given
such a broad definition we are able to define a wide scope of different goals which is
very desirable. However, using graph heuristics which estimate some distance from the
current state to a goal based on the underlying graph structure, it is required to make
some tangible comparisons between a graph and a goal. For this reason, although a
goal may be very general and minimalistic, we believe a goal must be detailed enough
to make heuristic distance estimations relevant.

We say there is a hierarchy of approaches of formulating a goal. The hierarchy is
as follows:

1. Predicate over graphs – φgoal , The general definition of a goal.

2. Partial negation graph – φgoal = (N,{NAC}). In this case a goal is formu-
lated using two components, a graph N for which there exists a graph morphism
mapping N to Ggoal and NACs {NAC} which express elements that may not be
present in a Ggoal .

3. Partial graph – φgoal = P. In this case a goal is formulated using a graph P for
which there exists a graph morphism mapping P to Ggoal .

4. Complete graph – φgoal = C. In this case a goal is formulated using a graph C
for which there exists a graph isomorphism mapping C to Ggoal . An example of
this would be Figure 2.4.2c.

Each goal representation in the hierarchy can be expressed as a predicate over
graphs. However, 2− 4 only represent a subset of all possible goal formulations that
are possible using 1. Furthermore, goal representation 4 has the explicit additional re-
quirement that a goal state exactly match the goal (i.e. there may be no additional node
or edge elements present in a goal state), this is not case for the other goal represen-
tation. Additionally, from the first and second level in the hierarchy the representation
of a goal shifts from a logical expression towards graphs. It is possible that for a goal
multiple goal states exist. Furthermore different formulations of a goal do not only af-
fect the expressiveness of a goal but also the effectiveness and complexity of heuristics.
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We discuss different types of graph transformation heuristic approaches and how well
they are suited for certain goal formulations in Chapter 3.

2.3.4 SOLUTION

In Definition 13 we define a solution as a path from the start start to a goal state. A
path is defined in Definition 10 as a sequence of actions from one state to another state.
A path can be determined once a goal state has been discovered. The planning strategy
can then from the goal state backtrack to the start state (by using the record informa-
tion about parent states) and record the actions. These actions are a combination of a
transformation rule and a matching from the graph of the source state to the graph of
the target state.

It is possible that a goal state is never discovered. This may occur in two different
scenarios. The first is that the goal is simply never satisfied in any state in the whole
state space. In this case the algorithm would not return a path as solution but something
to the effect that the a goal is not reachable. The second scenario is an infinite state
space in which the goal has yet to be discovered. In this case the planning algorithm
would continue to explore the state space indefinitely until reaching some predefined
state or time threshold, or until it is stopped manually. The resulting solution would
again be something to the effect that no goal state been found and thus no path from
the start state to a goal state.

2.4 GROOVE

For this thesis, we will use the graph transformation tool GROOVE in which we will
implement algorithms to solve graph transformation planning problems. In this section
we will introduce GROOVE and explain some of its modeling capabilities as well as
give an example of how a puzzle system is modeled in GROOVE.

GROOVE stands for GRaph-based Object-Oriented VErification, and is a tool orig-
inally developed for software model checking of object-oriented systems. It is set apart
from other model checking approaches by the fact that it is based on graph transfor-
mations. GROOVE uses graphs to represent snapshots of a state, and transitions arise
from applying graph transformations to a graph. This process results in graph transition
systems (see Definition 7) as computational models.

In GROOVE graphs nodes can have a type, flags and attributes. Flags and types are
matched to a node using self-edges with specific labels from the label set LV . GROOVE
offers a graphical interface to model production systems (defined in Definition 8). This
consists of four parts, a type graph, a start graph, transition rules and a control program.
The control program has previously been introduced in Section 2.1 and is henceforth
considered outside the scope of this work. The remaining elements are discussed below.

Type Graph
A type graph is a graph which specifies the allowed structure as well as node hierarchy
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of the graphs and can be considered similar to a class diagram. The exact details of
type graphs are not important to this thesis.

Start Graph
The start graph, also known as a host graph, is a graph (as defined in Definition 1)
which models the start state of the system. An example of a start graph can be seen in
Figure 2.4.2b.

Transition Rules
A production system in GROOVE is a set of graph transition rules which can be graph-
ically modeled in the Simulator component. In GROOVE a rule as introduced in Sec-
tion 2.1 is modeled as a graph that specifies how a host graph should be transformed.
Using colors and line thickness the left-hand and right-hand side graph L and R, as well
as NACs, are visually represented as single graph. Examples of graph transition rules
can be seen in Figure 2.4.1.

There are four element types (nodes, edges or attributes) in GROOVE graph tran-
sition rules. These are the reader, the embargo, the creator and the eraser.
Readers are elements that are required to be present in L and remain present in R.
These elements are represented in black and have a normal line thickness.
Embargoes are elements that are part of a NAC and thus should not be present in L.
Embargoes are represented in red with a thicker dotted line.
Creators are elements which are not present in L but are created in the R. Creator
elements are represented using thick green lines.
Erasers are elements which are present in L but not in R, these elements are thus
deleted in the transformation. These elements are represented by blue dashed lines.

In GROOVE it is also possible to define conditionals as rules. These are rules where
the RHS is equal to the LHS. Such a condition as rule, while modeled graphically in
GROOVE, is actually a predicate over graphs and as such is a goal as defined in Defini-
tion 9. We can thus write graph transformation planning problems (see Definition 13)
using GROOVE.

GROOVE currently supports some straightforward planning problem solving capa-
bilities. These exists in the form of a state space exploration strategy such as breadth-
first or depth-first search, together with a so-called acceptor. An acceptor can be con-
sidered as a goal (Definition 9) with respect to graph transformation planning problems
(Definition 13) and can be represented in several forms within GROOVE. If no accep-
tor, is given the whole state space is explored. During exploration, each discovered
state is matched to the acceptor. If they match, then the goal state is reached and a path
can be given.

Next we introduce a GROOVE example which shows the basic GROOVE modeling
and planning capabilities. The example is given as a production system, and is only
a small system which illustrates the possibilities of GROOVE in terms of state space
generation. In addition, a goal graph is given to create a graph transformation planning
problem the example.
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2.4.1 BLOCK WORLD

Block World is a system which exists exclusively of blocks, a table and an arm. The
type graph which expresses these objects as nodes and their relations as edges is given
in Figure 2.4.2a. The blocks can be set on the table or on another block by the arm,
which can pick up and put down blocks. In case of stacking blocks, the bottom block
must always be on the table (no floating stacks) and only one block may be on top of any
given block. Figure 2.4.1a, 2.4.1b and 2.4.1c show these rules modeled in GROOVE.

The size of the Block World puzzle is dependent on the number of blocks in the
world. We also introduce block colors to create unique groups of blocks. In this exam-
ple a size of 3 blocks with 3 different colors is chosen. Figure 2.4.2b gives the graph
representation of a possible start state of the Block World system. This in combina-
tion with the transition rules represents a production system of a 3 block Block World
puzzle.

(a) Pickup block rule
(b) Putdown on table

rule
(c) Putdown on block

rule

Figure 2.4.1: Transformation rules for Block World problem

Figure 2.4.2c shows the graph representation of a goal graph we have for the Block
World example. The goal in this case is predicate over graphs which expresses that all
blocks are stacked with the Red block on the bottom followed by the Blue block and
finally on top the Green block, and an empty arm.

(a) Type graph (b) Start graph (c) Goal graph

Figure 2.4.2: Type, Start and Goal graph for 3-block Block World problem

Figure 2.4.3 shows the explored state space of the 3-block Block World problem,
generated by applying the exploration of production system. This is done in a breath-
first approach were each applicable rule is first applied to the original graph and then
is applied to each following node. We see that the state s19 is labeled with goal (the
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name of the conditional rule expressing the goal graph) which indicates that s19 is a
goal state. In this small example one can manually determine a path from the start
state s0 to the goal state s19. One should note that each action in the state space of
Figure 2.4.3 is labeled with only the rule corresponding to the action taken. In fact
each action shown is a combination of a rule and a match, as defined in Definition 7.
However, the match is not shown in the visual representation of the state space.

Figure 2.4.3: Complete state-space for 3-block Block World problem

The small state space of the 3-block Block World system already provides an in-
sight into the issues of finding a solution to graph transformation planning problem.
The major issue is the size of the state space. In this example the problem is so small
that solution can be found simply by looking at the problem. However, this will no
longer be the case if the size of the problem grows. Yet even for such a small problem
with only 22 states, when using using breadth-first exploration, the goal state is the 19th
state to be discovered. We can already see how state space explosion can occur. The
worst-case complexity of the puzzle is in the order O(n!∗2n) where n is the number of
blocks (this complexity is due to the order in the stacking of blocks and the combina-
tions in which sets of colored blocks are stacked). This shows how fast the state space
can grow and that a sophisticated exploration strategy is an important aspect in quickly
discovering a goal state.
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CHAPTER 3

HEURISTICS

In this chapter lies the main focus of this thesis. In Section 3.1 we give an introduction
to the concept of heuristics and their use within exploration strategies given in Sec-
tion 2.1 and 2.2. The heuristics presented in this chapter are all original work of the
author.

In Section 3.2 and 3.3 we define graph heuristic approaches based on graph ele-
ment abstraction and graph transition abstraction, respectively. From these approaches
we show how specific graph heuristic schemes can be defined which can be used to
generate graph heuristic functions as defined in Definition 11. Furthermore, in both
Section 3.2 and 3.3 we provide examples of how such a heuristic function is generated
and how they may be used to calculate the heuristic value of a state. Finally, we provide
a discussion of the advantages and disadvantages for each approach and hypothesize
on how well specific heuristic schemes will perform in solving planning problems for
different problem types.

3.1 INTRODUCTION

Heuristics come down to using additional problem knowledge to make an estimation of
how close a state is to satisfying a goal. Furthermore, exploration strategy may be sup-
plemented by a heuristic in order to improve state space exploration. In the introduction
to Section 2.3, we say a strategy may have domain-independent and domain-dependent
knowledge, and a heuristic may make use of either of these sources. In this research
effort we consider heuristics functions based on domain-independent knowledge. We
aim to develop heuristics which make use of the planning language, specifically graphs
and graph transformations. This allows us to develop heuristics which are applicable
to a wide range of problems modeled as graph transition systems.

Two important properties of heuristic functions are admissibility and consistency
[4]. Admissible means that a heuristic never overestimates the distance to reach the
goal or, in other words the heuristic distance to reach the goal is not higher than the
actual distance to reach the goal. Consistent means that for every state q and every
successor state q′ of q, the estimated distance of reaching the goal from q is no greater
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than the distance of getting to q′ and the estimated distance of reaching the goal from
q′. If a function is admissible and consistent then we can guarantee an optimal so-
lution. Due to flexibility of graph transformations (i.e. a single rule may add/remove
several elements) it may be very difficult to specify heuristics which are admissible and
consistent. Therefore, while we acknowledge these properties we will not attempt to
satisfy these requirements in order to make define a heuristic which leads to an optimal
solution. This may be considered a limitation of this work.

In Section 2.1 we introduced the concept of a graph heuristic as a function H : G→
R+

0 . In this section we will discuss possible implementations of this function. The goal
to which H(G) makes a distance estimation is in a form discussed in Section 2.3.3. To
do this we introduce three levels of implementation with respect to graph heuristics.
These are; a) a heuristic approach, which specifies the knowledge domain the heuristic
is based on, b) a heuristic scheme, which specifies how an heuristic approach may be
implemented for a specific goal type, and c) a heuristic function, which is a function
generated from a heuristic scheme and a goal.

A graph heuristic can be seen in two flavors. The first is an abstraction of the
actions, and the second is an abstraction of the graphs associated with states. In Sec-
tion 3.2 we describe the NENTUPLE (or NEN) approach which is based on the abstrac-
tion of graphs and in Section 3.3 we describe the Linearization Abstraction (or LA)
approach which is based on the abstraction of actions. For both of these approaches we
define heuristic schemes for all suitable goal types.

Finally, for informed exploration of a production system the heuristic value (see
Section 2.1) of a state q is determined by calculating the value of the heuristic function,
used by the exploration strategy, for the graph Gq.

3.2 NENTUPLES

NENTUPLES is a graph heuristic approach which is based on graph abstraction and
element counting. This approach is suited for heuristics with the goal type in the form
of a graph. We refer to this graph heuristic scheme as HSNEN . Concretely, we define
two schemes HSP

NEN and HSC
NEN using the NENTUPLE approach, these require a goal

of the type partial graph and complete graph respectively. Intuitively these schemes
create a decomposition of 〈node,edge,node〉 triples in both G and φH and then compare
the similarity of these decompositions to estimate the distance from G to φH .

In Section 3.2.1 we will give the mathematical definitions of the decomposition
of G into NENTUPLES, HSP

NEN and HSC
NEN . After that we will, in Section 3.2.2,

give a practical example of how a graph modeled in GROOVE is decomposed into
NENTUPLES and how graph heuristics HP

NEN and HC
NEN are calculated. Finally we

will discuss the advantages and disadvantages of this approach as well as possible
extensions in Section 3.2.3.
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3.2.1 THEORY

3.2.1.1 ABSTRACTION: EDGES AND NODE OBJECTS

For this approach we define the triple 〈node,edge,node〉, called a NENTUPLE, which
represents pairs of node objects which are connected by an edge object. An edge object
is simply the label of the edge, given by lbl(e). A node object [v] of a graph G is the
set of node labels LV for a node v ∈VG. Given a graph G we define Equation (3.2.1) to
determine [v]G for a given node element v ∈VG.

[v]G = {lbl(e) | e ∈ EG,src(e) = tgt(e) = v, lbl(e) ∈ LV} (3.2.1)

Subsequently, we define NG which is the set of all node objects [v] of G.

NG = {[v]G | v ∈VG} (3.2.2)

These edge and node objects are an abstraction from their original respective el-
ements in G. Combined in the form of a NENTUPLE we create a second level of
abstraction. Intuitively in a NENTUPLE abstraction, a graph G is represented by NEN-
TUPLES instead of its original form given in Definition 1.

3.2.1.2 DECOMPOSITION

Given the definition of NENTUPLES we define the function NEN(G) which, given a
graph G, calculates the multiset of all NENTUPLES in G. Note that a multiset, also
commonly referred to as a bag, is a set in which may contain multiple instances of the
same element, and we denote a multiset using square brackets.

NEN(G) =
[〈
[src(e)], lbl(e), [tgt(e)]

〉
| e ∈ EG

]
(3.2.3)

We call the determining of the multiset of NENTUPLES of G the decomposition of
G. The decomposition is an abstract representation of a graph and is used to calculate
the similarity (thus estimated distance) between two graphs.

3.2.1.3 NENTUPLE HEURISTIC SCHEMES

We use decomposition to define the graph heuristic schemes HSP
NEN and HSC

NEN . Given
a goal parameter φH of the correct goal type, we can generate the heuristic func-
tions which have φH as goal parameter. Intuitively, heuristic functions generated from
HSNEN estimate the distance between G to a goal φH by calculating the distance be-
tween the decomposition of both G and φH . Exactly how this distance calculation is
made differs for each heuristic scheme.

The heuristic scheme HSP
NEN requires a goal φp of the type partial graph. If the

goal is partial graph we are only concerned with the distance from G to φp. Thus,
the distance between G and φp is calculated by taking the cardinality of the multiset
consisting of the NENTUPLES in φp and not in G. Given a goal φp of the type partial
graph, we thus define HSP

NEN as shown in Equation (3.2.4).

HSP
NEN(φp) : G 7→ |

[
NEN(φp)−NEN(G)

]
| (3.2.4)
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The heuristic scheme HSC
NEN requires a goal φc of the type complete goal. If the

goal is a complete graph then we should consider the absolute distance from G to
φc. This calculation is achieved by taking the cardinality of the symmetric difference
between the decompositions of φc and G. Given a goal φc of the type complete graph,
we thus define HSC

NEN as shown in Equation (3.2.5).

HSC
NEN(φc) : G 7→ |

[
NEN(φc)−NEN(G)

]
+
[
NEN(G)−NEN(φc)

]
| (3.2.5)

Intuitively, we consider the absolute distance between two graphs as the total dif-
ference between them. Thus, in terms of NENTUPLES heuristics we can calculate this
as the number of tuples which are present in one graph but not the other. This also
underlines the major difference between the heuristic scheme for complete graph and
for partial graph goals. With partial graph goals we are not interested in additional
NENTUPLES in a graph that are not part of the goal. This is due to the fact that the
goal is only a partial representation of a goal state. In the scenario of complete goal
graphs this is not the case, and thus we must consider to complete similarity between
graphs in terms of NENTUPLES.

3.2.2 BLOCK WORLD EXAMPLE

In this section we will give examples of decomposition of graphs G and how we can
use the heuristic schemes of HSNEN to generate heuristic functions. In this section we
will make use of the Block World problem. A full description of this problem and how
it is modeled in GROOVE is given in Section 2.4.1. We extend the problem size from 3
blocks in Section 2.4.1 to 9 blocks, with 3 blocks of each color (Red,Blue and Green).

Given a start graph with 9 blocks and the graph transformation rules shown in
Figure 2.4.1 we define a 9-block Block World production system PBW . From this pro-
duction system we can theoretically generate (the extremely large) state space SBW of
the 9-block Block World problem. In Figure 3.2.1 we give the graph representation
G1,G2 and G3 of three possible states in SBW .

For the 9-block Block World problem we can define a goal φ for which we want to
find a corresponding goal state Ggoal in SBW . In this example we introduce two goals,
one of type complete graph and the other of type partial graph. These two goals, φC and
φP respectively, are shown in Figure 3.2.2. In the case of φC the goal state is exactly a
state in which all blocks are stacked on the table sorted by color. In the case of φP the
goal state is any state in which all red blocks are stacked.

Given PBW and the two goals φC and φP, we define two graph transformation plan-
ning problems for the 9-block Block World. To solve these planning problems in this
example we use an exploration strategy which makes use of heuristic functions based
on NENTUPLES. Therefore, we give a heuristic function for the exploration strategy
for each planning problem which are generated from the heuristic schemes HSC

NEN and
HSP

NEN .

First we will generate the heuristic functions for goals φC and φP (given in Fig-
ure 3.2.2) using heuristic schemes HSC

NEN and HSP
NEN respectively. Following this we
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(a) Graph G1 (b) Graph G2 (c) Graph G3

Figure 3.2.1: GROOVE graph representation of states in 9-block Block World state space S

consider the decomposition of graphs in the Block World problem. Specifically we will
deduce all possible NENTUPLES in a 9-block instance of Block World. Furthermore,
we calculate the decomposition of G1,G2,G3,φC and φP. Finally, using these results
we calculate the heuristic values for the states in SBW corresponding to G1,G2 and G3
using HSC

NEN(φC)(G) and HSP
NEN(φP)(G) to give an indication of how this is done in

exploration strategies.

Next we consider NENTUPLES in the Block World problem. In order to do this
we need to abstract the edges and nodes in the graph representations of a Block World
problem to edge objects, lbl(e), and node objects, [v]. We do this by evaluating the
type graph of the problem, which can be found in Figure 2.4.2a.

