
Formal Methods and Tools
Faculty of EEMCS

Master of Science Thesis

Quiescent
Transition Systems

Author:
Gerjan Stokkink, B.Sc.

Examination Committee:
Mw.dr. Mariëlle Stoelinga

Mark Timmer, M.Sc.
Prof.dr.ir. Arend Rensink

August 23, 2012

And in the naked light I saw
Ten thousand people, maybe more
People talking without speaking
People hearing without listening
People writing songs that voices never share
And no one dared
Disturb the sound of silence

Simon & Garfunkel - The Sound of Silence

Abstract

Quiescence is a fundamental concept in modelling system behaviour, as it explicitly represents
the fact that, in certain system states, no output is provided by the system. The notion of
quiescence is also essential to model-based testing: if a particular implementation under test
does not provide any output, then the test evaluation algorithm must decide whether to allow
this behaviour, or not. A Suspension Automaton (SA) is a kind of labelled transition system
in which observations of quiescence are explicitly represented with special δ-transitions. SAs
form the basic building block on which the well-known ioco model-based testing framework
is based.

The SA model, however, has a number of flaws. First of all, a SA is not defined as
an entity in itself, and cannot be built from scratch. Secondly, its properties have not
been fully investigated yet. Thirdly, and most importantly, the SA model does not allow
nondeterminism or divergence to occur, thereby limiting the number of systems that can
be naturally modelled. To address these limitations, we introduce in this thesis the so-
called Quiescent Transition Systems (QTSs), which form a fully formalised alternative to the
existing SAs. We also introduce Divergent Quiescent Transition Systems (DQTSs), a more
complex variant on QTSs which allow (state-finite) divergence to occur.

We show how QTSs and DQTSs can be created from existing generic models by an
operation called deltafication. Furthermore, we define the three familiar automata-theoretical
operations of determinisation, parallel composition and action hiding for these models, and
show that (D)QTSs are closed under these operations. Additionally, we prove that the
operation of deltafication is commutative with all of these operations. Finally, we provide an
evaluation in which we compare QTS, DQTSs and SAs. We illustrate that in the context of
test-based modelling, the use of (D)QTSs offers several advantages over SAs, and recommend
that the ioco theory be reformulated in terms of the (D)QTS model.

Acknowledgements

I would like to extend my sincere gratitude to my supervisors Mariëlle, Mark and Arend,
who have guided me patiently throughout the long process of writing this thesis with their
sound advice, useful comments, and in particular their motivational support. Without their
efforts I would never have been able to finish this thesis in time. In particular I would like to
thank Mark for his outstanding work in reviewing every chapter of this thesis, some many
times over, and his invaluable help with finishing some of the more complex proofs.

I would also like to thank my parents and sisters, for always being there for me. When
the going got tough they were always there to support me. I am also very grateful to my
student counsellor, Renate, who helped me tirelessly with many DUO-related issues. Many
thanks also to Gijs for proofreading my thesis one last time.

Finally, the process of writing this thesis would have been far less enjoyable without the
camaraderie of my colleagues in the Labruimte FMT and the many friends I made within
the FMT group. In particular, I would like to thank (in no particular order) Tom, Marina,
Lesley, Freark, Harold, Ronald, Vincent, Maarten, Jaco, Stefano, Stefan, and Axel, amongst
many others. The fun times and lively discussions I have had with you all certainly made
me feel at home at all times.

Enschede, August 2012
Gerjan Stokkink

Table of Contents

1 Introduction 1

2 Background 5
2.1 Notational Preliminaries . 5
2.2 Labelled Transition Systems . 6

2.2.1 The LTS Model . 6
2.2.2 Operations . 8

2.3 Input-Output Transition Systems . 10
2.3.1 The IOTS Model . 11
2.3.2 Operations . 12

2.4 Input-Output Automata . 12
2.4.1 The IOA Model . 13
2.4.2 Operations . 15

2.5 Suspension Automata . 16
2.6 Summary . 17

3 Quiescent Transition Systems 19
3.1 The QTS Model . 19
3.2 Well-formedness . 21
3.3 Deltafication: from IOTS to QTS . 22
3.4 Operations . 24

3.4.1 Parallel Composition . 24
3.4.2 Action Hiding . 25

3.5 Properties . 25
3.5.1 Closure Properties . 25
3.5.2 Commutativity Properties . 30

3.6 Discussion of the Well-formedness Rules . 33
3.6.1 Rationale behind the Well-formedness Rules 33
3.6.2 Alternatives to the Well-formedness Rules 36

3.7 Summary . 37

4 Divergent Quiescent Transition Systems 39
4.1 The DQTS Model . 39
4.2 Well-formedness . 42
4.3 Deltafication: from IOA to DQTS . 43

vii

viii Table of Contents

4.4 Operations . 46
4.4.1 Parallel Composition . 47
4.4.2 Action Hiding . 48

4.5 Properties . 49
4.5.1 Closure Properties . 49
4.5.2 Commutativity Properties . 55

4.6 Summary . 61

5 Conclusions and Future Work 63
5.1 Conclusions . 63
5.2 Future Work . 64

References 65

Chapter 1
Introduction

Quiescence is a fundamental concept in modelling system behaviour. Quiescence explicitly
represents the fact that, in certain system states, no output is provided by the system. The
absence of outputs is often essential: an ATM, for instance, should deliver the requested
amount of money only once, not twice (see Figure 1.1). This means that the ATM’s state
just after paying out money (s0 in Figure 1.1) should be quiescent: it should not produce
any output until further input is given. On the other hand, the state before paying out
(s3 in Figure 1.1) should clearly not be quiescent. Hence, quiescence can also sometimes
be considered erroneous behaviour. Consequently, the notion of quiescence is essential in
model-based testing: if a particular implementation under test does not provide any output,
then the test evaluation algorithm must decide whether to produce a pass verdict (allowing
quiescence at this point) or a fail verdict (prohibiting quiescence at this point).

The notion of quiescence was first introduced by Vaandrager [Vaa91] to obtain a natural
extension of the notion of a terminal or blocking state: if a system is input-enabled (i.e.,
always ready to receive inputs), then no states are blocking, since each state has outgoing
input transitions. However, quiescence can still be used to denote the fact that a state
would be blocking when considering only the output actions. In the context of model-based
testing, Tretmans introduced the notion of repetitive quiescence [Tre96a, Tre96b]. Repetitive
quiescence emerged from the need to continue testing, even in a quiescent state: in the
ATM example above, we need to test further behaviour that arises from the (quiescent)
state after providing money. To further accommodate these needs, Tretmans introduced the
Suspension Automaton (SA) as an auxiliary concept; an SA is a Labelled Transition System
(LTS) in which the occurrence of quiescence is represented explictly using special δ-labelled
transitions.

Example 1.1. Consider the ATM automaton given in Figure 1.1. The states s0 and s1 are
quiescent, since they do not have any outgoing output transitions. To obtain the Suspension
Automaton corresponding to such a system, Tretmans adds self-loops, labelled with the
special quiescence label δ, to each quiescent state.

While the papers mentioned above all convincingly argued the need for quiescence, none
of them presents a comprehensive theory of quiescence. Firstly, quiescence is not treated
as a first-class citizen: although the Suspension Automaton is used during testing, it is not
defined as an entity in itself, and cannot be built from scratch. Therefore, quiescence cannot
be used to specify systems, and neither is it clear what properties a SA satisfies or should

1

2 Chapter 1. Introduction

s0 s1 s2 s3
insertCard? requestMoney? returnCard!

pay!

Figure 1.1: A very basic ATM.

satisfy. Since conformance relations such as ioco are defined based on ‘suspension traces’,
which are the traces of a SA, it seems much more appealing to directly start from these Sus-
pension Automata and base the theory on them. Secondly, essential compositional operators
like parallel composition and action hiding have been defined for LTSs and some of their
subtypes, but have not been studied for SAs at all. Therefore, it was still an open question
to what extent these operators could be lifted to the setting of quiescence. Finally, the oc-
curence of nondeterminism or divergence is explicitly disallowed for SAs, thereby essentially
limiting the number of systems that can be naturally modelled using SAs.

In this thesis, we seek to remediate the shortcomings of previous work by introducing
Quiescent Transition Systems (QTSs). QTSs form a new class of LTSs in which quiescence
can be represented explicitly using special δ-transitions, and are a fully-formalised alterna-
tive to Tretmans’ Suspension Automata. Whereas SAs are always constructed by adding
δ-transitions to existing LTSs and subsequently determinising [Tre08], QTSs are defined in a
precise manner as stand-alone entities, can be built from scratch and need not necessarily be
deterministic; divergence, on the other hand, is still disallowed. The introduction of QTSs is
a first step towards a comprehensive theory of quiescence, and they form a solid basis that
we subsequently extend by introducing Divergent Quiescent Transition Systems (DQTSs).
DQTSs do allow (state-recurrent) divergence to occur, and therefore allow more modelling
freedom. This comes at the cost of a more complex action hiding operation, however. To-
gether, the QTS and DQTS models form the main contribution of this thesis. An earlier, less
streamlined, version of the QTS model was introduced by the author in [STS12a, STS12b].

Starting point in our theory for both QTSs and DQTSs is the observation that, when
treating quiescence as a first-class citizen, certain restrictions regarding the occurrence of
δ-transitions need to be put in place. For instance, it should never be the case that a δ-
transition is followed by an output, as this would contradict the meaning of quiescence. As
another example, we do not allow a δ-transition to enable additional behaviour; after all, it
would not make much sense if our observation of the absence of outputs impacts the system.
In this paper we present and discuss four such rules, that restrict the domain of all possible
(D)QTSs to the sensible subclass of well-formed (D)QTSs. In [Wil07], four similar, but
more complex, rules for valid deterministic SAs are discussed. We show that the classes of
well-formed (D)QTSs and valid SAs are equivalent in terms of expressible behaviour.

Furthermore, we define the aforementioned well-known automata-theoretical operations
on QTSs and DQTSs: determinisation, parallel composition and action hiding. These oper-
ations are very important, as they allow a modular approach to system specification. Ad-
ditionally, we explain how to obtain a (D)QTS from an existing generic labelled transition
system by a process called deltafication. We show that our four well-formedness requirements
are preserved by all of these operations, hence well-formed (D)QTSs are closed under all these
operations. Furthermore, we show that the operation of deltafication is commutative with
the operations of determinisation, parallel composition and action hiding. These two results
are very desireable, as they enable superiour modelling freedom compared to SAs.

3

Labelled Transition Systems

Input-Output Transition Systems

Input-Output Automata

Suspension Automata

Quiescent Transition Systems

Divergent Quiescent Transition Systems

+ distinction between
inputs and outputs

+ task partition and fairness constraint

+ quiescence support

+ quiescence support

+ quiescence support

+ nondeterminism support

+ divergence support

Figure 1.2: The various automata introduced in this thesis, and their main relationships.

Finally, we conclude our thesis by comparing the SA, QTS and DQTS models. Using
(D)QTSs rather than SAs to model systems clearly offers several advantages. First of all, a
wider range of systems can be modelled because the determinism and convergence require-
ments of SAs have been dropped. Furthermore, the desirable compositional properties of
(D)QTSs ensure that when using a testing framework like ioco, the specifications of com-
plex systems can easily be divided up, modelled as separate components, and tested more
efficiently. Hence, (D)QTSs look like a promising new formalism in the context of model-
based testing.

In order to succintly and accurately describe the syntax and semantics of the QTS and
DQTS formalisms, a number of different automata are introduced throughout this thesis. All
these automata are variants of the Labelled Transition System (LTS) formalism: an LTS is
an abstract machine which describes the behaviour of a system in terms of states and tran-
sitions between them. Each transition, in turn, is associated with a label, which represents
a particular action. We examine two standard LTS variants: the so-called Input-Output
Transition System (IOTS) and Input-Output Automaton (IOA) models. An IOTS is simply
an LTS in which the set of labels is divided into disjoint sets of inputs and outputs, and are
perfectly suited to describe the behaviour of reactive systems. Therefore, IOTSs have been
chosen to form the basis of both the Suspension Automaton (SA) and Quiescent Transition
System (QTS) models, which extend IOTSs with support for quiescence observations using
special δ-transitions. IOAs, on the other hand, are a more general type of IOTSs in which
the notion of fairness is explicitly encoded using a so-called task partition. This notion of
fairness is required to unambiguously capture the semantics of quiescence in the presence of
divergence. Consequently, IOAs form the basis of the Divergent Quiecent Transition System
(DQTS) model, which extends the QTS model with support for divergence. Figure 1.2 visu-
alises the main relationships between the models that are discussed in this thesis.

4 Chapter 1. Introduction

The rest of this thesis is organised as follows. In Chapter 2 we introduce the three standard
models mentioned above: Labelled Transition Systems, Input-Output Transition Systems
(IOTSs) and Input-Output Automata (IOAs). Aside from these three models we also take
a look at the Suspension Automaton formalism. With the aid of this background material,
we are ready to introduce the IOTS-based Quiescent Transition System model in Chapter 3.
We take a look at the main properties of the model, introduce the familiar compositional
operations, and explore the various closure and commutative properties of the QTS model in
relation to these operations. Subsequently, in Chapter 4, we similarly introduce and explore
the IOA-based Divergent Quiescent Transition System model, which, as mentioned before,
extends the QTS model with support for divergence. Finally, in Chapter 5, we compare the
SA, QTS and DQTS models and draw various conclusions regarding their potential uses. We
also offer some pointers for possible future work.

Chapter 2
Background

In this chapter, we review three important system specification models from the literature:
Labelled Transitions Systems (LTSs), which model systems using states, actions and tran-
sitions; Input-Output Transition Systems (IOTSs), which extend LTSs by distinguishing
between input and output actions; and finally Input-Output Automata, which further ex-
tend IOTSs with multiple internal actions and action partitions to formalise the notion of
fair executions. For each of these models, we will define the standard operations of determin-
isation, parallel composition and action hiding. The IOTS and IOA models constitute the
basis for the Quiescent Transition System (QTS) and Divergent Quiescent Transition System
(DQTS) models that we will introduce in Chapter 3 and Chapter 4, respectively. We will
also introduce Suspension Automata (SAs), which are an extension of IOTSs that support
the notion of quiescence, i.e., the observation of an absence of outputs. At the end of this
chapter, a short overview of the main properties of the different models will be given.

2.1 Notational Preliminaries

Before introducing the various models, we first need to establish some standard notations.

A sequence σ = a1 a2 . . . an is a (possibly infinite) ordered list of elements from a set L.
We define the length of σ, denoted |σ|, as n. The empty sequence is denoted ε. We use L∗

to denote the set of all finite sequences over L, Lω to denote the set of all infinite sequences
over L, and L∞ to denote the set of all sequences over L, i.e., L∞ = L∗ ∪ Lω. Given two
sequences ρ ∈ L∗ and υ ∈ L∞, we denote the concatenation of ρ and υ as ρ · υ or simply
ρ υ. Note that ε · ρ = ρ · ε = ρ.

The projection of an element a ∈ L on L′ ⊆ L, denoted a � L′, equals a if a ∈ L′

and ε otherwise. The projection of a sequence σ = a σ′ is defined inductively by σ � L′ =
(a σ′) � L′ = (a � L′) · (σ′ � L′). The projection of a set of sequences Z is defined as
Z � L′ = {σ � L′ | σ ∈ Z }.

We use ℘(L) to denote the power set of the set L. A set P ⊂ ℘(L) such that ∅ /∈ P is a
partition of L if

⋃
P = L and p 6= q implies p ∩ q = ∅ for all p, q ∈ P .

Finally, we follow [BK08] in using the notation ∃∞ for ‘there exist infinitely many’.
Hence, the (valid) statement ‘there exist infinitely many integers greater than zero’ can be
denoted as ∃∞j ∈ Z . j > 0.

5

6 Chapter 2. Background

s0

s1 s2

s3

s5

s4

s6

a a

τ

b

τ

c

(a) A

{ s0 }

{ s1, s2, s3, s4 }

{ s5 } { s6 }

a

b c

(b) det(A)

s0

s1

s2

s4

s3

s5

a τ

τ

b

τ

τ

c

(c) B

Figure 2.1: Visual representations of the LTSs A, det(A) and B.

2.2 Labelled Transition Systems

2.2.1 The LTS Model

Labelled Transition Systems (LTSs) are a well-known formalism for modelling the behaviour
of processes or systems. A LTS consists of a set of states, a set of transitions between these
states, and a set of actions. Each state of the LTS represents a particular state which the
process or system may occupy during its operation. The set of transitions define how the
LTS can move from one state to the other by executing particular actions from the set of
actions. With every LTS a special label τ is associated, which represents an unobservable,
internal action.

Definition 2.1. A Labelled Transition System (LTS) is a tuple A = 〈S, S0, L,→〉, such
that:

• S is a non-empty set of states;

• S0 ⊆ S is a non-empty set of initial states;

• L is a set of labels, each representing a different action. We require τ /∈ L;

• → ⊆ S × (L ∪ { τ }) × S is the transition relation, and defines the transitions that
are possible between the states of the LTS. Each transition is marked with a label to
indicate which action is responsible for the transition.

We define Lτ = L ∪ { τ }.

Given a LTS A, we denote its components by SA, S0
A, LA and→A; we omit the subscript

when it is clear from the context which LTS is referred to. We will use the terms label and
action interchangeably.

Example 2.2. Figure 2.1a visualises a LTSA with SA = { s0, s1, s2, s3, s4, s5, s6 }, S0
A = { s0 },

and LA = { a, b, c }. We represent states by circles and transitions by arrows; each arrow in
turn is labelled with the associated action for that particular transition. The initial state is
marked by an arrow without a source state. The state labels are left out when the identities
of the states are irrelevant.

2.2. Labelled Transition Systems 7

Throughout this report, we use the following notations to describe transitions between
states.

Definition 2.3 (Transitional notations). Let A = 〈S, S0, L,→〉 be an LTS with s, s′ ∈ S,
a, ai ∈ Lτ , b, bi ∈ L, and σ ∈ L∞, then

s −a→ s′ =def (s, a, s′) ∈→
s −a1·...·an−−−−−→ s′ =def ∃ s0, . . . , sn ∈ S . s = s0 −a1−→ · · · −an−→ sn = s′

s −a→ =def ∃ s′′ ∈ S . s −a→ s′′

s 6−a→ =def @ s′′ ∈ S . s −a→ s′′

s =
ε⇒ s′ =def s = s′ or s −τ ·...·τ−−−→ s′

s =
b⇒ s′ =def ∃ s0, s1 ∈ S . s =

ε⇒ s0 −b→ s1 =
ε⇒ s′

s =
b1·...·bn====⇒ s′ =def ∃ s0, . . . , sn ∈ S . s = s0 =

b1=⇒ · · · =bn=⇒ sn = s′

s =
σ⇒ =def ∃ s′′ ∈ S . s =

σ⇒ s′′

s 6=σ⇒ =def @ s′′ ∈ S . s =
σ⇒ s′′

If s −a→ for a s ∈ S and a ∈ Lτ , we say that a is enabled in s. We use L(s) to denote the
set of all actions a ∈ Lτ that are enabled in the state s ∈ S, i.e., L(s) = { a ∈ Lτ | s −a→}.

Example 2.4. Consider the LTS A in Figure 2.1a. The following statements all apply to A:

s3 −b→ s5, s0 −a τ b−−→ s5, s4 −c→, s3 6−c→,
s1 =

ε⇒ s3, s0 =
a b
=⇒ s5, s0 =

a c
=⇒, s0 6=

a b c
==⇒

Furthermore, L(s0) = { a } and L(s5) = ∅.
We will use the following language notations to denote various aspects of LTSs and their

behaviour.

Definition 2.5 (Language notations). Let A = 〈S, S0, L,→〉 be an LTS, then:

• A path in A is an alternating sequence of states and actions that can be either finite
or infinite. A finite path is a finite sequence π = s0 a1 s1 a2 s2 . . . sn such that for all
1 ≤ i ≤ n we have si−1 −ai−→ si with si ∈ S, ai ∈ L. An infinite path is an infinite
sequence π = s0 a1 s1 a2 s2 . . . such that for all i ≥ 1 we have si−1 −ai−→ si with si ∈ S,
ai ∈ L. A path π = s0 a1 s1 a2 s2 . . . is called cyclic if si = sj for some i 6= j.

• The set of all paths in A is denoted paths(A). The path operator first yields the first
state on a given path, e.g., for π = s0 a1 s1 we have first(π) = s0. The path operator
states yields the set of states that occur on a given path π, i.e., states(π) = π � S. For
example, for π = s0 a1 s1 τ s0 a2 s2 we have states(π) = { s0, s1, s2 }.

• For an infinite path π, ω-states(π) denotes the set of states that occur infinitely often
on that path, i.e., for a path π = s0 a1 s1 . . . , we define ω-states(π) = { s ∈ states(π) |
∃∞j . sj = s }.

• The path operator trace yields the sequence of actions that is obtained by erasing
all states and internal actions from a given path, i.e., trace(π) = π � L. Such a
sequence of actions is called a trace. For example, for π = s0 a1 s1 τ s2 a2 s3 we have
trace(π) = a1 a2.

• For every s ∈ S, traces(s) denotes the set of all traces of A that correspond to paths
that start in s, i.e., traces(s) = { trace(π) | π ∈ paths(A) ∧ first(π) = s }. The
set of all traces that correspond to paths that start in one of the start states of A is
denoted traces(A) =

⋃
s∈S0 traces(s). Two LTSs B and C are trace equivalent, denoted

B ≈tr C, if traces(B) = traces(C).

8 Chapter 2. Background

• For a finite trace σ and state s ∈ S, reach(s, σ) denotes the set of states in A that
can be reached from s via σ, i.e., reach(s, σ) = { s′ ∈ S | s =

σ⇒ s′ }; for a set of states
S′ ⊆ S, reach(S′, σ) denotes the set of states that can be reached from a state in S′,
i.e., reach(S′, σ) =

⋃
s∈S′ reach(s, σ).

We add subscripts to these language notations to indicate the LTS they refer to, in case this
is not clear from the context.

Example 2.6. First, consider again the LTS A in Figure 2.1a. Clearly, s0 a s1 τ s3 b s5 and
s0 a s2 τ s4 c s6 are finite paths of A. We have traces(A) = { ε, a, a b, a c }. Furthermore, we
find that reach(s0, a) = { s1, s2, s3, s4 } and reach({ s1, s4 }, ε) = { s1, s3, s4 }. Now, consider
the LTS B in Figure 2.1c. Both π1 = s0 a s1 τ s1 τ s1 . . . and π2 = s1 τ s2 τ s3 τ s1 τ s2 . . .
are infinite paths of B. In this case, we have ω-states(π1) = { s1 } and ω-states(π2) =
{ s1, s2, s3 }.

A fundamental concept in automata theory is the notion of determinism.

Definition 2.7 (Determinism). An LTS A is deterministic if the following two conditions
hold:

1. for all s, s′ ∈ S and a ∈ Lτ , if s −a→ s′ , then a 6= τ ;

2. for all s, s′, s′′ ∈ S and a ∈ L, if s −a→ s′ and s −a→ s′′, then s′ = s′′.

Otherwise, A is nondeterministic.

Example 2.8. The LTS A in Figure 2.1a is nondeterministic, since both of the transitions
s0 −a→ s1 and s0 −a→ s2 are enabled in s0. Hence, if a is observed in state s0, we do not
know beforehand whether we end up in state s1 or s2. Furthermore, A contains several
τ -transitions.

When considering infinite paths, the notion of divergence (and convergence) is important.

Definition 2.9 (Divergence). Let A be an LTS and let π ∈ paths(A) be an infinite path
in A. The path π is divergent if it contains only internal transitions, i.e., ai = τ for every
action ai on π. The set of divergent paths of A is denoted dpaths(A). If A contains any
divergent paths, then it is called divergent; otherwise, A is convergent.

Example 2.10. Consider the LTS B in Figure 2.1c. The infinite path π = s1 τ s2 τ s3 τ s1 τ s2 . . .
of B is divergent, as it contains only internal transitions. Futhermore, since |states(π)| =
|{ s1, s2, s3 }| = 3, π is bounded.

2.2.2 Operations

In this section, we take a look at some of the standard operations that can be applied to
LTSs: determinisation, parallel composition and action hiding. It is a well-known fact from
the literature that LTSs are closed under all three operations.

