

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science

Formal Methods and Tools

Master’s Thesis

Bridging GROOVE to the world
using a conceptual language model

Author:
Harold Bruintjes

Committee:
Prof. Dr. Arend Rensink
Dr. Ivan Kurtev Ivanov

Dr. Wojciech Mostowski

Monday 12th November, 2012

Preface
My days as a computer scientists started somewhere early in high school, where I discovered that
it was possible to take an existing program, and disassemble it into simple machine instructions. It
was very interesting to look at how such programs worked, but even more interesting was the fact
that these programs could be put back together. At this point I realized that it was possible to make a
computer do what you want, rather than being limited to what it allows you to do. Of course I did not
understand many of it all, but this is what inspired me to investigate further, and ultimately decide
to study in the field of computer science.

Skip ahead a few years and here we are, writing my master’s thesis. During my master, there were
several occasions where the GROOVE tool was used. I liked the concept of graph transformations and
wanted to be able to do something with it for my thesis. Additionally, since I had learnt a lot in the
field of formal methods, I wanted something that allowed me to make an implementation of a tool,
rather than simply being the user of one. When I talked to Arend Rensink about this, he proposed
this project, and it was quickly decided that I would take it.

I would like to thank all my supervisors of this thesis, Arend, Ivan and Wojciech, as well as Maarten,
for your help in making this thesis. Your input and feedback have helped me a great deal in under-
standing the problem, formalizing the solution and writing this thesis. I have learned a great deal
from you all. Arend, thank you for helping me put structure in this thesis, and adding improvements
mere moments after I found the need for them. Ivan, thank you for helping me around in the world
of software modeling and the maze of terminology in it. Wojciech, thank you for your reviews and
getting my English up to par, even at there very last moment. And finally Maarten, thank you for
helping me writing down the formal specifications during the beginning.

I would also like to thank my fellow students at the FMT-Lab (a.k.a. “Het afstudeerhok”). With you
guys no day was ever boring. Freark, Gerjan, Lesley, Paul, Ronald, and everyone else, thank you for
your feedback and technical assistance, as well as the pleasant discussions. Also, thumbs up for those
nights with pizza, drinks and games.

Abstract
Currently, GROOVE is capable of importing and exporting Ecore models, which can be used by tools
such as Eclipse using its underlying modeling framework. This is done using a standalone tool which
can transform GROOVE graphs to Ecore models and vice versa. An Ecore type model may be im-
ported as a type graph, and Ecore instance models as instance graphs. GROOVE can then be used to
transform these instance graphs, which may then be exported back again to Ecore instance models.
However, the generated type and instance graphs can sometimes become too complex and unman-
ageable, where a simpler graph would be sufficient. It is therefore desirable to improve the current
import and export facilities, and give the user the option to generate more simple graphs. Ideally,
this process would be configurable so different choices can be made on the resulting outcome. Addi-
tionally, it is interesting to add the capability for translating other graph languages to the import and
export facilities as well, so as to make GROOVE more interoperable with other tools.

These problems are addressed by defining a conceptual model, which acts as an intermediate layer be-
tween GROOVE and possible external languages, such as Ecore. A formal description is given for this
conceptual model, providing a well defined foundation for the mappings between itself, the external
languages and GROOVE. The mapping between the conceptual model and the external languages is
kept simple by combining the concepts found in these external languages into the conceptual model.
Then, only the mapping between GROOVE and the conceptual model needs to perform the more
heavyweight translation from the conceptual model to the graphs supported by GROOVE.