In this example we textually represent the node objects N as:

{Arm, Table,Red, Blue, Green} (3.2.6)

All NENTUPLES possible in this instance of the Block World problem are given in
Table 3.2.1.
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(a) Complete graph goal φC for a 9-block
Block World problem

(b) Partial graph goal φP for a 9-block
Block World problem

Figure 3.2.2: Complete graph and partial graph goal for 9-block Block World problem

Table 3.2.1: All possible NENTUPLES of Block World with 3 colors

〈Red,on,Red〉 〈Blue,on,Red〉 〈Green,on,Red〉
〈Red,on,Blue〉 〈Blue,on,Blue〉 〈Green,on,Blue〉
〈Red,on,Green〉 〈Blue,on,Green〉 〈Green,on,Green〉
〈Red,on,Table〉 〈Blue,on,Table〉 〈Green,on,Table〉
〈Arm,holding,Red〉 〈Arm,holding,Blue〉 〈Arm,holding,Green〉

We can calculate decompositions for each of the graphs given in Figure 3.2.1. Re-
call NEN(G) is the multiset of all NENTUPLES in G. Thus, the same tuple may be
present more than once in the decomposition multiset of a graph. In Equation (3.2.7),
(3.2.8) and (3.2.9) we give the decomposition of graphs G1,G2 and G3 respectively.
Note that, for the sake of readability we have further shortened node object representa-
tion to the first letter of a nodes uniquely identifying label.

NEN(G1) = [〈R,on,G〉,〈R,on,T〉2,〈B,on,R〉, (3.2.7)

〈B,on,T〉2,〈G,on,B〉3]

NEN(G2) = [〈R,on,R〉,〈R,on,B〉,〈R,on,T〉,
〈G,on,R〉,〈G,on,B〉,〈G,on,G〉, (3.2.8)

〈B,on,G〉,〈B,on,T〉2]
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NEN(G3) = [〈R,on,R〉2,〈R,on,B〉,〈B,on,B〉,
〈B,on,T〉2,〈G,on,B〉,〈G,on,G〉, (3.2.9)
〈G,on,T〉]

We can see that each decomposition has 9 NENTUPLES, which is to be expected
as each Gq has 9 edges.

Next we calculate the decompositions of the goals as shown in Figure 3.2.2. In
Equation (3.2.10) and (3.2.11) the decomposition of the goals φC,φP respectively are
given.

NEN(φC) = [〈R,on,R〉2,〈R,on,T〉,
〈B,on,B〉2,〈B,on,T〉, (3.2.10)

〈G,on,G〉2,〈G,on,T〉]

NEN(φP) = [〈R,on,R〉2] (3.2.11)

Finally, given the decompostions of each graph G1,G2,G3 and both goals φC,φP,
we can calculate the heuristic values of the states q ∈ SQ corresponding to G1,G2 and
G3 in the case of both heuristic functions. These values are given in Table 3.2.2.

Table 3.2.2: Heuristic values of graphs from Figure 3.2.1 for
heuristic functions generated from heuristic schemes in

Equation (3.2.5) and (3.2.4) for goals φP and φC respectively.

G1 G2 G3

HSC
NEN(φC)(G) 14 10 6

HSP
NEN(φP)(G) 2 1 0

These values give an indication of the similarity between the graphs G1,G2,G3 and
the goal graph φP and φC. Intuitively, the NENTUPLE heuristic approach assumes the
more similar two graphs, the shorter the distance between them. For complete graph
goals the actual heuristic value is the number of NENTUPLES that both the input graph
and the goal graph do not have in common. For partial graph goals the value is the
number of NENTUPLES the goal graph has but the input graph does not. We see that
in both goal cases G3 is determined to the nearest to the goals; in the case of the partial
graph goal φP, G3 is even the graph representation of a goal state.

During exploration using greedy best-first search, such heuristic values are calcu-
lated for every state not yet expanded. The exploration algorithm then selects the state
with the lowest corresponding heuristic value to expand next. In this, for the goal φC
the algorithm would expand the state corresponding to G3 next. For the goal φP the
algorithm would have terminated at the point the state corresponding to G3 was gener-
ated.
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3.2.3 DISCUSSION

The aim of this section is to discuss the advantages and disadvantages of the NENTU-
PLE heuristic approach as a basis for graph heuristics. Furthermore, we discuss some
current limitations to the approach as presented in Section 3.2.1 and describe a possible
extension of the work.

3.2.3.1 ADVANTAGES

The main advantage that NENTUPLES provide is a relatively low-time-cost real-time
pruning of the subspace during exploration. Exploration guarantees that, without an
acceptor, eventually the whole state space of a production system is generated. The
heuristics based on NENTUPLES serves as a guide showing which states are expected
to be more promising in leading to an acceptor. In this way we achieve a pruning of
the subspace (because we expand the most promising states first). The abstraction of
a graph (associated with a state) and comparing NEN tuples such as in HSP

NEN and
HSC

NEN are computationally relatively cheap in terms of time compared to generating
additional states. This trade-off allows for a slight increase in exploration time in ex-
change for a significant reduction in explored subspace.

The second advantage of the NENTUPLE approach is that it is extensible. Con-
cretely we define the 〈node,edge,node〉 triple in Section 3.2.1 however, by expanding
or fine tuning exactly what such a tuple represents and contains it may be possible to
get a more accurate abstraction of a graph. Intuitively, we can change the granularity
of the abstraction to more accurately abstractly represent a graph. For example coarser
abstraction could be tuples only representing only labels. Conversely, a finer abstrac-
tion could be tuples representing not a single edge with its source and target node but
also all the incoming or outgoing edges of those nodes. In this sense we scale how
much of the graph context is encompassed by a single tuple. Thus, using a finer level
of abstraction gives provides a more accurate representation of the original graph. The
trade-off at this point however is between calculating and comparing the abstractions
verse the accuracy of the abstraction.

3.2.3.2 DISADVANTAGES

The main drawback of the NENTUPLE approach is the goal type it requires. NEN-
TUPLE heuristics determine distance from a goal by comparing how closely the graph
abstaction of a state compares to the graph abstraction of goal. Therefore, the goal is
required to also be in the form of a graph. This limits the applicability of the approach
for graph transformation planning problems in general. A second disadvantage, which
follows from the first, is that in order to make an accurate comparison the goal (as-
sumed in the form of graph at this point), there must be enough information present
in the goal graph abstraction. Therefore, a goal should be as descriptive as possible
to make this approach effective. This occurrence is expanded upon in Section 5.1.4.
Both of these disadvantages limit the use of the NENTUPLE heuristics depending on
the goal of a planning problem.

A final disadvantage is that comparisons between the NENTUPLE abstractions of
graphs are local. Intuitively, this means that while both graphs may have the same
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NENTUPLE the abstraction says nothing about if these are the same elements in the
actual graphs. Thus, for the heuristic it may seem that two graphs are similar while in
fact some crucial elements are either not in the graph or in the wrong location. The
effect of this is that a NENTuple heuristic may lead exploration down a false path,
possibly for some time before realizing its mistake. An example of this can be seen in
the Block World example given previously. For the heuristic function HSC

NEN(φC)(G)
we see that for input G3 that both graphs have the 3 red blocks stacked on top of each
other. However in G3 these are stacked on another block while the goal expects them to
be on the table. We know that several operations are required to correct this however,
the heuristic does not have this context. So, in the eyes of the heuristic function the
stack of red blocks looks like its almost reached the goal.

3.2.3.3 LIMITATIONS AND EXTENSION

Apart from the limitation that the goal has to be in the form of a graph, there is cur-
rently at least one other theoretical limitation to the NENTUPLE approach. This is the
abstraction of node objects which do not have any incoming or outgoing edges. Since
these nodes are not captured by the abstraction in any way, they are not considered by
heuristic and thus may impact its effectiveness. This limitation again has to do with the
granularity of the graph abstraction previously mentioned.

Furthermore, there are also some limitation in the implementation of both the ab-
straction of graphs to NEN tuples and the comparison between NENTUPLES used in
heuristic schemes within GROOVE. The two main implementation limitations concern
two advanced graph modeling techniques in GROOVE which are beyond the defini-
tions of graphs and simple graph transformation rules given in Section 2.1. However,
for the sake of completeness they are mentioned. Both inheritance and nested struc-
tures in graphs are currently not supported in the implementation of the NENTUPLE
approach in GROOVE.

Currently there is one goal type in the form of a graph that is not supported by a
NENTUPLE heuristic scheme. Defining a heuristic scheme for a goal in the form of a
partial negation graph would be a relevant extension to the current work.

3.3 LINEARIZATION ABSTRACTION

The concept of the linearization abstraction approach consists of three parts.
The first part is the definition of an abstract graph which is an extension of a graph

and keeps track of elements that may have been created or deleted after a graph trans-
formation. The abstracted graph thus in a sense keeps a history of the result of graph
transformations applied to it and its predecessors.

The second part consists of creating a relaxation of the graph transformation plan-
ning problem. This is done by creating an abstraction of the graph transition system.

The third part is the parallel application of applicable abstract rules and correspond-
ing matches to an abstract graph. This in a sense creates a linear state space of abstract
graphs.

27



CHAPTER 3. HEURISTICS

We use the linearization abstraction approach to calculate the abstract linear state space
of a graph. Linearization abstraction is thus an algorithm which requires a graph G,
rules set R and a WITNESS function which determines which elements (witnesses) of
an abstract graph satisfy a goal φ. During the calculation of the abstract linear state
space of G we implement bookkeeping functionality which keeps track of size of the
state space and what abstract rules are applied to what abstract graph elements for
each parallel graph transformation. The result of linearization abstraction is thus the
bookkeeping variables and the sets of witnesses.

We define three distance metrics, one naive, the other two more sophisticated, based
on the results of linearization abstraction. These serve as the basis of the heuristic
functions of linearization abstraction approach. We will give six heuristic schemes
which are a combination different goal types and distance metrics. We refer to heuristic
schemes based on linearization abstraction in general as HSLA. Given such a heuristic
scheme and goal of the suitable type we can generate a heuristic function.

We will first formally define the linearization abstraction heuristics scheme HSLA in
Section 3.3.1. Following this in Section 3.3.2 we give an example of a heuristic func-
tion generated from a linear abstraction heuristic scheme. Finally we will discuss the
expected advantages and disadvantages of linearization abstraction heuristic schemes
in Section 3.3.3.

3.3.1 THEORY

3.3.1.1 GRAPH ABSTRACTION

Definition 15 (Abstract Graph). An abstract graph Ĝ = 〈V,V̂ ,E, Ê,src, tgt, lbl〉, is an
extension of a graph, where V̂ ⊆ V and Ê ⊆ E represent sets of graph elements that
may have been created or deleted after a graph transformation, and src(e) ∈ V̂ ⇒ e ∈ Ê
and tgt(e) ∈ V̂ ⇒ e ∈ Ê.

We refer to V,E as the total sets, to V̂ , Ê as the maybe sets, and to V \V̂ ,E \ Ê as the
real sets. These names correspond to what information is retained about the possible
existence of elements after a graph transformation.

Notation 7. AG denotes the universe of abstract graphs.

Definition 16 (Graph Abstraction). Let G be a graph, and A and abstract graph. A
abstracts G, written as Gv A, if {VA \V̂A} ⊆VG ⊆VA and {EA \ ÊA} ⊆ EG ⊆ EA.

3.3.1.2 ABSTRACT GRAPH TRANSFORMATION RULES

Definition 4 gives the definition of a graph transformation rule. For abstraction we will
extend this concept to define abstract graph transformation rules r̂.

Definition 17 (Abstract Graph Transformation Rule). An abstract graph transforma-
tion rule r̂ is a tuple 〈L, R̂, p̂〉, where L is a graph, R̂ is an abstract graph and p̂ : L→ R̂
is a total morphism from L to R̂.
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Definition 18 (Graph Transformation Rule Abstraction). Let r = 〈L,R, p〉 be a graph
transformation rule then, r̂ = 〈L, R̂, p̂〉 is the abstraction of r where,

– L is the original LHS graph in r.

– p̂ : L→ R̂ is an extension of p such that it is a total graph morphism, and each
edge e ∈

(
EL \dom(pE)

)
and node v ∈

(
VL \dom(pV )

)
is mapped to a fresh edge

or node with respect to R for p̂E and p̂V respectively.

– R̂ is the abstraction of graph R such that,

– VR̂ := p̂V (VL);

– V̂R̂ :=
(
VR \ rg(pV )

)
∪ p̂V

(
VL \dom(pV )

)
;

– ER̂ := p̂E(EL);

– ÊR̂ :=
(
ER \ rg(pE)

)
∪ p̂E

(
EL \dom(pE)

)
.

It is possible to extend the abstraction of simple graph transformation rules to also
include NACs as defined in Definition 6. In order to include NACs we need to define
abstract satisfiability of NACs.

Definition 19 (Abstract Satisfaction). For an abstract graph Ĝ and match u : L→ Ĝ, a
NAC n is abstractly satisfied if ¬∃m′ : im(n)→ Ĝ such that rg(m′E) = {e | e∈ EĜ \ ÊĜ},
im(m′V ) = {v | v ∈VĜ \V̂Ĝ} and m′ ◦n = µ. This is written as µ |=ABS n.

The difference between satisfiability and abstract satisfiability is thus that for ab-
stract satisfiability we loosen the constraint such that any morphism m′ should only
map elements from N to real elements in Ĝ.

Definition 20 (Match on Abstract Graph). Let {r̂,NAC} be an abstract graph transfor-
mation rule with a set of NACs, Ĝ be an abstract graph and µ a graph morphism. µ is a
match of r to Ĝ if µ : Lr̂→ Ĝ is a total graph morphism, and µ |=ABS n, ∀n ∈ NAC.

3.3.1.3 ABSTRACT GRAPH TRANSFORMATIONS

In Section 2.1 a graph transformation has been defined as the tuple G
r,µ
=⇒H where r is a

graph transformation rule and µ is a match from L in r to G. Note that for linearization
abstraction we will assume that rules are in the simplest form and thus a match µ is a
graph morphism.

L R̂

Ĝ Ĥ

p′

µ µ′

f

Figure 3.3.1: Abstract Graph Transformation

We now define an abstract graph transformation which given an abstract graph G,

an abstract rule r̂ and a match µ : L→ G is the tuple Ĝ
r̂,µ
=⇒ Ĥ. The relations between

graphs, abstract graphs and graph morphisms involved are shown in Figure 3.3.1.
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The resulting abstract transformed graph Ĥ of an abstract graph transformation
given Ĝ, r̂ and µ is generated in the same way as H would be generated in a graph
transformation with the addition that for Ĥ the sets V̂Ĥ and ÊĤ need to be defined. The
definition is given by;

V̂Ĥ := f
(
V̂G

)
∪µ′

(
V̂R̂

)
(3.3.1)

ÊĤ := f
(
ÊG

)
∪µ′

(
ÊR̂

)
(3.3.2)

These maybe element sets in Ĥ are thus a combination of the image of previous
maybe element in abstract graph Ĝ and the image of elements created and deleted by r̂.
In this way Ĥ not only stores the information of which elements are newly created and
deleted after a graph transformation but also keeps a history of the effects of previous
graph transformations.

In terms of the abstraction of the state space S of a production system, we can say

of the abstracted state space: if G
r,µ
=⇒ H and G v Â then Â

r̂,µ
=⇒ B̂ such that H v B̂.

Furthermore, if G v Â and Â
r̂,µ
=⇒ B̂ then G v B̂. Intuitively, what the first statement

means is that if there exists a transition from state G to H in the state space then there
also exists an abstract transition from an abstract graph Â of G to an abstract graph B̂ of
H. The second statement implies that in this abstract state space that graph abstraction
is preserved by abstract graph transformations. In other words, if Â is an abstract graph
of G and there exists an abstract transformation from Â to B̂ then also B̂ must be an
abstraction of G. This is due the fact that graph elements are never deleted by abstract
graph transformation rules.

3.3.1.4 TRACKERS & DEPENDENCY + ABSTRACT GRAPH TRANSFORMATIONS

We now introduce the concept of a tracker which serves the purpose of bookkeeping.
This bookkeeping functionality will allow us to set up different metrics to determine
the "distance" for the heuristic HLA.

Definition 21 (Tracker). A tracker t is a triple 〈r̂,µ, iteration#〉 such that,
– r̂ an abstract rule;

– µ is a match;

– iteration# ∈ N is an abstract graph transformation iteration.
We use T to indicate a set of trackers.

These tracker triples t indicate the dependency of a node or edge with respect to
which abstract rules r̂ are required in order to create or delete the element. Each node
v and edge e of an abstract graph derived through a sequence of rule applications has a
set of trackers (Te and Tv).

An element has a set of trackers because its creation may be dependent on a series
of rule applications (i.e. the application of a rule enables the rule which creates the
element). The tracker set T of an element thus captures a history of all rules required
to create it and is transitively closed.
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Next we define the dependency relation. Intuitively, a dependency maps graph
elements to sets of trackers.

Definition 22 (Dependency). A dependency d : Ĝ→ 2T is a mapping of abstract graph
elements (e ∈ ÊĜ,v ∈ V̂Ĝ) to sets of trackers T .

Initially the dependency relation for an initial abstract graph (before any abstract
graph transformations) is a mapping from all graph elements to the empty set. How-
ever, every graph transformation will create tracker triples, and newly created elements
in V̂ and Ê will be dependent on the r̂ and µ in the abstract graph transformation and
possible previous abstract graph transformations. Therefore, in an abstract graph trans-
formation we need to also maintain this dependency relation.

To achieve this we make sure that an element, along with obtaining the tracker
corresponding to the graph transformation (r̂,µ) and iteration which is responsible for
creating it, also inherits the trackers of all elements which are present in the match µ in
the graph transformation.

We define (Ĝ,d)
r̂,µ,i
==⇒ (Ĥ,d′) as the dependency plus abstract graph transformation

(or DAG transformations) which is an extension of an abstract graph transformation.
The input for such a transformation is an abstract graph Ĝ, dependency relation d,
abstract rule and corresponding match r̂,µ and an iteration counter i. The result of a
DAG transformation is the abstract graph transformation as defined in Section 3.3.1.3
as well as an update of the dependency d′ with respect to the abstract rule application
r̂ given µ.

This update to d′, given an abstract graph transformation and d, consists of two
parts. The first is defining a new tracker which corresponds to the abstact graph trans-
formation. This is given as:

tnew =< r̂,µ, i >

Next we need to update d to d′ such that there is a mapping from each new element
to its tracker set and for each existing element we adjust for element remapping in f .
We thus define d′E and d′V as follows:

d′V (v) := dV ( f−1(v)) for ∀v ∈ {VĤ \µ′(V̂R̂)}

d′V (v) := {tnew}∪
(⋃

dv(L)
)

for ∀v ∈ µ′(V̂R̂)

d′E(e) := dE( f−1(e)) for ∀e ∈ {EĤ \µ′(ÊR̂)}

d′E(e) := {tnew}∪
(⋃

de(L)
)

for ∀e ∈ µ′(ÊR̂)

3.3.1.5 LINEARIZATION OF ABSTRACT GRAPH TRANSFORMATIONS

Given the definitions of an abstract graph, abstract graph transformation rules and ab-
stract graph transformations we can now combine these to define parallel abstract graph
transformations. We call this a linearization because this approach creates a linear state
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space of abstract graphs instead of a branching state space. In addition to abstract
graph transformations we can also include transformation book keeping in the form of
dependencies. We thus create parallel DAG transformations.

Note that since DAG transformations are an extension of abstract graph transfor-
mations we can simply ignore (set to null) all dependency related variables to achieve
parallel abstract graph transformations from parallel DAG transformations.

The application of DAG transformations is shown in Algorithm 2. It takes as input
an abstract graph Ĝ and the set M of all abstract rules r̂ and corresponding valid matches
µ as well as the dependency d and an external iteration counter i. The algorithm returns
the successor abstract graph Ĝ′ which is the abstract graph to which abstract graph
transitions are applied in parallel and its respective dependency relation.

Algorithm 2: Parallel DAG Transformations

input : Ĝ – initial abstract graph;
M – set of abstract rule and with match (r̂,µ) applicable to Ĝ;
d – dependency relation for Ĝ;
i – iteration of parallel abstraction graph transformation.

output : Ĝ′ – abstract graph after linearization of graph transformations;
d′ – dependency relation for Ĝ′.