Each nondeterministic LTS can be transformed into a deterministic LTS [Sud06]; the
latter is called the determinisation of the original LTS and is trace equivalent to it [BK08].
This operation is very useful, as it allows one to model a system as an LTS without paying
attention to determinism; it can always be made deterministic afterwards.

2.2. Labelled Transition Systems 9

a

τ

b

(a) A

a

τ

c

(b) B

a

τ τ

b τ τ c

τ
b c

τ

c b

(c) A ‖ B

Figure 2.2: The LTSs A and B, and their parallel composition A ‖ B.

Definition 2.11 (Determinisation of LTSs). The determinisation of an LTS A =
〈S, S0, L,→A 〉 is the LTS det(A) = 〈SD, S

0
D, L,→D 〉, where SD, S0

D and →D are defined as
follows:

SD = ℘(S) \ ∅
S0
D = {S0 }
→D = { (U, a, V) ∈ SD × L× SD | V = reachA(U, a) ∧ V 6= ∅ }

Example 2.12. The determinisation of the nondeterministic LTS A in Figure 2.1a is shown
in Figure 2.1b. In this case, the four individual states s1, s2, s3 and s4 of A are condensed
into one single composite state in det(A), since reach(s0, a) = { s1, s2, s3, s4 }. Note also that
indeed A ≈tr det(A).

Next, we introduce the parallel composition operator. This operator is fundamental in
modelling frameworks for component-based design. It allows one to build complex system
models from smaller ones, thus breaking up the specification of a system into manageable
pieces. Parallel composed LTSs synchronise on shared actions, and can execute the internal
action τ and non-shared actions indepedently from each other.

Definition 2.13 (Parallel composition of LTSs). Given two LTSs A = 〈SA, S0
A, LA,→A 〉

and B = 〈SB, S0
B, LB,→B 〉, the parallel composition of A and B is the LTS A ‖ B =

〈SA‖B, S0
A‖B, LA‖B,→A‖B 〉, where SA‖B, S0

A‖B, LA‖B and →A‖B are defined as follows:

SA‖B = SA × SB
S0
A‖B = S0

A × S0
B

LA‖B = LA ∪ LB
→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × (LA ∩ LB)× SA‖B | s −a→A s′ ∧ t −a→B t′ }

∪ { ((s, t), a, (s′, t)) ∈ SA‖B × ((LA \ LB) ∪ { τ })× SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × ((LB \ LA) ∪ { τ })× SA‖B | t −a→B t′ }

The first clause of the definition of →A‖B ensures that parallel composed LTSs synchro-
nise on shared actions (except the internal action τ). The next two clauses enable them to
perform non-shared actions (including the internal action τ) independently from each other.

10 Chapter 2. Background

a
b

τ

c

(a) A

τ
b

τ

τ

(b) A\{ a, c }

Figure 2.3: The LTSs A and A\{ a, c }.

Example 2.14. Figure 2.2 shows two LTSs A and B, and their parallel composition A ‖ B.
We have assumed LA = { a, b, d } and LB = { a, c, d }, hence LA‖B = { a, b, c, d }. Since a and
d are shared actions, the parallel composition A ‖ B can only execute these actions when
both component LTSs are able to, i.e., A ‖ B synchronises on the a and d actions. The other
actions, including the internal action τ , can be executed independently.

Finally, it is often useful to hide certain actions of a LTS, thereby treating them as internal
actions. For example, when parallel composing two LTSs, some actions are only used for
synchronisation; after parallel composition, they are not needed anymore.

Definition 2.15 (Action hiding in LTSs). Let A = 〈S, S0, L,→A 〉 be an LTS and H ⊆ LO

a set of output labels, then one can hide H in A to obtain the LTS A\H = 〈S, S0, LH ,→H 〉,
where LH and →H are defined as follows:

LH = L \H
→H = { (s, a, s′) ∈ →A | a /∈ H }

∪ { (s, τ, s′) ∈ S × { τ } × S | ∃ a ∈ H . (s, a, s′) ∈ →A }

Hence, the hidden actions are removed from the set of actions, and all transitions for
those actions become τ -transitions.

Example 2.16. Consider the LTS A in Figure 2.3a and assume LA = { a, b, c }. After hiding
the actions a and c, the resulting IOTS is A\{ a, c }, which is shown in Figure 2.3b. We have
LA\{ a,c } = { b }.

2.3 Input-Output Transition Systems

Often, in particular in the context of testing, it is desirable to distinguish between actions
initiated by the environment (inputs), and actions initiated by the system itself (outputs).
To this end, Input-Output Transition Systems (IOTSs) [Tre96a, Tre96b] were developed,
which are an extension of regular LTSs. In the context of IOTSs, we distinguish between
input actions, output actions, and the internal action τ . Input actions are supplied by the
environment to the system, and in response the system can generate outputs, which may also
be generated autonomously by the system. All outputs can be observed by the environment,
except for the internal action, which is an unobservable output. We call the set of all outputs,
together with the internal action, the locally controlled actions of the system.

2.3. Input-Output Transition Systems 11

b?, c?

a?

a?, c?

b?

a?, b?, c?

d!

a?, b?, c?

(a) A

b?

a!
d?

d?

b?
c!

b?, d?

b?, d?

e!

b?, d?

b?, d?

a!

b?, d?

(b) A

a!

b?

c!

e!
d!

a!

b?

d!

b!

e! d!

d!
a!

d! a!

(c) A ‖ B

Figure 2.4: The IOTSs A and B, and their parallel composition A ‖ B. Note that we have
left out some of the b-labelled self-loops from the visualisation of A ‖ B to reduce clutter.

2.3.1 The IOTS Model

Definition 2.17 (Input-Output Transition Systems). An Input-Output Transition System
(IOTS) is a tuple A = 〈S, S0, LI, LO,→〉, such that:

• S is a non-empty set of states;

• S0 ⊆ S is a non-empty set of initial states;

• LI and LO are disjoint sets of input and output labels, respectively;

• → ⊆ S × (LI ∪ LO ∪ { τ })× S is the transition relation.

We define L = LI ∪ LO and Lτ = L ∪ { τ }, and require τ /∈ L.

Remark 2.18. We often suffix a question mark (?) to input labels and an exclamation mark
(!) to output labels, to help distinguishing the two types. These are, however, not part of
the label.

The notations introduced in Definition 2.3 and Definition 2.5 for LTSs also apply to
IOTSs. Compared to regular LTSs, IOTSs partition the set of labels into disjoint sets of
input labels and output labels. Furthermore, we require every IOTS to be input-enabled.

Definition 2.19 (Input-enabledness). An IOTS A = 〈S, S0, LI, LO,→〉 is input-enabled if
s −a→ for all s ∈ S and every a ∈ LI, i.e., A can accept any input in any state.

Example 2.20. Figure 2.4a shows an IOTS A with LI
A = { a, b, c } and LO

A = { d }. Note that
A is indeed input-enabled.

From now on, we assume that all given IOTSs are input-enabled, unless explicitly stated
otherwise.

By requiring IOTSs to be input-enabled, any input initiated by the environment is never
refused by the system. For deterministic systems this requirement can easily be fulfilled by
adding a sink state which has self-loops for all possible actions, and adding transitions for
the missing inputs to that sink state (so-called demonic completion [DNS95, vRT04]). For
nondeterministic systems a solution is provided in [BS08].

12 Chapter 2. Background

2.3.2 Operations

Similar to LTSs, IOTSs support the operations of determinisation, parallel composition and
action hiding. Determinisation for IOTSs is exactly the same as for LTSs. Parallel compo-
sition of IOTSs is different, since rather than synchronising on all shared actions like LTSs,
parallel composed IOTSs synchronise on shared inputs and complementary input-output
pairs, and cannot have shared outputs [DNS95]. Furthermore, when two inputs synchronise
the result is an input transition in the composite automaton, and when a complementary
input and output synchronise, the result is an output transition.

Definition 2.21 (Parallel composition of IOTSs). Given IOTSs A = 〈SA, S0
A, L

I
A, L

O
A,→A 〉

and B = 〈SB, S0
B, L

I
B, L

O
B ,→B 〉 such that LO

A ∩ LO
B = ∅, the parallel composition of A and

B is the IOTS A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B,→A‖B 〉, where SA‖B, S0

A‖B, LI
A‖B, LO

A‖B
and →A‖B are defined as follows:

SA‖B = SA × SB
S0
A‖B = S0

A × S0
B

LI
A‖B = (LI

A ∪ LI
B) \ (LO

A ∪ LO
B)

LO
A‖B = LO

A ∪ LO
B

→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × (LA ∩ LB)× SA‖B | s −a→A s′ ∧ t −a→B t′ }
∪ { ((s, t), a, (s′, t)) ∈ SA‖B × ((LA \ LB) ∪ { τ })× SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × ((LB \ LA) ∪ { τ })× SA‖B | t −a→B t′ }

We have LA‖B = LI
A‖B ∪ L

O
A‖B = LA ∪ LB.

Example 2.22. Figure 2.4 shows two IOTSs A and B, and their parallel composition A ‖ B.
We have assumed that LI

A = { a, b, c }, LO
A = { d }, LI

B = { b, d }, and LO
B = { a, c, e }. Note

that indeed LO
A ∩ LO

B = ∅, as required; hence LI
A‖B = { b } and LO

A‖B = { a, c, d, e }.
Action hiding is exactly the same for IOTSs as for LTSs, except that only output actions

can be hidden.

Definition 2.23 (Action hiding in IOTSs). Let A = 〈S, S0, LI, LO,→A 〉 be an IOTS and
H ⊆ LO a set of output labels, then one can hide H in A to obtain the IOTS A\H =
〈S, S0, LI, LO

H ,→H 〉, where LO
H and →H are defined as follows:

LO
H = LO \H
→H = { (s, a, s′) ∈ →A | a /∈ H }

∪ { (s, τ, s′) ∈ S × { τ } × S | ∃ a ∈ H . (s, a, s′) ∈ →A }

Like LTSs, IOTSs are closed under the operations of determinisation, parallel composi-
tion, and action hiding.

2.4 Input-Output Automata

The IOTSs introduced in the previous section form a subclass of a more general class of
automata called Input-Output Automata (IOAs) [LT87, LT89], which are another type of
LTSs. Just like IOTSs, IOAs distinguish between input actions generated by the environment,
and output actions generated by the system itself. However, IOAs can have multiple internal
actions (rather than just τ). Furthermore, with each IOA a partition of the locally controlled
actions (the combined set of output and internal actions) is associated. This partition is used
to formalise the notion of fair executions.

2.4. Input-Output Automata 13

2.4.1 The IOA Model

Definition 2.24 (Input-Output Automata). An Input-Output Automaton (IOA) is a tuple
A = 〈S, S0, LI, LO, LH, P,→〉, such that:

• S is a non-empty set of states;

• S0 ⊆ S is a non-empty set of initial states;

• LI, LO and LH are pairwise disjoint sets of input, output, and internal labels, respec-
tively;

• P is a partition of LO ∪ LH, i.e., a partition of the locally controlled actions, and is
called the task partition;

• → ⊆ S × (LI ∪ LO ∪ LH)× S is the transition relation.

We define L = LI ∪ LO ∪ LH.

The intuition behind the task partition P is that each element of P represents the set
of locally controlled actions under the control of a particular subcomponent of the whole
system. Hence, an element of P may contain both outputs and internal transitions. The
task partition P plays an important role when it comes to the notion of fairness, as will be
shown later on.

Similar to IOTSs, we require every IOA to be input-enabled. Clearly, for every IOTS
A = 〈S, S0, LI, LO,→〉 there exists a trace-equivalent IOA A′ = 〈S, S0, LI, LO, LH, P,→〉,
with LH = { τ } and P = {LO ∪ { τ } }.
Example 2.25. Let A be an IOA with LO

A = { a, b } and LH
A = { c, d }. An example of a

partition of the locally controlled actions of A would be PA = { { a, c }, { b, d } }. In this case,
A is assumed to consist of two independent subcomponents, which control the sets of actions
{ a, c } and { b, d }, respectively.

Remark 2.26. IOAs are visualised in the same manner as IOTSs, with a question mark (?)
for an input, and an exclamation mark (!) for an output. A label without a suffix is assumed
to be an internal label.

The notations introduced in Definition 2.3 and Definition 2.5 for LTSs also apply to IOAs.
However, since IOAs can have multiple internal labels, the transitional notation =

ε⇒ is more
general for IOAs than for LTSs and IOTSs, which only have one internal label (τ).

Definition 2.27 (Transitional notations for IOAs). Let A be an IOA with s, s′ ∈ S, then:

s =
ε⇒ s′ =def s = s′ or ∃ a1, . . . , an ∈ LH

A . s −a1·...·an−−−−−→ s′

The other transitional notations use this more general definition of =
ε⇒ where applicable.

Similarly, the definitions of determinism and divergence are more general for IOAs than
for LTSs and IOTSs.

Definition 2.28 (Determinism in IOAs). An IOA A is deterministic if the following two
conditions hold:

1. for all s, s′ ∈ S and a ∈ L, if s −a→ s′ , then a /∈ LH
A;

2. for all s, s′, s′′ ∈ S and a ∈ L, if s −a→ s′ and s −a→ s′′, then s′ = s′′.

14 Chapter 2. Background

s0

s1

s2

s4

s3

s5

a? b

b

e!

c

d

f !

(a) A

s0

s2

s1 b

c!

a?

(b) B

Figure 2.5: The IOAs A and B. Note that suffixless labels indicate internal actions

Example 2.29. The IOA A in Figure 2.5a is nondeterministic, as it contains multiple transi-
tions labelled with internal actions.

Definition 2.30 (Divergent path in IOAs). Let A be an IOA and π ∈ paths(A) an infinite
path in A. The path π is divergent if it contains only transitions labelled with internal
actions, i.e., ai ∈ LH

A for every action ai on π.

Example 2.31. Consider the IOA A in Figure 2.5a with LH
A = { b, c, d }. Clearly, the infinite

paths s1 b s1 b s1 . . . and s1 b s2 c s3 d s1 b s2 . . . are both divergent.

The notion of fairness plays an important role in IOAs (and Divergent Quiescent Tran-
sition Systems, as will be explained in Chapter 4). The following definition of a fair path
improves the notion of fair executions given in [LT87, LT89, DNS95], assuming that if an
action from an element of P is infinitely often enabled in an infinite path, then an action
from that same element of P must be executed infinitely often in that path.

Definition 2.32 (Fair path). Let A = 〈S, S0, LI, LO, LH, P,→〉 be an IOA and π =
s0 a1 s1 a2 s2 . . . a path of A. If π is an infinite path, then π is fair if, for every A ∈ P
such that ∃∞j . L(sj) ∩ A 6= ∅, we have ∃∞j . aj ∈ A. Thus, if actions from A are in-
finitely often enabled in the states of path π, then actions from A are infinitely often executed
in the path π. If π is a finite path, then π is fair by default. The set of all fair paths of an
IOA A is denoted fpaths(A).

Hence, under this notion of fairness, each subcomponent of the system (represented by an
element of the set P) that is infinitely often given the chance to execute some of its actions,
will infinitely often execute some of its actions.

Example 2.33. Consider the IOA B in Figure 2.5b. Clearly, π = s0 b s0 b s0 . . . is an infinite
path of A. Now assume that PA = { { b }, { c } }; i.e., the internal b-action and the c-output
are controlled by two independent subcomponents. In this case, the path π would not be fair:
the c-output, which belongs to a different partition than the internal b-action, is infinitely
often enabled, but is never executed. The path π is only fair if PA = { { b, c } }. Hence, if
PA = { { b }, { c } }, then fpaths(A) = ∅, but if PA = { { b, c } }, then fpaths(A) = {π }.

Intuitively, unfair (infinite) paths do not correspond to realistic executions of the system,
since this would imply that subcomponents of a composite IOA would be idle indefinitely,
even though they are able to execute locally controlled actions. Hence, unfair paths are
considered not to occur.

2.4. Input-Output Automata 15

2.4.2 Operations

The determinisation of IOAs proceeds exactly the same as for LTSs and IOTSs. The op-
eration of parallel compositon is also applicable to IOAs. However, since IOAs can have
multiple internal actions and also have an associated partition of the locally controlled ac-
tions, we need to impose some additional constraints to ensure that the component IOAs in
a parallel composition do not use internal actions to communicate, and that every locally
controlled action of the parallel composition is under the control of at most one component
IOA [LT87, LT89]. Two IOAs that satisfy these constraints are said to be compatible.

Definition 2.34 (IOA compatibility). Two IOAs A = 〈SA, S0
A, L

I
A, L

O
A, L

H
A, PA,→A 〉 and

B = 〈SB, S0
B, L

I
B, L

O
B , L

H
B , PB,→B 〉 are compatible if their sets of ouput actions are disjoint,

and no internal action of either appears as an input, output or internal action of the other,
i.e., A and B are compatible if LO

A ∩ LO
B = ∅, LH

A ∩ LB = ∅, and LH
B ∩ LA = ∅.

Two compatible IOAs can be parallel composed in a similar way as IOTSs, as the next
definition shows.

Definition 2.35 (Parallel composition of IOAs). Let A = 〈SA, S0
A, L

I
A, L

O
A, L

H
A, PA,→A 〉

and B = 〈SB, S0
B, L

I
B, L

O
B , L

H
B , PB,→B 〉 be two compatible IOAs. The parallel composition

of A and B is the IOA A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B, L

H
A‖B, PA‖B,→A‖B 〉, where SA‖B,

S0
A‖B, LI

A‖B, LO
A‖B, LH

A‖B, PA‖B and →A‖B are defined as follows:

SA‖B = SA × SB
S0
A‖B = S0

A × S0
B

LI
A‖B = (LI

A ∪ LI
B) \ (LO

A ∪ LO
B)

LO
A‖B = LO

A ∪ LO
B

LH
A‖B = LH

A ∪ LH
B

PA‖B = PA ∪ PB
→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × (LA ∩ LB)× SA‖B | s −a→A s′ ∧ t −a→B t′ }

∪ { ((s, t), a, (s′, t)) ∈ SA‖B × (LA \ LB)× SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × (LB \ LA)× SA‖B | t −a→B t′ }

We have LA‖B = LI
A‖B ∪ L

O
A‖B ∪ L

H
A‖B = LA ∪ LB.

Hence, the partition of locally controlled actions for the parallel composition is simply
the union of the partitions of the locally controlled actions of the component IOAs. The
constraints imposed by the compatibility requirement ensure that this is indeed a valid
partition.

The hiding of actions in an IOA is rather straightforward.

Definition 2.36 (Action hiding in IOAs). Given an IOA A = 〈S, S0, LI, LO, LH, P,→〉 and
a set of outputs H ⊆ LO, hiding H in A yields the IOA A\H = 〈S, S0, LI, LO

H , L
H
H , P,→〉,

where LO
H = LO \H and LH

H = LH ∪ H.

Thus, the hiding operation simply removes the output labels that are to be hidden from
the set of outputs, and adds them to the set of internal labels.

Like LTSs and IOTSs, IOAs are closed under the operations of determinisation, parallel
composition, and action hiding [Tut87].

16 Chapter 2. Background

s0

s1 s2

s3

s5

s4

τ a?

a?

a?

b!

c!

a?

a?

(a) A

s0

s1 s2

s3

s5

s4

τ a?

δ

a?

a?

b!

c!

a?

a?

δ

δ

(b) A′

t0 t1

t2 t3t4

t5

δ

a?

δ

a?

a?

b!

c!

b!

a?

a?

δ
a?

δ

(c) S

Figure 2.6: Visual representation of the construction of the SA S that corresponds to the
IOTS A, alongside the intermediate automaton A′.

2.5 Suspension Automata

As discussed in Section 2.3, Input-Output Transition Systems (IOTSs) can be used to model
the reactive behaviour of a system in terms of inputs and outputs, but cannot explicitly
express the observation of the absence of outputs, also called quiescence [Vaa91, Seg97].
For this, the so-called Suspension Automata (SAs) [Tre96a, Tre96b], an extension of regular
IOTSs, are used. These automata can be used to model all possible observations for a par-
ticular system, including quiescence, and can thus be thought of as ‘observation automata’.
In this section, we give a short overview of SAs.

First of all, a concept that plays an important role in SAs is the so-called quiescent state.
A quiescent state from which the system cannot proceed autonomously, without inputs from
the environment; i.e., a quiescent state is a state in which no output or internal transitions
can be exceuted [Tre96a, Tre96b].

Definition 2.37 (Quiescent state). Let A be an IOTS. A state s ∈ S is quiescent if no
outputs or internal transitions are enabled in that state, i.e., s is called quiescent if for all
a ∈ LO ∪ { τ } we have s 6−a→.

Example 2.38. Consider the IOTS A in Figure 2.6a. The states marked in gray are all
quiescent, as these states have no outgoing output or internal transitions.

Rather than being built from scratch like regular IOTSs, a SA is constructed by taking
an existing (convergent) IOTS and adding δ-labelled self-loops to its quiescent states, and
determinising the result [Tre08]. The δ-label is a special kind of output label that represents
the observation of quiescence, and is not part of the actual output set LO.

Definition 2.39 (Suspension Automata). Given an IOTS A = 〈S, S0
A, L

I, LO,→〉, let A′ =
〈S, S0

A, L
I, LO,→′ 〉 where →′ = → ∪ { (s, δ, s) ∈ S × { δ } × S | s is quiescent in A}. The

Suspension Automaton corresponding to A is then the IOTS S = det(A).

Example 2.40. Figure 2.6 visualises how a SA is constructed for the IOTS A shown in
Figure 2.6a. First, the automaton A′ is obtained from A by introducing new δ-labelled self-
loops (marked in bold) for the quiescent states of A. Next, A′ is determinised, resulting in
the SA S.

2.6. Summary 17

Table 2.1: Comparison of the features of LTSs, IOTSs, IOAs and SAs.

LTSs IOTSs IOAs SAs

internal actions τ τ LH τ
inputs and outputs - + + +
input-enabledness required - + + +
nondeterminism allowed + + + -
divergence allowed + + + -
stand-alone entity + + + -
closed under determinisation + + + +
closed under action hiding + + + ?
closed under parallel composition + + + ?

Since a SA captures all possible observations of a given IOTS, including quiescence, SAs
are perfectly suited to model the behaviour of both specifications and implementations in
model-based testing frameworks such as the industry-leading ioco [Tre96a, Tre96b] frame-
work. The ioco framework, in turn, is used by well-known test generation tools like TGV
[JT05], the Agedis Tool Set [HN04], TestGen [HT99], and TorX [BFd+99, TB03].

However, SAs have some major limitations [Tre08]. First of all, SAs can only be con-
structed for convergent IOTSs, since it is not clear how the notions of divergence and quies-
cence can be reconciled. Furthermore, SAs must necessarily be deterministic. Both of these
requirements clearly limit the number of systems that can be effectively modelled as SAs.
SAs are also implicitly defined: they can only be constructed by taking an existing IOTS and
applying the transformations described in Definition 2.39; they cannot be built from scratch.

Finally, the closure properties of SAs regarding parallel composition and action hiding
have not been investigated, and are therefore unknown. Hence, there is no fully formalised
theory for SAs. In the next chapter, we introduce Quiescent Transition Systems (QTSs),
which also extend IOTSs with the notion of quiescence, and address all these shortcomings
of SAs, except the convergence requirement. This requirement will in turn be lifted by
Divergent Quiescent Transition Systems (DQTSs), which will be introduced in Chapter 4.

2.6 Summary

In this chapter, we have introduced Labelled Transition Systems (LTSs), Input-Output Tran-
sition Systems (IOTSs) and Input-Output Automata (IOAs). LTSs are used to model the
behaviour of systems using states, transitions, a set of actions, and a special internal ac-
tion τ . IOTSs extend LTSs by distinguishing between input actions and output actions.
IOAs further generalise IOTSs by allowing multiple internal actions and partitioning the set
of locally controlled actions (output actions and internal actions) to formalise the notion of
fair executions.

We also briefly discussed Suspension Automata (SAs), which extend IOTSs with support
for quiescence observations using special δ-labelled transitions. Table 2.1 compares some of
the more important features of LTSs, IOTSs, IOAs and SAs. Clearly, SAs show some short-
comings, which we will address by introducing two new types of automata in the following
chapters: Quiescent Transitions Systems (QTSs), which are based on IOTSs; and Divergent
Quiescent Transition Systems (DQTSs), which are based on IOAs.

Chapter 3
Quiescent Transition Systems

This chapter introduces Quiescent Transition Systems (QTSs). Like the Suspension Au-
tomata (SAs) described in Section 2.5, QTSs are a specialisation of regular IOTSs that sup-
port the notion of quiescence. However, a QTS need not necessarily be deterministic, and
can be built from scratch, whereas SAs are implicitly defined and have to be deterministic.