... Contents

1 Introduction 1

1.1 Software development . 1

1.1.1 Tools and Interoperability . 1

1.2 Modeling . 1

1.2.1 Instance models . 2

1.2.2 Type models . 2

1.2.3 Language models . 2

1.3 Graphs and GROOVE . 2

1.3.1 Current importer/exporter . 3

1.4 Research question . 3

1.5 Requirement analysis . 4

1.5.1 Configuration . 4

1.5.2 Use cases . 5

1.5.3 Conceptual model . 6

1.6 Research question refinement . 7

1.7 Related work . 7

1.8 Outline . 8

2 Background 11

2.1 Graph languages . 11

2.1.1 Ecore . 11

2.1.2 GXL . 13

2.1.3 DOT . 13

2.2 GROOVE . 14

2.2.1 Type graphs . 14

2.2.2 Instance graphs . 15

2.2.3 Rules . 16

2.3 Conclusion . 18

i

ii CONTENTS

3 Conceptual model 21

3.1 Global concepts . 21

3.2 Type models . 23

3.3 Instance models . 30

3.4 Conclusions . 39

4 Mapping CM-GROOVE 41

4.1 Global level . 41

4.2 Type model . 41

4.2.1 Additional constraint checks . 47

4.2.2 Meta graph . 48

4.3 Instance model . 49

4.4 Configuration . 50

4.5 Overview . 58

4.6 Conclusions . 58

5 Mapping CM to Ecore, GXL and DOT 59

5.1 Ecore . 59

5.1.1 Importing type models . 59

5.1.2 Importing instance models . 63

5.1.3 Exporting type models . 63

5.1.4 Exporting instance models . 66

5.1.5 Issues . 66

5.2 GXL . 67

5.2.1 Importing type graphs . 67

5.2.2 Importing instance graphs . 71

5.2.3 Exporting type graphs . 71

5.2.4 Exporting instance graphs . 72

5.2.5 Issues . 73

5.3 DOT . 73

5.3.1 Importing type and instance models . 73

5.3.2 Exporting type models . 75

5.3.3 Exporting instance models . 77

CONTENTS iii

5.3.4 Issues . 77

5.4 Mapping overview . 78

5.4.1 Ecore . 78

5.4.2 GXL . 79

5.4.3 DOT . 79

5.4.4 Conceptual model . 80

5.5 Conclusion . 80

6 Implementation and Validation 81

6.1 Design . 81

6.1.1 Conceptual model . 81

6.1.2 Mapping . 81

6.1.3 Configuration . 84

6.1.4 GROOVY . 85

6.2 Validation . 86

6.2.1 Testing concept support . 86

6.2.2 Space performance . 90

6.2.3 Time performance . 90

6.2.4 Code analysis . 94

6.3 Conclusions . 99

7 Conclusion 101

7.1 Summary . 101

7.2 Evaluation . 102

7.3 Future work . 104

7.3.1 Command line . 104

7.3.2 Extend CM . 104

7.3.3 Alternative CM . 104

7.3.4 Library performance . 104

A Implementing the conceptual model 109

A.1 Names and identifiers . 109

A.2 Data types . 109

A.3 Type model . 110

iv CONTENTS

A.3.1 Types . 111

A.4 Instance model . 113

B Implementation of the graph language mappings 115

B.1 Mapping Ecore-CM . 115

B.1.1 Type model . 115

B.1.2 Instance model . 121

B.2 Mapping GXL-CM . 122

B.2.1 Type model . 124

B.2.2 Instance Model . 125

B.3 DOT-CM . 126

B.3.1 Type models . 126

B.3.2 Instance models . 127

C Implementation of the GROOVE mapping 129

C.1 Type graphs . 129

C.1.1 Import . 129

C.1.2 Export . 130

C.2 Instance graphs . 131

C.2.1 Import . 131

C.2.2 Export . 132

C.3 Rule graphs . 133

C.3.1 Opposite rules . 133

C.3.2 Unique rules . 133

C.3.3 Ordered rules . 134

C.3.4 Enum . 134

C.3.5 Identifier/Keyset . 135

D Graph languages overview 137

D.1 XMI . 137

D.2 UML . 137

D.3 GML/XGMML . 137

D.4 GraphML . 138

D.5 RDF/OWL . 138

CONTENTS v

D.5.1 RDF . 138

D.5.2 OWL . 139

D.6 KM3 (Kernel MetaMetaModel) . 139

D.7 Kermeta (structural) . 139

D.8 Selection criteria . 140

vi CONTENTS

.. Chapter1. Introduction

1.1 Software development

In the current world of software development, much effort is spent on trying to ensure or proof that
software is defect free. The importance of this aspect of software development is clear; many systems
depend on software, and software faults can cause damage to these systems, or cause these systems
to fail completely. Thus various methods have been created to be able to detect and prevent defects
in software. One of these methods is the modeling of software. As software grows more and more
complex, it is not always feasible to check for various properties on the software itself. Instead, a
model provides a simplified representation of software, which may be used to proof or predict various
properties on this software.

Of course, many different representations can be used to model software, and just as many different
tools can be used to work with these models. This gives rise to a new question: If a model is created
for a tool with a very specific purpose, is it possible to use the same model in another tool with a
different purpose? For example, a model for software can be used by one tool to generate an actual
program, whilst another tool may be used to verify that certain properties hold on such a model.

1.1.1 Tools and Interoperability

As most tools use a different language to store their models, exchanging models between tools is
often not trivial. The language used to store a model has to be translated in some way to another
language before it can be used again in another application. This translation can be performed by the
application that creates the model, which is referred to as exporting, or the application that reads the
model, referred to as importing. Of course applications can support both processes, but most of the
time neither is supported. This causes a problem with the interoperability of these tools, as a model
that can neither be imported or exported cannot be used by a tool that uses a different language.
Simply recreating a model by hand is not always viable, as this is error prone and often very time
consuming (especially if multiple, or large, models are involved).