1 for (r̂ j,µ j) : M do

2 Let (Ĝ′j,d
′
j) be the abstract graph such that (Ĝ,d)

(r̂ j ,µ j ,i)
====⇒ (Ĝ′j,d

′
j);

3 end
4 return

(⋃
j Ĝ′j,

⋃
j d′j

)
;

In Algorithm 2 we see the successor abstract graph Ĝ′ of Ĝ for M is given by
calculating the successor Ĝ′j for every j ∈ M and then taking the union of all these
successors. By construction there can never be a conflict between abstract graph trans-
formations. A conflict is caused by the fact that one transformation has a requirement
which would be unsatisfied if another transformation is performed. An example would
be if a transformation r1 has the condition which adds an edge to a certain node n and
another transformation r2 deletes that specific node n. Using standard transformations
these two rules would not be able to be applied in parallel since there is a conflict of
actions on that certain node n. However, in abstract graph transformations these trans-
formations can be applied in parallel because n is not actually deleted but only placed
in the maybe node set. The argument is similarly true for d′.

3.3.1.6 WITNESSES AND GOAL MATCHES

In this section we define the concept of witnesses. A witness is a set of elements,
(i.e. subgraph) in an abstract graph which satisfies a goal. Intuitively, for an abstract
graph Ĝ and goal φ, we say Ĝ is a goal graph if we can find a witness. The WITNESS
function calculates all witnesses in Ĝ. Determining if a witness satisfies a goal is goal
type dependent and is done by the MATCH function, which is a helper function within
WITNESS.
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We use an abstract variable x which serves as goal type parameter. This variable
can be concretely instantiated to a goal type which are defined in Section 2.3.3.

Equation (3.3.3) gives the generic witness function which has as parameters x, rep-
resenting a goal type, and φ, representing a goal of type x. WITNESS takes as input
an abstract graph Ĝ and returns a set of graph element sets or witnesses. These wit-
nesses represent the subgraphs in Ĝ which match the goal φ. These matches are graph
morphisms µ which are captured by the MATCH function.

WITNESSx
φ : Ĝ 7→ {im(µ) | µ⊆MATCHx

φ(Ĝ)} (3.3.3)

The condition for determining which subgraphs match a goal is goal type depen-
dent. Thus, for each goal type we can define the conditions for which a subgraph
matches a goal. In the following definitions we define the MATCH function for the
goal types: a) partial negation graph (x := n), b) partial graph (x := p) and c) complete
graphs (x := c).

Definition 23 (Partial Negation Goal Match). Let φ=(N,{NAC}) be a negation partial
goal (where N is a graph and {NAC} a set of NACs), and µ a graph morphism. µ ∈
MATCHn

φ
(Ĝ) if µ : N→ Ĝ is a total graph morphism , and u |=ABS nac, ∀nac ∈ {NAC}.

Definition 24 (Partial Goal Match). Let φ = P be a partial goal (where P is a graph),
and µ a graph morphism. µ ∈MATCH

p
φ
(Ĝ) if µ : P→ Ĝ is a total graph morphism.

Definition 25 (Complete Goal Match). Let φ = C be a complete goal (where C is
a graph) and µ a graph morphism. µ ∈ MATCHc

φ
(Ĝ) if µ : C → Ĝ is a total graph

morphism such that {EĜ \ ÊĜ} ⊆ rg(µE) and {VĜ \V̂Ĝ} ⊆ rg(µV ).

If in the actual problem a graph G satisfies the goal φ then for all abstract graphs
G v Ĝ in the abstraction of the problem to following should hold: MATCHx

φ
(Ĝ) 6=

/0. Intuitively, this means that all actual goal states are also goal states in problem
abstraction. Thus, in our over approximation we ensure we completeness in terms of
goal states.

We hypothesize that it is also possible to define a concrete MATCH function for
goals of the type predicate of graphs. However, this is not trivial and is beyond the
scope of this work.

3.3.1.7 LINEARIZATION ABSTRACTION

We can now tie all previously defined concepts of abstraction together to perform the
linearization abstraction of a graph G and witness function. For linearization abstrac-
tion we assume the known parameters: the rule set R and a loop threshold THRESH-
OLD. The result of linearization abstraction is a dependency relation d, which is a
mapping from Ĝ to 2T , a set of witnesses W (which is the first non-empty set result
of WITNESS on input Ĝ), and the iteration count iter which is the number of parallel
abstraction graph transformations required to find a witness. Note that Ĝ, which an
abstract graph of G on which all abstract transformations are performed, is not part of
the result. The reason for this is that all necessary information to determine a heuris-
tic value based on the linearization abstraction approach is already contained in the
dependency relation, witness set and iteration count.
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Pseudo code of the linearization abstraction algorithm is given in Algorithm 3. The
function ParallelTransformation on Line 13 is a call to Algorithm 2. Furthermore,
the WITNESS function on Line 7 depends on the goal type x of φ. In the concrete
instantiation of the algorithm we require x to be set to a concrete goal type. The goal
and goal type used in the WITNESS function of linearization abstraction is set by its
respective heuristic scheme.

The algorithm itself consists of two parts. The first part is the initialization of
variables. This consists mostly of the abstraction of the input and parameters and is
done as defined in the previous sections. The second part is the While-loop from Line
6 to Line 14. In this loop we repeatedly do the following:

1. check if the current abstract graph Ĝ is a goal graph (Line 8)

2. find all abstract rules and matches M valid on Ĝ (Line 12)

3. apply the parallel DAG transformation for all abstract rules and matches in M
(Line 13)

Algorithm 3: Linearization Abstraction
input : G – initial graph;

WITNESSx
φ

– Witness function for goal φ where goal type is x;
R – rule set; ; // Global variable

1 THRESHOLD– loop iteration threshold. ; // Global variable
output : d – dependency relation;

W – Set of witnesses.

2 Ĝ← G extended with V̂ , Ê := /0;
3 R̂ ← abstraction of R ;
4 d←{(v, /0) | v ∈VĜ}∪{(e, /0) | e ∈ EĜ};
5 iter← 0;
6 while iter < THRESHOLD do
7 W ←WITNESSx

φ
(Ĝ);

8 if W 6= /0 then
9 return (iter ,d,W );

10 end
11 iter← iter + 1;
12 M←{(r̂,µ) | r̂ ∈ R̂ , µ : Lr̂→ Ĝ};
13 (Ĝ,d)← ParallelTransformation(Ĝ′,M,iter,d);
14 end
15 return (iter ,d,W );

The loop only exits in two cases, the first is when the loop threshold THRESHOLD
is met (line 15) and the second is if Ĝ is a goal graph (line 9). We include a loop
threshold since it may be possible that there does not exist a path from input G to a
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goal graph Ggoal given R . In this case it may also be that no such path exists given R̂
and abstract graph transformations. So we require a threshold to avoid an infinite loop.

As mentioned, in the second case the loop is exited when Ĝ is a goal graph. In this
case we have achieved the objective of the algorithm and we return the result.

In the next section we will show how the result of the linearizion abstraction algo-
rithm may be used a to estimate the distance from a graph G to a goal φ. These distance
estimates serve as basis for graph heuristics based on linear abstraction.

3.3.1.8 DISTANCE METRICS

We define three distance metrics based on linearization abstraction. The first is a
naive approach which is the number of parallel abstract graph transformation itera-
tions needed to reach an abstract graph which is a goal graph, given φ, from G. We
call this metric “iteration count" (or IC for short). This is a naive approach since par-
allel abstract graph transformations allow multiple abstract graph transformations in a
single iteration, so we may greatly underestimate the actual distance if there are many
independent graph transformations required.

Therefore, we introduce a second distance metric which aims to refine IC. To more
accurately estimate the distance between graph G and a goal we count all relevant
abstract rules needed such that Ĝ is a goal graph. In this way the distance metric
becomes the exact number of abstract rules needed to reach a goal in an abstract graph.
We call this metric “dependency count" (or DC for short).

Finally, we introduce a third distance metric which is a midway between the IC and
DC metrics. This third metric counts all rule applications applied during linearization
abstraction. We call this metric “match count" (or MC for short). The two purposes of
this metric is to provide a metric more accurate than iteration count and less computa-
tion heavy than dependency count. The first purpose is easily achieved as the number
of iteration generally has a correlation to number of matches. The second approach is
also achieved since this metric does not rely on witnesses, thus in the implementation
we can reduce the number of calculations needed to calculate the match count value of
a graph.

We can calculate these distance metrics for G using the trackers and witnesses
created during the linearization abstraction process. From the result (d,W ) of the lin-
earization abstraction we can obtain all relevant trackers and from these calculate the
corresponding heuristic value. For all metrics we give pseudo-code algorithms which,
given a dependency relation and set of witnesses for an abstract graph calculates the
heuristic value. These algorithms are Algorithm 4, Algorithm 5 and Algorithm 6 for
iteration count, match count and dependency count respectively.

As one can see in Algorithm 4 the iteration count algorithm simply returns the
iteration count i from the input.

In Algorithm 5 the result is the number of trackers in the image of the dependency
relation. For each rule application a unique tracker is created, and the dependency
relation tracks which elements have which trackers. In this case we want to know all
rule applications thus we want all trackers, this is achieved by taking the image of d.

Algorithm 6 is slightly more complex. Firstly we are only concerned with the track-
ers corresponding to elements which are also part of the goal graph. These elements
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Algorithm 4: Heuristic: Iteration Count (IC)
input : i – iteration count of Linearization Abstraction algorithm;

d – dependency relation for Ĝ→ 2T ;
W – set of witnesses for Ĝ given φ.

output : R+
0 – heuristic value.

1 return i;

Algorithm 5: Heuristic: Match Count (MC)
input : i – iteration count of Linearization Abstraction algorithm;

d – dependency relation for Ĝ→ 2T ;
W – set of witnesses for Ĝ given φ.

output : R+
0 – heuristic value.

1 return |
⋃
{d(x) | x ∈ Ĝ}|;

Algorithm 6: Heuristic: Dependency Count (DC)
input : i – iteration count of Linearization Abstraction algorithm;

d – dependency relation for Ĝ→ 2T ;
W – set of witnesses for Ĝ given φ.

output : R+
0 – heuristic value.

1 return Min
{⋃
|d(w)| | w ∈W

}
;
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correspond to a witness w ∈W . We use the dependency relation to determine all track-
ers corresponding to the elements in a witness. From this set we take the cardinality
as the heuristic value. It may be possible there are multiple witnesses for a goal graph.
The heuristic value should correspond to the witness which has the lowest number of
trackers. The function Min stands for the minimum operation which takes the smallest
value from a set.

3.3.1.9 LINEARIZATION ABSTRACTION HEURISTIC SCHEMES

We use the three linearization abstraction distance metrics defined above to define three
goal type generic heuristic schemes. We define the heuristic scheme HSx

LA−IC(φ) based
of the naive iteration count metric in Equation (3.3.4), HSx

LA−MC(φ) based on the ef-
ficient match count metric in Equation (3.3.5) and HSx

LA−DC(φ) based on the more
sophisticated dependency count metric in Equation (3.3.6).

HSx
LA−IC(φ) : G 7→ IC

(
LA(G,WITNESSx

φ)
)

(3.3.4)

HSx
LA−MC(φ) : G 7→MC

(
LA(G,WITNESSx

φ)
)

(3.3.5)

HSx
LA−DC(φ) : G 7→ DC

(
LA(G,WITNESSx

φ)
)

(3.3.6)

The heuristic schemes as given in Equation (3.3.4), (3.3.5) and (3.3.6) are generic
since they are require a concrete goal type. The goal type for these schemes is defined
by setting the parameter x to a concrete goal type, this also instantiates the WITNESS
function and, also the MATCH helper function, with a concrete goal type. In Sec-
tion 3.3.1.6 we defined concrete instances of MATCH, and thus WITNESS and HSLA,
for the goal types: a) partial negation graph (x := n), b) partial graph (x := p) and
c) complete graphs (x := c). Therefore, Equation (3.3.4), Equation (3.3.5) and (3.3.6)
together actually represent nine concrete heuristic schemes. We can use such a con-
crete heuristic scheme in combination with a goal φ to create heuristic functions based
on linearization abstraction.

3.3.2 LINEARIZATION ABSTRACTION EXAMPLE

In this section we give an example of the linearization abstraction algorithm and how
algorithm output is used to calculate heuristic values for each linearization abstraction
heuristic scheme HSx

LA. In order to do this we introduce a new trivial problem which
is given as a production system and a partial graph goal. The reason a trivial problem
is used as example is that due to the complexity and many steps in the process of
linearization abstraction a larger problem quickly becomes convoluted.

We present the problem used in this example in the form of graphs and graph trans-
formations in GROOVE. The type graph and start graph of the problem are given in
Figure 3.3.2a and Figure 3.3.2b respectively. This example problem is thus a world of
A, B and C nodes which are connected by b and c edges. The start graph consists of a
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single A node which is connected to two C nodes by a c edge. In the start graph we also
show the node numbering, this is done so we can visually track nodes during the iter-
ations of linearization abstraction later on. Figure 3.3.2c shows the partial graph goal
for the example problem. The goal represents a state in which the A node connected
to a B node by a b edge and the B node has a self b edge, furthermore, the A node the
goal requires the A edge is not connected to any C nodes by a c edge.

(a) Type Graph (b) Start Graph G0

(c) Partial Graph
Goal φP

Figure 3.3.2: Type, Start and Goal graph of sample linearization abstraction example

Figure 3.3.3 show the transformation rules Rex of the example problem. These are
labeled r1,r2 and r3. They are relatively trivial rules which simply create or delete
some elements from the host graph.

(a) r1: new B node with b edge
from A node (b) r2: new b edge from B node

(c) r3: remove C node and c
edge from A node

Figure 3.3.3: Transformation rules for small linearization abstraction example

We will use linearization abstraction to this example problem and using heuristic
schemes HSp

LA to determine the heuristic values from the start state corresponding to
G0 to a goal state for φP. We thus want to calculate three heuristic values. To do this
we first need to define the witness function. This is given as WITNESS

p
φP
(Ĝ), where n

refers to the goal type and phiP is the goal we wish to find witnesses for in Ĝ. Next we
can define the heuristic functions we will use to calculate heuristic values. These are:

1. HSp
LA−IC(φP)(G,WITNESS

p
φP
(Ĝ)),

2. HSp
LA−MC(φP)(G,WITNESS

p
φP
(Ĝ)), and

3. HSp
LA−DC(φP)(G,WITNESS

p
φP
(Ĝ)).

which calculate results based on the distance metrics of iteration count, match count
and dependency count of linearization abstraction respectively. Each of these functions
requires as input the result of linearization abstraction. Therefore, in this example we
next show this process, as described in Algorithm 3, is applied to our example problem.

To do this we consider the input as defined above. In this example the THRESHOLD
input parameter is not relavent and thus we ignore it.
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The first step is to create the abstract graph Ĝ0 which is an initial abstraction of
G0 (line 2 of Algorithm 3). Secondly, we create the abstract rules of the problem
by applying the abstraction of transformation rules as defined in Definition 18 (line 3
Algorithm 3).

Once we have abstracted the input graph and created the abstraction on the trans-
formation rules we create an new dependency set d which initially maps all elements
in the abstract graph to an empty set of trackers. Furthermore, we initiate the ITER to
zero.

The initial abstraction of G0 to Ĝ0 simply states that G0 is extended which two
maybe sets for nodes and edges. The result is practically the same graph shown in
Figure 3.3.2b. The abstraction of the transformation rules Rex can be as considered as
that all creator elements of the rules in Figure 3.3.3 represent the mapping to a maybe
element in the abstract graph and that all eraser elements are matched on real elements
and mapped to maybe element in the abstract graph.

At this stage we have initialed all necessary variables for linearization abstraction
and can apply iterations of parallel DAG transformation until the witness set W is non
empty (lines 6-14 of Algorithm 3).

Figure 3.3.4 give a visual representation of the abstract graph Ĝ0 for each iteration
in the abstract graph transformation. Where gold colored graph elements represent
maybe elements.

iteration 0

−→

iteration 1

−→

iteration 2

Figure 3.3.4: Linearization Abstraction of small example

In the first iteration of linearization abstraction loop three abstract graph transfor-
mations are applied to Ĝ0. These are a single application of r̂1 and two applications
of r̂3, the first matched on node n1 and the second on n2. This whole step is captured
in a single parallel DAG transformation, which in addition to the transformation also
creates trackers and updates the dependency set. In the first iteration, 3 trackers are
created, one for each abstract rule application.

〈r̂1,n0,1〉,〈r̂3,n1,1〉,〈r̂3,n2,1〉 (3.3.7)

Each maybe element in Ĝ0 of iteration 1 is mapped to the tracker responsible for
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moving it to the the maybe set. This is done in the dependency relation d given below.⋃
d(Ĝ0) =

{
n1→{〈r̂3,n1,1〉}, (3.3.8)

n2→{〈r̂3,n2,1〉},
n3→{〈r̂1,n0,1〉},

(n0 c−→ n1)→{〈r̂3,n1,1〉},

(n0 c−→ n2)→{〈r̂3,n2,1〉},

(n0 b−→ n3)→{〈r̂1,n0,1〉}
}

In the second iteration two abstract graph transformations are applied to Ĝ0. These are
r̂2 matched on node n3 and r̂1 matched on node n0. For both these transformations a
new tracker is created.

< r̂1,n0,2 >,< r̂2,n3,2 > (3.3.9)
Furthermore, the dependency set is updated as shown below.⋃

d(Ĝ0) =
{

n1→{〈r̂3,n1,1〉}, (3.3.10)

n2→{〈r̂3,n2,1〉},
n3→{〈r̂1,n0,1〉},
n4→{〈r̂1,n0,2〉},

(n0 c−→ n1)→{〈r̂3,n1,1〉},

(n0 c−→ n2)→{〈r̂3,n2,1〉},

(n0 c−→ n3)→{〈r̂1,n0,1〉},

(n0 b−→ n4)→{〈r̂1,n0,2〉},

(n3 b−→ n3)→{〈r̂1,n0,1〉,〈r̂2,n3,2〉}
}

In the third iteration a witness can be found which satisfies φP (as defined in Defini-
tion 24). The set of witnesses W is given as follows.

W =
{
{n0,n3,(n0 c−→ n3),(n3 b−→ n3)}

}
(3.3.11)

Thus, at this point the linearization abstraction algorithm terminates. The result
is a tuple of the iteration count, the dependency relation and witness set. given as
〈iter,d,W 〉. We can now use this result as input for the heuristic functions defined
earlier in this example.

In Equation (3.3.12), (3.3.13) and (3.3.14) we calculate the heuristic value which
estimates the distance from the initial state corresponding to G0 to a goal state which
satisfies φP. Each function uses a different metric to estimate the difference.

HSp
LA−IC(φP)(G0,WITNESS

p
φP
(Ĝ0)) = 2 (3.3.12)

HSp
LA−MC(φP)(G0,WITNESS

p
φP
(Ĝ0)) = 5 (3.3.13)

HSp
LA−DC(φP)(G0,WITNESS

p
φP
(Ĝ0)) = 2 (3.3.14)

Given these heuristic values it is important to note that while there is a correspondence
between values they are not directly comparable. That is to say, for example, while
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both the IC and DC metric heuristic functions give the same result, this does not mean
they are both equally well suited as heuristic for this problem. The heuristic value
should be put in context of what the distance metric is measuring.

With this in mind, we see that both IC and DC heuristic function have a value of 2
and MC heuristic function has a value of 5. What this means is that in the linearization
abstraction of the problem only two iterations are needed to reach a goal state from
the start state. By refining the metric to rule applications we see that 5 abstract rule
applications are required to reach a goal state. Finally, in dependency count we see that
in fact only two abstract rule applications are needed to create an abstract graph which
corresponds a goal state.