Furthermore, in this chapter we also closely examine several closure and commutativity
properties of QTSs with regards to the determinisation, parallel composition and action
hiding operations, something which has not been done for SAs. Finally, we also define what
exactly it means for a QTS to be well-formed, thus establishing the semantic validity of the
model. Note that the convergence requirement of SAs also applies to QTSs. This requirement
will be lifted by the Divergent Quiescent Transition Systems (DQTSs) introduced in the next
chapter.

Remark 3.1. A basic variant of QTSs was already used in [TBS11] in a testing framework.
An earlier version of the QTS model described here has been published previously by the
author in [STS12a, STS12b].

3.1 The QTS Model

As mentioned earlier, QTSs, like SAs, are a specialisation of regular IOTSs in which the
observation of quiescence is explicitly modelled with a special δ-label.

Definition 3.2 (Quiescent Transition Systems). A Quiescent Transition System (QTS) is
a tuple A = 〈S, S0, LI, LO,→〉, where:

• S is a non-empty set of states;

• S0 ⊆ S is a non-empty set of initial states;

• LI and LO are disjoint sets of input and output labels, respectively. As for regular
IOTSs, we require τ /∈ LI ∪ LO. Furthermore, δ /∈ LI ∪ LO is a special output label
that is used to denote the observation of quiescence;

• → ⊆ S × (LI ∪ LO ∪ { τ, δ })× S is the transition relation.

As for IOTSs, we define L = LI ∪ LO and Lτ = L ∪ { τ }. Given a QTS A, we denote its
components by SA, S0

A, LI
A, LO

A and →A; we omit the subscript when it is clear from the
context which QTS is referred to.

19

20 Chapter 3. Quiescent Transition Systems

s0

s1 s2

s3

s5

s4

s6

τ τ

a?, c?

c?, δ

a?

a?, c?

b!

a?, δ

c?

a?, c?

d!

a?, c? a?, c?

δ δ

Figure 3.1: Visual representation of a QTS A. The gray states are quiescent.

Like regular IOTSs, QTSs must be input-enabled. All other definitions introduced in
Section 2.3 for IOTSs also apply to QTSs. As an important restriction, we do not allow
divergent paths to occur in (regular) QTSs. As said earlier, this restriction will be lifted in
DQTSs, which will be introduced in Chapter 4. Note that, similar to the δ-label of SAs, the
δ-label is a special output label and is not part of LO, the set of regular outputs.

Example 3.3. Figure 3.1 visualises a nondeterministic QTSA. Note the δ-labelled transitions,
which represent the observations of quiescence, i.e., the absence of enabled outputs.

As mentioned in Definition 2.37, we distuinguish a special kind of state in IOTSs: the
so-called quiescent state. For convenience’ sake, we repeat the definition here and apply it
to QTSs, and also introduce a notation for such states. Recall that a δ-labelled transition
originating from such a state represents the absence of locally controlled behaviour, i.e., the
observation of quiescence.

Definition 3.4 (Quiescent states of IOTSs or QTSs). Let A be an IOTS or QTS. A state
s ∈ S is quiescent, denoted q(s), if no locally controlled actions are enabled in that state,
i.e., q(s) if for all a ∈ LO ∪ { τ } we have s 6−a→. The set of all quiescent states of A is denoted
q(A).

Example 3.5. Consider again the QTS A in Figure 3.1. States s1, s2, s5 and s6 are quiescent,
since no locally controlled actions (in this case, the internal action τ and the outputs b and
d) are enabled in those states. Note that state s0 is not quiescent, as the internal action is
enabled in this state.

A system in a quiescent state will be idle until a new input is supplied, and hence quies-
cence may be observed in such a state.

An important detail to note: we consider a state s in which a τ -transition is enabled to
not be quiescent, even if there is no regular output a ∈ LO that is enabled in s. In this,
we follow Tretmans [Tre08]. This may seem like an arbitrary restriction, but this constraint
ensures that QTSs exhibit desirable closure properties (see Section 3.5). Furthermore, since
internal actions are not observable, this restriction does not affect the external (observable)
behaviour of the system.

3.2. Well-formedness 21

δa?

δ

a?b!

c!
a?, δ

a?, δ

a?

a?

(a) A

δ

a?

δ

a?a?

b!
c!

d!
b!

d!

a?

a?, δ a?, δ a?, δ

a?

b!

a?

a?, δa?, δ

δ

(b) B

Figure 3.2: The QTSs A and B that do not satisfy rule R3 and R4, respectively.

3.2 Well-formedness

In the previous sections, we have introduced QTSs, quiescent states and δ-transitions, but
have not yet imposed any restrictions regarding the occurrence of δ-transitions. For instance,
it is possible for a QTS to have a δ-transition that leads to a state in which outputs are
enabled, but that would contradict the semantics of the δ-transition. As a consequence, the
observable behaviour of a syntactically correct QTS might not correspond to any realistic
specification or implementation. To exclude such situations, we define four additional rules
that define exactly which QTSs exhibit correct behaviour. Such QTSs are called well-formed.

Definition 3.6 (Well-formedness for QTSs). A QTS A = 〈S, S0, LI, LO,→〉 is well-formed
if it satisfies the following four rules for all states s, s′, s′′ ∈ S and inputs a ∈ LI:

Rule R1 (Quiescence should be observable): if q(s), then s −δ→.

This rule requires that each quiescent state has an outgoing δ-transition, since in these
states quiescence may be observed, as discussed earlier.

Rule R2 (Quiescent state after observation of quiescence): if s −δ→ s′, then q(s′).

This rule demands that a quiescent state is entered after a δ-transition, i.e., no output
or internal transition may take place before a new input is provided. Note that a δ-
transition may still take place. Since the notion of timing plays no role of QTSs, there
is no particular observation duration associated with quiescence. Hence, a δ-transition
means that the system has not produced any outputs indefinitely; therefore, enabling any
outputs after a δ-transition would clearly be erroneous. Internal transitions are also not
allowed directly after a δ-transition, as this simplifies the theory and ensures consistency
with Definition 3.4. Again, since internal actions are not observable, this restriction does
not affect the possible external (observable) behaviour of the system.

Rule R3 (Quiescence introduces no new behaviour): if s −δ→ s′, then traces(s′) ⊆ traces(s).

This rule prevents an observation of quiescence from enabling new behaviour, and pro-
hibits a situation as in the QTS A in Figure 3.2a. Here the trace a c can only be observed
after observing quiescence. Thus, the observation of quiescence enables new behaviour.

22 Chapter 3. Quiescent Transition Systems

This is counterintuitive, since there is no notion of timing associated with the QTS model.
Hence, behaviour is enabled either immediately or not at all, but quiescence should never
enable new behaviour.

Rule R4 (Continued quiescence preserves behaviour): if s −δ→ s′ and s′ −δ→ s′′, then
traces(s′′) = traces(s′).

This rule ensures that the behaviour that can be observed after a single observation of
quiescence, is the same as the behaviour that can be observed after multiple observations
of quiescence in a row. This rule prohibits a situation as in the QTS B in Figure 3.2b.
Here, the behaviour after two δ-transitions differs from the behaviour after the first.
Since quiescence represents the fact that no outputs are observed and there is no notion
of timing in the QTS model, there can be no difference between observing it once or
multiple times in succession.

From now on, we assume that all given QTSs are well-formed.

Note that a trace of a QTS can contain a sequence of δ-actions. Although this might
seem odd, it corresponds to the practical testing scenario of observing a time-out rather than
an output more than once in a row.

In Section 3.6, we fully discuss the rationale behind these well-formedness rules and look
at some alternative rules.

Remark 3.7. In [Wil07] a definition for valid deterministic SAs is given, alongside four condi-
tions to which valid SAs should conform. These rules, although denoted differently, coincide
exactly with the (less complex) rules R1, R2, R3 and R4 given above. Hence, valid SAs and
well-formed QTSs form the same subclass of quiescence-enabled IOTSs.

3.3 Deltafication: from IOTS to QTS

Usually, the specification and implementation of a system are given as IOTSs, rather than
QTSs. During testing, however, we typically observe the outputs of the system generated in
response to inputs from the environment; thus, it is useful to be able to refer to the absence
of outputs (i.e., quiescence) explicitly. Hence, we need a way to convert an IOTS to a QTS
that captures all possible observations of it, including quiescence; this conversion is called
deltafication and similar to the way SAs are constructed from IOTSs.

Definition 3.8 (Deltafication of IOTSs). Let A = 〈S, S0, LI, LO,→A 〉 be an IOTS with
δ /∈ L. The deltafication of A is the QTS δ(A) = 〈S, S0, LI, LO,→δ 〉, where →δ is defined
as follows:

→δ = →A ∪ { (s, δ, s) ∈ S × { δ } × S | s ∈ q(A) }

Thus, the deltafication of an IOTS A simply adds δ-labelled self-loops to all quiescent
states in A.

Example 3.9. Consider the IOTS A in Figure 3.3a. The quiescent states of A are s1, s3, s5
and s6, and have been marked gray. As a result, these states acquire a δ-labelled self-loop
in the deltafication of A, i.e., δ(A), as shown in Figure 3.3b.

The following theorem shows that deltafication yields a well-formed QTS.

Theorem 3.10. Given an IOTS A such that δ /∈ L, δ(A) is a well-formed QTS.

3.3. Deltafication: from IOTS to QTS 23

s0

s1 s2

s3 s4

s5 s6

b! a?

a?

a?

τ

τ

a? a?

a? a?

(a) A

s0

s1 s2

s3 s4

s5 s6

b!

a?, δ

a?

τ

a?

τδ

a? a?

a?, δ a?, δ

(b) δ(A)

Figure 3.3: Deltafication of an IOTS A.

Proof. Let A = 〈S, S0, LI, LO,→A 〉 be an IOTS such that δ /∈ L, and let δ(A) =
〈S, S0, LI, LO,→δ 〉 be its deltafication, as defined in Definition 3.8. To show that δ(A)
is a well-formed QTS, we need to prove that δ(A) satisfies each of the rules R1, R2, R3 and
R4. In the following, we use tracesδ(s) to denote the set of all traces of δ(A) starting in the
state s ∈ S.

1. To prove that δ(A) satisfies rule R1, we must show that for all states s ∈ S:

if q(s), then s −δ→δ

Let s ∈ S be any state such that q(s) holds in δ(A). Since deltafication doesn’t
change any existing transitions, q(s) then also holds in A. By Definition 3.8, we have

(s, δ, s) ∈ →δ after deltafication and therefore s −δ→δ.

2. To prove that δ(A) satisfies rule R2, we must show that for all states s, s′ ∈ S:

if s −δ→δ s
′, then q(s′)

Consider any transition s −δ→δ s
′ in δ(A) with s, s′ ∈ S. By Definition 3.8, we have

s = s′, and s (and therefore also s′) is quiescent.

3. To prove that δ(A) satisfies rule R3, we must show that for all states s, s′ ∈ S:

if s −δ→δ s
′, then tracesδ(s

′) ⊆ tracesδ(s)

Consider any transition s −δ→δ s
′ in δ(A) with s, s′ ∈ S. By Definition 3.8, we have

s = s′, and therefore tracesδ(s
′) ⊆ tracesδ(s).

4. To prove that δ(A) satisfies rule R4, we must show that for all states s, s′, s′′ ∈ S:

if s −δ→δ s
′ and s′ −δ→δ s

′′, then tracesδ(s
′′) = tracesδ(s

′)

Consider any pair of transitions s −δ→δ s
′ and s′ −δ→δ s

′′ with s, s′, s′′ ∈ S. By Defini-
tion 3.8, we have s′ = s′′, and therefore tracesδ(s

′) = tracesδ(s
′′).

24 Chapter 3. Quiescent Transition Systems

δ

a? b?

a?, b?

c!

a?, b?

d!

δ

a?, b?

δ

a?, b?

(a) A

a!

b!

δ

(b) B

a!

b!
c!

c!

δ

b!

δ

(c) A ‖ B

Figure 3.4: The QTSs A, B, and their parallel composition A ‖ B.

3.4 Operations

Since QTSs are a specialisation of IOTSs, all operations that are applicable to IOTSs (such
as determinisation, parallel composition and hiding of actions) are also applicable to QTSs.
Determinisation for QTSs is exactly the same as for IOTSs, but there are some minor differ-
ences for parallel composition and action hiding.

3.4.1 Parallel Composition

Similar to IOTSs, we require parallel composed QTSs to synchronise on shared inputs and
complementary input-output pairs. However, we also require QTSs to synchronise on δ-
transitions, as a parallel composition of two QTSs can only be quiescent when both compo-
nent QTSs are.

Definition 3.11 (Parallel composition of QTSs). Let A = 〈SA, S0
A, L

I
A, L

O
A,→A 〉 and B =

〈SB, S0
B, L

I
B, L

O
B ,→B 〉 be two QTSs such that LO

A ∩ LO
B = ∅. The parallel composition of

A and B is the QTS A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B,→A‖B 〉, where SA‖B, S0

A‖B, LI
A‖B,

LO
A‖B and →A‖B are defined as follows:

SA‖B = SA × SB
S0
A‖B = S0

A × S0
B

LI
A‖B = (LI

A ∪ LI
B) \ (LO

A ∪ LO
B)

LO
A‖B = LO

A ∪ LO
B

→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × ((LA ∩ LB) ∪ { δ })× SA‖B | s −a→A s′ ∧ t −a→B t′ }
∪ { ((s, t), a, (s′, t)) ∈ SA‖B × ((LA \ LB) ∪ { τ })× SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × ((LB \ LA) ∪ { τ })× SA‖B | t −a→B t′ }

As with parallel composed IOTSs, we have LA‖B = LI
A‖B ∪ L

O
A‖B = LA ∪ LB.

The first clause of→A‖B ensures that parallel composed QTSs synchronise both on shared
actions and the δ-label. The next two clauses enable them to perform non-shared actions
independently from each other.

3.5. Properties 25

s0 s1

s2

a!

τ

b!

(a) A

s0 s1

s2

τ

τ

b!

(b) A\{ a }

Figure 3.5: The QTSs A and A\{ a }.

Example 3.12. See Figure 3.4 for two QTSs A and B, and their parallel composition A ‖ B.
Note the synchronisation on the δ-transitions.

3.4.2 Action Hiding

The hiding of outputs in QTSs is exactly the same as for IOTSs, except that we do not allow
the special output label δ to be hidden, as this label doesn’t represent a specific output but
rather (the observation of) a lack of outputs. Furthermore, since we disallow divergent paths
in QTSs, we do not allow the hiding of output labels to lead to the creation of τ -loops, i.e.,
cyclic divergent paths.

Definition 3.13 (Action hiding in QTSs). Let A = 〈S, S0, LI, LO,→A 〉 be a QTS and
H ⊆ LO a set of output labels. If A does not contain a cyclic path s0 a1 s1 a2 . . . such
that for all ai we have ai ∈ H ∪ { τ }, then one can hide H in A to obtain the QTS
A\H = 〈S, S0, LI, LO

H ,→H 〉, where LO
H and →H are defined as follows:

LO
H = LO \H
→H = { (s, a, s′) ∈ →A | a /∈ H }

∪ { (s, τ, s′) ∈ S × { τ } × S | ∃ a ∈ H . (s, a, s′) ∈ →A }

Example 3.14. Consider the QTS A in Figure 3.5a and assume LA = { a, b }. After hiding
the output action a, the resulting QTS is A\{ a }, which is shown in Figure 3.5b. We have
LA\{ a } = { b }. Note that we cannot hide both the output actions a and b, as this would
result in the τ -loop s0τs1τs2τs0.

3.5 Properties

In this section, we present several important results regarding QTSs. First, they are closed
under all operations mentioned previously. Second, they have many useful commutativity
properties regarding function composition of deltafication and the other operations.

3.5.1 Closure Properties

It turns out that well-formed QTSs are closed under all operations defined thus far: deter-
minisation, parallel composition, and action hiding. Therefore, these operations are indeed
well-defined for well-formed QTSs.

Theorem 3.15. Well-formed QTSs are closed under determinisation, i.e., given a well-
formed QTS A, det(A) is also a well-formed QTS.

26 Chapter 3. Quiescent Transition Systems

Proof. Let A = 〈S, S0, LI, LO,→A 〉 be a well-formed QTS and let det(A) =
〈SD, S

0
D, L

I, LO,→D 〉 be its determinisation, as defined in Definition 2.11. To prove that
well-formed QTSs are closed under determinisation we must show that det(A) is a well-
formed QTS, i.e., that it satisfies each of the rules R1, R2, R3 and R4. In the following, we
use tracesD(U) to denote the set of all traces of det(A) starting in the state U ∈ SD.

1. To prove that det(A) satisfies rule R1, we must show that for all states U ∈ SD:

if q(U), then U −δ→D

Let U ∈ SD be any state such that q(U) holds in det(A). This implies that all states
s ∈ U are quiescent in A. From rule R1 it follows that for every state s ∈ U there
exists another state s′ ∈ S such that s −δ→A s′. Therefore reachA(U, δ) 6= ∅. By

Definition 2.11, we then have (U, δ, reachA(U, δ)) ∈ →D. Thus, U −δ→D.

2. To prove that det(A) satisfies rule R2, we must show that for all states U, V ∈ SD:

if U −δ→D V , then q(V)

Consider any transition U −δ→D V with U, V ∈ SD. If U −δ→D V , then, by Definition 2.11,
V = reachA(U, δ) and V 6= ∅. Hence, for every state s′ ∈ V there exists a state s ∈ U
such that s −δ→A s′. Using rule R2 we can then conclude that every s′ ∈ V is quiescent
in A, thus q(V) holds in det(A).

3. To prove that det(A) satisfies rule R3, we must show that for all states U, V ∈ SD:

if U −δ→D V , then tracesD(V) ⊆ tracesD(U)

Consider any transition U −δ→D V with U, V ∈ SD. Assume σ ∈ tracesD(V). We
must show that also σ ∈ tracesD(U). If σ ∈ tracesD(V), then there clearly must exist

a state s′ ∈ V such that s′ =
σ⇒A. Since U −δ→D V , it follows from Definition 2.11

that V = reachA(U, δ) and V 6= ∅. Hence, there must exist a state s ∈ U such that

s −δ→A s′. Using rule R3 we can then conclude that tracesA(s′) ⊆ tracesA(s), and
therefore s =

σ⇒A. Since s ∈ U , it follows that σ ∈ tracesD(U).

4. To prove that det(A) satisfies rule R4, we must show that for all states U, V,W ∈ SD:

if U −δ→D V and V −δ→D W , then tracesD(W) = tracesD(V)

Consider any pair of transitions U −δ→D V and V −δ→D W , with U, V,W ∈ SD. To prove
that tracesD(W) = tracesD(V), we must show that both tracesD(W) ⊆ tracesD(V) and
traces(V) ⊆ tracesD(W). The former follows directly from rule R3, so all that’s left to
prove is that tracesD(V) ⊆ tracesD(W).

Assume σ ∈ tracesD(V). We must show that also σ ∈ tracesD(W). If σ ∈ tracesD(V),

then there clearly must exist a state s′ ∈ V such that s′ =
σ⇒A. Since U −δ→D V , it follows

that there exists a s ∈ U such that s −δ→A s′. Furthermore, it follows from rule R2 that

V is quiescent, and therefore all states in V are quiescent, including s′. Since V −δ→D W ,
we have W = reach(V, δ) and W 6= ∅. We can then conclude, using rule R1, that there

must exist a state s′′ ∈ W such that s′ −δ→A s′′. Thus, we have s −δ→A s′ −δ→A s′′. From
rule R4 it then follows that traces(s′′) = traces(s′) and consequently s′′ =

σ⇒A. Since
s′′ ∈W , it follows that σ ∈ tracesD(W).

3.5. Properties 27

Theorem 3.16. Well-formed QTSs are closed under parallel composition, i.e., given two
well-formed QTSs A and B, A ‖ B is also a well-formed QTS.

Proof. Let A = 〈SA, S0
A, L

I
A, L

O
A,→A 〉 and B = 〈SB, S0

B, L
I
B, L

O
B ,→B 〉 be two well-formed

QTSs such that LO
A ∩ LO

B = ∅. Furthermore, let A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B,→A‖B 〉

be their parallel composition, as defined in Definition 3.11. To prove that well-formed QTSs
are closed under parallel composition we must show that A ‖ B is a well-formed QTS, i.e.,
we need to prove that A ‖ B satisfies each of the rules R1, R2, R3 and R4.

1. To prove that A ‖ B satisfies rule R1, we must show that for every state (s, t) ∈ SA‖B:

if q((s, t)), then (s, t) −δ→A‖B

Let (s, t) ∈ SA‖B be any state such that q((s, t)) holds in A ‖ B. In this case, there
is no a ∈ LO

A‖B ∪ { τ } such that (s, t) −a→A‖B. Since both A and B are input-enabled,

it follows from Definition 3.11 that there is no a ∈ LO
A ∪ { τ } such that s −a→A and no

a ∈ LO
B ∪ { τ } such that t −a→B. Hence, both s and t are quiescent, and by rule R1 we

have s −δ→A and t −δ→B. From Definition 3.11 it then follows that (s, t) −δ→A‖B.

2. To prove that A ‖ B satisfies rule R2, we must show that for all pairs of states
(s, t), (s′, t′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′), then q((s′, t′))

Consider any transition (s, t) −δ→A‖B (s′, t′) with (s, t), (s′, t′) ∈ SA‖B. From Definition

3.11 it then follows that s −δ→A s′ and t −δ→B t′. By rule R2, both s′ and t′ are quiescent.
Thus, by Definition 3.11, q((s′, t′)) holds in A ‖ B.

3. To prove that A ‖ B satisfies rule R3, we must show that for all pairs of states
(s, t), (s′, t′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′), then tracesA‖B((s′, t′)) ⊆ tracesA‖B((s, t))

Consider any transition (s, t) −δ→A‖B (s′, t′) with (s, t), (s′, t′) ∈ SA‖B. Assume σ ∈
tracesA‖B((s′, t′)). We have to show that also σ ∈ tracesA‖B((s, t)). Since (s, t) −δ→A‖B
(s′, t′), it follows from Definition 3.11 that s −δ→A s′ and t −δ→B t′. By rule R3, we then
have tracesA(s′) ⊆ tracesA(s) and tracesB(t′) ⊆ tracesB(t).

Additionally, note that σ ∈ tracesA‖B((s′, t′)) implies that there is a path

π = (s′0, t
′
0) −a1−→A‖B (s′1, t

′
1) −a2−→A‖B . . . −

an−1−−−→A‖B (s′n−1, t
′
n−1) −an−→A‖B (s′n, t

′
n)

for some n ≥ |σ|, where (s′0, t
′
0) = (s′, t′) and trace(π) = σ. Note that some of the

actions ai can be equal to τ , and that not all states si and ti have to be distinct.

We prove by induction on the length of the path π that (1) s′ =
ρA
=⇒A s′n and t′ =

ρB
=⇒B t′n,

where ρA = σ � (LA ∪ { δ }) and ρB = σ � (LB ∪ { δ }), that (2) s =
ρA
=⇒A and

t =
ρB
=⇒B, and that (3) (s, t) =

σ⇒A‖B (sm, tm) for every pair (sm, tm) ∈ reachA(s, ρA) ×
reachB(t, ρB). Note that the last part implies that σ ∈ tracesA‖B((s, t)), which is what
we needed to show (the first two parts are needed for the induction).

28 Chapter 3. Quiescent Transition Systems

Base case. Let |π| = 0, i.e., π is the empty path and (s′n, t
′
n) = (s′, t′). This implies

that σ = ρA = ρB = ε, and hence s′ =
ρA
=⇒A s′n and t′ =

ρB
=⇒B t′n. Also, s =

ρA
=⇒A and

t =
ρB
=⇒B since ε ∈ tracesA(s) and ε ∈ tracesB(t). To see why (s, t) =

σ⇒A‖B (sm, tm)

for every (sm, tm) ∈ reachA(s, ρA) × reachB(t, ρB), note that since σ = ρA = ρB = ε,
reachA(t, ρA) and reachB(t, ρB) contain precisely all states that can be reached from s
and t, respectively, by only taking τ -transitions. By Definition 3.11, these τ -transitions
(if any) can also be executed in all possible interleavings starting from (s, t), since A
and B do not synchronise on τ -transitions.

Inductive case. Let π′ be the path from (s′0, t
′
0) to (s′n−1, t

′
n−1), and let σ′ =

trace(π′). Assume that (1) s′ =
ρ′A=⇒A s′n−1 and t′ =

ρ′B=⇒B t′n−1, where ρ′A = σ′ �

(LA ∪ { δ }) and ρ′B = σ′ � (LB ∪ { δ }), that (2) s =
ρ′A=⇒A and t =

ρ′B=⇒B, and that

(3) (s, t) =
σ′
=⇒A‖B (sm, tm) for every pair (sm, tm) ∈ reachA(s, ρ′A)× reachB(t, ρ′B). Let

σ = σ′ a = trace(π). Since σ ∈ tracesA‖B((s′, t′)), we have a ∈ LA‖B ∪ { ε, δ }. We look
at the cases a = ε, a ∈ LA \ LB, a ∈ LB \ LA, and a ∈ (LA ∩ LB) ∪ { δ } separately.

• If a = ε, then apparently an = τ and σ = σ′ε = σ′. By Definition 3.11, this implies
that either s′n−1 = s′n and t′n−1 −τ→B t′n, or t′n−1 = t′n and s′n−1 −τ→A s′n. Both cases

imply that s′ =
ρA
=⇒A s′n and t′ =

ρB
=⇒B t′n, since ρi = ρ′i · (a � (LA ∪ { δ })) =

ρ′i · (ε � (LA ∪ { δ })) = ρ′i for i ∈ {A,B } and we assumed s′ =
ρ′A=⇒A s′n−1 and

t′ =
ρ′B=⇒B t′n−1. Also, since ρ′i = ρi and σ′ = σ, by the induction hypothesis we have

s =
ρA
=⇒A, t =

ρB
=⇒B, and (s, t) =

σ⇒A‖B (sm, tm) for every (sm, tm) ∈ reachA(s, ρA)×
reachB(t, ρB).

• If a ∈ LA \ LB, then an = a and (s′n−1, t
′
n−1) −an−→A‖B (s′n, t

′
n) implies, by Defini-

tion 3.11, that s′n−1 −a→A s′n and t′n−1 = t′n. Since s′ =
ρ′A=⇒A s′n−1 and ρA = ρ′A · a,

this implies that s′ =
ρA
=⇒A s′n, and since t′ =

ρ′B=⇒B t′n−1 and ρ′B = ρB, we have

t′ =
ρB
=⇒B t′n. Since tracesA(s′) ⊆ tracesA(s) and tracesB(t′) ⊆ tracesB(t), also

s =
ρA
=⇒A and t =

ρB
=⇒B. Clearly, reachB(t, ρB) = reachB(t, ρ′B), since ρB = ρ′B. Fur-

thermore, for every state v ∈ reachA(s, ρA) there exists a state u ∈ reachA(s, ρ′A)

such that u =
a⇒A v. Hence, since (s, t) =

σ′
=⇒A‖B (sm, tm) for every pair (sm, tm) ∈

reachA(s, ρ′A) × reachB(t, ρ′B), by Definition 3.11 also (s, t) =
σ⇒A‖B (sn, tn) for

every pair (sn, tn) ∈ reachA(s, ρA)× reachB(t, ρB).

• If a ∈ LB \ LA, the proof is symmetrical to the previous case.

• If a ∈ LA ∩ LB or a = δ, then an = a and (s′n−1, t
′
n−1) −an−→A‖B (s′n, t

′
n) implies,

by Definition 3.11, that s′n−1 −a→A s′n and t′n−1 −a→B t′n. Since s′ =
ρ′A=⇒A s′n−1 and

ρA = ρ′A · a, this implies that s′ =
ρA
=⇒A s′n; t′ =

ρA
=⇒B t′n follows symmetrically.

Since tracesA(s′) ⊆ tracesA(s) and tracesB(t′) ⊆ tracesB(t), also s =
ρA
=⇒A and

t =
ρB
=⇒B. Furthermore, for every state v ∈ reachA(s, ρA) there exists a state

u ∈ reachA(s, ρ′A) such that u =
a⇒A v; for reachB(t, ρB) the same property (but

with reachB(t, ρ′B) rather than reachA(s, ρ′A)) holds. Hence, since (s, t) =
σ′
=⇒A‖B

(sm, tm) for every pair (sm, tm) ∈ reachA(s, ρ′A)×reachB(t, ρ′B), by Definition 3.11
also (s, t) =

σ⇒A‖B (sn, tn) for every pair (sn, tn) ∈ reachA(s, ρA)× reachB(t, ρB).

3.5. Properties 29

4. To prove that A ‖ B satisfies rule R4, we must show that for all pairs of states
(s, t), (s′, t′),
(s′′, t′′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′) and (s′, t′) −δ→A‖B (s′′, t′′),

then tracesA‖B((s′, t′)) = tracesA‖B((s′′, t′′))

Consider any pair of transitions (s, t) −δ→A‖B (s′, t′) and (s′, t′) −δ→A‖B (s′′, t′′) with (s, t),

(s′, t′), (s′′, t′′) ∈ SA‖B. From Definition 3.11 it follows that s −δ→A s′, s′ −δ→A s′′,

t −δ→B t′ and t −δ→B t′′. By rule R4, we then have tracesA(s′) = tracesA(s′′) and
tracesB(t′) = tracesB(t′′). To prove that tracesA‖B((s′, t′)) = tracesA‖B((s′′, t′′)), we
must prove that both tracesA‖B((s′, t′)) ⊆ tracesA‖B((s′′, t′′)) and tracesA‖B((s′′, t′′)) ⊆
tracesA‖B((s′, t′)). The latter follows directly from rule R3, so all that’s left to show is
tracesA‖B((s′, t′)) ⊆ tracesA‖B((s′′, t′′)). The proof for this is similar to the proof
for rule R3, but using the fact that tracesA(s′) = tracesA(s′′) and tracesB(t′) =
tracesB(t′′), instead of tracesA(s′) ⊆ tracesA(s) and tracesB(t′) ⊆ tracesB(t).

As mentioned in Definition 3.13, we do not allow the hiding of actions to lead to the
creation of divergent paths. Assuming this does not occur, QTSs are also closed under the
operation of action hiding.

Theorem 3.17. Well-formed QTSs are closed under action hiding, i.e., given a well-formed
QTS A and a set of labels H ⊆ LO

A such that there is no cyclic path π = s0a1s1a2s2 . . . in A
with ai ∈ (H ∪ { τ }) for all ai, A\H is also a well-formed QTS.

Proof. Let A = 〈S, S0, LI, LO,→A 〉 be a well-formed QTS and let H ⊆ LO be a set of
outputs. We then have A\H = 〈S, S0, LI, LO \H,→H 〉, as defined in Definition 3.13. To
prove that well-formed QTSs are closed under action hiding we must show that A\H is a
well-formed QTS, i.e., that it satisfies each of the rules R1, R2, R3 and R4. In the following,
we use tracesH(s) to denote the set of all traces of A\H starting in the state s ∈ S.

1. To prove that A\H satisfies rule R1, we must show that for all states s ∈ S:

if q(s), then s −δ→H

Let s ∈ S be any state such that q(s) holds in A\H. Since hiding of actions effectively
relabels output-transitions to internal transitions, it follows that q(s) must also hold in

A. By rule R1, we then have s −δ→A. Since hiding does not change existing δ-transitions,

we then also have s −δ→H .

2. To prove that A\H satisfies rule R2, we must show that for all states s, s′ ∈ S:

if s −δ→H s′, then q(s′)

Consider any transition s −δ→H s′ with s, s′ ∈ S. It follows from Definition 3.13 that

if s −δ→H s′, then s −δ→A s′, and by rule R2 it then follows that s′ must have been
quiescent prior to hiding. Since hiding does not introduce new output-transitions or
internal transitions for quiescent states, it follows that s′ is still quiescent in A\H.

30 Chapter 3. Quiescent Transition Systems

s0

s1

a!

δ

(a) A

s0

s1

τ

δ

(b) A\{ a }

Figure 3.6: Well-formed QTSs are not closed under action hiding if states with internal
transitions are considered quiescent.

3. To prove that A\H satisfies rule R3, we must show that for all states s, s′ ∈ S:

if s −δ→H s′, then tracesH(s′) ⊆ tracesH(s)

Consider any transition s −δ→H s′ with s, s′ ∈ S. It follows from Definition 3.13 that

if s −δ→H s′, then s −δ→A s′, and by rule R3 we have tracesA(s′) ⊆ tracesA(s). Clearly,
traces(A\H) = traces(A) � (L \H), and therefore tracesH(s) = tracesA(s) � (L \H)
and tracesH(s′) = tracesA(s′) � (L \H). Thus, since tracesA(s′) ⊆ tracesA(s), we have
tracesA(s′) � (L\H) ⊆ tracesA(s) � (L\H), and consequently tracesH(s′) ⊆ tracesH(s).

4. To prove that A\H satisfies rule R4, we must show that for all states s, s′, s′′ ∈ S:

if s −δ→H s′ and s′ −δ→H s′′, then tracesH(s′) = tracesH(s′′)

Consider any pair of transitions s −δ→H s′ and s′ −δ→H s′′ with s, s′, s′′ ∈ S. It fol-

lows from Definition 3.13 that if s −δ→H s′ and s′ −δ→H s′, then s −δ→A s′ and s′ −δ→A
s′′; and therefore, by rule R4, tracesA(s′) = tracesA(s′′). Clearly, traces(A\H) =
traces(A) � (L\H), and therefore tracesH(s′) = tracesA(s′) � (L\H) and tracesH(s′′) =
tracesA(s′′) � (L \ H). Thus, since tracesA(s′) = tracesA(s′′), we have tracesA(s′) �
(L \H) = tracesA(s′′) � (L \H), and consequently tracesH(s′) = tracesH(s′′).

As a side note, earlier we mentioned that quiescent states may not have internal tran-
sitions enabled, since otherwise well-formed QTSs would no longer be closed under certain
operations. To see that this is indeed the case, consider the QTS A in Figure 3.6a. Clearly,
this QTS is well-formed. In particular, the state s0 does not have a δ-labelled self-loop, since
the output a is enabled in this state. Now, consider what happens if we hide this output
a, as shown in Figure 3.6b. Assuming that quiescent states may have internal transitions
enabled, the QTS A\{ a } no longer satisfies rule R1: the state s0 is now quiescent, but does
not have an outgoing δ-transition.

3.5.2 Commutativity Properties

Now, we investigate the commutativity of function composition of deltafication with deter-
minisation, action hiding and parallel composition, when applied to QTSs. Here, we are only
interested in trace equivalence, since two QTSs behave the same if they have the same sets
of traces. Thus, we consider the function compositions of two operations to be commutative

3.5. Properties 31

a? a?

b! a?

(a) A

a?

b! a?

(b) det(A)

a?

δ

a?

b! a?

δ

δ δ

(c) δ(A)

δ

a?

b!

δ

a?

δ

(d) δ(det(A))

δ

a?

b!

δ

δ
a?

a?

δ δ

(e) det(δ(A))

Figure 3.7: The determinisation and deltafication of the IOTS A do not commute. Note
that some a-labelled self-loops have been left out to reduce clutter. Examples taken from
[TBS11].

if the end results of applying both operations in either order are trace equivalent. We will
show that parallel composition and action hiding can safely be swapped with deltafication,
but that determinisation has to precede deltafication to get sensible results.

Proposition 3.18. Deltafication and determinisation do not commute, i.e., given an IOTS
A such that δ /∈ L, it is not necessarily the case that det(δ(A)) ≈tr δ(det(A)).

Proof. Consider the IOTS A, and its determinisation det(A) and deltafication δ(A), shown
in Figure 3.7. Clearly, the deltafication of the determinisation of A (i.e., δ(det(A))), shown
in Figure 3.7d, results in an incorrect observation automaton, as it does not model the fact
that in the nondeterministic QTS δ(A) quiescence may be observed after an initial a input,
as required by rule R1.

Contrary to the deltafication of the determinisation of A, the determinisation of the
deltafication of A (i.e., det(δ(A))), which is shown in Figure 3.7e, does preserve the fact that
quiescence may be observed after an initial a input. This shouldn’t come as a surprise, since
for any IOTS A the determinisation det(A) is trace equivalent to the original automaton
[BK08].

Thus, when transforming a nondeterministic IOTS A to a deterministic, well-formed
QTS, one should first derive δ(A) and afterwards determinise.

The following results show that deltafication does commute with both action hiding and
parallel composition.

Theorem 3.19. Deltafication and action hiding commute, i.e., given an IOTS A such that
δ /∈ L and a set of labels H ⊆ LO

A, we have δ(A\H) ≈tr δ(A) \H.

Proof. The hiding of actions only results in the relabelling of output transitions to internal
transtions, while deltafication only results in the addition of δ-labelled self-loops to states
that have no outgoing output or internal transitions. Hence, the two operations work on
disjoint sets of states; commutativity is therefore immediate.

Note that we implicitly assume that the hiding of actions does not lead to the creation
of divergent paths.

Theorem 3.20. Deltafication and parallel composition commute, i.e., given two IOTSs A
and B such that δ /∈ LA and δ /∈ LB, and LO

A ∩ LO
B = ∅, we have δ(A ‖ B) ≈tr δ(A) ‖ δ(B).

32 Chapter 3. Quiescent Transition Systems

Proof. Let A = 〈SA, S0
A, L

I
A, L

O
A,→A 〉 and B = 〈SB, S0

B, L
I
B, L

O
B ,→B 〉 be two IOTSs such

that δ /∈ LA, δ /∈ LB, and LO
A ∩ LO

B = ∅, and let δ(A ‖ B) = 〈SC , S0
C , L

I
C , L

O
C ,→C 〉 and

δ(A) ‖ δ(B) = 〈SD, S0
D, L

I
D, L

O
D,→D 〉, as defined by Definition 3.8 and Definition 3.11. We

have SC = SD = SA × SB and S0
C = S0

D = S0
A × S0

B, since deltafication does not change
any states; we also have LC = LD = LA ∪ LB. To prove that δ(A ‖ B) ≈tr δ(A) ‖ δ(B),
we will prove a stronger property: we will show a bijection exists between the two. Clearly,
two automata that are isomorphic are also trace equivalent. Hence, we will show that there
exists a bijection h : SC → SD such that the following holds:

1. for all s0 ∈ S0
C there exists a t0 ∈ S0

D such that h(s0) = t0, and vice versa;

2. s −a→C s′ if and only if h(s) −a→D h(s′), for all s, s′ ∈ SC and a ∈ LC ∪ { δ, τ }.

Since SC = SD, we let h be the identity function, i.e., for all s ∈ SC we have h(s) = s.
Clearly, h is a bijection, and since S0

C = S0
D, for all s0 ∈ S0

C there exists a t0 ∈ S0
D such

that h(s0) = t0, namely t0 = s0; and symmetrically for all t0 ∈ S0
D. Since h is the identity

function, to prove that s −a→C s′ if and only if h(s) −a→D h(s′), we must show that s −a→C s′
if and only if s −a→D s′, i.e., if s −a→C s′, then s −a→D s′, and if s −a→D s′, then s −a→C s′. We
will only prove the former case, the proof for the latter case is largely symmetrical. We look
at the cases (1) a = τ ; (2) a = δ; (3) a ∈ LI

C ; and (4) a ∈ LO
C , separately. For the various

proofs, let s = (u, v) and s′ = (u′, v′) with u, u′ ∈ SA, and v, v′ ∈ SB.

1. Assume a = τ , i.e., (u, v) −τ→C (u′, v′). In this case, since deltafication does not affect
or introduce τ -transitions, we have, by Definition 3.11, either u −τ→A u′ and v = v′,
or v −τ→B v′ and u = u′. In both cases, these transitions will still exist after the
deltafication of A and B, respectively. Thus, it follows directly from Definition 3.11
that also (u, v) −τ→D (u′, v′).

2. If a = δ, i.e., (u, v) −δ→C (u′, v′), then the δ-transition was added by the deltafication
of A ‖ B, and (u, v) = (u′, v′). By Definition 3.8, the state (u, v) must be quiescent in
A ‖ B. Since A and B are input-enabled, we can conclude from Definition 3.11 that
both u and v must also be quiescent. Hence, after deltafication of A and B, both u
and v, respectively, will have δ-labelled self-loops. Consequently, by Definition 3.11,
(u, v) −δ→D (u′, v′).

3. Assume a ∈ LI
C , i.e., (u, v) −a→C (u′, v′). Deltafication does not affect or introduce input-

labelled transitions, nor does it affect LA or LB, so it follows from Definition 3.11 that
there are three possibilities:

(a) u −a→A u′ and v −a→B v′.
(b) u −a→A u′, v = v′ and a /∈ LB.

(c) v −a→B v′, u = u′ and a /∈ LA.

In all cases, these transitions will still exist after the deltafication of A and B. Neither
will LA or LB have been changed. Thus, it follows directly from Definition 3.11 that
also (u, v) −a→D (u′, v′).

4. Finally, assume a ∈ LO
C , i.e., (u, v) −a→C (u′, v′). Deltafication does not affect or in-

troduce output-labelled transitions, nor does it affect LA or LB, so it follows from
Definition 3.11 that there are four possibilities:

(a) u −a→A u′, v −a→B v′ and a ∈ LO
A, a ∈ LI

B.

3.6. Discussion of the Well-formedness Rules 33

(b) u −a→A u′, v −a→B v′ and a ∈ LI
A, a ∈ LO

B .

(c) u −a→A u′, v = v′ and a /∈ LB.

(d) v −a→B v′, u = u′ and a /∈ LA.

In all cases, these transitions will still exist after the deltafication of A and B. Neither
will LA or LB have been changed. Thus, it follows directly from Definition 3.11 that
also (u, v) −a→D (u′, v′).

The above results are very important, as they allow great modelling flexibility. In practice,
after all, hiding and parallel composition are often already applied to the IOTSs that describe
a specification and its implementation. We now showed that this yields the same well-formed
QTSs as in the case these operations are applied after deltafication.

3.6 Discussion of the Well-formedness Rules

In this section, we explain why we have defined the well-formedness rules, and what alterna-
tive rules we have considered (and ultimately rejected).

3.6.1 Rationale behind the Well-formedness Rules

As mentioned before, QTSs are similar to the Suspension Automata (SAs) introduced in Sec-
tion 2.5. Since SAs are derived from existing IOTSs, and we assume that these IOTSs cor-
rectly capture the behaviour of the systems they model, we find that SAs are ‘well-formed’
in the sense that their observable behaviour corresponds to that of realistic specifications or
implementations. Since we also desire this property to hold for well-formed QTSs, which
may be built from scratch rather than derived from existing IOTSs, the rules R1, R2, R3
and R4 have been carefully crafted to be the minimal set of rules such that the following
conditions are satisfied:

C1: For every SA S there exists a well-formed QTS Q such that S ≈tr Q.

C2: For every well-formed QTS Q there exists a SA S such that Q ≈tr S.

By ensuring that well-formed QTSs satisfy conditions C1 and C2, we can be sure that
QTSs always conform to realistic specifications or implementations in terms of expressible
behaviour. Furthermore, as discussed in Section 2.5, SAs are used as the basis for several
model-based testing frameworks such as ioco. Hence, an additional benefit of satisfying the
conditions C1 and C2 is that well-formed QTSs can be used as a drop-in replacement for
SAs in these frameworks, since the two models are equally expressive.

The following two theorems prove that well-formed QTSs satisfy conditions C1 and C2,
hence well-formed QTSs and SAs are equivalent in terms of expressible behaviour. Recall
from Section 2.5 that a SA is constructed by taking an existing IOTS and adding δ-labelled
self-loops to all quiescent states (similar to our deltafication procedure for constructing QTSs
from IOTSs), and afterwards applying the determinisation operation.

Theorem 3.21. For every SA S there exists a well-formed QTS Q such that S ≈tr Q
(C1).

Proof. Let A = 〈S, S0, LI, LO,→A 〉 be an IOTS, and S the corresponding SA. Hence, S is
the determinisation of the IOTS A′ = 〈S, S0, LI, LO,→′A 〉, where →′A is defined as follows:

34 Chapter 3. Quiescent Transition Systems

→′A = →A ∪ { (s, δ, s) ∈ S × { δ } × S | q(s) holds in A}

Now, observe that A′ was obtained from A by adding δ-labelled self-loops to all quies-
cent states, which is exactly the same as the deltafication procedure for creating QTSs from
IOTSs. Hence, A′ and δ(A) are also isomorphic, and consequently they are trace-equivalent.
Furthermore, by Theorem 3.10, δ(A) is a well-formed QTS. Since S is obtained by deter-
minising A′, we find that S is also trace-equivalent to δ(A), since determinisation preserves
traces [BK08].

Theorem 3.22. For every well-formed QTS Q there exists a SA S such that Q ≈tr S
(C2).

Proof. Let Q = 〈S, S0, LI, LO,→Q 〉 be a well-formed QTS. Without loss of generality, we
assume the following two properties of Q:

1. Q does not contain any path of the form s −δ→Q t −δ→Q u with t, u ∈ S and t 6= u.
This can be assumed, since rule R4 prescribes that in such a case the traces of t and u
should coincide. Therefore, they can be merged to remove the unwanted path fragment,
without changing the traces of Q.

2. Q is deterministic. This can be assumed, since determinisation preserves traces [BK08].

Note that the first assumption implies that there are no cycles in Q consisting solely of
δ-transitions, except for self-loops.

Since SAs cannot be built from scratch, but only arise implicitly by adding δ-transitions
to IOTSs, we construct an IOTS A such that the SA S obtained from A is trace-equivalent
to the QTS Q. Now, let A = 〈S, S0, LI, LO,→A 〉 be an IOTS, where →A is defined as
follows:

→A = { (s, a, t) ∈ →Q | a 6= δ }
∪ { (s, τ, t) ∈ S × { τ } × S | (s, δ, t) ∈ →Q ∧ s 6= t }

Note that, by assumption (1), indeed→Q ⊆ S×(LI ∪ LO ∪ { τ })×S, and hence we have
defined a proper IOTS. The corresponding SA S is the determinisation of the IOTS A′ =
〈S, S0, LI, LO,→′A 〉, where →′A is defined by

→′A = →A ∪ { (s, δ, s) ∈ S × { δ } × S | q(s) holds in A}

Since, as mentioned before, determinisation preserves traces, we will only show that A′ is
trace-equivalent toQ. It then follows immediately that the SA S is also trace-equivalent toQ.
Hence, we need to show that traces(Q) = traces(A′), i.e., that both traces(Q) ⊆ traces(A′)
and traces(A′) ⊆ traces(Q). We will first prove the former, then the latter.

1. First, we prove that traces(Q) ⊆ traces(A′). Let σ ∈ traces(Q). We must prove that
also σ ∈ traces(A′). If σ ∈ traces(Q), there exists a path π = s0 a1 s1 a2 s2 . . . an sn
in Q such that trace(π) = σ, si ∈ S, ai ∈ L ∪ { τ, δ }, and s0 ∈ S0. By backwards
induction on the length of π, we show for every suffix π′ = sk ak+1 sk+1 . . . an sn of
π that trace(π′) ∈ tracesA′(sk). This then implies that for σ = trace(π) we have
σ ∈ tracesA′(s0), and since tracesA′(s0) = traces(A′), we have then proven that σ ∈
traces(A′).

3.6. Discussion of the Well-formedness Rules 35

Base case. For k = n, we have π′ = sn and hence trace(π′) = ε. In this case, we
obviously have trace(π′) ∈ tracesA′(sn).

Inductive case. Assume trace(π′′) ∈ tracesA′(sk+1) for the path π′′ =
sk+1 ak+2 sk+2 . . . an sn. We now must show that trace(π′) ∈ tracesA′(sk) for π′ =
sk ak+1 sk+1 ak+2 sk+2 . . . an sn. Note that trace(π′) = ak+1 · trace(π′′), since there
are no τ -transitions in Q, which follows from the second assumption made above on
the structure of Q. We make a case distinction based on whether (1) ak+1 6= δ, (2)
ak+1 = δ and sk = sk+1, and (3) ak+1 = δ and sk 6= sk+1.

(a) If ak+1 6= δ, then by definition of A and A′ we have sk −ak+1−−−→A′ sk+1 in A′. Hence,
since π′′ ∈ tracesA′(sk+1), it immediately follows that π′ ∈ tracesA′(sk).