In this example one can clearly see the levels of refinement in the distance metrics.
Concretely, considering the example we can easily see that two rule applications are
needed to satisfy the goal. In the abstraction this is most accurately shown by the
dependency count heuristic. The match count heuristic is an all encompassing over
approximation. The iteration count on the other hand is simplification of the whole
abstraction which corresponds to the number of dependent rule applications.

3.3.3 DISCUSSION

The aim of this section is to discuss the advantages and disadvantages of the lineariza-
tion abstraction heuristic approach as a basis for graph heuristics. Furthermore, we
discuss some current limitations to the approach as presented in Section 3.3.1 and give
an option of possible extension of the work.

3.3.3.1 ADVANTAGES

The linearization abstraction provides an advantage as heuristic approach by attempt-
ing to reduce the explored state space of a planning problem, which is achieved by two
components. The first is the problem abstraction. By creating an abstraction of graphs
which store information about which graph elements may be present in a current graph
we can actually represent a set of graphs (and thus states) by a single abstract graph.
This form of abstraction, which is supported by abstract graph transformation rules al-
lows us to create an abstracted form of the problem state space in which we keep track
of which abstract transformations are responsible for creating certain graph elements.
The second component is linearization of abstract rule applications. By allowing par-
allel application of independent abstract transformation rules we further reduce the
abstracted state space into a linear entity. We can permit this abstraction because ab-
stract graphs record which elements are effected in transformations using maybe sets.
Furthermore, using the dependency relation we keep track of exactly which elements
are effected by which abstract transformation rule.

A further advantage to the approach is that with this form of abstraction we are able
to keep some graph context, this is different to NENTUPLES. Furthermore, lineariza-
tion abstraction generates an abstract graph from a given start graph to an abstract graph
which matches a goal. In terms of heuristics we use the results from this algorithm to
the distance between a graph and a goal using distance metrics. However, the results
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from linearization abstraction, include the abstract graph, could also be used to calcu-
late a path of abstract rule application from a start graph to a goal. Such information
can be used to create a plan for a planning strategy.

A final advantage of the linearization abstraction approach is that from its result it
is possible to define several different distance metrics which can be used to calculate
heuristic values. These metrics may be combined and allow for extensibility of the
approach.

3.3.3.2 DISADVANTAGES

The major disadvantage of the linearization abstraction approach is the computation
complexity. Each linearization abstraction is actually a simplified generation of the
problem state space. Thus, while abstraction significantly reduces the size of the prob-
lem, when a linearization abstraction has to be applied to the graph of every expanded
state during an exploration a great deal of computations are still required.

Furthermore, as the size of abstract graph grows, finding all applications of abstract
rules becomes more time consuming. This is partially due to the fact that the abstraction
and linearization shifts part of the state space explosion commonly found in graph
transition system from the state space to abstract graphs. Intuitively, this comes down
to finding abstract rule matches in a single abstract graph instead of expanding several
states within a state space.

The linearization abstraction approach allows for the application of all independent
abstract graph transformation using parallel abstract graph transformations. This pro-
vides an advantage in terms of space reduction for problems with many independent
actions. However, if the problem requires mostly dependent actions to reach a goal
then the whole linearization does not provide any advantage.

In terms of distance metrics based of the results of linearization abstraction there is
a trade-off between the accuracy of distance and computation complexity. Especially
between match count and dependency count there is an additional level of complexity
in the current implementation. This is caused by the implementation of the WITNESS
function. The issue is caused by the fact that iteration count and match count only re-
quire the witness set to be non-empty while dependency count actually uses the witness
set for its calculations. Thus, in the implementation these first two metrics only per-
form a simple check while the dependency count metric calculates the whole witness
set. This, is an expensive operation in proportion to the number of witnesses.

The conclusion from this is as follows. While dependency count provides the most
accurate distance estimation it is also the most computation intense to calculate. This is
a trade-off a user must seriously consider when deciding which heuristic function to use
for a certain problem. For smaller problems or problems with a extremely partial goal
graph it may be more efficient to expand some possibly less rewarding states using
linearization abstraction heuristic functions based of match count metrics instead of
dependency count metrics.
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3.3.3.3 LIMITATIONS AND EXTENSION

The main current theoretical limitation of linearization abstraction is that we have not
defined the condition in which an abstract graph satisfies a predicate over graphs. In
terms of implementation, a major limitation of the linearization abstraction heuristic
approach is that as the size of the graph increases, finding all matches for abstract
graph transformations becomes more time consuming (this is due to there being more
possible matches). This means that the higher the number of iterations in linearization
abstraction needed, the longer the whole algorithm takes. At some point it is no longer
feasible to calculate the linearization abstraction of a graph in a planning problem.
Therefore, we can assume, in the current implementation there is some upper limit with
respect to problem size at which point linearization abstraction heuristics no longer
provide any performance enhancement. Theoretically, the worst case scenario would
be a problem which requires many dependent actions (requiring many iterations) while
also including possible independent actions that are not relavent in the solution (cause
an increase in total matches found in each iteration).

Abstraction is a trade-off between problem size and problem context. In this ap-
proach we have chosen to reduce the problem size by not distinguishing between newly
created or deleted maybe elements in an abstract graph. A possible extension of the
linearization abstraction approach is to reuse the concepts of parallel DAG transforma-
tions and distance metrics with another graph and graph transformation abstraction. By
refining the granularity of the abstraction (such as the history of elements) it may be
possible to define more accurate heuristic schemes for planning problems.

Apart from the use of linearization abstraction for defining heuristic schemes, it is
also a possibility to use this approach as a method for aiding a planning strategy on a
global level instead of state level. This can be done by considering a path that solves
the linearization abstraction and using this to guide the actual exploration. Thus, in
effect solving a simplified version of the problem to better understand the problem. In
planning this is also known as creating a plan [4].

Finally, a direct and relevant extension to linearization abstraction could be the
addition of sophisticated distance metrics. It could be possible to define an advanced
metric which takes into account if actual transformation rules are conflicting, and if
their abstracted counterparts are for example part of the trackers in the dependency
count, could add a distance penalty to such a transformation. This should be possible,
since the dependency relation and trackers record which rule and match were applied
to create or delete an element for every iteration of linearization abstraction.
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CHAPTER 4

PLANNING IN GROOVE

GROOVE currently supports graph transformation planning problem solving in the
form of state space exploration. The basic functionality to solve planning problems
thus already exists in GROOVE. however, currently GROOVE is limited to uninformed
exploration strategies. This of course presents a major drawback to solving planning
problems. Since the state space of a planning problem may be quite large, an unin-
formed exploration strategy is generally very inefficient.

In this chapter we will discuss what components makes up a graph transforma-
tion planning problem, which of these components are already present in GROOVE
and how we can incorporate more advanced exploration strategies to improve solving
planning problems. The result will be a planning framework in GROOVE which is de-
scribes a) how planning problems can be formulated in GROOVE, b) what capabilities
GROOVE offers to solve planning problems and c) how solutions are presented.

In Section 4.1 we describe the required components needed to support solving
graph transformation planning problems. Next, in Section 4.2 we discuss how GROOVE
should be extended in order to more fully support planning problem solving. Finally,
we review some practical implementation aspects of linearization abstraction in Sec-
tion 4.3.

4.1 PLANNING COMPONENTS

In Figure 4.1.1 we see a feature diagram which specifies the three components which
make up framework of graph transformation planning problems. These three compo-
nents are a) the planning problem, b) the solution strategy and c) the solution. These
concepts were previously introduced and described in Section 2.3. In this section we
will discuss what each component entails with respect to implementation in GROOVE
and describe the relation between the components. As a whole these represent the
pillars of the planning framework.
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Figure 4.1.1: Graph transformation planning problem feature diagram

4.1.1 PLANNING PROBLEM

The right branch of Figure 4.1.1 specifies the planning problem. This component con-
sists of a production system (see Definition 8) and a goal (see Definition 9).

In terms of implementation, the production system concept exists within GROOVE
and is implicitly contained within the Grammar object. From the Grammar object we
can obtain the set of rules for the problem, as well as the start graph of a problem
and a corresponding type graph. It is possible to model a planning problem using the
GUI to define a grammar in GROOVE. In Section 2.3.3 we have defined a spectrum
of goal types. For the implementation in GROOVE we limit ourselves to goal types in
the form of a graph. We implement such goals using the already defined Rule objects
in GROOVE. A goal can thus be modeled as a graph transformation rule without the
deletion or creation of elements, thus given a rule r = (L,R, p) that the left-hand side
L is isomorphic to R. Intuitively, this means that we in fact have a rule where nothing
changes. For partial negation graph goals, we also include NACs in the rule.

The goal becomes input for a possible heuristic scheme used during exploration.
Furthermore, the goal becomes the acceptor (see Section 2.2) for the exploration used
to solve the problem. The Acceptor class exists in GROOVE, for which subclasses
define a range of possible acceptor types and specifies their fulfillment conditions. For
each goal type we should create an acceptor with the following fulfillment conditions
for each type respectively;
• partial negation graph – Given goal φgoal = (N,{NAC}) and state q, the acceptor

is fulfilled if there exists a total graph morphism µ such that, u : N → Gq and
µ |= n, f oralln ∈ NAC.

• partial graph – Given goal φgoal = P and state q, the acceptor is fulfilled if there
exists a total graph morphism µ such that, µ : P→ Gq.

• complete graph – Given goal φgoal =C and state q, the acceptor is fulfilled if C
is isomorphic to Gq.

In the case of the partial negation graph and partial graph goal types, this can be
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implemented in GROOVE by finding a graph transformation (see Definition 5) for the
graph representation a state Gq and the goal encapsulated in a graph transformation
rule. In the case of the complete graph goal type an actual isomorphism check between
the graph corresponding to a state Gq and the goal C should be performed. In this
work we only implement acceptors of the partial negation graph and partial graph goal
types. Implementation of the third acceptor is possible by using the areIsomorphic()
function in the IsoChecker class in GROOVE to check isomorphism.

In terms of input for this component of graph transformation problems, the system
requires a production system and an additional rule representing a goal in the form of a
grammar. In order to parse the goal (modeled as a rule) the system furthermore requires
the name of the rule in the grammar and the goal type.

4.1.2 SOLUTION

The center branch of Figure 4.1.1 specifies the solution component of graph trans-
formation problems. A solution of a planning problem is conceptually considered in
Section 2.3.4. There are two possibilities, either an acceptor is fulfilled in which case
the result should be a path(s) from the start state to the a goal state (see Definition 10),
or the acceptor is never fulfilled in which there is no result.

In terms of implementation, the results of an exploration are contained in the ExploreResult
object, which is a variable of the Acceptor object. In every step of the exploration the
Acceptor is checked if its condition is satisfied; if so, then the relevant solution infor-
mation is stored in the ExploreResult. When the acceptor is fulfilled the solution to
the exploration is returned in the form of the ExploreResult.

In the case of planning problems the relevant information is a path from the start
state to a goal state. Such a path is the list of actions (see Definition 7) required to
reach a goal state from the start state. In this work we limit acceptors to finding at most
a single path.

In the case that exploration halts without fulfilling the acceptor, there is no solution
and thus the ExploreResult would be empty. Textual representation of the an solution
is not trivial. An action consists of a rule and match. A rule can be easily represented
by its unique name (a string), however for a match this is not straightforward. A match
µ can be uniquely identified by is its root node and edge set, which represents im(µ).
Unfortunately, this is textually not very readable. This work, textually presents the
(limited) solution by printing only the names of all applied rules.

4.1.3 EXPLORATION STRATEGY

The left branch of Figure 4.1.1 specifies the solution approach component of graph
transformation planning problems. In Section 2.3.2 we have made the implementation
choice to use forward state space exploration, and in Section 2.2 we have described the
relevant aspects of this exploration.
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This component consists of two elements, an exploration strategy and a heuristic
function H(G) which may be used to guide exploration. Exploration already exists
within GROOVE (as shown in Section 2.4.1). It is implemented in the same way that
exploration is represented in this work. In Section 4.1.1 we express how an acceptor
is modeled in GROOVE and in Section 4.1.2 we express the result of exploration in
GROOVE.

GROOVE currently only supports uniformed exploration strategies (i.e. without
heuristics). Examples of these are breadth-first search and depth-first search. These
basically specify the order in which states are generated. We extend these strategies
with the greedy best-first strategy (see Section 2.2.2) which makes use of heuristic
functions. There is currently no support for heuristics in GROOVE. We will imple-
ment the heuristic schemes from Chapter 3. This is discussed in the following section
(Section 4.2).

4.2 HEURISTIC FRAMEWORK

In this section we discuss the software development objectives and design goals for
implementing graph heuristic in GROOVE. We consider design aspects which are im-
portant to developing a framework for defining heuristic functions. Furthermore, we
examine how heuristics will practically be incorporated within the existing exploration
components in GROOVE. Finally, we present the design choices and patterns used to
achieve our objectives and design goals.

4.2.1 OBJECTIVE

“A framework is a set of cooperating classes that make up a reusable design for a
specific class of software.” [14]

Our objective is to develop a framework which lets one generate heuristic functions
from the set of implemented heuristic schemes and to allow straightforward extension
of this set by implementing additional heuristic approaches and schemes.

A sub-objective is; it should be possible to combine heuristic schemes to generate
hybrid heuristic functions using a range of operators. Examples of such operators are;
addition, min() and max(). Furthermore, it should be possible to combine and order
the values of heuristic schemes to a single output. Such an ordering of values may be
done by a lexicographic ordering. In addition to these features it should be able to add
weights to heuristic schemes and normalize heuristic values with respect to the values
of other heuristic functions within a hybrid function.

The heuristic function is a variable of the exploration strategy, which for each gen-
erated state calls a calculate method which calculates its respective heuristic value. An
informed exploration strategy should thus be instantiated with a heuristic function.

The two main criteria we aim to achieve in our implementation are extensibility
and flexibility. These criteria can be seen as implied specifications of a framework.
In following sections we present an overview the how the framework is implemented
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and discuss design choices which aim to accomplish our framework criteria. In Sec-
tion 4.2.2 we give a high level class diagram of the classes which form part of the
heuristic framework in GROOVE and show their dependencies. We explain the func-
tionality and relations between classes and use this as a reference point to show how
certain design choices were implemented. In Section 4.2.3 we highlight design choices
we have made in the implementation to achieve an extensible and flexible framework.
Furthermore, we provide some additional information certain implementation aspects.

4.2.2 FRAMEWORK OVERVIEW

Figure 4.2.1 shows a high level class diagram of our framework implementation. In
this section we discuss the responsibility of the classes and there relation to each other.

The GBFSStrategy class is an extension of the preexisting strategy framework
in GROOVE. What differentiates this strategy class from others in GROOVE is that
it has a Heuristic which it uses to calculate the heuristic values for states during
exploration.

Figure 4.2.1: Class Diagram of Heuristic Framework in GROOVE

The Heuristic interface is the abstractly models a heuristic function H(G) as
defined in Definition 11. The interface contains a single method CalculateValue()
which given a state q returns the heuristic value corresponding to Gq (the graph Gq can
be obtained from the graphState object) and a predefined goal. The method returns
the heuristic value for that graph in the form of the HeuristicValue object. By using
an interface to abstractly model the general functionality of a heuristic function we
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allow for a lot of flexibility in the actual implementation of a heuristic function as
well as simply extensibility. This interface in combination with CompositeHeuristic
and HeuristicFunction form a composite pattern which provide further flexibility in
defining heuristic functions. More details on the benefits of this pattern are given in
Section 4.2.3.

The HeuristicValue class models the heuristic value data type. It extends the
Comparable interface.

The CompositeHeuristic class is used to model a collection of heuristic func-
tions. This class forms part of the heuristic function composite pattern. In its current
form it models a list of Heuristics and for its heuristic function is the sum of the list
its heuristic functions. The purpose of this class is to model hybrid heuristic functions.
However, currently the class is only a stub as these capabilities are not yet implemented.

The HeuristicFunction abstract class is used purely to create a level of sep-
aration between the composite design pattern and the concrete implementation of leaf
heuristic function classes one level below. This is done so that there is a clear sepa-
ration of concerns between the pattern and implementation and furthermore to reduce
the cluttering effect with the addition of new leaf heuristic functions.

The NENTuplePartial, LinAbsDependency, LinAbsMatches and LinAbsIteration
classes are concrete implementation of Heuristic interface. These classes form the
leafs of the composite pattern.

Currently, we have implemented 7 heuristic functions in 4 classes. These are the
NEN heuristic scheme with a partial graph goal (Equation (3.2.4)), and all schemes
for the linearization abstraction metrics with goal types of negation partial graph and
partial graph (Equation (3.3.4), (3.3.5) and (3.3.6)). In the case of linearization abstrac-
tion, the two mentioned goal types evaluation of the goal is implemented in the same
manner and therefore the two corresponding heuristic schemes can be implemented
using a single class.

The NENTupleApproach and LinAbsApproach classes are singleton classes
which implement the computational aspects for their respective heuristic approaches.
The instance of these classes are used by the leaf heuristic functions to compute re-
quired input variables to calculate a heuristic function.

Concretely, NENTupleApproach contains two methods which are used to calculate
the NEN decomposition of a graph (Equation (3.2.3)) and to calculate the difference
between two NEN tuples. LinAbsApproach contains a method which is the implemen-
tation of the linearization abstraction algorithm given by Algorithm 3.

The FunctionFactory is a factory class which is used to instantiate heuristic
functions.
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4.2.3 DESIGN CHOICES

In this section we discuss in some more detail design and implementation choices we
have made for the heuristics framework in GROOVE.

COMPOSITE PATTERN

We use the structural composite pattern to model heuristic functions in GROOVE. This
patterns consists of the Heuristic interface, CompositeHeuristic composite class
and the HeuristicFunction abstract leaf class (implemented by concrete heuristic
function classes). The reason for the use of this pattern is the high level of extensibility
in both defining new heuristics (creation of a new leaf class) or the combination of
heuristic functions to form hybrid heuristics (by extending CompositeHeuristic).
The composition of heuristic functions allows one to in a easy and centralized manner
define hybrid heuristics (as discussed in the objective section).

HEURISTIC VALUE

While in Definition 11 we define a graph heuristic value to be a number (specifically
R+

0 ) we have implemented the heuristic value in GROOVE as a data type object. the
class HeuristicValue implements the interface Comparable and has a single Integer
attribute value. The reason we have implemented the heuristic value as an object
with a compareTo() method is so that it can easily to extends to include a range of
values (possibly of different types) and still be evaluated. This allows for the formation
of hybrid heuristic functions which rely on a lexicographical ordering of individual
heuristic functions within the hybrid function.

Thus, we create an extensible environment in which additional functionally in terms
of what attributes in heuristic values are evaluated and how they are evaluated. This can
be achieved by creating a subclass of HeuristicValue designed to represent heuristic
values for a specific hybrid function.

SEPARATION OF COMPUTATION CONCERNS

We have chosen to create a separation between the functionality of heuristic functions
and the logic required to implement this functionality. There are three reasons we have
chosen to do this. The first is the reuse-ability of code. Several concrete heuristic
functions require the same calculations to be made (specifically linearization abstrac-
tion Algorithm 3 for all linearization abstraction heuristics). The second reason is that
by separating the logic extension and alteration of specific approaches becomes easily
without the need to alter (possibility multiple) heuristic function classes. The third rea-
son is that it architecturally creates a neat separation between the definitions of heuris-
tic schemes as given for example by Equation (3.2.4) and (3.3.5), and the algorithms
required to calculate the needed input variables.
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HEURISTIC FUNCTION ENCODING

GROOVE uses string encodings to represent all components of exploration, examples
are exploration strategies and acceptor types. At point of instantiation these strings
are parsed by its respective encoding parser and then instantiated with the parameter
defined in the encoding. We have chosen to extend on this design approach for heuristic
function encoding.