(b) If ak+1 = δ and sk = sk+1, then it follows from rule R2 that sk is quiescent in
Q. Furthermore, by the assumption that Q is deterministic, there cannot exist
any other outgoing δ-transitions from sk in Q, and therefore no τ -transitions are
added to sk in the construction of A. Consequently, sk is also quiescent in A, and
hence we find that indeed sk −δ→A′ sk+1 in A′, by definition of A′. Hence, since
π′′ ∈ tracesA′(sk+1), it immediately follows that π′ ∈ tracesA′(sk).

(c) If ak+1 = δ and sk 6= sk+1, then due to rule R2 we find that sk+1 is quiescent,
and it follows from rule R1 that sk+1 must have an outgoing δ-transition. By the
assumption that no path fragment of the form s −δ→Q t −δ→Q u with t, u ∈ S and

t 6= u is present in Q, this implies that sk+1 −δ→Q sk+1. It then follows by definition
of A′ that there a is no τ -transition added to sk+1 in the construction of A, and
therefore sk+1 is also quiescent in A. Hence, we have sk+1 −δ→A′ sk+1. Also, since
sk −δ→Q sk+1, we can conclude by the definitions of A and A′ that sk −τ→A′ sk+1.
Consequently, in A′ there exists a path sk −τ→A′ sk+1 −δ→A′ sk+1 and therefore a
trace δ from sk to sk+1 . Thus, since π′′ ∈ tracesA′(sk+1), it immediately follows
that π′ ∈ tracesA′(sk).s

2. Next, we prove that traces(A′) ⊆ traces(Q). Let σ ∈ traces(A′). We must prove that
also σ ∈ traces(Q). If σ ∈ traces(A′), there exists a path π = s0 a1 s1 a2 s2 . . . an sn
in A′ such that trace(π) = σ, si ∈ S, ai ∈ L ∪ { τ, δ }, and s0 ∈ S0. By backwards
induction on the length of π, we show for every suffix π′ = sk ak+1 sk+1 . . . an sn of
π that trace(π′) ∈ tracesQ(sk). This then implies that for σ = trace(π) we have
σ ∈ tracesQ(s0), and since tracesQ(s0) = traces(Q), we have then proven that σ ∈
traces(Q).

Base case. For k = n, we have π′ = sn and hence trace(π′) = ε. In this case, we
obviously have trace(π′) ∈ tracesQ(sn).

Inductive case. Assume trace(π′′) ∈ tracesQ(sk+1) for the path π′′ =
sk+1 ak+2 sk+2 . . . an sn. We now must show that trace(π′) ∈ tracesQ(sk) for π′ =
sk ak+1 sk+1 ak+2 sk+2 . . . an sn. Note that π′ = ak+1 · π′′ if ak+1 6= τ and π′ = π′′ if
ak+1 = τ . We make a case distinction based on whether (1) ak+1 6= δ and ak+1 6= τ ,

(2) ak+1 = δ, (3) ak+1 = τ and sk −τ→Q sk+1, and (4) ak+1 = τ and sk −δ→Q sk+1.

(1) If ak+1 6= δ and ak+1 6= τ , then we can conclude from the definitions of A and
A′ that sk −ak+1−−−→Q sk+1. Hence, since π′′ ∈ tracesQ(sk+1), it immediately follows that
π′ ∈ tracesQ(sk).

36 Chapter 3. Quiescent Transition Systems

s0

s1 s2

s3

τ τ

b!

δ

δ

(a) A

t0

t1 t2

b! δ

δ δ

(b) det(A)

Figure 3.8: A well-formed QTS A and its determinisation det(A).

(2) If ak+1 = δ, then it follows from the definitions of A and A′ that it must have been
added during the construction of A′ (and hence it follows that sk+1 = sk), since sk was
quiescent in A. Therefore, sk is also quiescent in Q (since Q cannot have more output

transitions or τ -transitions than A), and consequently sk −δ→Q sk by rule R1. Thus,
since π′′ ∈ tracesQ(sk+1) and sk+1 = sk, it immediately follows that π′ ∈ tracesQ(sk).

(3 and 4) If ak+1 = τ , then π′ = π′′. If this transition was added due to the presence
of the transition sk −τ→Q sk+1, then, since π′′ ∈ tracesQ(sk+1), it immediately follows
that π′ ∈ tracesQ(sk). Otherwise, if this transition was added due to the transition

sk −δ→Q sk+1, then from rule R3 it follows that tracesQ(sk+1) ⊆ tracesQ(sk). Thus,
since π′′ ∈ tracesQ(sk+1), this implies that π′ ∈ tracesQ(sk).

3.6.2 Alternatives to the Well-formedness Rules

In this section, we discuss several alternatives we have considered for some of the well-
formedness rules, and explain why these alternatives were not used. As remarked in Sec-
tion 3.2, four conditions for valid SAs are given in [Wil07] that coincide exactly with the
rules R1, R2, R3 and R4. These conditions are phrased in a unnecessarily complex manner,
however, hence we prefer to use our own rules.

Alternative for rule R2

if s −δ→ s′, then q(s)

This alternative rule may no longer hold after the determinisation of a well-formed QTS.
Hence, when using this rule instead of the original rule R2, well-formed QTSs are no longer
closed under determinisation. To see this, consider the non-deterministic well-formed QTS
A in Figure 3.8a and its determinisation det(A) in Figure 3.8b. Clearly, the alternative rule
holds for A, since s2 and s3 are the only states with outgoing δ-transitions and are both
quiescent. However, the rule does not apply to det(A), since t0 −δ→ t2, but t0 has an outgoing
output-transition enabled and is therefore not quiescent.

Alternative for rule R3

if s −δ→ s′, then traces(s′) = traces(s)

3.7. Summary 37

When using this rule instead of the original rule R3, well-formed QTSs are no longer
closed under determinisation. To see this, consider the non-deterministic well-formed QTS
A in Figure 3.8a and its determinisation det(A) in Figure 3.8b. Clearly, the alternative rule
holds for A, since there are only δ-labelled self-loops present. However, the rule does not
apply to det(A), since t0 −δ→ t2, but b ∈ traces(t0) and b /∈ traces(t2).

3.7 Summary

In this chapter, we have introduced Quiescent Transition Systems (QTSs), which are a spe-
cialisation of IOTSs that capture the notion of quiescence. QTSs accomplish this by explicitly
marking quiescent states with a special δ-transition, similar to SAs. Furthermore, we have
defined what it means for a QTS to be well-formed, by imposing four constraints on the
occurrence of δ-transitions. Following that, we have introduced the deltafication operation,
using which an IOTS can be transformed into an equivalent QTS that captures all possible
behaviour of it, including quiescence.

The familiar IOTS operations of determinisation, parallel composition and action hiding
have also been defined for QTS, and several interesting closure and commutativity properties
regarding these operations have been investigated. In particular, we have shown that QTSs
are closed under determinisation, parallel composition and action hiding. Finally, we have
further discussed the rationale behind the well-formedness rules, by comparing QTSs with
SAs, and discussed some alternatives for some of these rules. Hence, QTSs address most
of the shortcomings of SAs laid out in Section 2.5, except for the convergence requirement.
This requirement will be lifted by Divergent Quiescent Transition Systems (DQTSs), which
will be introduced in the next chapter.

Chapter 4
Divergent Quiescent Transition Systems

One major limitation of QTSs is that they do not allow divergent paths, i.e, infinite paths
consisting of only internal transitions, to occur. However, divergent paths do occur in prac-
tice, typically in the form of τ -loops that appear after hiding output actions. To address this
issue, we introduce Divergent Quiescent Transition Systems (DQTSs) in this chapter. DQTSs
are a variant on regular QTSs that support state-recurrent (see Definition 4.4) divergence,
thus allowing more specification freedom.

Rather than extending IOTSs like QTSs, DQTSs extend IOAs (see Section 2.4) with
support for quiescence. Hence, like QTSs, DQTSs distinguish between input actions, output
actions, and internal actions, but there may be more than one internal action. Again, we use
the special output label δ to indicate the occurrence of quiescence. The reason that DQTSs
are based on IOAs rather than IOTSs is that the fairness (and task partition) notions of IOAs
can be used to resolve the ambiguity arising when combining divergence and quiescence, as
will be discussed in the next section.

We also introduce the familiar operations of determinisation and parallel composition
for DQTSs. The operation of action hiding is also supported by the DQTS formalism,
but is necessarily more complicated than the action hiding operation for IOAs, as we will
discuss in Section 4.4. For all these operations we investigate several important closure and
commutativity aspects, and show that DQTSs, like QTSs, exhibit desirable compositionality
properties.

4.1 The DQTS Model

DQTSs form a extension of regular IOAs in which the observation of quiescence is explicitly
represented using special δ-transitions.

Definition 4.1 (Divergent Quiescent Transition Systems). A Divergent Quiescent Transition
System (DQTS) is a tuple A = 〈S, S0, LI, LO, LH, P,→〉, where:

• S is a non-empty set of states;

• S0 ⊆ S is a non-empty set of initial states;

• LI, LO and LH are pairwise disjoint sets of input, output and internal labels, respec-
tively. Furthermore, δ /∈ (LI ∪ LO ∪ LH) is a special output label that is used to
denote the observation of quiescence;

39

40 Chapter 4. Divergent Quiescent Transition Systems

s0

s1 s2

s3

s5

s4

s6

a a

d?

d?

b

d?

c!

b

d?

d?

e!

d? d?

δ δ

(a) A

s0

s1 s2

s3 s4

s5 s6

s7

a? b

a?
a? b

a?
a? b

a?
a? b

a?

(b) B

Figure 4.1: Visual representation of DQTSs A and B. Quiescent states are marked gray.

• P is a partition of LO ∪ LH, i.e., the locally controlled labels;

• → ⊆ S × (LI ∪ LO ∪ LH ∪ { δ })× S is the transition relation.

As for IOAs, we define L = LI ∪ LO ∪ LH.

Similar to regular IOAs, DQTSs must be input-enabled. All other definitions introduced
in Section 2.4 for IOAs also apply to DQTSs. The concept of quiescent states, introduced in
Section 3.1 for QTSs, also applies to DQTSs. However, since IOAs (and therefore DQTSs)
can have multiple internal actions rather than just τ , the definition for a quiescent state in
a DQTS is slightly different.

Definition 4.2 (Quiescent states in IOAs or DQTSs). Let A be an IOA or DQTS. A state
s ∈ S is quiescent, denoted q(s), if it has no locally controlled actions enabled, i.e., q(s) if
for all a ∈ LO ∪ LH we have s 6−a→. The set of all quiescent states of A is denoted q(A).

Example 4.3. Figure 4.1a visualises a DQTS A. Recall that internal actions are labelled
without suffixes, hence a and b are internal actions. Consequently, only the states s5 and s6
are quiescent.

In contrast to QTSs, we do allow divergent paths to occur in DQTSs. However, there is
one restriction: all infinite paths in a DQTS, or in an IOA that is to be converted to a DQTS,
must be state-finite. This restriction serves to ensure that the deltafication of an IOA, which
will be discussed in Section 4.3, is always defined, and can be algorithmically computed.

Definition 4.4 (State-finite path). Let A be an IOA or DQTS and let π ∈ paths(A) be an
infinite path in A. If |states(π)| <∞, then π is state-finite.

Hence, divergent paths are allowed in DQTSs if they are also state-finite.

Example 4.5. Consider again the DQTS A in Figure 4.1a. Clearly, the infinite divergent path
π1 = s0 a s2 b s2 b s2 . . . is state-finite, since |states(π1)| = |{ s0, s2 }| = 2. On the other hand,
the infinite divergent path π2 = s0 b s2 b s4 b s6 b . . . of the DQTS B, shown in Figure 4.1b,
is not state-finite, since |states(π2)| =∞.

4.1. The DQTS Model 41

s0

s1

a

b!

δ

(a) A

s0

s1

s2

s4

s3

s5

a

c?

a, c?

b

c?

b

b

e!

c?

c?

c?

(b) B

Figure 4.2: Visual representation of two divergent DQTSs A and B.

Since finite-state IOAs or DQTSs cannot contain paths with an infinite number of states,
the state-finite path restriction is not a severe one. Furthermore, note that every infinite
state-finite path is cyclic.

The occurrence of (state-finite) divergent paths in IOAs or DQTSs may result in the
observation of quiescence in states that are not necessarily quiescent. Consider the DQTS
A in Figure 4.2a. Clearly, the state s0 is not quiescent, since the output transition b are
enabled in this state. Nevertheless, if the divergent path π = s0 a s0 a . . . is executed, the
output b will never be observed. Hence, the observation of quiescence seems like a possibility
in state s0, even though it is not quiescent. The question then remains whether the system
indeed has a possible execution that corresponds to the path π, or not.

Recall that in Section 2.4.1 and Definition 2.32 we introduced the notion of fairness for
IOAs, and explicitly assumed that unfair paths do not occur. Hence, the path π defined above
only will be executed, and hence the observation of quiescence can only occur, if π is fair.
For example, if PA = { { a }, { b } }, the path π is not fair and there will be no observation of
quiescence. On the other hand, if PA = { { a, b } }, then an observation of quiescence can be
made in state s0.

Thus, apart from the presence of quiescent states, quiescence can also be observed when
paths exist that are both divergent and fair. We call such paths fairly divergent.

Definition 4.6 (Fairly divergent path). Given an IOA or DQTS A, an infinite path π ∈
paths(A) is fairly divergent if π is both fair and divergent, i.e., if π ∈ fpaths(A) ∩ dpaths(A).
The set of all fairly divergent paths of A is denoted fdpaths(A).

Example 4.7. As explained above, the path π = s0 a s0 a . . . in DQTS A, shown in Fig-
ure 4.2a, is fairly divergent for PA = { { a, b } }, but not for PA = { { a }, { b } }.

Since quiescence may be observed for fairly divergence paths, we want to mark these
possible observations with δ-transitions. When the system is executing a fairly divergent
path, it is continually looping through a finite number (since the path must be state-finite)
of states on this path. Since the path is infinite, these states will therefore appear infinitely
often on the path. Hence, when the observation of quiescence is made for a fairly divergent
path, the system will reside in one of the states that occur infinitely often on that fairly
divergent path. We call these states fairly divergent.

42 Chapter 4. Divergent Quiescent Transition Systems

Definition 4.8 (Fairly divergent state). Let A be an IOA or DQTS. A state s ∈ S is fairly
divergent, denoted fd(s), if there is a (state-finite) fairly divergent path on which s occurs
infinitely often, i.e., if there is a path π ∈ fdpaths(A) such that s ∈ ω-states(π). The set of
all fairly divergent states of A is denoted fd(A).

Example 4.9. Consider the DQTS B in Figure 4.2b. Clearly, the path π1 = s0 a s1 a s1 a . . .
is fairly divergent, as it consists of only internal transitions, and no outputs are enabled in
any of its states. Both states s0 and s1 occur on path π1, but since ω-states(π1) = { s1 },
only s1 is fairly divergent. Whether the states s2 and s3 are fairly divergent depends on
the partition PA. Only if there is an element A ∈ P such that { b, e } ∈ A, i.e., b and e are
controlled by the same subcomponent, then the divergent path s1 b s2 b s3 s1 b s2 . . . is fair,
and s2 and s3 are fairly divergent.

Remark 4.10. Note that a state cannot be both quiescent and fairly divergent.

4.2 Well-formedness

Earlier on, we introduced four rules R1, R2, R3 and R4 for QTSs that define exactly when a
syntactically correct QTS is well-formed. A QTS that is not well-formed is considered seman-
tically unsound, i.e., its observable behaviour does not correspond to any realistic specifica-
tion or implementation. The exact same four rules also apply to well-formed DQTSs, except
for rule R1: since quiescence can also be observed in fairly divergent states, as discussed
above, we also require fairly divergent states to have an outgoing δ-transition.

Definition 4.11 (Well-formedness for DQTSs). Let A = 〈S, S0, LI, LO, LH, P,→〉 be a
DQTS. A is well-formed if it satisfies the following rules for all states s, s′, s′′ ∈ S and inputs
a ∈ LI:

Rule R1D (Quiescence should be observable): if q(s) or fd(s), then s −δ→.

This DQTS-specific rule requires that not only every quiescent state, but also each fairly
divergent state, has an outgoing δ-transition, since in both kinds of states quiescence may
be observed, as discussed earlier.

Rule R2 (Quiescent state after observation of quiescence): if s −δ→ s′, then q(s′).

This rule demands that a quiescent state is entered after a δ-transition, i.e., no output or
internal transition may take place before a new input is provided. Note that s′ cannot
be fairly divergent.

Rule R3 (Quiescence introduces no new behaviour): if s −δ→ s′, then traces(s′) ⊆ traces(s).

This rule prevents an observation of quiescence from enabling new behaviour.

Rule R4 (Continued quiescence preserves behaviour): if s −δ→ s′ and s′ −δ→ s′′, then
traces(s′′) = traces(s′).

This rule ensures that the behaviour that can be observed after a single observation of
quiescence, is the same as the behaviour that can be observed after multiple observations
of quiescence in a row.

4.3. Deltafication: from IOA to DQTS 43

s0

s1 s2

a

b? c!

(a) A

s0

s1 s2

aδ

b? c!

(b) A′

Figure 4.3: An IOA A and an attempt at deltafication A′.

Hence, rules R2, R3 and R4 are exactly the same for QTSs as for DQTSs; rule R1D is
similar to rule R1, but also takes fairly divergent states into account.

Clearly, for every well-formed QTS Q = 〈S, S0, LI, LO,→〉 there exists a well-formed
DQTS D = 〈S, S0, LI, LO, LH, P,→〉 with LH = { τ } and P = {LO ∪ { τ } }, such that Q
and D are isomorphic, and therefore also trace-equivalent. Therefore, the following theorem
follows directly from Theorem 3.21.

Theorem 4.12. For every SA S there exists a well-formed DQTS D such that S ≈tr D.

Now, consider any well-formed DQTS D = 〈S, S0, LI, LO, LH, P,→〉. Let det(D) =
〈SD, S

0
D, L

I, LO, LH, P,→D 〉 be its determinisation, as defined in Definition 2.11. As will
be shown in Theorem 4.21, det(D) is also a well-formed DQTS, and by [BK08], is trace-
equivalent to D. Since det(D) does not contain any internal transitions, it is now trivial
to obtain a well-formed QTS Q = 〈SD, S

0
D, L

I, LO,→D 〉 that is isomorphic, and therefore
trace-equivalent to det(D), and hence also to D. The following theorem then follows directly
from Theorem 3.22.

Theorem 4.13. For every well-formed DQTS D there exists a SA S such that D ≈tr S.

As discussed in Section 3.6, SAs are well-formed in the sense that their observable be-
haviour corresponds to that of realistic specifications or implementations. By the above
two theorems, well-formed DQTSs are equivalent in terms of expressible behaviour. Conse-
quently, just like QTSs, DQTSs always conform to realistic specifications or implementations
in terms of expressible behaviour. Furthermore, again like QTSs, DQTSs can be used as a
drop-in replacement for SAs in frameworks like ioco.

4.3 Deltafication: from IOA to DQTS

In Section 3.3, we introduced deltafication as a method to convert an IOTS to a well-formed
QTS that captures all possible observations of it, including quiescence. As part of this
approach, δ-labelled self-loops were added to all quiescent states. For QTSs, this is sufficient,
as divergence was not assumed to occur and therefore no fairly divergent states could exist.

On the other hand, we do allow (state-finite) divergent paths to occur in DQTSs, and
consequently quiescence may be observed in fairly divergent states of IOAs. Hence, when
converting an IOA to a DQTS that captures all possible observations, including quiescence,
we need a way to mark fairly divergent states with δ-transitions, in order to satisfy rule R1D.
Simply adding δ-labelled self-loops to all fairly divergent states, as is done for all quiescent
states, may yield DQTSs that are not well-formed. To see this, consider the IOA A in
Figure 4.3a and assume PA = { { a, c } }. Clearly, the state s0 is fairly divergent, as it occurs
infinitely often on the fairly divergent path s0 a s0 a . . . in A. Adding a δ-labelled self-loop

44 Chapter 4. Divergent Quiescent Transition Systems

s0 s1 s2 s3 s4

s5 s6 s7

a?
c

c

c

a?

c

c
b!

b!

d!

(a) A

s0 s1 s2 s3 s4

s5 s6 s7q0 q1

a?
c

c

c

a?

c

c
b!

b!

d!δ
δ

δ δ δ

a?

a?

δ δ

(b) δ(A)

Figure 4.4: An IOA A and its deltafication δ(A). Newly introduced states are marked gray.

to s0, as shown in Figure 4.3b, violates rule R2: state s0 can be reached with a δ-transition
from itself, but is not quiescent since the output c is also enabled.

Since fairly divergent states must have an outgoing δ-transition to satisfy rule R1D, and
adding δ-labelled self-loops is not the correct solution, we must introduce a new state for
every fairly divergent state, which then acts as a quiescence observation state for it. Thus,
when quiescence is observed in a fairly divergent state, the outgoing δ-transition will lead
to the associated quiescence observation state. However, in order to preserve the original
behaviour while ensuring input-enabledness, all inputs that are enabled in the fairly divergent
state must still be enabled in the corresponding quiescence observation state, and must lead
to the same states that the original input transitions led to. All these considerations together
lead to the following definition for the deltafication procedure for IOAs.

Definition 4.14 (Deltafication of IOAs). Let A = 〈SA, S0, LI, LO, LH, P,→A 〉 be an IOA
with δ /∈ L, such that any divergent paths are state-finite. The deltafication of A is the DQTS
δ(A) = 〈Sδ, S0, LI, LO, LH, P,→δ 〉. We define Sδ = SA ∪ { qoss | s ∈ SA and fd(s) in A},
i.e., Sδ contains all the states in SA plus a new state qoss /∈ SA for every fairly divergent
state s ∈ SA of A; the state qoss is the quiescence observation state of s. The transition
relation →δ is defined as follows:

→δ = →A ∪ { (s, δ, s) | s ∈ SA ∧ s ∈ q(A) }
∪ { (s, δ, qoss) | s ∈ SA ∧ s ∈ fd(A) }
∪ { (qoss, δ, qoss) | s ∈ SA ∧ s ∈ fd(A) }
∪ { (qoss, a?, s′) | s, s′ ∈ SA ∧ s ∈ fd(A) ∧ a? ∈ LI ∧ s −a?−→A s′ }

Thus, the deltafication of an IOA adds δ-labelled self-loops to all quiescent states, sim-
ilar to deltafication for IOTSs. Furthermore, a new quiescence observation state qoss is
introduced for every fairly divergent state s ∈ S, which can be reached with a newly added
δ-transition from s. Additional outgoing input-transitions are added to the quiescence obser-
vation states to ensure previously enabled inputs are still enabled after observing quiescence,
as discussed above. In this way, the deltafication operation preserves input-enabledness.

Example 4.15. An IOA A and its deltafication δ(A) are shown in Figure 4.4. We assume
PA = { { b, c }, { d } }. Hence, s1 and s2 are fairly divergent in A. The states s3 and s4
are not fairly divergent, since the d-output is enabled in s4. Consequently, deltafication
has introduced the quiescence observation states q0 and q1, alongside the necessary input-
transitions, for s1 and s2, respectively. Furthermore, the deltafication has resulted in new
δ-labelled self-loops for the quiescent states s5, s6 and s7.

4.3. Deltafication: from IOA to DQTS 45

The following theorem states that this deltafication approach indeed yields a well-formed
DQTS.

Theorem 4.16. Given an IOA A with δ /∈ L such that all divergent paths in A are state-
finite, δ(A) is a well-formed DQTS.

Proof. Let A = 〈S, S0, LI, LO, LH, P,→A 〉 be an IOA such that δ /∈ L, and let δ(A) =
〈Sδ, S0, LI, LO, LH, P,→δ 〉 be its deltafication, as defined in Definition 4.14. To show that
δ(A) is a well-formed DQTS, we need to prove that δ(A) satisfies each of the rules R1D, R2,
R3 and R4. In the following, we use tracesδ(s) to denote the set of all traces of δ(A) starting
in the state s ∈ Sδ.

1. To prove that δ(A) satisfies rule R1D, we must show that for all states s ∈ Sδ:

if q(s) or fd(s), then s −δ→δ

Since s ∈ Sδ and q(s) or fd(s) holds in δ(A), it follows from Definition 4.14 that the
following cases are possible: (a) s ∈ S and q(s) holds in δ(A); (b) s ∈ S and fd(s) in
δ(autA); and (c) s ∈ Sδ \ S (and q(s) holds in δ(A)). Clearly, it is not possible that
s ∈ Sδ \ S and fd(s) holds in δ(A).

(a) Assume s ∈ S and q(s) holds in δ(A). Since deltafication does not hide or re-
move any existing output or internal transitions, q(s) then also holds in A. By

Definition 4.14, we have (s, δ, s) ∈ →δ after deltafication and therefore s −δ→δ.

(b) Assume s ∈ S and fd(s) holds in δ(A). In other words, s occurs infinitely often on
a fairly divergent path π in δ(A). Since deltafication does not hide any existing
output transitions, nor creates any new internal transitions, the fairly divergent
path π must also be present in A. Consequently, fd(s) also holds in A. By
Definition 4.14, we have (s, δ, qoss) ∈ →δ after deltafication, where qoss is a new

quiescence observation state for s. Thus, s −δ→δ.

(c) Assume s ∈ Sδ \ S. Hence, s is a newly added quiescence observation state for

some fairly divergent state, and by Definition 4.14 we have both q(s) and s −δ→δ s.

2. To prove that δ(A) satisfies rule R2, we must show that for all states s, s′ ∈ Sδ:

if s −δ→δ s
′, then q(s′)

Since s, s′ ∈ Sδ and s −δ→δ s
′, it follows from Definition 4.14 that the following cases are

possible: (a) s, s′ ∈ S; (b) s ∈ S and s′ ∈ Sδ \ S; and (c) s, s′ ∈ Sδ \ S. Clearly, it is

not possible that s ∈ Sδ \ S, s′ ∈ S, and s −δ→δ s
′.

(a) Assume s, s′ ∈ S and s −δ→δ s
′. By Definition 4.14, we have s = s′, and s (and

therefore also s′) is quiescent.

(b) Assume s ∈ S, s′ ∈ Sδ \ S, and s −δ→δ s
′. From Definition 4.14, it follows that

s′ is the quiescence observation state for the fairly divergent state s, and s′ is
quiescent.

(c) Assume s, s′ ∈ Sδ \ S and s −δ→δ s
′. From Definition 4.14, it follows that s′ is a

quiescence observation state, s = s′, and s′ is quiescent.

46 Chapter 4. Divergent Quiescent Transition Systems

3. To prove that δ(A) satisfies rule R3, we must show that for all states s, s′ ∈ Sδ:

if s −δ→δ s
′, then tracesδ(s

′) ⊆ tracesδ(s)

Since s, s′ ∈ Sδ and s −δ→δ s
′, it follows from Definition 4.14 that the following cases are

possible: (a) s, s′ ∈ S; (b) s ∈ S and s′ ∈ Sδ \ S; and (c) s, s′ ∈ Sδ \ S. Clearly, it is

not possible that s ∈ Sδ \ S, s′ ∈ S, and s −δ→δ s
′.

(a) Assume s, s′ ∈ S and s −δ→δ s
′. By Definition 4.14, we have s = s′, and therefore

tracesδ(s
′) ⊆ tracesδ(s).

(b) Assume s ∈ S, s′ ∈ Sδ \ S and s −δ→δ s
′. From Definition 4.14, it follows that s′ is

a quiescence observation state for the fairly divergent state s. Let σ ∈ tracesδ(s
′).

We have to show that also σ ∈ tracesδ(s). There are two cases to consider: either
|σ| = 0 or |σ| ≥ 1. If |σ| = 0, then σ = ε, and by definition σ ∈ tracesδ(s). If
|σ| ≥ 1, then, by Definition 4.14, σ = a · σ′, where either a = δ, or a ∈ LI(s).

In the first case we have s′ −δ→δ s
′ and s′ =

σ′
=⇒δ. Since also s −δ→δ s

′, it directly

follows that σ ∈ tracesδ(s). In the second case we have s′ −a→δ s
′′ and s′′ =

σ′
=⇒δ for

some s′′ ∈ S. By Definition 4.14, we then must have s −a→A s′′, and therefore also

s −a→δ s
′′. Hence, since we have s′′ =

σ′
=⇒δ, we find σ ∈ tracesδ(s).

(c) Assume s, s′ ∈ Sδ \ S and s −δ→δ s
′. From Definition 4.14, it follows that s is a

quiescence observation state and s = s′. Thus, tracesδ(s
′) ⊆ tracesδ(s).

4. To prove that δ(A) satisfies rule R4, we must show that for all states s, s′, s′′ ∈ Sδ:

if s −δ→δ s
′ and s′ −δ→δ s

′′, then tracesδ(s
′′) = tracesδ(s

′)

Since s, s′, s′′ ∈ Sδ, s −δ→δ s
′ and s′ −δ→δ s

′′, it follows from Definition 4.14 that the
following cases are possible: (a) s, s′, s′′ ∈ S; (b) s ∈ S and s′, s′′ ∈ Sδ \ S; and (c)
s, s′, s′′ ∈ Sδ \ S. All other permutations are not possible.

(a) Assume s, s′, s′′ ∈ S, s −δ→δ s
′ and s′ −δ→δ s

′′. By Definition 3.8, we have s = s′ = s′′,
and therefore tracesδ(s

′) = tracesδ(s
′′).

(b) Assume s ∈ S, s′, s′′ ∈ Sδ \ S, s −δ→δ s
′ and s′ −δ→δ s

′′. From Definition 4.14, it
follows that s′ is the quiescence observation state for the fairly divergent state s,
and s′ = s′′. Clearly then, tracesδ(s

′′) = tracesδ(s
′).

(c) Assume s, s′, s′′ ∈ Sδ \ S, s −δ→δ s
′ and s′ −δ→δ s

′′. From Definition 4.14, it follows
that s is a quiescence observation state and s = s′ = s′′. Thus, tracesδ(s

′′) =
tracesδ(s

′).

4.4 Operations

Now, we are ready to take a look at some of the operations that can be applied to DQTSs:
determinisation, parallel composition and action hiding. Determinisation for DQTSs is ex-
actly the same as for IOAs. Parallel composition is also very similar, but action hiding is
more complicated in DQTSs due to the possibility of newly divergent states arising after
hiding.

4.4. Operations 47

s0 s1

s2

s3

a
δ

b?

δ

b?

d!

b?

b?, δ

(a) A

t0

t1

t2

c!

d?

δ

d?

d?, δ

(b) B

(s0, t0) (s2, t0)

(s0, t1)

(s1, t1) (s2, t1) (s3, t2)

(s3, t0)

(s3, t1)

a
b?

c!

c!

d!

b?

a

δ
b?

b?

δ

d!

b? b?, δ

c!

b?

b?, δ

(c) A ‖ B

Figure 4.5: The DQTSs A and B, and their parallel composition A ‖ B.

4.4.1 Parallel Composition

The parallel composition of two DQTSs is exactly the same as for IOAs, except that there
is an added synchronisation on the δ-label, as was the case for the parallel composition of
two QTSs. The compatibility requirement (see Definition 2.34) is also exactly the same as
for IOAs, except that both DQTSs may share the δ-output.

Definition 4.17 (Parallel composition of DQTSs). Given two compatible, well-formed
DQTSs A = 〈SA, S0

A, L
I
A, L

O
A, L

H
A, PA,→A 〉 and B = 〈SB, S0

B, L
I
B, L

O
B , L

H
B , PB,→B 〉, their

parallel composition is the DQTS A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B, L

H
A‖B, PA‖B,→A‖B 〉,

where SA‖B, S0
A‖B, LI

A‖B, LO
A‖B, LH

A‖B, PA‖B and →A‖B are defined as follows:

SA‖B = SA × SB
S0
A‖B = S0

A × S0
B

LI
A‖B = (LI

A ∪ LI
B) \ (LO

A ∪ LO
B)

LO
A‖B = LO

A ∪ LO
B

LH
A‖B = LH

A ∪ LH
B

PA‖B = PA ∪ PB
→A‖B = { ((s, t), a, (s′, t′)) ∈ SA‖B × ((LA ∩ LB) ∪ { δ })× SA‖B | s −a→A s′ ∧ t −a→B t′ }

∪ { ((s, t), a, (s′, t)) ∈ SA‖B × (LA \ LB)× SA‖B | s −a→A s′ }
∪ { ((s, t), a, (s, t′)) ∈ SA‖B × (LB \ LA)× SA‖B | t −a→B t′ }

As with parallel composed IOAs, we have LA‖B = LI
A‖B ∪ L

O
A‖B ∪ L

H
A‖B = LA ∪ LB.

The first clause of →A‖B ensures that parallel composed DQTSs synchronise on shared
actions and the δ-label. The next two clauses enable them to perform non-shared actions
independently from each other.

Example 4.18. See Figure 4.5 for two well-formed, compatible DQTSs A and B, and their
parallel composition A ‖ B. We have PA = { { a, d } } and PB = { { c } }, therefore PA‖B =
{ { a, d }, { c } }. Consequently, even though state s0 is fairly divergent in A, the composite
state (s0, t0) in A ‖ B is not, since the output c, which is controlled independently by

48 Chapter 4. Divergent Quiescent Transition Systems

s0 s1 s2 s3 s4

s5 s6 s7q0

a?
b!

c

c

a?

d!

d!
b! e!

c

δ δ δ

δa?

δ

(a) A

s0 s1 s2 s3 s4

s5 s6 s7q0 q1

a?
b

c

c

a?

d

d
b e!

c

δ

δ δ δ

a?

a? δ

δ δ

(b) A\{ b, d }

Figure 4.6: The DQTSs A and A\{ b, d }. Newly introduced states are marked gray.

component B, is enabled in this state. Thus, the task partition P (and the corresponding
notion of fairness) allows us to correctly determine in which states divergence can be observed
and in which not.

4.4.2 Action Hiding

Action hiding is more complicated for DQTSs than for QTSs or regular IOAs, as transforming
output actions to internal actions can lead to new fairly divergent states. To see this, consider
the DQTS A in Figure 4.6a. Hiding the output b would result in the state s2 becoming fairly
divergent, as it then would occur infinitely often on the fairly divergent path s2 c s1 b s2 c . . . ,
for example. As a consequence, after hiding new quiescence observation states may have to
be added for newly fairly divergent states.

Definition 4.19 (Action hiding in DQTSs). Let A = 〈SA, S0, LI, LO, LH, P,→A 〉 be a
well-formed DQTS and H ⊆ LO a set of outputs, then hiding H in A yields the DQTS
A\H = 〈SH , S0, LI, LO

H , L
H
H , P,→H 〉, with LO

H = LO \H and LH
H = LH ∪ H. Furthermore,

we define SH = SA ∪ { qoss | s ∈ (fd(A\H) \ fd(A)) }, i.e., SH contains all the states of SA
plus a new quiescence observation state qoss /∈ SA for every state s ∈ SA that has become
newly fairly divergent in A\H. Finally, →H is defined as follows:

→H = →A ∪ { (s, δ, qoss) | s ∈ (fd(A\H) \ fd(A)) }
∪ { (qoss, δ, qoss) | s ∈ (fd(A\H) \ fd(A)) }

∪ { (qoss, a?, s′) | s ∈ (fd(A\H) \ fd(A)) ∧ a? ∈ LI ∧ s −a?−→A s
′ }

Thus, the hiding operation simply removes the output labels that are to be hidden from
the set of outputs, and adds them to the set of internal labels, similar to the hiding operation
for IOAs. Furthermore, new quiescence observation states are introduced for all newly fairly
divergent states in A\H, along with the required input-transitions, similar to the deltafi-
cation procedure for fairly divergent states in IOAs. Clearly, the hiding operation preserves
input-enabledness.

Example 4.20. Consider the DQTSs A and A\{ b, d } in Figure 4.6, and assume PA =
{ { b, c, d }, { e } }. Note that we indicate that the outputs b and d have been hidden in
A\{ b, d }, and thus are treated as internal actions, by leaving out the exclamation marks
in their labels. In this case, we have fd(A) = { s1 } and fd(A\H) = { s1, s2 }. Note that
s3 and s4 are not fairly divergent after hiding because the output e is still enabled in s4.
Consequently, the new quiescence observation state q1 is introduced for the state s2, along
with the required δ-transitions and input-transitions.

4.5. Properties 49

4.5 Properties

In this section, we investigate the closure and commutativity properties of DQTSs for the
operations of determinisation, parallel composition, and action hiding.

4.5.1 Closure Properties

Similar to well-formed QTSs, well-formed DQTSs are closed under the operations of deter-
minisation, parallel composition, and action hiding. These operations are therefore well-
defined for well-formed DQTSs.

Theorem 4.21. Well-formed DQTSs are closed under determinisation, i.e., given a well-
formed DQTS A, det(A) is also a well-formed DQTS.

Proof. Let A = 〈S, S0, LI, LO, LH, P,→A 〉 be a well-formed DQTS and let det(A) =
〈SD, S

0
D, L

I, LO, LH, P,→D 〉 be its determinisation, as defined in Definition 2.11. To prove
that well-formed DQTSs are closed under determinisation we must show that det(A) is a
well-formed DQTS, i.e., that it satisfies each of the rules R1D, R2, R3 and R4. In the
following, we use tracesD(U) to denote the set of all traces of det(A) starting in the state
U ∈ SD.

1. To prove that det(A) satisfies rule R1D, we must show that for all states U ∈ SD:

if q(U) or fd(U), then U −δ→D

By Definition 2.11, there are no more internal transitions present after determinisation.
Hence, there can be no U ∈ SD such that fd(U) holds in det(A). Instead, assume q(U)
holds in det(A) for an U ∈ SD. This implies that all states s ∈ U are quiescent in A.
From rule R1D it follows that for every state s ∈ U there exists another state s′ ∈ S
such that s −δ→A s′. Therefore reachA(U, δ) 6= ∅. By Definition 2.11, we then have

(U, δ, reachA(U, δ)) ∈ →D. Consequently, U −δ→D.

2. To prove that det(A) satisfies rule R2, we must show that for all states U, V ∈ SD:

if U −δ→D V , then q(V)

Consider any transition U −δ→D V with U, V ∈ SD. If U −δ→D V , then, by Definition 2.11,
V = reachA(U, δ) and V 6= ∅. Hence, for every state s′ ∈ V there exists a state s ∈ U
such that s −δ→A s′. Using rule R2 we can then conclude that every s′ ∈ V is quiescent
in A, thus q(V) holds in det(A).

3. To prove that det(A) satisfies rule R3, we must show that for all states U, V ∈ SD:

if U −δ→D V , then tracesD(V) ⊆ tracesD(U)

Consider any transition U −δ→D V with U, V ∈ SD. Assume σ ∈ tracesD(V). We
must show that also σ ∈ tracesD(U). If σ ∈ tracesD(V), then there clearly must exist

a state s′ ∈ V such that s′ =
σ⇒A. Since U −δ→D V , it follows from Definition 2.11

that V = reachA(U, δ) and V 6= ∅. Hence, there must exist a state s ∈ U such that

s −δ→A s′. Using rule R3 we can then conclude that tracesA(s′) ⊆ tracesA(s), and
therefore s =

σ⇒A. Since s ∈ U , it follows that σ ∈ tracesD(U).

50 Chapter 4. Divergent Quiescent Transition Systems

4. To prove that det(A) satisfies rule R4, we must show that for all states U, V,W ∈ SD:

if U −δ→D V and V −δ→D W , then tracesD(W) = tracesD(V)

Consider any pair of transitions U −δ→D V and V −δ→D W , with U, V,W ∈ SD. To prove
that tracesD(W) = tracesD(V), we must show that both tracesD(W) ⊆ tracesD(V) and
traces(V) ⊆ tracesD(W). The former follows directly from rule R3, so all that’s left to
prove is that tracesD(V) ⊆ tracesD(W).

Assume σ ∈ tracesD(V). We must show that also σ ∈ tracesD(W). If σ ∈ tracesD(V),

then there clearly must exist a state s′ ∈ V such that s′ =
σ⇒A. Since U −δ→D V , it

follows that there exists a state s ∈ U such that s −δ→A s′. Furthermore, it follows
from rule R2 that V is quiescent, and therefore all states in V are quiescent, including
s′. Since V −δ→D W , we have W = reach(V, δ) and W 6= ∅. We can then conclude,

using rule R1D, that there must exist a state s′′ ∈ W such that s′ −δ→A s′′. Thus, we

have s −δ→A s′ −δ→A s′′. From rule R4 it then follows that traces(s′′) = traces(s′) and
consequently s′′ =

σ⇒A. Since s′′ ∈W , it follows that σ ∈ tracesD(W).

Theorem 4.22. Well-formed DQTSs are closed under parallel composition, i.e., given two
compatible well-formed DQTSs A and B, A ‖ B is also a well-formed DQTS.

Proof. Given two well-formed DQTSs A = 〈SA, S0
A, L

I
A, L

O
A, L

H
A, PA,→A 〉 and B =

〈SB, S0
B, L

I
B, L

O
B , L

H
B , PB,→B 〉 that are compatible (see Definition 2.34), let the DQTS

A ‖ B = 〈SA‖B, S0
A‖B, L

I
A‖B, L

O
A‖B, L

H
A‖B, PA‖B,→A‖B 〉 be their parallel composition, as

defined in Definition 4.17. To prove that well-formed DQTSs are closed under parallel com-
position we need to show that A ‖ B is a well-formed DQTS, i.e., we need to prove that
A ‖ B satisfies each of the rules R1D, R2, R3 and R4.

1. To prove that A ‖ B satisfies rule R1D, we must show that for every state (s, t) ∈ SA‖B:

if q((s, t)) or fd((s, t)), then (s, t) −δ→A‖B

Let (s, t) ∈ SA‖B. We will look at the cases for q((s, t)) and fd((s, t)) separately.

First, assume q((s, t)) holds in A ‖ B. In this case, there is no a ∈ LO
A‖B ∪ L

H
A‖B such

that (s, t) −a→A‖B. Since both A and B are input-enabled, it follows from Definition 4.17

that there is no a ∈ LO
A ∪ LH

A such that s −a→A and no a ∈ LO
B ∪ LH

B such that t −a→B.

Hence, both s and t are quiescent, and by rule R1D we have s −δ→A and t −δ→B. From

Definition 4.17 it then follows that (s, t) −δ→A‖B.

Now, assume fd((s, t)) holds in A ‖ B, i.e., there exists a fairly divergent path π ∈
fdpaths(A ‖ B) such that (s, t) ∈ ω-states(π), i.e., the state (s, t) appears infinitely
often on an infinite path π that is both divergent and fair. By Definition 4.17, each
step of path π is a transition by either A or B, since the sets of internal transitions of A
and B are disjoint, and they cannot synchronise on them. We can therefore distinguish
three cases: (a) A and B both carry out an infinite number of internal transitions in
the path π; (b) A carries out a finite number of internal transitions, and B an infinite
number; and (c), B carries out a finite number of internal transitions, and A an infinite

number. For each case, we will show that both s −δ→A and t −δ→B, and therefore, by

Definition 4.17, also (s, t) −δ→A‖B.

4.5. Properties 51

(a) Assume both A and B carry out an infinite number of internal transitions in the
path π. Now assume that A carries out all the even transitions (i.e., the second,
fourth, etc.) and B all the odd transitions (i.e., the first, third, etc.) in path π.
However, the following proof can also be adapted for any other path π. Hence,
path π is defined as follows:

π = (s0, t0) −b1−→A‖B (s0, t1) −a1−→A‖B (s1, t1) −b2−→A‖B (s1, t2) −a2−→A‖B (s2, t2) . . .

where si ∈ SA, ti ∈ SB, ai ∈ LH
A and bi ∈ LH

B . Since (s, t) ∈ ω-states(π), it
follows that ∃∞i, j such that (si, tj) = (s, t). Furthermore, by Definition 4.17,
the construction of path π implies the existence of two infinite paths πA and πB
in respectively A and B, such that:

πA = s0 −a1−→A s1 −a2−→A s2 −a3−→A . . .

πB = t0 −b1−→B t1 −b2−→B t2 −b3−→B . . .

Clearly, both paths πA and πB are divergent, since ai ∈ LH
A and bi ∈ LH

B . Since
the path π is fair with respect to the task partition PA‖B, it follows immediately
that both paths πA and πB are fair with respect to the task partitionings PA and
PB, respectively. To see this, recall that we have LH

A ∩ LH
B = ∅, LO

A ∩ LO
B = ∅

and both A and B are input-enabled. Furthermore, by Definition 4.17, any locally
controlled actions that are enabled in all states si ∈ SA and tj ∈ SB will also be
enabled in (si, ji) ∈ SA‖B. Hence, since PA‖B = PA ∪ PB, it follows that if either
πA or πB was not fair, then π could not be fair either. Consequently, πA and πB
are both fairly divergent paths.

As mentioned before, we have that ∃∞i, j such that (si, tj) is a state on the path
π and (si, tj) = (s, t). From this, it immediately follows that ∃∞i such that si is
a state on the path πA and si = s, and ∃∞j such that tj is a state on the path
πB and tj = t. Thus, s ∈ ω-states(πA) and t ∈ ω-states(πB). Since πA and πB
are fairly divergent, it then follows that fd(s) holds in A and fd(t) in B. By rule

R1D we then must have s −δ→A and t −δ→B.

(b) Assume A carries out a finite number of internal transitions in path π, and B an
infinite number. Since π is infinite and the number of internal transitions of A is
finite, this means that π can always be split into a finite path π′ and an infinite
path π′′ such that all internal transitions carried out by A in π are on path π′, and
none are on path π′′. Thus, the infinite path π′′ only contains internal transitions
of B. Note that π′ may consist of just a single state, in case A does not contribute
to the path π at all. For example, assume path π is defined as follows:

π = u0 −a1−→A‖B u1 −b1−→A‖B u2 −a2−→A‖B u3 −b2−→A‖B u4 −b3−→A‖B u5 −b4−→A‖B . . .

where ui ∈ SA‖B, ai ∈ LH
A and bi ∈ LH

B . Hence, only internal transitions of B are
executed after state u3. Clearly then, a possible assignment for π′ and π′′ is the
following:

π′ = u0 −a1−→A‖B u1 −b1−→A‖B u2 −a2−→A‖B u3
π′′ = u3 −b2−→A‖B u4 −b3−→A‖B u5 −b4−→A‖B . . .

Since A and B cannot synchronise on internal transitions, it follows that path π′′

is defined as follows:

π′′ = (s0, t0) −b1−→A‖B (s0, t1) −b2−→A‖B (s0, t2) −b3−→A‖B (s0, t3) −b4−→A‖B . . .

52 Chapter 4. Divergent Quiescent Transition Systems

where s0 ∈ SA, ti ∈ SB, and bi ∈ LH
B . Since path π is fairly divergent, path

π′′ is also fairly divergent. Furthermore, if (s, t) ∈ ω-states(π), then also (s, t) ∈
ω-states(π′′). We must show that s −δ→A and t −δ→B. We will do this by proving
that q(s) holds in A and fd(t) holds in B. The desired result then follows directly
from rule R1D.

First, we will prove that q(s) holds in A. Since (s, t) ∈ ω-states(π′′), it follows
from the above definition of π′′ that s = s0. Let LL

A(s0) denote the set of all
locally controlled actions of A that are enabled in the state s0. To prove that q(s)
holds in A, we must show that LL

A(s0) = ∅. We do this by assuming the opposite,
i.e., LL

A(s0) 6= ∅, and show that this leads to a contradiction.

From the definition of π′′ and Definition 4.17 it follows that LL
A(s0) ⊆ L(u) for

all states u ∈ SA‖B on the path π′′. If LL
A(s0) 6= ∅, then, by Definition 2.32, there

is an A ∈ PA such that A ∩ LL
A(s0) 6= ∅. Consequently, since path π′′ is fair, it

must be the case that ∃∞j such that aj is an action executed on the path π′′ and
aj ∈ A. However, only internal transitions from B are executed on path π′′ and
by Definition 2.34 we have LH

B ∩ LA = ∅.
Now, all that’s left to prove is that fd(t) holds in B. Since s = s0, π′′ is defined
as follows:

π′′ = (s, t0) −b1−→A‖B (s, t1) −b2−→A‖B (s, t2) −b3−→A‖B (s, t3) −b4−→A‖B . . .

where ti ∈ SB, and bi ∈ LH
B . Hence, by Definition 4.17, we have the following

infinite path πB in B:

πB = t0 −b1−→B t1 −b2−→B t2 −b3−→B t3 −b4−→B . . .