Foremost, we have introduced a new strategy value encoding gbfs which encodes
the GBFSStrategy, additionally we define that this encoding is parameterized with a
heuristic encoding. This sting encoding looks as follows: gbfs:HEUR, where HEUR is a
string defined by the syntax in Listing 4.1.

Listing 4.1: Heuristic Encoding Syntax
1 HEUR : = la_X (TYPE , ru lename > t h r e s h o l d ) | nen (TYPE , ru lename ) ;

TYPE : = c | p | n ;
X : = i | m | d ;

In Listing 4.1 we currently have defined a syntax in which it is possible to encode
either a NENTUPLE or linearization abstraction heuristic scheme, where a goal is in
the form of a graph and modeled as a graph transformation rule in GROOVE. This
syntax currently only offers the minimal functionality in terms of defining heuristics.
However, by defining a formal syntax (and corresponding parser) we offer a platform
in which expanding the functionality is straightforward. Such expansion could be con-
sidered encoding of additional heuristic schemes or encoding of possible functions to
define hybrid functions.

Currently, we have implemented a straightforward string parser which is only loosely
correlated (i.e. no direct connection) to the syntax we have defined in Listing 4.1. So,
we provide simply a proof of concept in this work of the possibilities of using a heuris-
tic encoding. In order to make this approach better suited to extensibility and flexi-
bility (i.e. easily updating or redefining the syntax) a parser should be used which is
concretely linked to the defined syntax. Note that this is possible in GROOVE as there
exists a framework for defining a syntax and corresponding parser in GROOVE.

HEURISTIC INSTANTIATION

We use the creational factory method pattern for the instantiation of a heuristic func-
tion. In the parsing of the encoded heuristic an instance of the HeuristicFactory
is created and used to instantiate the heuristic corresponding to the encoding. The
createFunction() method of the factory has a heuristicType, goalType and goal pa-
rameter. These are used to determine the correct heuristic approach and scheme and
then to initialize the scheme with the goal. To do this we use a nested switch func-
tion. Furthermore, we include additional set methods for parameters which might be
approach specific. Concretely, in the implementation of linearization abstraction we
require the directory of the Grammar which represents the problem and an iteration
threshold. In Figure 4.2.1 the relation between the factory and the respective concrete
heuristic functions can be seen.
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4.3 IMPLEMENTATION OF ABSTRACTION

In Section 3.3.1 we introduce the concepts of abstract graphs (Definition 15) and ab-
stract graph transformations rules (Definition 17) as well as how to abstract graphs
and rules (Definition 16 and Definition 18). In this section we discuss how we have
implemented this abstraction in GROOVE. There are two important features which
characterize this abstraction. The first is the introduction of the maybe element sets in
abstract graphs. The second is the mapping of elements between graphs within a subset
(for example the maybe or real set), this is important in graph transformation rules and
abstract satisfaction (Definition 19).

In GROOVE we have chosen to not fundamentally implement abstraction but in-
stead simulate it using the current programming and modeling capabilities. The rea-
son for this is that such a fundamental implementation would require substantial pro-
gramming work to extend GROOVE functionality to support abstraction. Furthermore,
without known the effectiveness of heuristic functions based on this form of abstraction
a great deal of fruitless work may have been done. Therefore, instead we have designed
an approach which simulates the abstraction using modeling features of GROOVE.

We simulate abstract graphs in GROOVE by extending the graph with additional
node and edge labels which we implicitly consider labels of nodes and edges in the
maybe sets of the abstract graph. To do this we assume the production system has
a type graph (see Section 2.4). We extend the type graph of production system by
introducing “abstract" nodes and edges. This is done by creating new element types
which are labeled label+“SUB" to indicate an element in the maybe set. In the first
row of Table 4.3.1 we show how this is modeled in the GROOVE type graph.

We now discuss how we can differentiate between maybe and real elements in an
abstract graph simulated in GROOVE. In terms of nodes we use sub-typing. Sub-
typing is a functionality in GROOVE graphs which allows for the sub-typing of node
types to other node types. Concretely, we simulate maybe node elements as sub-types
of all nodes. Intuitively, given an abstract graph, a node with its original label (i.e.
node) is in the graphs total node set and a node with the label nodeSUB would be in
the maybe node set. Given an abstract graph Ĝ, we can reference a node by referring
to the super node, we can reference a maybe node by referring to the sub node and
finally we can reference a real node by referring explicitly only the super node. For
edges there is no such sub-typing mechanism, therefore we must use an edge formula
?[edge,edgeSUB] to reference an edge, we can reference a real or maybe edge by
referring to the respective edge label. Thus, we shown how we can represent an abstract
graph Ĝ such as defined in Definition 15 in GROOVE.

We now show how we simulate graph transformations rules abstaction in GROOVE
using the deliberate approach to simulate abstract graphs given above. In Table 4.3.1,
one can see how the abstract version of each possible relavent aspect of a rule simu-
lated in a GROOVE rule model. The combination of these aspects simulate a graph
transformation rule abstraction as given in Definition 18. In the case of NACs (which
corresponds to embargo objects in GROOVE) we require that the elements in a NAC n
are mapped to real elements in an abstract graph (see Definition 19). This is simulated
by ensuring embargo elements reference only elements in the real sets of an abstract
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graph.

We have chosen to implement this simulation of abstraction in GROOVE at the
point where a GROOVE model is interpreted as a grammar (i.e. production system)
in the code. The class GrammarModel is responsible for parsing and creating graph
and transformation rule objects in GROOVE. We have extended this class creating
AbstractGrammarModel which creates an abstracted version of a production system.

Specifically we override the method createGraphModel() that has as input an
AspectGraph which is an object representing a graph. The createGraphModel()
creates GraphModel objects from these AbstractGraphs. The AspectGraph models
all forms of graphs which can be modeled in GROOVE, such as a graph, a type graph
or a rule graph (see Section 2.4 and 2.4.1). Our approach is to alter and extend these
AspectGraphs before they are used to create graph models. We do this by rewrit-
ing element labels and creating/deleting elements in accordance to the transformations
shown in Table 4.3.1.

By simulating the abstraction using the creation of additional labels for maybe
elements and the referencing of specific maybe, real and total elements in abstract
graph transformation rules as shown in Table 4.3.1 we can emulate the abstraction
that we have defined for the linearization abstraction heuristic approach. Furthermore,
using this approach we can use the existing match finding functionality in GROOVE to
for abstract graph transformations.

While this implementation captures the abstraction defined in Section 3.3.1, it does
limit some of the functionality of modeling in GROOVE. An example of this is that
we require problems to be modeled using a type graph. Furthermore, the rewriting
of labels in AspectGraphs is done on a case-by-case basis such that more complex
modeling syntax cannot be altered correctly. Similarly, there are certain issues that
arise with preexisting sub-type structures in a standard type graph. These however
are GROOVE and implementation limitations and not limitations of the abstraction in
general. To fully incorporate linearization abstraction it would be best to implement
such functionality in the fundamental basis of the code instead of using a simulation.
However, as discussed at the beginning of this section, such an implementation falls
outside the scope of this work.
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Standard Abstract
Type

Graph

Type Graph

−→

Abstract Type Graph

Reader

Edge Reader
−→

Abstract Edge Reader

Node Reader
−→

Abstract Node Reader

Creator

Edge Creator
−→

Abstract Edge Creator

Node Creator
−→

Abstract Node Creator

Erasor

Edge Erasor
−→

Abstract Edge Erasor

Node Erasor

−→

Abstract Node Erasor

Figure 4.3.1: Transformations for Abstract of Type Graph and Rules in GROOVE
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CHAPTER 5

EVALUATION

The previous chapters have designed domain independent graph heuristic functions to
aid state space exploration to solve graph transformation planning problems. Further-
more, we have shown how these heuristics, as well as planning in general, are imple-
mented in the tool GROOVE. In this chapter we will evaluate the effectiveness of these
heuristics on a range of problems.

The evaluation chapter is divided into four parts.
In Section 5.1 we present the planning domains we will use to evaluate our heuris-

tics. Furthermore, we define some distinguishing features of planning domains and
hypothesize on the correlation of these features and the effectiveness of our heuristics
approaches.

In Section 5.2 we define the metrics we use to evaluate the effectiveness of each
heuristic. Furthermore, we give our experiment approach and setup.

In Section 5.3 we present the results of the experiments for each problem domain.
For each domain we discuss the results and relate them to the hypothesize we made in
Section 5.1. Also, we provide a comparision of our results to those of related works
and to a competitive planner tool using the PDDL language.

Finally, in Section 5.4 we give an overall discussion in which we compare the
performance of our heuristics and offer some closing remarks on the results presented
in the work.

5.1 PLANNING DOMAINS

The goal of this section is to give a brief introduction to the problem domains that will
be used in the experiments to evaluate the heuristic schemes presented in this thesis.
For each domain, if not already done in a previous chapter, we give the type graph
and transformation rules as well as the start and goal graph for a specific problem
instance. Furthermore, we describe how we define instances of each problem for the
experiments. Finally, we discuss the distinguishing features of different domains and
attempt to make a classification of domains. We aim to define a classification such that
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it is possible to create assumptions on which heuristic schemes are best suited for a
certain domain.

5.1.1 BLOCKS WORLD

The Block World problem domain has previously been given in Section 2.4.1.
We can alter the size and difficulty of a problem in Block World by altering the

number of blocks in the world or by the number of possible colors. For the experiments
we will use 9 different problem sizes (4, 6, 8, 10, 12, 14, 16, 18 and 20 blocks). For
problems with 14 blocks or less we use three colors while for problems with 16 blocks
or more we use 4 colors. For each problem we aim to divide the total number blocks
into colored blocked as evenly as possible.

For each problem size we have two problem instances which are randomly chosen
initial configurations of the blocks. For each problem we use the same goal configura-
tion which is all blocks of the same colors stacked on top of each other with the block
stacked on the table. In the context of graph transformation planning problems and
heuristic schemes, we express this as a partial graph goal.

For evaluation of the heuristic schemes presented in this work, we compare the
experiment results of the Block World domain to those found in [5], [10] and [15].

5.1.2 SLIDING PUZZLE

The Sliding Puzzle, also known as the N-puzzle problem, is a common puzzle game
in which n numbered tiles are positioned on an n+ 1 sized grid from a random initial
positioning. The goal of the puzzle is to move the tiles such that they become ordered
(in a game setting these tiles may, when ordered, form an image). There are only four
possible actions one may use in the puzzle; these are "sliding" a tile up, down, left or
right from its current position into an adjacent empty position.

The GROOVE type graph of the Sliding Puzzle problem for n = 8 is given in Fig-
ure 5.1.1.

Figure 5.1.1: Type graph of 8-piece Sliding Puzzle problem

Here we define piece nodes which represent tiles and pos nodes which represent
positions on the grid. Furthermore, a tile has an on-edge to a position and each position
has an edge to its right and bottom neighbor, in this way it knows its relative position.
We use flags to uniquely label pos nodes and we number piece nodes.

Figure 5.1.2a and 5.1.2b show a start and goal graph for an 8-piece Sliding Puzzle
problem.
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(a) Start graph (b) Goal graph

Figure 5.1.2: Start and Goal graph of an instance of Sliding Puzzle problem

In Figure 5.1.3 we can see the 4 actions allowed in the Sliding Puzzle problem
modeled as graph transformation rules.

(a) Slide puzzle piece up (b) Slide puzzle piece down

(c) Slide puzzle piece left (d) Slide puzzle piece right

Figure 5.1.3: Transformation rules for Sliding Puzzle problem

The complete state space of a Sliding Puzzle can be calculated and is dependent on
the number of tiles. The formula for the state space size is n!/2, this corresponds to half
of all possible numbered tile placements. The reason we need to divide by half is that
only half of the initial placements are solvable (i.e. lead to the same goal state) [16].
In the case of the 8-piece Sliding Puzzle problem the states space is thus 8!/2 = 20160
states, for the next puzzle size n = 15 the state space becomes a staggering amount
(slightly over half a trillion states).

For the experiments we will consider the 8-piece Sliding Puzzle with four difficul-
ties. We rate these difficulties easy, medium, hard and worst. These difficulty levels
correspond with the number of steps required to find a goal state from the initial state.
For each of these cases we consider the same goal, which is given as a graph in Fig-
ure 5.1.2b. While this may also be considered a complete graph goal we will consider it
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a partial graph goal. This is due to the fact that complete graph goal heuristic schemes
have not been implemented in GROOVE yet.

Also, we will experiment with solving planning problems in the n = 15 size Slid-
ing Puzzle domain. For these problems we define instances by first defining the goal
graph which is the ordering of tiles starting from the top left most position and moving
right. From this goal state we generate initial states by making 100 random moves, the
planning problem thus becomes to find a path back. We create four problem instances
using this approach and similarly to the n = 8 variant we define the goal in the planning
problem as a partial graph goal.

For evaluation of the heuristic schemes presented in this work we can compare the
experiment results of the Sliding Puzzle domain to those found in [6] and [7].

5.1.3 ELECTRONIC CONTROL UNITS

The Electronic Control Units (ECUs) is a problem domain taken from work in [5]. It is
an application example which considers the reconfiguration of Electronic Control Units
in automotive systems. In essence, the domain deals with the runtime reconfigura-
tion of software components which run on a Runtime Environment (RTE) middleware,
which serves as link that connects software components to Basic Software (BSW) that
controls hardware. The problem in terms of planning is to find a plan to reconfigure
the system in case of hardware failure (i.e. shutdown an ECU) or rebooting of a RTE
after a software upgrade (i.e. redeployment in soft real-time).

We model the ECU domain using 3 components; a) Node, which represent ECU
modules that may be shut down, b) Cmpnt, which represent software components that
are deployed on ECUs and c) CInst, which represent instances of software components
running on ECUs. In Figure 5.1.4a we give a type graph representation of the problem
modeled in GROOVE. We use flags to uniquely define Cmpnt and Node instances.
Furthermore, in Figure 5.1.4b we give an initial scenario of an ECU problem. In this
scenario there are two ECUs, both with a single software Cmpnt deployed on them and
both Cmpnts running an instance of the software on their respective ECU.

(a) Type graph (b) Start graph (c) Goal graph

Figure 5.1.4: Type graph for ECU problem and instance Start and Goal graph

In Figure 5.1.4c we give a possible goal (in the form of a partial graph) for the
ECU problem scenario of Figure 5.1.4b. The goal expresses that ECU n1 should be
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shut down and both software components c1 and c2 should have an instance running.
Figure 5.1.5 show the graph transformation rules relevant to the ECU domain we

are modeling. There are four different transformations. The first rule, given in Fig-
ure 5.1.5a, models the instantiation of a software instance for a respective software
component and ECU, this instantiation is only valid if the ECU is not shut down and the
component is not already running an instance. The second rule, given in Figure 5.1.5b,
models the deployment of a software component on an ECU, deployment is only valid
if the component is not already deployed on said ECU. The third rule, given in Fig-
ure 5.1.5c, models the destruction of a software instance of a component running on
some ECU. The forth and final rule, given in Figure 5.1.5d, models the shutting down
of an ECU, shutdown is only valid if no software instances are running on it.

(a) createInstance (b) deployComponent

(c) destroyInstance (d) shutdown

Figure 5.1.5: Transformation rules for ECU problem

For the experiments in the ECU domain we use 4 different problem sizes. The
problem size is determined by the number of ECUs in the problem, in our experiments
we have problems with 2, 3, 4 and 5 ECUs. For each problem size we have two different
instances (v1 and v2). The fist group of instance v1 have same number of component
instances running in the initial configuration as ECUs that are available. Figure 5.1.4b,
for example, is the start graph of problem instance ECU2-v1. The second group of
instance v2 have additional components and instances running, equal to the number of
ECUs available divided by two and rounded down. Additional components allow for
several more applications of transformation rules 1-3, so the problem difficulty between
instances is greatly increased.

As goal for each start instance we define that half the total number of ECUs must
be shut down and that every component must have an instance. In the context of graph
transformation planning problems we define this as a partial graph goal. For the prob-
lem instance ECU2-v1 the corresponding goal is given in Figure 5.1.4c.

For evaluation of the heuristic schemes presented in this work we can compare the
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experiment results of the ECU domain to those found in [5].

5.1.4 DOMAIN DISTINCTIONS

In this section we present and discuss features that we have identified as distinguish-
ing features of graph transformation planning problems. We hypothesize that certain
heuristics schemes are better suited to solving planning problems with specific features
compared to other schemes. In the following subsections we introduce and discuss
the following three features: a) type of actions, b) dependency of actions and, c) goal
expressiveness. We will relate these features to the planning domains used in the eval-
uation. Furthermore, we will speculate on how these features relate to the effectiveness
of heuristic approaches we defined in Chapter 3.

CLASSIC VS. DYNAMIC PLANNING PROBLEM

We define classic planning problems as planning problems with a predefined element
set. Intuitively, these are problems which do not involve element instantiation or de-
struction. Thus, in the problem start state, all elements are already defined and actions
only change the properties and relations of these elements. In terms of graphs, in a
classic planning problem the start graph Gq0 , contains all nodes that will ever exist in
any graph Gq and actions only create and delete edges between nodes.

This problem type stands in contrast to dynamic planning problems. We define
these as planning problems in which elements may be instantiated or destroyed. Thus,
the size of the state may differ within the state space of the problem. Intuitively, this
corresponds to actions which create or delete elements. Thus, dynamic graph transfor-
mation planning problem contains graph transformations which create (thus instantiat-
ing) or delete (thus destroying) node elements. As mentioned in Section 2.3.1 modeling
dynamic planning problems is not possible in PDDL and is an advantage of using the
graph transformation modeling paradigm.

While both heuristic approaches in this work seem appropriate for classic and dynamic
planning problems, we hypothesize that exploration using the linearization abstraction
heuristic approach is better suited for dynamic problems and NENTUPLE approach is
better for classic problems. The reason for this lies in the techniques used to evaluate a
state to determine its heuristic value.

The NENTUPLE approach creates an abstraction of a graph and goal to NEN tu-
ples, and compares the two according to the specific heuristic scheme. This fits well
for classic problems because the graph size in classic problems is set in terms of nodes.
Furthermore, actions directly influence the NEN decomposition of a graph since they
only create or delete edges in a graph. These two properties of classic problems mean
that, the NEN decompositions of the graphs of two relative states are likely to vary
and thus, depending on the goal, have a different heuristic value. Considering that
the NENTUPLE approach has an meaningful distance estimation, this means that dur-
ing exploration, using GBFS, we will not have a lot of unnecessary branching due to
heuristic values being equal.
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The linearization abstraction approach creates an abstraction of the whole planning
problem and executes this with independent actions in parallel. The result of this ab-
stract execution is then used to calculate a heuristic value. By simulating, although in
an abstract form, the planning problem we create an abstracted form of the state space.
This is well suited for dynamic problems since we also simulate the growth of a graph
due to the instantiation of elements.

Both the Block World and Sliding Puzzle domains are classic planning problem do-
mains. Both begin with a predefined set of node elements and actions simply alter the
relation between these nodes by creating and deleting edge elements. The ECU domain
is a dynamic planning problem domain. In this domain we have actions which either
create or delete CInst nodes.

DEPENDENT VS. INDEPENDENT ACTIONS

In Section 2.1 we define the concept of an action, with respect to graph transition sys-
tems, as an element of the transition relation. Thus, in graph transformation problems
at graph level an action corresponds to a graph transformation rule and a match. The
dependency of actions is a subjective measure of how much actions rely upon each
other to be applicable. Intuitively, we say actions are independent if they are always
applicable and dependent if they require other actions before being valid. Correspond-
ingly, independent actions cause branching in the state space of a problem and are one
of the causes of state space explosion.