Clearly, path πB is divergent, since bi ∈ LH
B . Since the path π′′ is fair with respect

to the task partition PA‖B, it follows immediately that πB is also fair with respect
to the task partitioning PB. To see this, recall that we have LH

A ∩ LH
B = ∅, LO

A ∩
LO
B = ∅ and both A and B are input-enabled. Furthermore, by Definition 4.17,

any locally controlled actions that are enabled in all states tj ∈ SB will also be
enabled in (s, tj) ∈ SA‖B. Hence, since PB ⊆ PA‖B, it follows that if πB was not
fair, then π could not be fair either. Consequently, πB is a fairly divergent path.

Furthermore, as we observed earlier, we have (s, t) ∈ ω-states(π′′). From this,
and the definition of πB, it follows that ∃∞j such that tj is a state on the path
πB and tj = t. Hence, t ∈ ω-states(πB). Since πB is also fairly divergent, it then
follows that fd(t) holds in B.

(c) Assume B carries out a finite number of internal transitions in path π, and A an
infinite number. The proof for this case is then symmetric to the proof for the
previous case.

2. To prove that A ‖ B satisfies rule R2, we must show that for all pairs of states
(s, t), (s′, t′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′), then q((s′, t′))

Consider any transition (s, t) −δ→A‖B (s′, t′) with (s, t), (s′, t′) ∈ SA‖B. From Definition

4.17 it then follows that s −δ→A s′ and t −δ→B t′. By rule R2, both s′ and t′ are quiescent.
Thus, by Definition 4.17, q((s′, t′)) holds in A ‖ B.

4.5. Properties 53

3. To prove that A ‖ B satisfies rule R3, we must show that for all pairs of states
(s, t), (s′, t′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′), then tracesA‖B((s′, t′)) ⊆ tracesA‖B((s, t))

The proof for this is the same as the third case of the proof for Theorem 3.16.

4. To prove that A ‖ B satisfies rule R4, we must show that for all pairs of states
(s, t), (s′, t′),
(s′′, t′′) ∈ SA‖B:

if (s, t) −δ→A‖B (s′, t′) and (s′, t′) −δ→A‖B (s′′, t′′),

then tracesA‖B((s′, t′)) = tracesA‖B((s′′, t′′))

The proof for this is the same as the fourth case of the proof for Theorem 3.16.

Theorem 4.23. Well-formed DQTSs are closed under action hiding, i.e., given a well-
formed DQTS A and a set of labels H ⊆ LO

A, A\H is also a well-formed DQTS.

Proof. Let A = 〈S, S0, LI, LO, LH, P,→A 〉 be a well-formed DQTS and let H ⊆ LO be a
set of outputs. We then have A\H = 〈SH , S0, LI, LO

H , L
H
H , P,→H 〉, as defined in Defini-

tion 4.19. To prove that well-formed DQTSs are closed under action hiding we must show
that A\H is a well-formed DQTS, i.e., that it satisfies each of the rules R1D, R2, R3 and
R4. In the following, we use tracesH(s) to denote the set of all traces of A\H starting in
the state s ∈ S.

1. To prove that A\H satisfies rule R1D, we must show that for all states s ∈ SH :

if q(s) or fd(s), then s −δ→H

Since s ∈ SH and q(s) or fd(s) holds, it follows from Definition 4.19 that only the
following cases are possible: (a) s ∈ S and q(s) holds in A\H; (b) s ∈ S and fd(s)
holds in A\H; and (c) s ∈ SH \ S (and q(s) holds in A\H).

(a) Assume s ∈ S and q(s) holds in A\H. Since hiding of actions effectively relabels
output-transitions to internal transitions, it follows that q(s) must also hold in

A. By rule R1D, we then have s −δ→A. Since hiding does not affect existing

δ-transitions, we then also have s −δ→H .

(b) Assume s ∈ S and fd(s) holds in A\H. We can distinguish two cases: either fd(s)

also holds in A, or it does not. In the first case, we have, by rule R1D, s −δ→A.

Since hiding does not affect existing δ-transitions, we then also have s −δ→H . If
fd(s) does not hold in A, then s has become newly fairly divergent in A\H. By

Definition 4.19, we then have s −δ→H .

(c) Assume s ∈ SH \ S. Hence, s is a newly added quiescence observation state for

some newly fairly divergent state, and by Definition 4.19 we have s −δ→H s.

2. To prove that A\H satisfies rule R2, we must show that for all states s, s′ ∈ SH :

if s −δ→H s′, then q(s′)

Since s, s′ ∈ SH and s −δ→H s′, it follows from Definition 4.19 that only the following
cases are possible: (a) s, s′ ∈ S; (b) s ∈ S and s′ ∈ SH \ S; and (c) s, s′ ∈ SH \ S.

54 Chapter 4. Divergent Quiescent Transition Systems

(a) Assume s, s′ ∈ S and s −δ→H s′. Since hiding of actions does not result in the
addition of new δ-transitions between states that already existed before the hiding
operation took place, it follows that we also have s −δ→A s′. Rule R2 then implies
that q(s′) holds in A, and therefore, by Definition 4.19, hiding will not introduce
any new outgoing transitions for this state. Consequently, q(s′) also holds in
A\H.

(b) Assume s ∈ S, s′ ∈ SH \S and s −δ→H s′. From Definition 4.19, it follows that s′ is
a newly created quiescence observation state for the newly fairly divergent state
s, and s′ is quiescent.

(c) Assume s, s′ ∈ SH \ S and s −δ→H s′. From Definition 4.19, it follows that s′ is a
newly created quiescence observation state, s = s′, and s′ is quiescent.

3. To prove that A\H satisfies rule R3, we must show that for all states s, s′ ∈ SH :

if s −δ→H s′, then tracesH(s′) ⊆ tracesH(s)

Since s, s′ ∈ SH and s −δ→H s′, it follows from Definition 4.19 that only the following
cases are possible: (a) s, s′ ∈ S; (b) s ∈ S and s′ ∈ SH \ S; and (c) s, s′ ∈ SH \ S.

(a) Assume s, s′ ∈ S and s −δ→H s′. Since hiding of actions does not result in the
addition of new δ-transitions between states that already existed before the hiding
operation took place, it follows that we also have s −δ→A s′. Rule R3 then implies
that tracesA(s′) ⊆ tracesA(s). From Rule R2 we can also conclude that q(s′)
holds in A, and therefore, by Definition 4.19, hiding will not introduce any new
outgoing transitions for state s′. Consequently, it follows that tracesH(s′) =
tracesA(s′). Furthermore, by Definition 4.19, we have tracesA(s) ⊆ tracesH(s),
since new traces may be added by the hiding operation (when s is newly fairly
divergent), but existing traces are preserved. From this, it directly follows that
tracesH(s′) ⊆ tracesH(s).

(b) Assume s ∈ S, s′ ∈ SH \ S and s −δ→H s′. From Definition 4.19, it follows that s′

is a newly added quiescence observation state for the newly fairly divergent state
s. Let σ ∈ tracesH(s′). We have to show that also σ ∈ tracesH(s). There are
two cases to consider: either |σ| = 0 or |σ| ≥ 1. If |σ| = 0, then σ = ε, and by
definition σ ∈ tracesH(s). If |σ| ≥ 1, then, by Definition 4.19, σ = a · σ′, where

either a = δ, or a ∈ LI(s). In the first case we have s′ −δ→H s′ and s′ =
σ′
=⇒H . Since

also s −δ→H s′, it directly follows that σ ∈ tracesH(s). In the second case we have

s′ −a→H s′′ and s′′ =
σ′
=⇒H for some s′′ ∈ S. By Definition 4.19, we then must have

s −a→A s′′, and therefore also s −a→H s′′. Hence, since we have s′′ =
σ′
=⇒H , we find

σ ∈ tracesH(s).

(c) Assume s, s′ ∈ SH \ S and s −δ→H s′. From Definition 4.19, it follows that s is a
quiescence observation state and s = s′. Thus, tracesH(s′) ⊆ tracesH(s).

4. To prove that A\H satisfies rule R4, we must show that for all states s, s′, s′′ ∈ SH :

if s −δ→H s′ and s′ −δ→H s′′, then tracesH(s′) = tracesH(s′′)

Since s, s′, s′′ ∈ SH , s −δ→H s′ and s′ −δ→H s′′, it follows from Definition 4.19 that only
the following cases are possible: (a) s, s′, s′′ ∈ S; (b) s ∈ S and s′, s′′ ∈ SH \S; and (c)
s, s′, s′′ ∈ SH \ S.

4.5. Properties 55

(a) Assume s, s′, s′′ ∈ S, s −δ→H s′ and s′ −δ→H s′′. It then follows from Definition 4.19

that also s −δ→A s′ and s′ −δ→A s′′; and therefore, by rule R4, tracesA(s′) =
tracesA(s′′). From Rule R2 we can also conclude that q(s′) and q(s′′) hold in
A, and therefore, by Definition 4.19, hiding will not introduce any new outgoing
transitions for both states s′ and s′′. Consequently, it follows that tracesH(s′) =
tracesA(s′) and tracesH(s′′) = tracesA(s′′). From this, it directly follows that
tracesH(s′) = tracesH(s′′).

(b) Assume s ∈ S, s′, s′′ ∈ SH \ S, s −δ→H s′ and s′ −δ→H s′′. From Definition 4.19, it
follows that s′ is the newly added quiescence observation state for the newly fairly
divergent state s, and s′ = s′′. Clearly then, tracesδ(s

′′) = tracesδ(s
′).

(c) Assume s, s′, s′′ ∈ SH \S, s −δ→H s′ and s′ −δ→H s′′. From Definition 4.19, it follows
that s is a newly added quiescence observation state and s = s′ = s′′. Thus,
tracesδ(s

′′) = tracesδ(s
′).

4.5.2 Commutativity Properties

Now, we investigate the commutativity of function composition of IOA deltafication with
determinisation, action hiding and parallel composition. Again, we are only interested in
trace equivalence and therefore consider the function compositions of two operations to be
commutative if the end results of applying both operations in either order are trace equiva-
lent. We will show that, similar to QTSs, parallel composition can safely be swapped with
deltafication, but that deltafication has to precede determinisation to get correct results.
The case for action hiding is slightly more complicated, as will be shown below.

Proposition 4.24. Deltafication and determinisation do not commute, i.e., given an IOA
A such that δ /∈ L, it is not necessarily the case that det(δ(A)) ≈tr δ(det(A)).

Proof. The proof for this proposition is very similar to the proof given for Proposition 3.18,
the only difference is that obviously IOAs and DQTSs should be used rather than IOTSs
and QTSs.

Consequently, as is the case for QTSs, when transforming a nondeterministic IOA A to a
deterministic, well-formed DQTS, one should first derive δ(A) and afterwards determinise.

The following results show that deltafication does commute with both action hiding and
parallel composition. Note, however, that the action hiding operation for DQTSs (defined in
Definition 4.19) differs significantly from action hiding for IOAs (defined in Definition 2.36):
new quiescence observation states may need to be introduced for newly fairly divergent states.
Hence, the function composition of action hiding for DQTSs is not strictly commutative with
deltafication, in the sense that two very different hiding operations are used, depending on
the order in which the operations are composed. To emphasise this, in the following theorem
we use the notations \I and \D for the IOA and DQTS hiding operations, respectively.

Theorem 4.25. Deltafication and action hiding commute, i.e., given an IOA A such that
δ /∈ L and a set of labels H ⊆ LO

A, we have δ(A\IH) ≈tr δ(A) \DH.

Proof. Let A = 〈S, S0, LI, LO, LH, P,→〉 be an IOA such that δ /∈ L, and let H ⊆ LO. Fur-
thermore, let B = A\IH = 〈S, S0, LI, LO

B , L
H
B , P,→B 〉, as defined in Definition 2.36, and let

C = δ(A) = 〈SC , S0, LI, LO, LH, P,→C 〉, as defined in Definition 4.14. Finally, let
D = δ(A\IH) = 〈SD, S0, LI, LO

D, L
H
D, P,→D 〉, as defined in Definition 4.14, and let

E = δ(A) \DH = 〈SE , S0, LI, LO
E , L

H
E , P,→E 〉, as defined in Definition 4.19. Note that

LO
B = LO

D = LO
E and LH

B = LH
D = LH

E , since the same set of outputs H is being hidden.

56 Chapter 4. Divergent Quiescent Transition Systems

To prove that δ(A\IH) ≈tr δ(A) \DH, we must show that traces(δ(A\IH)) =
traces(δ(A) \DH). To prove this, in turn, we need to show that traces(δ(A\IH)) ⊆
traces(δ(A) \DH) and traces(δ(A\IH)) ⊆ traces(δ(A) \DH), i.e., that traces(D) ⊆
traces(E) and traces(E) ⊆ traces(D). We will only prove the former; the proof for the
latter is largely symmetrical and therefore omitted.

Let σ ∈ traces(D); we must show that also σ ∈ traces(E). Assume σ = a1 a2 . . . an with
ai ∈ LD. Since D = δ(A\IH), D was obtained from the IOA B by applying deltafication.
Consequently, the trace σ can either contain δ-transitions that were newly added by the
deltafication procedure, or it contains no δ-transitions at all. We will look at both cases
separately.

1. Assume the trace σ does not contain any δ-transitions. In this case, we obviously have
σ ∈ traces(B). Since B = A\IH, it follows from Definition 2.36 that there exists a trace
ρ ∈ traces(A) such that ρ � (LA \H) = σ. Hence, ρ = B1 a1 C1B2 a2 C2 . . . Bn an Cn,
with Bi, Ci ∈ H∗. Because C = δ(A), and deltafication does not remove existing
transitions, it then immediately follows that also ρ ∈ traces(C). Consequently, there

exists a path π = s0 =
B1=⇒C t0 −a1−→C u0 =

C1=⇒C s1 =
B2=⇒C t1 −a2−→C u1 =

C2=⇒C . . . =
Bn=⇒C

tn−1 −an−→C un−1 =
Cn=⇒C sn in C with s0 ∈ S0, si, ti, ui ∈ SC , and Bi, Ci ∈ H∗. From

Definition 4.19, it then follows that there must be a path π′ = s0 =
a1=⇒E s1 =

a2=⇒E
. . . =

an=⇒E sn in E , since E = C \DH. Thus, since trace(π′) = a1 a2 . . . an = σ, we find
σ ∈ traces(E).

2. Now, we look at the case that the deltafication of B did introduce new δ-transitions
to the trace σ. Assume, without loss of generality, that aj with 1 ≤ j ≤ n is the
only such δ-transition in the trace σ, i.e., σ = a1 . . . aj−1 δ aj+1 . . . an. Note that by
rule R2, aj+1 cannot be an output. Let σ′ = a1 . . . aj−1 and σ′′ = aj+1 . . . an; thus,
σ = σ′ δ σ′′. Since σ ∈ traces(D), it follows there exist states s ∈ S0 and s′, s′′, s′′′ ∈ SD
such that s =

σ′
=⇒D s′, s′ −δ→D s′′, and s′′ =

σ′′
=⇒D s′′′. Hence, the new δ-transition has been

created between states s′ and s′′. Since D is the deltafication of B, from Definition 4.14
we can conclude that in this case either q(s) holds in B and s′ = s′′, or fd(s) holds in
B and s′′ is the quiescence observation state of s′. In both cases, we find that since

s′′ =
σ′′
=⇒D s′′′, then also s′ =

σ′′
=⇒D s′′′. Hence, since s =

σ′
=⇒D s′ and s′ =

σ′′
=⇒D s′′′, and

neither σ′ nor σ′′ contains δ-transitions, we also have s =
σ′
=⇒B s′ and s′ =

σ′′
=⇒B s′′′.

Since s =
σ′
=⇒B s′, s′ =

σ′′
=⇒B s′′′ and B = A\IH, it follows from Definition 2.36 that

there exist traces ρ′, ρ′′ ∈ traces(A) such that ρ′ � (LA \ H) = σ′, ρ′′ � (LA \ H) =

σ′′, s =
ρ′

=⇒A s′ and s′ =
ρ′′

=⇒A s′′′. Hence, ρ′ = B1 a1 C1 . . . Bj−1 aj−1 Cj−1 and ρ′′ =
Bj+1 aj+1 Cj+1 . . . Bn an Cn, with Bi, Ci ∈ H∗. Note that, as mentioned above, aj+1

cannot be an output. Since deltafication does not remove any existing transitions, and

C = δ(A), we also have s =
ρ′

=⇒C s′ and s′ =
ρ′′

=⇒C s′′′.
We now have to consider two different cases, as mentioned above: either (a) q(s′) holds
in B and s′ = s′′, or (b) fd(s′) holds in B and s′′ is the quiescence observation state of
s′ in D.

(a) Assume q(s′) holds in B and s′ = s′′. In this case, it follows from Definition 2.36
that q(s′) must also hold in A. During deltafication, a δ-labelled self-loop is then

added to the state s′ in C, and we have s′ −δ→C s′. Putting this all together yields

the path π = s =
ρ′

=⇒C s′ −δ→C s′ =
ρ′′

=⇒C s′′′ in C. Hence, π = s =
B1=⇒C t0 −a1−→C u0 =

C1=⇒C

4.5. Properties 57

. . . =
Bj−1
===⇒C tj−2 −aj−1−−→C uj−2 =

Cj−1
===⇒C s′ −δ→C s′ =

Bj+1
===⇒C tj −aj+1−−→C uj =

Cj+1
===⇒C

. . . =
Bn=⇒C tn−1 −an−→C un−1 =

Cn=⇒C s′′′ with ti, ui ∈ SC , and Bi, Ci ∈ H∗. From

Definition 4.19, it then follows that there must be a path π′ = s =
σ′
=⇒E s′ =

δ⇒C
s′ =

σ′′
=⇒C s′′′ in E , since E = C \DH, σ′ = a1 . . . aj−1, and σ′′ = aj+1 . . . an. Thus,

since trace(π′) = σ′ δ σ′′ = σ, we have σ ∈ traces(E).

(b) Assume fd(s′) holds in B and s′′ is the quiescence observation state of s′ in D.
Since B = A\IH, there are two possibilities: either fd(s′) also holds in A, or not.
We will look at these cases separately.

First, assume fd(s′) also holds in A. Since C is the deltafication of A, it follows
from Definition 4.14 that a quiescence observation state qoss′ is added for the
state s′ in C, and we have s′ −δ→C qoss′ . Furthermore, for every a ∈ LI and t ∈ SA
such that s′ −a→A t, we have qoss′ −a→C t. Since the first label in the trace ρ” cannot

be an output, as mentioned above, it follows from the fact that s′ =
ρ′′

=⇒C s′′′, that

also qoss′ =
ρ′′

=⇒C s′′′. Consequently, we find that the path π = s =
ρ′

=⇒C s′ −δ→C
qoss′ =

ρ′′

=⇒C s′′′ exists in C. Hence, π = s =
B1=⇒C t0 −a1−→C u0 =

C1=⇒C . . . =
Bj−1
===⇒C

tj−2 −aj−1−−→C uj−2 =
Cj−1
===⇒C s′ −δ→C qoss′ =

Bj+1
===⇒C tj −

aj+1−−→C uj =
Cj+1
===⇒C . . . =

Bn=⇒C
tn−1 −an−→C un−1 =

Cn=⇒C s′′′ with ti, ui ∈ SC , and Bi, Ci ∈ H∗. From Definition 4.19,

it then follows that there must be a path π′ = s =
σ′
=⇒E s′ =

δ⇒E qoss′ =
σ′′
=⇒E s′′′ in

E , since E = C \DH. Thus, since trace(π′) = σ′ δ σ′′ = σ, we have σ ∈ traces(E).

Now, assume that fd(s′) does not hold in A. In this case, the hiding of the output
set H has made the state s′ fairly divergent in B. Hence, by Definition 4.8 and
Definition 4.6, there must exist a fair infinite path π = t0 b1 t1 b2 . . . in A with
ti ∈ SA, bi ∈ LA, such that bi ∈ (LH

A ∪ H) for all 1 ≤ i ≤ n, and s′ ∈ ω-states(π).
Note that for at least one bi we must have bi ∈ H, otherwise s′ would also be fairly
divergent in A. Clearly, π is also a fair infinite path of C, since during deltafication
the task partition P remains unchanged and no new output transitions or internal
transitions are created. Subsequently hiding the output set H makes π a fairly
divergent path, since all actions on path π are either internal actions, or actions
from the set H. Hence, since s′ ∈ ω-states(π), fd(s′) holds in E = C \DH,
and is therefore newly fairly divergent. Consequently, by Definition 4.14, a new
quiescence observation state qoss′ is created by the hiding operation for the state
s′, and we have s′ −δ→E qoss′ .

Because s =
ρ′

=⇒C s′ and s′ =
ρ′′

=⇒C s′′′, we also have s =
σ′
=⇒E s′ and s′ =

σ′′
=⇒E s′′′, since

ρ′ � (LA \H) = σ′, ρ′′ � (LA \H) = σ′′. Like in the previous case, it follows from

the facts that s′ =
σ′′
=⇒E s′′′, qoss′ is the quiescence observation state of s′, and σ′′

does not start with an output, that also qoss′ =
σ′′
=⇒E s′′′. Hence, there exists a

path π′ = s =
σ′
=⇒E s′ −δ→E qoss′ =

σ′′
=⇒E s′′′ in E . As trace(π′) = σ′ δ σ′′ = σ, we have

σ ∈ traces(E).

Theorem 4.26. Deltafication and parallel composition commute, i.e., given two compatible
IOAs A and B such that δ /∈ LA and δ /∈ LB, we have δ(A ‖ B) ≈tr δ(A) ‖ δ(B).

Proof. Let A = 〈SA, S0
A, L

I
A, L

O
A, L

H
A, PA,→A 〉 and B = 〈SB, S0

B, L
I
B, L

O
B , L

H
B , PB,→B 〉 be

compatible IOAs with δ /∈ LA ∪ LB. Let δ(A ‖ B) = 〈SC , S0
C , L

I
C , L

O
C , L

H
C , PC ,→C 〉 and

δ(A) ‖ δ(B) = 〈SD, S0
D, L

I
D, L

O
D, L

H
D, PD,→D 〉, as defined by Definition 4.14 and Defini-

tion 4.17. We have S0
C = S0

D = S0
A × S0

B, and LC = LD = LA ∪ LB. To prove that

58 Chapter 4. Divergent Quiescent Transition Systems

δ(A ‖ B) ≈tr δ(A) ‖ δ(B), we will prove a stronger property: we will show that they are
isomorphic. Clearly, two automata that are isomorphic are also trace equivalent. Hence, we
will show that there exists a bijection h : SC → SD such that the following holds:

1. for every state (s0, t0) ∈ S0
C there exists a state (u0, v0) ∈ S0

D such that h((s0, t0)) =
(u0, v0), and vice versa;

2. (s, t) −a→C (s′, t′) if and only if h((s, t)) −a→D h((s′, t′)), for all (s, t), (s′, t′) ∈ SC and
a ∈ LC ∪ { δ }.

First, we define the function h. By Definition 4.14, the deltafication procedure creates
new quiescence observation states for fairly divergent states. As a consequence, we have
SC ⊇ SA×SB and SD ⊇ SA×SB, but it is not necessarily the case that SC = SD due to the
presence of the quiescence observation states. Therefore, we define the function h as follows:

h = { ((s, t), (s, t)) | (s, t) ∈ SA × SB }
∪ { (qos(s,t), (qoss, qost)) | qos(s,t) ∈ SC \ (SA × SB) ∧ s ∈ fd(A) ∧ t ∈ fd(B) }
∪ { (qos(s,t), (qoss, t)) | qos(s,t) ∈ SC \ (SA × SB) ∧ s ∈ fd(A) ∧ t ∈ q(B) }
∪ { (qos(s,t), (s, qost)) | qos(s,t) ∈ SC \ (SA × SB) ∧ s ∈ q(A) ∧ t ∈ fd(B) }

Hence, the function h maps all states in SA × SB to themselves, as these states exist in
both SC and SD. All states that are in SC but not in SA × SB are newly created quiescence
observation states for fairly divergent states in SA × SB. As we have seen in the proof for
Theorem 4.22, when fd((s, t)) holds for some state (s, t) ∈ A ‖ B, there are three possibilities
for the component states s ∈ SA and t ∈ SB: fd(s) and fd(t) hold in A and B, respectively;
fd(s) and q(t) hold in A and B, respectively; or q(s) and fd(t) hold in A and B, respectively.
In the first case, we can simply map qos(s,t) to the composite state (qoss, qost) in SD, as
the deltafications of A and B will have created the quiescence observation states qoss and
qost for the fairly divergent states s and t. In the second case, however, t is quiescent rather
than fairly divergent in B. Hence, a quiescence observation state will be created for the
fairly divergent state s, but not for t, since t acts as its own quiescence observation state.
Consequently, we map qos(s,t) to the composite state (qoss, t) in this case. The same principle
applies for the third case.