We hypothesize that the dependence of actions has no relevance to the NENTUPLE
heuristic approach. This is due to the fact that this approach is not concerned with ac-
tions and thus should not be effected by their dependency. However, inaccuracy in the
distance estimation and branching may cause the unnecessary generation of irrelevant
states when using NENTUPLE heuristics functions.

We believe that the linearization abstraction heuristic approach is better suited to
problems with fewer independent actions. This is due to the fact that the linearization
abstraction approach simulates an abstraction of the problem. Due to the way we define
the abstraction of transformation rules we relax the dependency between actions by
relaxing the requirement for a valid match. This causes an increase in the abstract
graph and state space size. We attempt to reduce the abstract state space by applying
independent actions in parallel. However, finding all these matches for each abstract
graph transformation rule still costs some time. So by having a greater number of
matches we require additional computation time which makes linearization abstraction
heuristic functions less time effective for problems with a large number of independent
actions.

In terms of graph transformation planning problems, in order to estimate the depen-
dency of actions in a problem one should not only consider the rule set of the problem
but also possible matches of those rules to graphs corresponding to states of the state
space. With respect to the problems used in the evaluation of this work, we see that the
problems of the Blocks World domain contains relatively many independent actions.
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As the problem size grows, actions become less dependent as more matches for each
transformation rule become possible. The Sliding Puzzle domain has four transforma-
tion rules which are independent. However, we see that for each rule only a single
match may exist in every possible state. Thus, branching is kept to a minimum. The
ECU domain in contrast has some dependent actions, specifically actions with the cre-
ateInstance and destroyInstance rule are dependent with respect to matches on the same
Cmpnt and Node elements.

GOAL EXPRESSIVENESS

In this feature we only consider goals in the form of graphs. Goal expressiveness is
the measure of how complete the goal represents a goal state. Intuitively, a complete
graph goal is very expressive while partial and negation partial graph goals may vary
in expressiveness.

Goal expressiveness is an important feature in heuristic functions which compare the
input graph to the goal graph. This is the case in with the NENTUPLE heuristic ap-
proach. However, it is not relevant in the linearization abstraction approach, since the
goal is not used in a comparison, but only as part of MATCH function.

For the NENTuple approach we hypothesize that corresponding heuristic functions
are better suited for problems with expressive goals. This is since the NENTuple ap-
proach compares the input graph to the goal graph. The more expressive the goal is
the more complete the NEN decomposition and thus the more accurate the distance
measurement between the two.

For the problem domains used in the evaluation we see that the Block World and Sliding
Puzzle problems both have very expressive goals. In both cases, the goal type is a
partial graph, however, they both express most or the complete graph representation of
a goal state. Note, we have purposefully chosen to make these goals so expressive in
order to get the best results for our planning problems. From preliminary experiments
we have been able to confirm our hypothesis with respect to goal expressiveness.

The goal of the problems in the ECU domain are greatly less expressive as they only
specify partial relations of elements of a goal state. This allows for easier satisfiability
of a goal.

COMBINATIONS AND CONCLUSIONS

A planning problem can thus be classified, but is not limited, by the features discussed
above. While we believe that these features affect the suitability of a heuristic approach,
there may be other unconsidered aspects which would overturn our hypotheses. Fur-
thermore, it is in no way clear in which priority these problem features influence a
heuristic approaches effectiveness.

Finally, a final difference determining which heuristic approach is more suitable
for a problem is that, the linearization abstraction approach is computationally more
demanding than the NENTUPLE approach. What is means is that while we expect lin-
earization abstraction, specifically using the dependency count metric, to be the most
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accurate distance measure, it is also the most time expensive. So, in considering the
heuristic scheme for a specific problem one should consider the potential problem size
compared to the solving time. Concretely, it may be more feasible to use the NENTU-
PLE approach and generate a greater number of irrelevant states but doing it relatively
fast instead of using the linearization abstraction approach which generates fewer ir-
relevant states but takes a much longer time doing so. We call this the time-accuracy
trade-off.

5.2 METRICS & MEASUREMENT

The aim of this section is to define the metrics we will use to evaluate the effectiveness
of the heuristics proposed in the thesis on different problems and varying problem sizes.
We also explain how these metrics are obtained from running a planning problem in
GROOVE and what measures we take to ensure accurate results. Finally we give an
overview of the system on which the experiments are performed.

5.2.1 EVALUATION METRICS

5.2.1.1 NO. OF STATES

No. of states represents the number of states generated during exploration. This is thus
the subspace of the GTS explored in search of a goal state. This metric is a measure-
ment of how well the heuristic used in exploration prunes the state space. Furthermore,
this metric gives an indication of the memory use of a planning problem given the
heuristic.

5.2.1.2 EXPLORATION TIME

Exploration time represents the time required to complete exploration and thus solve
the planning problem. This metric gives is a measurement of how fast an exploration
finds a goal state given a heuristic.

5.2.1.3 PATH LENGTH

Path length is simply the length of the path given as result of the planning problem. This
metric is a measure of how quickly (in terms of actions) an exploration reaches a goal
state given a heuristic if it never takes a wrong branch. Note that in these experiments
we are not interested in the shortest path so it may be that a path is rather inefficient
and devious.

5.2.1.4 (PATH LENGTH : NO. OF STATES) RATIO

The path length to number of states ratio is a metric which gives a measurement of
how effectively a heuristic is in finding relavent states. The lower this ratio, the more
"on-track" an exploration is, and thus the fewer unnecessary calculation are needed.
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5.2.2 MEASUREMENT APPROACH

In GROOVE the planning is executed by performing an exploration of the production
system of the planning problem. As input this requires a production system, exploration
strategy (with heuristic) and goal. As exploration strategy we use greedy best first
search as described in Section 2.2. The production system, heuristic, and goal are
variables which we change during experimentation.

The measurement of the experiment is done by calculating the value of each metric
for every planning problem. The number of states and path length are elements of
result of the planning problem. The runtime of the planning is calculated by measuring
the time needed to execute the key component of the exploration (i.e. the function
play()) in the Exploration class in GROOVE. Finally, the path length to number of
states ratio is calculated after the experimentation results are obtained.

The experiment is set up such that first a few (between 1 and 5) initial runs are
executed to allow the JIT compiler to run, then several more (between 3 and 10) real
runs are executed. Note that the exploration in GROOVE is deterministic (i.e. the
same problem instance explored multiple times produces the same state space) so the
number of states and path length in each run is the same. The exploration time for a
single problem is calculated by taking the average runtime of all real runs excluding the
longest and shortest real run. The number of initial and real runs are varied according to
problem size, as the size of the problem increase so does the runtime and the difference
between runtimes becomes less significant. Therefore, for larger problems the total
number of runs is fewer than for small problems.

For the results in Section 5.3 we only present the average values of each metric for
every problem instance.

5.2.3 EXPERIMENTAL SETUP

The experiments were conducted on a laptop computer with an Intel i7-3517U CPU
with 8GB of RAM. The experiment were executed on a JVM running on the computer
with VM option -XX:SoftRefLRUPolicyMSPerMB=10 to avoid excessive garbage col-
lection for larger models and state spaces.

5.3 RESULTS

In this section we present and discuss the results of the experiments used to evaluate the
effectiveness of the heuristics presented in this work. Each subsection corresponds to
a planning problem, and for each we will discuss the results for the chosen evaluation
metrics, reflect on our expectations as given in Section 5.1.4, and finally compare these
results to those of other works. The results from other works for the planning problems
also used in this work are given in Appendix A.

Finally, in Section 5.3.4 we compare the results achieved for the problems modeled
as graph transformation planning problems compared to PDDL.

For the planning problems we evaluate the effectiveness of three different heuris-
tic functions. These are the NENTUPLE heuristic scheme, and the linearization ab-
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straction heuristic scheme using the match count and dependency count, which are all
instantiated for a goal of the type partial graph goal. We denote greedy best-first explo-
ration using these heuristics as NEN, LA-M and LA-D respectively. Furthermore, we
use LA to represent the use of the linearization abstraction heuristic approach in GBFS
exploration in general.

5.3.1 BLOCKS WORLD DOMAIN

Table 5.3.1 presents the results for each metric of the Block World planning problems.
Furthermore, Figure 5.3.1 and Figure 5.3.2 plot the number of states and exploration
time metric respectively for each problem size and heuristic function.

Primarily, in Table 5.3.1 we can see that NEN is able to solve all problems, while
both LA approaches are only able to solve smaller instances of domain. Furthermore,
we can see that for the instances solved using LA are outperformed in each metric by
NEN. We expect this to be due to the fact that this is a classic problem and the actions
in this problem are independent, which we theorized would be disadvantageous for the
linearization abstraction heuristic approach.

Table 5.3.1: Blocks World domain planning results

NEN LA-D LA-M
#States Time (s) |Path| ratio #States Time (s) |Path| ratio #States Time (s) |Path| ratio

Blocks-4-v1 15 0.02 6 2.50 15 0.20 6 2.50 16 0.23 6 2.67
Blocks-4-v2 38 0.04 8 4.75 24 0.19 10 2.40 35 0.23 10 3.50
Blocks-6-v1 35 0.02 12 2.92 62 0.59 14 4.43 147 1.92 16 9.19
Blocks-6-v2 31 0.02 8 3.88 97 1.35 16 6.06 147 2.11 18 8.17
Blocks-8-v1 94 0.04 18 5.22 175 6.36 30 5.83 212 5.84 22 9.64
Blocks-8-v2 109 0.05 16 6.81 114 3.80 28 4.07 313 9.51 36 8.69
Blocks-10-v1 141 0.06 26 5.42 488 310.32 32 15.25 - - - -
Blocks-10-v2 159 0.04 22 7.23 406 243.97 34 11.94 - - - -
Blocks-12-v1 179 0.05 26 6.88 - - - - - - - -
Blocks-12-v2 106 0.02 16 6.63 - - - - - - - -
Blocks-14-v1 186 0.14 30 6.20 - - - - - - - -
Blocks-14-v2 240 0.09 28 8.57 - - - - - - - -
Blocks-16-v1 180 0.10 28 6.43 - - - - - - - -
Blocks-16-v2 156 0.05 28 5.57 - - - - - - - -
Blocks-18-v1 226 0.06 32 7.06 - - - - - - - -
Blocks-18-v2 240 0.04 32 7.50 - - - - - - - -
Blocks-20-v1 347 0.05 36 9.64 - - - - - - - -
Blocks-20-v2 316 0.06 38 8.32 - - - - - - - -

For the instance Blocks-4-v1 one can clearly see how much slower the lineariza-
tion abstraction approach is compared to NENTUPLES. This can be concluded from
the fact that while approximately the same number of states are explored in each ex-
ploration the runtime for LA is a factor 10 greater than that of NEN. This becomes
painfully clear in Figure 5.3.2, where on logarithmic scale we see the runtime for LA-
M and LA-D increase exponentially as the problem size increases. A cause of this could
be that as the problem size grows more independent actions become possible. Thus,
we can conclude that the linearization abstraction heuristic approach is not suitable for
this problem domain. We see that LA-D performs better than LA-M, this is according
to expectations, since the dependency count metric is more accurate compared to the
match count metric.
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Figure 5.3.1: Average number of explored states for planning in Blocks World domain

In contrast, the NENTUPLE heuristic approach seems to perform exceptionally
well. We know from Section 2.4.1 that state space grows at an alarming rate as the
problem size increase. However, in Figure 5.3.1 we see that there is little to no increase
in the explored state space for NEN. Furthermore, in Figure 5.3.2 we can see that there
is only a minimal increase in the runtime of NEN as the problem size increases. Clearly,
the NENTUPLE heuristic approach provides a significant reduction in both space and
time in solving Block World planning problems.

In Table 5.3.1 we see that for NEN the path length : no. of states ratio is not
constant but increases linearly as the problem size increases. What this means is that
as the problem sizes grows the heuristic becomes more inefficient since it causes the
generation of proportionally more unnecessary states. This is to be expected as the
NENTUPLE approach provides a context-free coarse graph abstraction, and with an
increase of problem size the context of the graph becomes more important. It may be
concluded, however, that this increase in inefficiency is acceptable compared to runtime
and NEN still outclasses its linearization abstraction counterparts.

Figure 5.3.2: Average exploration time for planning in Blocks World domain

In Appendix A.1 we give the results of graph transformation planning in the Block
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World domain from [5]. We cannot say anything on the similarity of individual problem
instances the problem sizes match and we can therefore only make some performance
comparisons. The ABS heuristic is an approach introduced in [5] and is conceptually
similar to linearization abstraction. At first glance we can see that exploration using
linearization abstraction presented in [5] performs poorly compared to the similar ap-
proach in [5] for the Block World domain. However, one can see that NEN vastly
outperforms ABS in both number of states generated and runtime. Furthermore, the
exploration runtime seems to be increasing exponentially as the problem size increases
for ABS, whereas this is not the case for NEN.

5.3.2 SLIDING PUZZLE DOMAIN

In this domain, in addition to the NEN, LA-M and LA-D exploration, we also per-
formed exploration using two additional heuristic functions. These are based on lin-
earization abstraction and are a hybrid of the match count and dependency count met-
ric. We combine these two metrics using lexicographical ordering. We introduce the
heuristic function with DC > MC and the function with MC > DC. We refer to the
greedy best-first search exploration using these heuristic functions as LA-(D+M) and
LA-(M+D) respectively.

Table 5.3.2 present the results for each metric of the Sliding Puzzle planning prob-
lems. Furthermore, Figure 5.3.3 and Figure 5.3.4 plot the number of states and explo-
ration time metric respectively for each problem size and heuristic function.

Similar to the results for the Block World domain we see that NEN outperforms all
LA explorations. This is most clearly seen for the 15-piece problem instances. These
problems were only solvable using NEN. However, we see that for this domain the
result metrics are similar across approaches.

Table 5.3.2: Sliding Puzzle domain planning results

NEN LA-D LA-M LA-(D+M) LA-(M+D)
#States Time (s) |Path| ratio #States Time (s) |Path| ratio #States Time (s) |Path| ratio #States Time (s) |Path| ratio #States Time (s) |Path| ratio

8-easy 16 0.03 5 3.20 23 2.08 5 4.60 21 1.51 5 4.20 23 1.80 5 4.60 23 1.98 5 4.60
8-med 509 0.17 27 18.85 55 5.93 17 3.24 123 10.76 11 11.18 51 5.88 17 3.00 46 5.07 11 4.18
8-hard 483 0.12 28 17.25 53 5.49 18 2.94 127 11.66 12 10.58 49 4.78 18 2.72 45 4.61 12 3.75
8-worst 2567 1.06 64 40.11 763 91.18 62 12.31 1178 155.46 52 22.65 622 79.26 62 10.03 1070 132.12 56 19.11

15-v1 50659 48.44 328 154.44 - - - - - - - - - - - - - - - -
15-v2 36317 29.37 228 159.28 - - - - - - - - - - - - - - - -
15-v3 48430 44.35 226 214.29 - - - - - - - - - - - - - - - -
15-v4 10571 10.36 128 82.58 - - - - - - - - - - - - - - - -

From the results in Table 5.3.2 one can see that NEN is much faster than any LA
approach, this is shown obviously in Figure 5.3.4. There is about a factor 100 difference
between runtimes. This is clearly in the advantage of NEN, however, for the number of
explored states and ratio metric we see that LA performs better. What this means is that
the linearization abstraction approach provides a more accurate heuristic compared to
NENTUPLES. In Figure 5.3.3 one can see that, as the problem difficulty increases, the
number of states explored by NEN rapidly rises.

Compared to NEN, all LA approaches have explored fewer states (excluding the
8-easy instance). The most accurate of these, LA-(D+M) is between a factor 5 and 10
more accurate. This is further emphasized by the ratio metric. These results are clearly
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effected by the speed-accuracy trade-off discussed in Section 5.1.4.
In the Sliding Puzzle domain, the linearization abstraction heuristic approach is

significantly more accurate and does not suffer much from independent actions for the
smaller problem size (8-piece). However, for larger problem sizes (15-piece) which
have a state space of half a trillion states, it becomes more effective to generate many
slightly accurate states quickly. There are two other factors that are also influential.
The first is that, for larger problem instances, linearization abstraction takes longer to
calculate a witness set. The second is that, using GBFS, it is possible that if a state
is wrongly evaluated (inaccurate heuristic value) then due to the nature of GBFS a
erroneous path may be explored a long time before backtracking. These two combined
cause a very long exploration time for large problem instances.

Figure 5.3.3: Average number of explored states for planning in Sliding Puzzle domain

We now consider the distinctions within the LA approach. We see that LA-D out-
performs LA-M, which we also expected. This is due to the dependency metric being a
more accurate distance measure compared to the matches metric. In combination with
the fact that, due to problem modeling, there can only be a single MATCH found in
linearization abstraction so both metrics are equally fast.

Furthermore, we see that LA-(D+M) is the most accurate. This is due to the fact that
the heuristic function used is basically a refinement of a dependency count linearization
abstraction heuristic function. This result shows that there may be advantages to com-
bining heuristic schemes to define hybrid heuristic functions for exploration. Similarly,
we see that LA-(M+D) shows a explored state reduction compared to LA-M. However,
since the dependency count metric is more accurate than the match count metric we
see that heuristic functions which first evaluate the DC perform better.

In Appendix A.2 we give the results of graph transformation planning in the Slid-
ing Puzzle domain from [6, 7]. [7] makes use of two domain dependent heuristics
and measures the number of states and transitions explored as well as the exploration
time. When we compare the results using greedy best-first search we see that in terms
of states (and thus accuracy) LA approaches have approximately the same accuracy
range. While NEN is less accurate than the domain dependent heuristic, we see that
they share the same magnitude in runtime. The limitation of these comparisons is
that we do not know the exact problem instances with which [7] was performed, so a
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Figure 5.3.4: Average exploration time for planning in Sliding Puzzle domain

concrete comparison between number of explored states is not possible. Furthermore,
comparing runtime is inaccurate due to the rounding used in [7] and different hardware.

In [6], the proposed Genetic Algorithm (GA) exploration is outperformed by A* in
the Sliding Puzzle domain. The conclusion is that GA is not well suited for this domain.
Our only overlapping result metric is runtime, and from the results in Table 5.3.2 we
see NEN has approximately the same runtime magnitude as the A* exploration used in
[6].

In conclusion, we see that LA is notably more accurate than NEN, however the
runtime difference is significantly limiting allowing NEN to perform better overall.
This is also the reason that the 15-piece problem instances are not solved by any LA
approach within a timeout of 15 minutes. In all solved cases we see a great reduction of
the explored state space, which at most are 9!/2 and 15!/2 states for the 8- and 15-piece
instances respectively. Finally, while the plots show a relevant difference between NEN
and LA they are slightly limiting since we can only show increase in problem difficulty
and not problem size.

5.3.3 ECU DOMAIN

Table 5.3.3 presents the results for each metric of the ECU planning problems. Fur-
thermore, Figure 5.3.5 and Figure 5.3.6 plot the number of states and exploration time
metric respectively for each problem size and heuristic function. Note that, in the plots
we should consider all v1 and v2 problem instances as different sets since the problem
sizes are not comparable.

In Table 5.3.3 we see that NEN does not perform well in this problem domain in any
metric. As the problem size increases the number of explored states and consequently
then path length to explored states ratio increases exponentially. This is caused by the
problem type and the goal expressiveness. The ECU domain is a dynamic problem and
one can calculate that for larger problem instances the number of states grows exponen-
tially and the problem quickly becomes unsolvable. Furthermore, the inexpressiveness
of the goal greatly reduces the accuracy, meaning an increase in unnecessarily explored
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states. This can clearly be seen in the ratio metric.