We have to prove that h is indeed a bijection, i.e., that is it both injective and surjective.
First, we show that h is injective. Consider two states (s, t), (u, v) ∈ SC such that (s, t) 6=
(u, v). Clearly, if (s, t), (u, v) ∈ SA × SB, then h((s, t)) = (s, t) 6= (u, v) = h((u, v)). If
(s, t) ∈ SA×SB and (u, v) ∈ SC \(SA×SB), then (u, v) is a quiescence observation state, and
is therefore mapped by h to a state (x, y) ∈ SD, where either x or y, or both, are quiescence
observation states. Since (s, t) ∈ SA×SB, it directly follows that h((s, t)) = (s, t) 6= (x, y) =
h((u, v)). A similar argument shows that if (u, v) ∈ SA×SB and (s, t) ∈ SC \ (SA×SB), then
also h((s, t)) 6= h((u, v)). Now, assume (s, t), (u, v) ∈ SC \ (SA×SB). In this case, both (s, t)
and (u, v) are quiescence observation states, for some states (s′, t′) and (u′, v′) in SA × SB.
Consequently, (s, t) is mapped to either (qoss′ , qost′), (qoss′ , t

′), or (s′, qost′). Similarly,
(u, v) is mapped to either (qosu′ , qosv′), (qosu′ , v

′), or (u′, qosv′). Since qoss′ 6= qosu′ if
s′ 6= u′, and qost′ 6= qosv′ if t′ 6= v′, it immediately follows that h((s, t)) 6= h((u, v)).

Next, we show that h is also surjective. Let (u, v) be some state in SD. We have to show
that there exists a state (s, t) ∈ SC such that h((s, t)) = (u, v). If (u, v) ∈ SA×SB, then we can
take (s, t) = (u, v), since h((u, v)) = (u, v) and (u, v) ∈ SC . Assume (u, v) ∈ SD \ (SA × SB).
Hence, (u, v) is either equal to (qosu′ , qosv′), (qosu′ , v

′), or (u′, qosv′), for states u′ ∈ SA,
v′ ∈ SB. For all these cases, we have h((qosu′,v′)) = (u, v).

4.5. Properties 59

Now that we have a bijection h that maps all elements from SC to elements of SD, we
need to prove that this bijection satisfies the two conditions outlined above. Since S0

C = S0
D

and S0
C ⊆ SA×SB, clearly for all s0 ∈ S0

C there exists a t0 ∈ S0
D such that h(s0) = t0, namely

t0 = s0; and symmetrically for all t0 ∈ S0
D. To prove that (s, t) −a→C (s′, t′) if and only if

h((s, t)) −a→D h((s′, t′)), we must show that if (s, t) −a→C (s′, t′), then h((s, t)) −a→D h((s′, t′)),
and if h((s, t)) −a→D h((s′, t′)), then (s, t) −a→C (s′, t′). We will only prove the former case, the
proof for the latter case is largely symmetrical. We look at the cases (1) a ∈ LH

C ; (2) a = δ;
(3) a ∈ LI

C ; and (4) a ∈ LO
C , separately.

1. Assume a ∈ LH
C , i.e., (s, t) −a→C (s′, t′) for some a ∈ LH

C . In this case, we have
(s, t), (s′, t′) ∈ SA × SB, since, by Definition 4.14, quiescence observation states cannot
have incoming or outgoing internal transitions. Consequently, we must show that also
(s, t) −a→D (s′, t′), since h((s, t)) = (s, t) and h((s′, t′)) = (s′, t′). As deltafication does
not affect nor introduce internal transitions, (s, t) −a→C (s′, t′) implies, by Definition 4.17,
either s −a→A s′ and t = t′, or t −a→B t′ and s = s′. In both cases, these transitions will
still exist after the deltafication of A and B, respectively. Then, it follows directly from
Definition 4.17 that also (s, t) −a→D (s′, t′).

2. Assume a = δ, i.e., (s, t) −δ→C (s′, t′). From Definition 4.14 we can conclude that
there are three possible cases: (a) (s, t), (s′, t′) ∈ SA × SB; (b) (s, t) ∈ SA × SB and
(s′, t′) ∈ SC \ (SA × SB); or (c), (s, t), (s′, t′) ∈ SC \ (SA × SB). We will look at these
cases separately.

(a) Assume (s, t), (s′, t′) ∈ SA × SB. By Definition 4.14, the state (s, t) is quiescent
in A ‖ B and we have (s, t) = (s′, t′). Furthermore, we have h((s, t)) = (s, t),
and therefore also h((s′, t′)) = (s′, t′). Since A and B are input-enabled, we can
conclude from Definition 4.17 that both s and t must also be quiescent in A and
B, respectively. Hence, after deltafication of A and B, both s and t will have
δ-labelled self-loops. Consequently, by Definition 4.17, (s, t) −δ→D (s′, t′).

(b) Assume (s, t) ∈ SA × SB and (s′, t′) ∈ SC \ (SA × SB). In this case, by Defini-
tion 4.14, the state (s′, t′) is the quiescence observation state for the state (s, t), and
the state (s, t) is fairly divergent in A ‖ B. Furthermore, we have h((s, t)) = (s, t).
The state that (s′, t′) is mapped to by h depends on whether the states s and
t are quiescent or fairly divergent. As discussed above, there are three cases to
consider: (i) fd(s) holds in A and fd(t) holds in B; (ii) fd(s) holds in A and q(t)
holds in B; and (iii), q(s) holds in A and fd(t) holds in B. We will look at each of
those cases in turn.

i. Assume fd(s) holds in A and fd(t) holds in B. In this case, we have h(s′, t′) =

(qoss, qost). We must show that (s, t) −δ→D (qoss, qost). By Definition 4.14,

we have s −δ→δ(A) qoss and t −δ→δ(B) qost. It then follows directly from Defini-

tion 4.17 that (s, t) −δ→D (qoss, qost).

ii. Assume fd(s) holds in A and q(t) holds in B. In this case, we have h(s′, t′) =

(qoss, t). We must show that (s, t) −δ→D (qoss, t). By Definition 4.14, we have

s −δ→δ(A) qoss and t −δ→δ(B) t. It then follows directly from Definition 4.17 that

(s, t) −δ→D (qoss, t).

iii. Assume q(s) holds in A and fd(t) holds in B. The proof for this case is
symmetrical to the proof for the previous case.

60 Chapter 4. Divergent Quiescent Transition Systems

(c) Finally, assume (s, t), (s′, t′) ∈ SC \ (SA × SB). In this case, by Definition 4.14,
we have (s, t) = (s′, t′), and the state (s, t) is the quiescence observation state for
some fairly divergent state (s′′, t′′) in A ‖ B. The state that (s, t) is mapped to
by h depends on whether the states s′′ and t′′ are quiescent or fairly divergent.
Thus, as above, there are three cases to consider: (i) fd(s′′) holds in A and fd(t′′)
holds in B; (ii) fd(s′′) holds in A and q(t′′) holds in B; and (iii) q(s′′) holds in A
and fd(t′′) holds in B. We will look at each of those cases in turn.

i. Assume fd(s′′) holds in A and fd(t′′) holds in B. In this case, we have h(s, t) =

(qoss′′ , qost′′). We must show that (qoss′′ , qost′′) −δ→D (qoss′′ , qost′′). By

Definition 4.14, we have qoss′′ −δ→δ(A) qoss′′ and qost′′ −δ→δ(B) qost′′ . It then

follows directly from Definition 4.17 that (qoss′′ , qost′′) −δ→D (qoss′′ , qost′′).

ii. Assume fd(s′′) holds in A and q(t′′) holds in B. In this case, we have

h(s, t) = (qoss′′ , t
′′). We must show that (qoss′′ , t

′′) −δ→D (qoss′′ , t
′′). By

Definition 4.14, we have qoss′′ −δ→δ(A) qoss′′ and t′′ −δ→δ(B) t
′′. It then follows

directly from Definition 4.17 that (qoss′′ , t
′′) −δ→D (qoss′′ , t

′′).

iii. Assume q(s) holds in A and fd(t) holds in B. The proof for this case is
symmetrical to the proof for the previous case.

3. Assume a ∈ LI
C , i.e., (s, t) −a→C (s′, t′) for some a ∈ LI

C . From Definition 4.14 we
can conclude that there are two possible cases: either (s, t), (s′, t′) ∈ SA × SB, or
(s′, t′) ∈ SA × SB and (s, t) ∈ SC \ (SA × SB). We will look at these cases separately.

Assume (s, t), (s′, t′) ∈ SA×SB. In this case, we have h((s, t)) = (s, t) and h((s′, t′)) =
(s′, t′). Consequently, we must show that (s, t) −a→D (s′, t′). As deltafication does not
affect nor introduce input-labelled transitions, it follows from Definition 4.17 that there
are three possibilities:

(a) s −a→A s′ and t −a→B t′.
(b) s −a→A s′, t = t′ and a /∈ LB.

(c) t −a→B t′, s = s′ and a /∈ LA.

In all cases, these transitions will still exist after the deltafication of A and B. Neither
will LA nor LB change. Thus, it follows directly from Definition 4.17 that also (s, t) −a→D
(s′, t′).

Now, assume (s′, t′) ∈ SA × SB and (s, t) ∈ SC \ (SA × SB). In this case, we have
h((s′, t′)) = (s′, t′). By Definition 4.14, the state (s, t) is the quiescence observation
state of some fairly divergent state (s′′, t′′), i.e., (s, t) = qos(s′′,t′′). We then also have
(s′′, t′′) −a→C (s′, t′). The state that (s, t) is mapped to by h depends on whether the
states s′′ and t′′ are quiescent or fairly divergent. Again, there are three cases to
consider: (a) fd(s′′) holds in A and fd(t′′) holds in B; (b) fd(s′′) holds in A and q(t′′)
holds in B; and (c), q(s′′) holds in A and fd(t′′) holds in B. We will look at each of
those cases in turn.

(a) Assume fd(s′′) holds in A and fd(t′′) holds in B. In this case, we have h(s, t) =
(qoss′′ , qost′′). We must show that (qoss′′ , qost′′) −a→D (s′, t′). Since (s′′, t′′) −a→C
(s′, t′), it follows from Definition 4.17 that there are three possibilities:

i. s′′ −a→A s′ and t′′ −a→B t′. By Definition 4.14, we then have qoss′′ −a→δ(A)

s′ and qost′′ −a→δ(B) t
′. It then follows directly from Definition 4.17 that

(qoss′′ , qost′′) −a→D (s′, t′).

4.6. Summary 61

ii. s′′ −a→A s′, t′′ = t′ and a /∈ LB. By Definition 4.14, we then have qoss′′ −a→δ(A)

s′. Since a /∈ LB, it follows from Definition 4.17 that (qoss′′ , qost′′) −a→D
(s′, t′).

iii. t′′ −a→B t′, s′′ = s′ and a /∈ LA. The proof for this case is symmetrical to the
proof for the previous case.

(b) Assume fd(s′′) holds in A and q(t′′) holds in B. In this case, we have h(s, t) =
(qoss′′ , t

′′). We must show that (qoss′′ , t
′′) −a→D (s′, t′). Since (s′′, t′′) −a→C (s′, t′),

it follows from Definition 4.17 that there are three possibilities:

i. s′′ −a→A s′ and t′′ −a→B t′. By Definition 4.14, we then have qoss′′ −a→δ(A) s
′ and

t′′ −a→δ(B) t
′. It then follows directly from Definition 4.17 that (qoss′′ , t

′′) −a→D
(s′, t′).

ii. s′′ −a→A s′, t′′ = t′ and a /∈ LB. By Definition 4.14, we then have qoss′′ −a→δ(A)

s′. Since a /∈ LB, it follows from Definition 4.17 that (qoss′′ , t
′′) −a→D (s′, t′).

iii. t′′ −a→B t′, s′′ = s′ and a /∈ LA. Since a /∈ LA, it follows from Definition 4.17
that (qoss′′ , t

′′) −a→D (s′, t′).

(c) Assume q(s′′) holds in A and fd(t′′) holds in B. The proof for this case is sym-
metrical to the proof for the previous case.

4. Finally, assume a ∈ LO
C , i.e., (s, t) −a→C (s′, t′) for some a ∈ LO

C . Similar to the case
for a ∈ LH

C , we have (s, t), (s′, t′) ∈ SA × SB, since, by Definition 4.14, quiescence
observation states cannot have incoming or outgoing output transitions. As a result,
we must show that also (s, t) −a→D (s′, t′), since h((s, t)) = (s, t) and h((s′, t′)) = (s′, t′).
As deltafication does not affect nor introduce output-labelled transitions, it follows
from Definition 4.17 that there are four possibilities:

(a) s −a→A s′, t −a→B t′ and a ∈ LO
A, a ∈ LI

B.

(b) s −a→A s′, t −a→B t′ and a ∈ LI
A, a ∈ LO

B .

(c) s −a→A s′, t = t′ and a /∈ LB.

(d) t −a→B t′, s = s′ and a /∈ LA.

In all four cases, these transitions will still exist after the deltafication of A and B.
Neither will LA or LB change. Thus, it follows directly from Definition 4.17 that also
(s, t) −a→D (s′, t′).

4.6 Summary

In this chapter, we introduced Divergent Quiescent Transition Systems (DQTSs), which are
a specialisation of IOAs that capture the notion of quiescence. Whereas the occurrence of
divergent paths was explicitely disallowed in regular Quiescent Transition Systems (QTSs),
DQTSs do allow (state-recurrent) divergent paths. Since certain states on divergent paths
may exhibit quiescent behaviour, such states also need to be marked with δ-transitions. To
this end, the deltafication approach for QTSs has been extended for DQTSs to also handle
the observation of quiescence due to divergence. The operations of determinisation, parallel
composition and action hiding have been defined for DQTSs: these operations are exactly
the same as for regular IOAs, with the exception of action hiding, which needs to take the
possibility of newly divergent states into account. We have that shown that DQTSs are
closed under all these operations and also exhibit desireable commutativity properties. In
the next chapter, we will further compare QTSs and DQTSs.

Chapter 5
Conclusions and Future Work

5.1 Conclusions

In this thesis, we have introduced Quiescent Transition Systems (QTSs) and Divergent Qui-
escent Transition Systems (DQTSs), two new types of state transition systems. We also
thoroughly investigated their main properties. QTSs and DQTSs are based on the well-
known Input-Output Transition System and Input-Output Automaton formalisms, respec-
tively. Like the existing Suspension Automata (SAs), (D)QTSs can be used to describe all
possible observations of a system, including the observation of quiescence, i.e., the absence
of outputs. Hence, as is the case with SAs, these new models are especially useful to model
specifications and implementations of reactive systems in the context of model-based testing.
We have summarised some properties of the SA, QTS and DQTS models in Tab. 5.1.

SA QTS DQTS

stand-alone entity, can be built from scratch - + +
nondeterminism allowed - + +
divergence allowed - - +
closed under determinisation + + +
closed under action hiding ? +/- +
closed under parallel composition ? + +
deltafication commutative with determinisation ? - -
deltafication commutative with action hiding ? + +
deltafication commutative with parallel composition ? + +

Table 5.1: Comparison of the SA, QTS and DQTS formalisms. Recall that QTSs are only
fully closed under action hiding if the action hiding operation does not lead to the creation
of divergent paths. Furthermore, the closure and commutativity properties of SAs have not
been investigated yet, and are therefore mostly unknown.

As is clear from the comparison table, there are several advantages to using (D)QTSs
rather than SAs in the context of model-based testing. First of all, the use of QTSs or DQTSs
allow more systems to be modelled naturally, as both the determinism and convergence (the
latter only for DQTSs) requirements of SAs have been dropped. Secondly, in contrast to

63

64 Chapter 5. Conclusions and Future Work

SAs, QTS and DQTS are stand-alone entities whose closure and commutativity properties
have been thoroughly investigated. Consequently, with the use of these models comes a fully
specified, formalised and comprehensive theory to model and analyse quiescence, even in the
presence of nondeterminism and divergence.

Currently, the SA formalism forms the basis that the ioco testing framework is built
on [Tre96a, Tre96b]. We have shown that QTSs and DQTSs are equally potent as SAs in
terms of expressible behaviour. Hence, (D)QTSs can be used as a drop-in replacement for SAs
in the context of the ioco framework. Furthermore, as mentioned above, we have proven
formally that (well-formed) QTSs and DQTSs exhibit desirable compositional properties
regarding closure and commutativity. Consequently, composite systems can be represented
as the parallel composition of multiple smaller subcomponents, thereby reducing modelling
complexity when applying ioco to complex systems.

However, note that the ioco conformance relation, on which the ioco framework is built,
has some less desirable properties when it comes to composition, such as nonreflexivity,
nonmonotonicity of conformance, and nonconservation of conformance when testing in a
context. These problems, and solutions for them, are further discussed in [BK10, BK11].

Because DQTS models are more complex than QTS models, especially when it comes to
deltafication and action hiding, QTSs are to be preferred in situations in which divergence
is assumed not to arise. Such situations cannot always be predicted a priori, however,
especially when hiding output actions and using parallel composition when creating a model
of a specification. In those cases, it seems therefore better to use the DQTS model.

5.2 Future Work

In this section, we shortly discuss several possible directions for future work.
First of all, the action hiding operation for the DQTS model is more complicated than

that of the other models: because the hiding of output actions may result in paths be-
coming divergent, new so-called quiescence observation states may have to be introduced
subsequently to ensure well-formedness, as outlined in Definition 4.19. This obviously com-
plicates the action hiding operation. One possible improvement is to use a different strategy
to mark quiescent states, for example using state labels, rather than introducing δ-labelled
transitions. The feasibility of this has not yet been thoroughly investigated.

Furthermore, recall that fairly divergent states need to be marked with δ-transitions,
since quiescence may be observed in these states. It is not trivial to detect such states, since
both the fairness and divergence conditions will need to be checked for every state. Hence,
algorithms will have to be developed to do this efficiently. There are a number of efficient
(fair) cycle detection algorithms available, which may be adapted to also detect fair divergent
cycles [RBS00, FFK+01].

As mentioned earlier, the ioco theory is formulated in terms of the SA model [Tre96a,
Tre96b], but (D)QTSs could be used as drop-in replacements for SAs. It would therefore
be natural to reformulate the whole ioco theory using the (D)QTS theory, as we expect
that this would result in a cleaner and more powerful theory, as we discussed above. As an
additional benefit, DQTS-based ioco could also be applied to systems which exhibit divergent
behaviour, thus enabing testers to assess the correctness of a wider range of implementations.

Finally, ioco-based model-based testing tools like TorX internally use the SA model to
represent the specification of the system under test, and a SA-like model to represents the
actual tests. Hence, when the ioco model is updated to utilise the (D)QTS model, such
tools also need to be adapted. Work is currently already underway to adapt the TorX tool
to the DQTS model.

References

[BFd+99] A. F. E. Belinfante, J. Feenstra, R. G. de Vries, G. J. Tretmans, N. Goga, L. M. G.
Feijs, S. Mauw, and A. W. Heerink. Formal test automation: A simple experi-
ment. In G. Csopaki, S. Dibuz, and K. Tarnay, editors, Proceedings of the IFIP
TC6 12th International Workshop on Testing Communicating Systems: Method
and Applications, volume 147 of IFIP Conference Proceedings, pages 179–196,
Dordrecht, 1999. Kluwer Academic Publishers.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[BK10] I. B. Bourdonov and A. S. Kossatchev. Interaction semantics with refusals, di-
vergence, and destruction. Programming and Computer Software, 36:247–263,
September 2010.

[BK11] I. B. Bourdonov and A. S. Kossatchev. Specification completion for ioco. Pro-
gramming and Computer Software, 37(1):1–14, January 2011.

[BS08] H. C. Bohnenkamp and M. I. A. Stoelinga. Quantitative testing. In Proceedings
of the 8th ACM and IEEE International Conference on Embedded Software, pages
227–236. ACM, 2008.

[DNS95] R. De Nicola and R. Segala. A process algebraic view of input/output automata.
Theoretical Computer Science, 138:391–423, February 1995.

[FFK+01] K. Fisler, R. Fraer, G. Kamhi, M. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Tiziana Margaria and Wang Yi, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 2031 of Lecture
Notes in Computer Science, pages 420–434. Springer Berlin / Heidelberg, 2001.

[HN04] A. Hartman and K. Nagin. The agedis tools for model based testing. SIGSOFT
Software Engineering Notes, 29(4):129–132, July 2004.

[HT99] J. He and K. J. Turner. Protocol-inspired hardware testing. In Proceedings of
the 12th International Conference on Testing of Communicating Systems, pages
131–147. Kluwer Academic Publishers, 1999.

[JT05] C. Jard and J. Thierry. Tgv: theory, principles and algorithms: A tool for the au-
tomatic synthesis of conformance test cases for non-deterministic reactive systems.
International Journal on Software Tools for Technology Transfer, 7(4):297–315,
August 2005.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proceedings of the 6th ACM Symposium on Principles of Distributed
Computing, pages 137–151, 1987.

65

66 Chapter 5. References

[LT89] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. In Proceedings of the 3rd International Con-
ference on Formal Methods in Computer-Aided Design, pages 143–160, London,
UK, UK, 2000. Springer-Verlag.

[Seg97] R. Segala. Quiescence, fairness, testing, and the notion of implementation. Infor-
mation and Computation, 138(2):194 – 210, 1997.

[STS12a] W. G. J. Stokkink, M. Timmer, and M. I. A. Stoelinga. Talking quiescence:
a rigorous theory that supports parallel composition, action hiding and deter-
minisation. In A. K. Petrenko and H. Schlingloff, editors, Proceedings of the 7th
Workshop on Model-Based Testing, Tallinn, Estonia, volume 80 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 73–87, Australia, March 2012.
Open Publishing Association.

[STS12b] W. G. J. Stokkink, M. Timmer, and M. I. A. Stoelinga. Talking quiescence: a
rigorous theory that supports parallel composition, action hiding and determinisa-
tion (extended version). Technical Report TR-CTIT-12-05, Centre for Telematics
and Information Technology University of Twente, Enschede, February 2012.

[Sud06] T. A. Sudkamp. Languages and machines. Pearson Addison Wesley, 2006.

[TB03] J. Tretmans and E. Brinksma. Torx: Automated model-based testing. In A. Hart-
man and K. Dussa-Ziegler, editors, 1st European Conference on Model-Driven
Software Engineering, pages 31–43, December 2003.

[TBS11] M. Timmer, E. Brinksma, and M. I. A. Stoelinga. Model-based testing. In
Software and Systems Safety: Specification and Verification, volume 30 of NATO
Science for Peace and Security Series D, pages 1–32. IOS Press, Amsterdam,
April 2011.

[Tre96a] J. Tretmans. Test generation with inputs, outputs, and quiescence. In Proceedings
of the 2nd Workshop on Tools and Algorithms for Construction and Analysis of
Systems, volume 1055 of LNCS, pages 127–146. Springer, 1996.

[Tre96b] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools, 17(3):103–120, 1996.

[Tre08] Jan Tretmans. Model based testing with labelled transition systems. In Formal
Methods and Testing, pages 1–38, 2008.

[Tut87] M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. Technical
Report MIT/LCS/TR-387, Massachusetts Institute of Technology, Laboratory for
Computer Science, Cambridge, April 1987.

[Vaa91] F. W. Vaandrager. On the relationship between process algebra and input/output
automata (extended abstract). In Proceedings of the 6th Annual Symposium on
Logic in Computer Science, pages 387–398. IEEE, 1991.

67

[vRT04] H. M. van der Bijl, A. Rensink, and G. J. Tretmans. Compositional testing
with ioco. In A. Petrenko and A. Ulrich, editors, Formal Approaches to Software
Testing, volume 2931 of Lecture Notes in Computer Science, pages 86–100, Berlin,
2004. Springer Verlag.

[Wil07] Tim Willemse. Heuristics for ioco-based test-based modelling. In Lubos Brim,
Boudewijn Haverkort, Martin Leucker, and Jaco van de Pol, editors, Formal Meth-
ods: Applications and Technology, volume 4346 of Lecture Notes in Computer
Science, pages 132–147. Springer Berlin / Heidelberg, 2007.