Table 5.3.3: ECU domain planning results

NEN LA-D LA-M
#States Time (s) |Path| ratio #States Time (s) |Path| ratio #States Time (s) |Path| ratio

ECU-2-v1 22 0.02 4 5.50 27 0.27 4 6.75 18 0.16 5 3.60
ECU-3-v1 292 0.07 4 73.00 273 9.15 4 68.25 60 0.30 8 7.50
ECU-4-v1 49004 12.23 8 6125.50 - - - - 384 4.80 23 16.70
ECU-5-v1 - - - - - - - - 1170 30.68 42 27.86

ECU-2-v2 126 0.05 7 18.00 129 0.79 7 18.43 47 0.27 8 5.88
ECU-3-v2 9533 2.09 7 1361.86 - - - - 188 1.39 16 11.75
ECU-4-v2 - - - - - - - - 1755 35.20 35 50.14
ECU-5-v2 - - - - - - - - 4753 134.10 50 95.06

Until problem instance ECU-3-v1 we see that LA-D is able to solve problems of
the ECU domain. These are still relatively small problem instances. We also see that in
terms result metrics the solutions are comparable to NEN, with the obvious exception
of runtime. The reason LA-D is unable to solve larger problem instances is due to the
goal inexpressiveness and the large number of witnesses for each linearization abstrac-
tion. As discussed in Section 3.3.3.2 the DC metric is very computation intensive, and
especially so if the goal is inexpressive. Due to this effect we see that LA-D is not an
effective exploration technique for the ECU problem domain.

Finally, we consider the LA-M exploration results. The result metrics show excep-
tional time performance compared to the other explorations. LA-M performs better
than LA-D partially since it does not suffer from the witness set problem. However,
this is not the only difference since we see that even for the smaller problems which
LA-D is still able to solve LA-M is more accurate (i.e. fewer explored states and lower
ratio). This effect may be due to the fact that for this problem domain the DC metric
is too refined and causes the exploration of erroneous paths. By using a coarser metric
we reduce this effect.

Figure 5.3.5: Average number of explored states for planning in ECU domain

In Figure 5.3.5 and Figure 5.3.6 we see that for NEN the number of explored states
and time runtime increase at least exponentially on a logarithmic scale. The same
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seems true for LA-D, however there are not enough data values to make any convincing
conclusions. In both cases we see that these exploration approaches cannot keep up as
the problem size increases.

In contrast we can see that for both sets of problem instance (v1 and v2) LA-M
grows approximately at a linear rate on the logarithmic scale. This means that as the
problem size increase the number of explored states and runtime increase exponen-
tially. This is a considerable growth rate. However, compared to the other approaches
LA-M performs very well. We should also consider that ECU-5-v1 and v2 may be
consider relatively large systems. As an indication we consider that NEN (which al-
ready prunes the actual state space) explores almost 50,000 states for a small problem
instance.

Figure 5.3.6: Average exploration time for planning in ECU domain

In Appendix A.3 we give the results of graph transformation planning in the ECU
domain from [5]. As previously mentioned, the ABS heuristic is an approach intro-
duced in that paper and is similar to linearization abstraction. In this work and in [5]
the same problem sizes are used. However, this work used 2 unique problem instances
per size and [5] uses 4 which are averaged. We only compare our exploration to explo-
ration using the ABS heuristic.

In terms of number of explored states we see that LA-M is very similar to ABS,
however for ABS it is not clear if there is a linear or exponential increase in the number
of states as the problem size increases. It seems that of a problem size of 4 and 5 ECUs
the number of states are approximately the same for EHC-ABS. This may be due to the
results showing an average of four problem instances.

In terms of runtime we see that both our LA-M and exploration using ABS grows at
an exponential rate in the ECU domain. However, we can see that for every instance the
LA-M results are slightly faster than those of ABS using both exploration techniques.
Unfortunately it is not possible to know if this is due to hardware or implementation of
the approach without redoing the experiments in [5].

We must conclude that NEN and LA-D cannot be compared favorably to the results
of [5] for the ECU domain since these approaches did not perform very well. Further-
more, since the linearization abstraction heuristic approach is conceptually similar to
the ABS heuristic it is not surprising that they perform much the same.
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5.3.4 PDDL COMPARISON

In this section we compare solving planning problems using graph transition system
planning as presented in this work to using a planning solving based on a standardized
planning language PDDL. In Section 2.3.1 differences between graph transformation
planning problems and PDDL are explained. The results in this section give an indi-
cation how well our implementation in GROOVE compares a run-of-the-mill PDDL
planner. Due to the many differences between the two approaches to planning, we are
only interested in a general indication.

To achieve this we consider two problem instances. These are from the Block World
and Sliding Puzzle domain respectively. We consider the Blocks-10-v1 and the 15-
puzzle-v4 problem instances, the sizes of these problems represent a medium to large
problem state space. In Appendix B we give the PDDL models for these problems.
One should note that Blocks-10-v1 is modeled slightly differently in PDDL than as a
production system. This is due to the fact that in a production system we have sets of
colored blocks which are indistinguishable, and in PDDL each object has to be unique.
Therefore, in the PDDL model we limit ourselves to defining a single start and goal
instance (i.e. defining the exact position of a block).

Experiments are run using the LAMA-2011 PDDL planner [17], which was the
winner of IPC-7 competition in sequential satisficing track; if it had competed in IPC-8
would have placed 12th out of 21 [18]. The results of the experiments, along with those
using our implementation in GROOVE, are shown in Table 5.3.4.

Table 5.3.4: PDDL v GTS planning comparison

#States Time (s) |Path| ratio

Blocks-10-v1
PDDL 48 0.01 47 1.02
NEN 141 0.06 26 5.42
LA-D 488 310.32 32 15.25

15-Puzzle-v4
PDDL 14776 4.34 370 39.94
NEN 10571 10.36 128 82.58
LA - - - -

PDDL planners for the IPC competitions are designed to find the shortest path
solution for a problem. This is different to the objective of greedy best-first search
which we have implemented in GROOVE. In many cases finding the shortest path is
more challenging and time-consuming than finding any path. LAMA-2011 uses three
steps in solving a problem, these are; translation, preprocessing and search. While
the details are not important for this work, search is done iteratively with continually
adjusted techniques and parameters, continually seeking a shorter path. In order to
compare PDDL planning to GTS planning as implemented in GROOVE we consider
only the result from the first search iteration.

From Table 5.3.4 one can see that only NEN realistically compares to PDDL in
terms of explored states and runtime. It seems that while PDDL performs better that the
metrics are of the same order of magnitude. Clearly LA cannot compete with planners
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using PDDL. This result is not unexpected as we hypothesized that the linearization
abstraction heuristic approach would be better suited for dynamic planning problems,
and furthermore is very computationally intensive.

It can be considered impressive that NEN manages to compete relatively well with
PDDL considering that the NENTUPLE approach is rather naive (i.e. no real contextual
awareness). This naivety can clearly be seen by the fact that PDDL is much more
efficient. We see that for both problems the number of explored states to path length
ratio is much smaller using PDDL. Again this is not surprising as PDDL is a language
which is standardized for defining planning problems and developing planning solvers
using PDDL has been a research and competition field since at least 1998.

The results in Table 5.3.4 show that planners using PDDL are better suited for
classic planning. However, GTS planning allows for different problem types which
cannot be expressed using PDDL. It has been shown in this work as well as others that
these planning problems are solvable within reasonable time and space boundaries.
Thus, GTS planning competes with PDDL on this front. Furthermore, improvements
in heuristics and exploration techniques will improve GTS planning competitiveness
with respect to PDDL planners.

5.4 DISCUSSION

The results from Section 5.3 clearly show that exploration using the NENTUPLE heuris-
tic approach is faster than the linearization abstraction approach. However, lineariza-
tion abstraction, specifically using the dependency count metric is a more accurate
heuristic compared to the others presented in this work. From the results we can con-
clude that the hypotheses made in Section 5.1.4 were correct.

We have see that NEN performs better for classical planning problems while LA is
better suited for dynamic problems. Furthermore, LA suffers heavily from independent
actions, especially in large problem instances, this can be seen in the Block World
domain. Similarly, NEN suffers from goal inexpressiveness, which is shown by the
results from the ECU domain. Finally, from the results we can conclude that there is
a clear time-accuracy trade-off between the NENTUPLE and linearization abstraction
heuristic approaches.

Within the linearization abstraction approach we see that the dependency count
metric is generally better than the match count metric. The exception is when calculat-
ing the witness set for DC is too time expensive. In this case the MC metric still offers
a relatively accurate distance estimate and thus a decent alternative. Furthermore, from
the results of the Sliding Puzzle domain we see that there is merit in combining heuris-
tic schemes to define hybrid heuristic functions.

Finally, we have shown that PDDL planning is better than GTS planning as we have
implemented it in GROOVE. Exploration using the NENTUPLE heuristics however
comes relatively close in terms of explored state space and exploration runtime. The
major difference however is that it is possible to define different types of problems in
GTS planning. This adds possibilities to the planning domain which PDDL cannot
address.
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CHAPTER 6

RELATED WORK

In this chapter we give an overview of related work.

Ziegert [5] presents a heuristic based on rule abstraction. The heuristic is used
greedy best-first search and enforced hill climbing search traversal strategies. The
abstraction is done by relaxing the left-hand side of the transformation rule so that
instead of deleting and creating nodes and edges they are only labeled deleted and
created. Next all possible rules are applied to the abstracted state graph in parallel
to create the abstract next state graph, this creates a linear state space. This process
repeats till an abstract state in which the goal state holds is reached. The heuristic value
is calculated by the number of labels that are attached to all elements in the goal match.
The results show that while traversal strategy has little effect in reducing of number
of states explored, the heuristic presented performs better than simpler variation of a
abstraction heuristic.

Snippe [15] presents an A* implementation in GROOVE as a technique to solve
graph transformation planning problems. Two heuristic functions are presented, the
first is an unweighted element counting heuristic and the second is a weighted element
counting with predefined weights. The weights are choose by the author and are prob-
lem specific. Results show that A* as traversal strategy with either heuristic preforms
much better BFS and DFS. Furthermore it is shown that a weighted element counting
heuristic performs better than an unweighted heuristic. The drawback however is that
these weights problem specific and determined by author.

Estler et al. [7] present a framework designing element counting heuristics to guide
A* and best-first traversal strategies to solve graph transformation planning problems.
Several heuristics based on weighted element counting are given. Furthermore, a tech-
nique for trained element counting heuristics based on machine learning is presented.
Results show that the weights are problem dependent and it is not always trivial to
know the effect certain weights have on traversal efficiency. Furthermore, it is shown
that trained weights can be effective.
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Edelkamp et al. [19] present several types heuristics for informed search in graph
transition systems, as well as introduction the concept of state space abstraction in or-
der to create a database of distances from abstract states to goal states as distance mea-
sure. The abstract distance measure serves as transition cost for A* search. The main
heuristic types presented are element counting, formula-based and hamming distance.
Preliminary results show state space traversal with both best-first search and A* search.
Each heuristic for both traversal strategies generally shows significant reduction of the
number of states explored compared to DFS.

Edelkamp et al. [10] introduce graph transformation as a domain for modeling
planning problems. GROOVE is presented as tool in which graph transformation sys-
tems and planning problems can be modeled. It is shown that using a heuristic an
exponential gain in time is achieved for state space search search.

Yousefian et al. [6] present a model checking technique of graph transformation
systems using the genetic algorithm (GA) to explore the state space. The genetic al-
gorithm is a heuristic technique which guides state space exploration. The approach is
used to check safety properties and search deadlocks of a system. GA is used to de-
termine the next state to discover, for this state safety and deadlock properties are then
checked, if an erroneous or deadlock state is discovered the path to this state is returned
otherwise the algorithm determines the next state. It is shown that for several different
problem types this approach provides a speed up time in finding erroneous/deadlock
states. However the main advantage is the increase problem size this approach can
handle compared to exhaustive state space exploration. The disadvantage is that if the
algorithm does not return a result before the cutoff depth it is not guaranteed that a
erroneous of deadlock state does not exist.

Below in Table 6 we give an overview of the planning problems used in each work.
We differentiate between classic and dynamic problem types. These problems served
as a basis for the planning problems we included in our experiments. This allowed us
to compare the results achieved by our approach to known approaches.

Table 6.0.1: Overview of Planning Problems in Related Work

Classic Problems Dynamic Problems

Block World Problem [5, 10, 15] Electronic Control Units (ECU) [5]
Pac-Man Problem [6] Car Platoon System (CPS) [6]
N-Puzzle Problem [6, 7] Neue Bahntechnik Paderborn (NBP) [7]
Dining Philosophers Problem [6, 10] Arrow Distributed Directed Protocol (ADDP) [19]
Girl’s Gossip Problem [10]

Close to the finalization of this work we were made aware of a master student in
Brazil who is currently working on their thesis which is extremely closely related to
the topics in this work. The work by Ramos et al. [20] is currently still in progress
and thus unpublished. In this work several domain independent heuristics based on
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graph abstraction are developed. From preliminary results we have seen that for all
experiments these heuristics provide a decrease in the number of explored states in
comparison to breadth first search for planning problems. We have done some exper-
imental tests on the same problem set used by Ramos et al. using the NENTUPLE
heuristic approach. We found that for several problems there are similarities in terms
of explored state space. However, in some cases our approach was much less effective.
We believe this is partially due to the modeling of the problems. For example, with
the sliding puzzle model used by [20] our exploration using NENTUPLES generated a
more states. However, using our modeling for the same problem instance our approach
greatly outperformed the heuristics presented in [20]. Due to the recent knowledge
of this work we have unable to perform a more comprehensive comparision. Further-
more, since the research is being done in Brazil the work will, unfortunately for us, be
published in Portuguese.
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CHAPTER 7

CONCLUSION

In this final chapter we look back on this work and the answers to the research questions
given in Section 1.3 and discuss to what degree we have managed to solve our problem
statement. Furthermore, we provide a general overview of this work and discuss what
this works contributes. We conclude with a presentation of ideas for future work.

7.1 DISCUSSION

The goal of this section is to discuss the results of the research questions and problem
statement of this work.

RQ1. How can we define and solve planning problems in the context of graph
transition systems and what advantages and disadvantages does this provide?

This question is answered in Chapter 2. In Section 2.1 we formally defined the
concepts concerning graph transition systems, as well as additional notions related to
planning. In Definition 13 we defined the graph transformation planning problem and
the solution of such a problem. In Section 2.2 we presented a planning strategy, forward
state space search (implemented using greedy best first search), which can be used to
solve graph transformation planning problems. Finally, in Section 2.3 we concretely
put all previous graph transformation concepts in the context of planning. We discussed
a) how graphs and graph transformations are suited as a planning language, b) which
planning strategies are suited graph transformation planning, c) in which way the goal
of a problem can be specified and, d) the form of the solution. In addition to these
topics we also considered the advantages and disadvantages that graph transformation
planning provide in comparison to other planning languages.

We have found that graph transition systems are a suitable paradigm for modeling
planning problems. Graphs and graph transformations correspond to states and actions
in a planning problem. Furthermore, we used known state space exploration techniques
which are applicable to transition systems to solve graph transformation planning prob-
lems.

We argued that there are several advantages to graph transition planning problems,
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such as an intuitive problem modeling approach and the possibility to model dynamic
planning problems (see Section 5.1.4). Furthermore, we hypothesized that the under-
lying graph structure of the states and action would allow enable one to define accurate
domain independent heuristics. We defined two such heuristic approaches in Chapter 3
and from the results in Section 5.3 we saw that these perform well for respective prob-
lem types. In Section 5.3.4 we gave a comparison of the GTS planning approach to the
PDDL approach. We saw that while PDDLs performance is superior, GTS planning is
not totally outclassed.

RQ2. In which ways can we exploit the underlying structure and formalisms of
graphs and graph transformations in a graph transition system to develop mean-
ingful metrics to estimate distances between a state and a goal?

We answered this question in Chapter 3 of this work. We provided two heuristic
approaches which attempt to make use of the graph transition system model paradigm
to estimate the distance between a graph and a goal. These two approaches rely on two
different forms of abstraction. The NENTUPLE approach uses an abstraction of graphs
and compares the decomposition of the graphs corresponding to a state and a goal re-
spectively. The linearization abstraction approach uses abstraction of the graph transi-
tion system and its underlying components (graphs and graph transformation rules) to
create a compressed (due to linearization) overestimation of a problem state space. We
have defined distance metrics using information from the process linearization abstrac-
tion. By using these abstraction methods in NENTUPLES and linearization abstraction
we were able to develop heuristic approaches which are domain independent.

We argued that both these approaches provide meaningful distance estimates. The
NENTUPLE does this by abstractly comparing two graphs. The linearization abstrac-
tion approach has three distance metrics all which are based on the process of lineariza-
tion abstract, counting either the number of iterations, the number of total actions or
the number of goal specific actions during the process. Since linearization abstraction
provides an over approximation of the problem state space there is a relation between
the abstracted and the actual state space, and thus our distance metrics have a relation
to the actual distance between a state and a goal.

RQ3. How can we implement planning in GROOVE with sophisticated problem
solving techniques supported by a framework of heuristics?

We gave the answer to this question in Chapter 4. In order to implement planning in
GROOVE we have extended its state space exploration capabilities to support informed
exploration (GBFS), acceptors which fulfill graph goal types and exploration results
which store a path.

We also implemented a framework in GROOVE for heuristic functions which can
be used for informed exploration. The aim of this framework was to setup a software
infrastructure that is extensible and flexible. To do this we used design patterns such
as the composite pattern to allow for easy combination of heuristic functions to form
hybrid functions and the addition of new heuristic approaches.

The above answered research questions aim to support the problem statement of
this work which is repeated below.
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To develop heuristic approaches for the purpose of planning using graph transforma-
tions and implement these in GROOVE as a framework for solving planning problems.

We have achieved our problem statement as we have developed two distinct heuris-
tic approaches for graph transformation planning problems. We have furthermore, ex-
tended to GROOVE functionality by implementing these approaches and developing a
framework in which they can be used to solve planning problems. We have then exper-
imented with these approaches to solve different planning problems using greedy best-
first search as exploration strategy. Finally, we have identified distinguishing features
of different planning problems and correlated these to the suitability of the heuristic
approaches we have developed.

7.2 CONTRIBUTIONS

In this section we describe the contributions this work has made to the field of planning
and heuristics.

The main contribution of this work is the formal definition of two unique domain in-
dependent graph heuristics. We have defined two distinct graph heuristics and demon-
strated their effectiveness on are range of different planning problems. We provide a
detailed theoretical explanation of both approaches. This provides interested parties to
easily extend upon our work.

In addition to we have demonstrated to benefits of using graph transition systems
as a planning problem modeling paradigm in contrast to others such as PDDL. We
provide further motivation to broaden the planner horizon to consider the possibilities
of graph transition system modeling.

Our heuristic approaches are partially based upon those existing in other works.
Developing more effective domain independent heuristics is a forever ongoing process
with a lot of room for fine-tuning. Similarly, the approaches in this work may be
extended to further the field of heuristics in graph transformation planning.

Moreover, in this work we have implemented a planning and heuristic proof-of-
concept in the practical tool GROOVE. Thus, in this work we have contributed to
the extension of the functionality of GROOVE. We have provided the possibility for
generic users to solve their planning problems in GROOVE using the command line
interface. Furthermore, we have implemented this functionality in such a manner that a
more experienced user can implement their own heuristics in the GROOVE code within
our framework. This allows for the general extension of the program functionality as
well as the creation of tailor made heuristics for planning problems.

Finally, have begun on a rudimentary classification of graph transformation plan-
ning problems based on distinguishing features. We attempted to correlate such classi-
fications with the effectiveness of our heuristics approaches. While there is still much
room for improvement, extension and formalization of this classification, such a clas-
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sification and correlation to heuristics provides a method to identify the effectiveness
of heuristics for a certain problem. Such a contribution may be very valuable as the use
of an unsuited heuristic to solve a planning problem may be more effective than using
no heuristic at all.

7.3 FUTURE WORK

In this section we give an overview of several six possible directions for continuation
of this work. The first three future work opportunities relate to the extension of theo-
retical components of this work. The other three opportunities detail implementation
development of the heuristic framework in GROOVE.

Extensions of satisfiability conditions of goal types for heuristics and of acceptors
in GROOVE to support goal types.

In Section 2.3.3 we introduce approaches to formulating a goal φgoal and call these
goal types. In Section 3.2.1 and Section 3.3.1 we define heuristic approaches which
given a certain goal type can be used to generate heuristic schemes. The reason that
a heuristic approach is tied to a goal type is due to the representation of specific goal
types and how they are satisfied.

Currently, for NENTUPLES we only give heuristic schemes for partial and com-
plete graph goal types, and for linearization abstraction we omit the predicate over
graph goal type from our heuristic schemes.

An extension to this work would be defining all necessary components such that it
is possible to apply our heuristic approaches for all possible goal types. Furthermore, it
may be possible to define even more goal types. Finally, in Section 4.1 we define how
the satisfiability for goal types in the form of graphs is defined. This can be extended
for all goals and furthermore implemented in GROOVE.

Completeness and formal definitions of graph transformation planning problem
distinguishing features.

In Section 5.1.4 we present and discuss what we call distinguishing features of
graph transformation planning problems. Furthermore, we hypothesize on the effect
these features have on our heuristics from Chapter 3. These features are presented in
an informal manner and can generally only be measured subjectively. An extension to
this work could be to give more rigorous or formal definitions of our proposed problem
features. In this way it may become possible to more accurately correlate the effects
features have on our heuristics. Formalization will also allow one to better verify our
hypothesis on the effects of problem features.

A follow up to this extension is to consider additional distinguishing features. In
this work we present three features and also discuss the effects of the combinations,
since they are not mutually exclusive. However, it may be possible to imagine that
features were overlooked or not thoroughly defined for all problem instances. Thus,
a further extension of this work would be to consider the completeness of the distin-
guishing features presented in Section 5.1.4.
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Extensions of heuristics and informed exploration strategies to offer a broader
spectrum of planning problem solving capabilities.

A straightforward extension of this work would to be extend the number of heuristic
functions given in this work. This can be done by defining additional heuristic schemes
based on our presented approaches or by creating a new heuristic approach. In the case
of extending NENTUPLES it might be an option to define another possibly relevant
graph decomposition or in the case of linearization abstraction to slightly alter the level
of information in the abstraction. An example of this could be to specifically record if
an element in the maybe set was created or deleted.

In the case of new heuristic approaches it may be an option to consider user-defined
graph patterns for graph decompositions or the use of machine learning to determine
relevant structures.

Finally, in terms of exploration an extension to this work could be to consider more
informed search strategies such as A*.

Implementation of operations to combine heuristics in GROOVE framework.
In Section 4.2 we present and implement an architectural framework for the use of

heuristics in informed search within GROOVE. In this framework we use the composite
pattern which allows for the combination of heuristic functions, we call these combina-
tions hybrid functions. Currently, we have only implemented leaf functions. A possible
extension to this work in terms of implementation would be to define and implement
operators which meaningfully combine heuristic functions into hybrid heuristic func-
tions. Furthermore, it is possible to extend the HeuristicValue return value of a
heuristic function in order to define different ways in which heuristic values are evalu-
ated.

Implementation of abstraction in GROOVE.
In Section 4.3 we discussed how we simulate linearization abstraction defined in

Section 3.3 in GROOVE by altering the graph transformation rules used for the lin-
earization abstraction heuristic. An extension of this work could to fundamentally
implement abstract graphs and abstract transformations in GROOVE.

Optimization of implemented heuristics and extended testing of dynamic planning
problems.

For this work we have provided a proof-of-concept implementation for certain
NENTUPLE and linearization abstraction heuristic schemes. A purpose of this was to
experiment with the effectiveness of our proposed approaches to solve planning prob-
lems. While speed and memory usage were considered during implementation, they
were not the primary focus. A future work may be to reevaluate the implementation of
the heuristic approaches in GROOVE and make code optimizations. Specifically, for
the dependency count metric of linearization abstraction optimization improvements
could go a long way in terms of speedup.

Furthermore, in our experimentation test suite we have currently only run tests on
a single dynamic planning problem. A future work would be to extend our test suite
with more dynamic problems to further evaluate and confirm our hypothesis on the
effectiveness of linearization abstraction heuristics on this problem type.
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APPENDIX A

COMPARISON RESULTS

This appendix presents results of other works mentioned in this thesis for easier com-
parison.

A.1 BLOCK WORLD

In this section we show results from other works using heuristics to solve graph trans-
formation planning problems in the Block World domain.

In Figure A.1.1 and A.1.2 we show graphs, as given in [5], of the results of Block
World planning problems for average explored state space and planning time respec-
tively. In the experiments two different exploration strategies are used and combined
with two different exploration heurstics. These exploration strategies are greedy best-
first search, denoted by GBF and enforced hill climbing, denoted by EHC. The two
heuristics are SIM which is simple element counting as presented in [15] and ABS
which is a heuristic similar to linearization abstraction presented in this thesis.
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Figure A.1.1: Results from [5]: average number of explored states for planning in Blocks World
domain

Figure A.1.2: Results from [5]: average exploration time for planning in Blocks World domain

A.2 SLIDING PUZZLE

In this section we show results from other works using heuristics to solve graph trans-
formation planning problems in the Sliding Puzzle domain.

In Figure A.2.1 we show the results from [7]. The technique MC denotes a solv-
ing technique using model checking after complete generation of the state space. BF
and A* denote the exploration strategy greedy best-first search and A* respectively.
These exploration strategies are used with two heuristic functions. h1

Puz is a heuristic
which counts all misplaced pieces. h2

Puz is a heuristic which calculates the sum of the
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Manhattan distances of every misplaced piece.
The results show the number of states and transitions generated for each problem

and the time needed to find a solution. No information is given about the path. Finally,
problem instance 8puzzle-06 is purposefully modeled to be easily solvable.

Figure A.2.1: Results from [7] for planning in Sliding Puzzle domain

In Figure A.2.2 we show the results from [6] which proposes the Genetic Algorithm
as exploration strategy, which is denoted with GA. Furthermore, results are presented
for exploration using A*, DFS and BFS. In the case of A* the heuristic used in not
specified. The results show the runtime to find a solution. This work focuses of finding
error states and for the encoding of this problem a goal state is referred to as an error.

Figure A.2.2: Results from [6] for planning in Sliding Puzzle domain

A.3 ECU

In this section we show results from other works using heuristics to solve graph trans-
formation planning problems in the ECU domain. These are results from [5]. An
explanation of which exploration strategy and heuristics are used can be found in Ap-
pendix A.1.
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Figure A.3.1: Results from [5]: average number of explored states for planning in ECU domain

Figure A.3.2: Results from [5]: average exploration time for planning in ECU domain
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APPENDIX B

PDDL

In this appendix we give the PDDL code used to compare results obtained for graph
transformation planning problems to their PDDL equivalent.

B.1 BLOCK WORLD

Listing B.1: Block World Domain Defined in PDDL
( d e f i n e ( domain b l o c k s w o r l d )

2 ( : requirements : s t r i p s )
( : p r e d i c a t e s ( c l e a r ? x )

( on− t a b l e ? x )
( arm−empty )
( h o l d i n g ? x )

7 ( on ? x ? y ) )

( : a c t i o n p i ck up
: parameters ( ? ob )
: p r e c o n d i t i o n ( and ( c l e a r ? ob ) ( on− t a b l e ? ob ) ( arm−empty ) )

12 : e f f e c t ( and ( h o l d i n g ? ob ) ( not ( c l e a r ? ob ) ) ( not ( on− t a b l e ? ob ) )
( not ( arm−empty ) ) ) )

( : a c t i o n putdown
: parameters ( ? ob )

17 : p r e c o n d i t i o n ( h o l d i n g ? ob )
: e f f e c t ( and ( c l e a r ? ob ) ( arm−empty ) ( on− t a b l e ? ob )

( not ( h o l d i n g ? ob ) ) ) )

( : a c t i o n s t a c k
22 : parameters ( ? ob ? underob )

: p r e c o n d i t i o n ( and ( c l e a r ? underob ) ( h o l d i n g ? ob ) )
: e f f e c t ( and ( arm−empty ) ( c l e a r ? ob ) ( on ? ob ? underob )

( not ( c l e a r ? underob ) ) ( not ( h o l d i n g ? ob ) ) ) )

27 ( : a c t i o n u n s t a c k
: parameters ( ? ob ? underob )
: p r e c o n d i t i o n ( and ( on ? ob ? underob ) ( c l e a r ? ob ) ( arm−empty ) )
: e f f e c t ( and ( h o l d i n g ? ob ) ( c l e a r ? underob )

( not ( on ? ob ? underob ) ) ( not ( c l e a r ? ob ) ) ( not ( arm−empty ) ) ) ) )

Listing B.2: 10-block Block World Problem in PDDL
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( d e f i n e ( problem b locks−10−v1 )
( : domain b l o c k s w o r l d )

4 ( : o b j e c t s
R1 R2 R3 B1 B2 B3 G1 G2 G3 G4

)

( : i n i t
9 ( on− t a b l e B3 ) ( on R2 B3 ) ( c l e a r R2 )

( c l e a r G1 ) ( on G1 B1 ) ( on B1 G2 ) ( on G2 G3 ) ( on G3 R1 )
( on R1 B2 ) ( on B2 G4 ) ( on G4 R3 ) ( on− t a b l e R3 )

( arm−empty )
)

14

( : goa l ( and
( on R3 R2 ) ( on R2 R1 ) ( on− t a b l e R1 )
( on B3 B2 ) ( on B2 B1 ) ( on− t a b l e B1 )
( on G4 G3 ) ( on G3 G2 ) ( on G2 G1 ) ( on− t a b l e G1 )

19 ( arm−empty )
)

)
)

B.2 SLIDING PUZZLE

Listing B.3: Sliding Puzzle Domain Defined in PDDL
( d e f i n e ( domain S l i d i n g P u z z l e )

( : requirements : s t r i p s : t y p i n g )
3

( : t y p e s l o c a t i o n
p i e c e

)

8 ( : p r e d i c a t e s
( on ? p − p i e c e ? l − l o c a t i o n )
( b o t ? x − l o c a t i o n ? y − l o c a t i o n )
( r i g h t ? x − l o c a t i o n ? y − l o c a t i o n )
( b l a n k ? x − l o c a t i o n )

13 )

( : a c t i o n moveDown
: parameters ( ? p − p i e c e ? from − l o c a t i o n ? t o − l o c a t i o n )
: p r e c o n d i t i o n ( and ( on ? p ? from )

18 ( bot tom ? from ? t o )
( b l a n k ? t o )

)
: e f f e c t ( and ( not ( on ? p ? from ) )

( on ? p ? t o )
23 ( not ( b l a n k ? t o ) )

( b l a n k ? from )
)

)
( : a c t i o n moveUp

28 : parameters ( ? p − p i e c e ? from − l o c a t i o n ? t o − l o c a t i o n )
: p r e c o n d i t i o n ( and ( on ? p ? from )

( bot tom ? t o ? from )
( b l a n k ? t o )

)
33 : e f f e c t ( and ( not ( on ? p ? from ) )

( on ? p ? t o )
( not ( b l a n k ? t o ) )
( b l a n k ? from )
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)
38 )

( : a c t i o n moveLeft
: parameters ( ? p − p i e c e ? from − l o c a t i o n ? t o − l o c a t i o n )
: p r e c o n d i t i o n ( and ( on ? p ? from )

( r i g h t ? t o ? from )
43 ( b l a n k ? t o )

)
: e f f e c t ( and ( not ( on ? p ? from ) )

( on ? p ? t o )
( not ( b l a n k ? t o ) )

48 ( b l a n k ? from )
)

)
( : a c t i o n moveRight

: parameters ( ? p − p i e c e ? from − l o c a t i o n ? t o − l o c a t i o n )
53 : p r e c o n d i t i o n ( and ( on ? p ? from )

( r i g h t ? from ? t o )
( b l a n k ? t o )

)
: e f f e c t ( and ( not ( on ? p ? from ) )

58 ( on ? p ? t o )
( not ( b l a n k ? t o ) )
( b l a n k ? from )

)
)

63 )

Listing B.4: 15-piece Slding Puzzle Problem in PDDL
( d e f i n e ( problem 15−p u z z l e )

2 ( : domain S l i d i n g P u z z l e )

( : o b j e c t s
pos11 pos12 pos13 pos14 pos21 pos22 pos23 pos24

pos31 pos32 pos33 pos34 pos41 pos42 pos43 pos44 − l o c a t i o n
7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 − p i e c e

)

( : i n i t
( on p5 pos11 ) ( on p14 pos12 ) ( on p4 pos13 ) ( on p8 pos14 ) ( on p2 pos21 )

12 ( on p3 pos22 ) ( on p10 pos23 ) ( on p13 pos24 ) ( on p1 pos31 ) ( on p6 pos32 )
( on p11 pos33 ) ( on p15 pos34 ) ( on p12 pos41 ) ( on p9 pos42 ) ( on p7 pos43 )
( b l a n k pos44 )
( b o t pos11 pos21 ) ( b o t pos12 pos22 ) ( b o t pos13 pos23 ) ( b o t pos14 pos24 )
( b o t pos21 pos31 ) ( b o t pos22 pos32 ) ( b o t pos23 pos33 ) ( b o t pos24 pos34 )

17 ( b o t pos31 pos41 ) ( b o t pos32 pos42 ) ( b o t pos33 pos43 ) ( b o t pos34 pos44 )
( r i g h t pos11 pos12 ) ( r i g h t pos12 pos13 ) ( r i g h t pos13 pos14 )
( r i g h t pos21 pos22 ) ( r i g h t pos22 pos23 ) ( r i g h t pos23 pos24 )
( r i g h t pos31 pos32 ) ( r i g h t pos33 pos33 ) ( r i g h t pos33 pos34 )
( r i g h t pos41 pos42 ) ( r i g h t pos43 pos43 ) ( r i g h t pos43 pos44 )

22 )

( : goa l ( and
( on p1 pos11 ) ( on p2 pos12 ) ( on p3 pos13 ) ( on p4 pos14 )
( on p5 pos21 ) ( on p6 pos22 ) ( on p7 pos23 ) ( on p8 pos24 )

27 ( on p9 pos31 ) ( on p10 pos32 ) ( on p11 pos33 ) ( on p12 pos34 )
( on p13 pos41 ) ( on p14 pos42 ) ( on p15 pos43 )

)
)

)

89



BIBLIOGRAPHY

BIBLIOGRAPHY

[1] ICAPS. (). Main/icaps, [Online]. Available: http://www.icaps-conference.
org/.

[2] A. M. Starfield, K. Smith, and A. L. Bleloch, How to model it: Problem solving
for the computer age. McGraw-Hill, Inc., 1993.

[3] A. Rensink, “The groove simulator: a tool for state space generation”, in Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE), J. L.
Pfaltz, M. Nagl, and B. Böhlen, Eds., ser. Lecture Notes in Computer Science,
vol. 3062, Berlin: Springer Verlag, 2004, pp. 479–485.

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.
Pearson Education, 2003, ISBN: 0137903952.

[5] S. Ziegert, “Graph transformation planning via abstraction”, arXiv preprint arXiv:1407.7933,
2014.

[6] R. Yousefian, V. Rafe, and M. Rahmani, “A heuristic solution for model check-
ing graph transformation systems”, Applied Soft Computing, vol. 24, pp. 169–
180, 2014.

[7] H.-C. Estler and H. Wehrheim, “Heuristic search-based planning for graph trans-
formation systems”, KEPS 2011, p. 54, 2011.

[8] R. E. Fikes and N. J. Nilsson, “Strips: a new approach to the application of the-
orem proving to problem solving”, Artificial intelligence, vol. 2, no. 3, pp. 189–
208, 1972.

[9] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson, M. Fried-
man, C. Kwok, K. Golden, S. Penberthy, D. E. Smith, et al., “Pddl-the planning
domain definition language”, 1998.

[10] S. Edelkamp and A. Rensink, “Graph transformation and ai planning”, 2007.
[11] J. Hoffmann and B. Nebel, “The ff planning system: fast plan generation through

heuristic search”, Journal of Artificial Intelligence Research, pp. 253–302, 2001.
[12] R. Meijer, “Pddl planning problems and groove graph transformations: combin-

ing two worlds with a translator”, in 17th Twente Student Conference on IT 17,
2012.

[13] M. Tichy and B. Klöpper, “Planning self-adaption with graph transformations”,
in Applications of Graph Transformations with Industrial Relevance, Springer,
2012, pp. 137–152.

90

http://www.icaps-conference.org/
http://www.icaps-conference.org/


BIBLIOGRAPHY

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1995, ISBN: 0-201-63361-2.

[15] E. Snippe, “Using heuristic search to solve planning problems in groove”, in
14th Twente Student Conference on IT, University of Twente. Available at fmt.
cs. utwente. nl/education/bachelor/73, 2011.

[16] W. W. Johnson and W. E. Story, “Notes on the” 15” puzzle”, American Journal
of Mathematics, vol. 2, no. 4, pp. 397–404, 1879.

[17] S. Richter, M. Westphal, and M. Helmert, “Lama 2008 and 2011”, in Interna-
tional Planning Competition, 2011, pp. 117–124.

[18] M. Vallati, L. Chrpa, M. Grzes, T. L. McCluskey, M. Roberts, and S. Sanner,
“The 2014 international planning competition: progress and trends”, AI Maga-
zine, vol. 36, no. 3, pp. 90–98, 2015.

[19] S. Edelkamp, S. Jabbar, and A. L. Lafuente, “Heuristic search for the analysis of
graph transition systems”, in Graph Transformations, Springer, 2006, pp. 414–
429.

[20] A. S. Ramos, M. C. S. Boeres, and E. Zambon, “On applying guided search
methods for state space exploration of graph grammars”, in 48th Brazilian Sym-
posium on Operational Research, Unpublished MSc. Thesis, 2016.

91


	Introduction
	Motivation
	Problem Context
	Problem Statement
	Research Questions

	Outline
	Availability

	Background
	Definitions
	Exploration
	Acceptor
	Strategy

	Planning
	Planning Language
	Planning Strategy
	Goal
	Solution

	GROOVE
	Block World


	Heuristics
	Introduction
	NENTuples
	Theory
	Block World Example
	Discussion

	Linearization Abstraction
	Theory
	Linearization Abstraction Example
	Discussion


	Planning in GROOVE
	Planning Components
	Planning Problem
	Solution
	Exploration Strategy

	Heuristic Framework
	Objective
	Framework Overview
	Design Choices

	Implementation of Abstraction

	Evaluation
	Planning Domains
	Blocks World
	Sliding Puzzle
	Electronic Control Units
	Domain Distinctions

	Metrics & Measurement
	Evaluation Metrics
	Measurement Approach
	Experimental Setup

	Results
	Blocks World Domain
	Sliding Puzzle Domain
	ECU Domain
	PDDL Comparison

	Discussion

	Related Work
	Conclusion
	Discussion
	Contributions
	Future Work

	Appendices
	Comparison Results
	Block World
	Sliding Puzzle
	ECU

	PDDL
	Block World
	Sliding Puzzle