The main advantage of being able to exchange models between various tools is that all of their capa-
bilities can be combined together. Some tools are designed to perform one function particularly well,
while others are optimized for other tasks. Therefore, increasing the interoperability between these
tools would be beneficial.

1.2 Modeling

Modeling tools often make use of different modeling levels. These different levels are used to describe
the actual instances that are being modeled, the models themselves and, in some cases, the model
of these models. These different levels are referred to as instance models, type models and language
models respectively. Instance models describe actual objects and their associated values, the objects
themselves also being considered values. Type models describe the different classes of such objects
and their properties, giving a categorization of each such object, and limiting the scope of possible
values that may be assigned. Finally, language models classify the elements in a type model.

1

2 1.3. GRAPHS AND GROOVE

Of course, language models can be described by other, higher level models, which themselves can be
described by models and so on. However, for this thesis these type of models are not required and
the three types of models described here are sufficient.

1.2.1 Instance models

Instance models describe actual instances ‘in the world’. When considering, for example, the Java
programming language, an instance model would represent the state of a program during execution,
at which point various instances of objects exist, each with assigned values and residing in a specific
place in memory.

1.2.2 Type models

Type models are a description of the possibly types of objects that can be found in an instance model.
Leveraging the concepts in Java, a type model would be the equivalent of the code of a program,
specifying the various classes of objects and the types of relations between objects.

1.2.3 Language models

Language models describe the elements that are allowed to occur in a type model. In Java, the lan-
guage model would describe the allowed syntax and structure of the code of a program, such as class
definitions.

1.3 Graphs and GROOVE

Graphs are well suited for modelling object oriented software, as well as visualizing other types of
models. It is therefore not surprising that various tools exist that work on such graphs, each support-
ing their own set of languages to represent these graphs and to transfer them between applications.
One such tool is GROOVE [32], which is designed to allow object oriented software to be modeled
using graphs, and for these graphs to be verified.

GROOVE is a tool for working with simple graphs and graph transformations [19]. It can be used to
model the structure of object oriented systems as graphs, and perform various operations on them.
Currently, GROOVE stores these graphs in its own format (based on the GXL format [39]) which is
not compatible with other tools. However, in its simplest form these graphs only consist of a series
of labeled nodes and edges, which should be conceptually supported by other tools. Therefore, it
should be possible to translate the graphs in GROOVE to and from the models of other tools in their
respective language.

GROOVE makes use of graph grammars, which for this work can be considered to consist of three
kinds of graphs: type graphs, rule graphs, and instance graphs. Type graphs define the structure
of the graphs that are allowed as instance graphs or rule graphs. They support concepts such as
inheritance, abstractness and multiplicities. An example type graph is shown in fig. 1.1a, showing
three node types (A, B and C), an inheritance relation between B and A, and an edge between A and
C. Valid instance graphs contain only nodes of these types, and only edges between A and C nodes,
and between B and C nodes (as B inherits from A). Rule graphs define possible transformations for
instance graphs. Rule graphs allow nodes and edges to be removed, created or simply be checked for
their presence (or absence). An example rule graph is shown in fig. 1.1b, which will remove any A
node which has an edge to an existing C node. Instance graphs are the graphs that represent an actual

CHAPTER 1. INTRODUCTION 3

(a) Type graph (b) Rule graph

(c) Instance graph

Figure 1.1: Example GROOVE graphs.

Import Export
CADP CADP
DIMACS -
- KTH
- Various image formats
Ecore type -
Ecore instance Ecore instance

Table 1.1: Import and export formats supported by GROOVE.

instance model, and are typed by a type graph. Instance graphs can be transformed by rule graphs,
resulting in new instance graphs. An example instance graph is shown in fig. 1.1c.

1.3.1 Current importer/exporter

The current version of GROOVE (which at the time of writing is 4.6.0 [20]), is capable of importing
and exporting a few external formats as shown in table 1.1. One of these formats is the Ecore model
(see section 2.1.1), which is interesting because it is both capable of importing graphs from, and ex-
porting graphs to Ecore models. The Ecore importer and exporter was made as part of the research
in [37].

1.4 Research question

Although GROOVE has an importer and exporter for Ecore models, some limitations still apply. The
importer is capable of importing both Ecore type models and Ecore instance models, but the exporter
can only export Ecore instance models. An additional problem that has arisen is the fact that the
graphs that are created for Ecore models tend to become large. The user has no influence on the
resulting outcome, which in some cases is too verbose. Furthermore, the importer and exporter for
Ecore are not well integrated into GROOVE. They can only be used from the command line, rather
than the interface that GROOVE provides itself.

Another point of improvement is the addition of additional languages to import from and export to
from GROOVE. As table 1.1 shows, GROOVE already supports a few languages, but other interesting

4 1.5. REQUIREMENT ANALYSIS

languages exist as well. It would be beneficial to investigate what other languages exist and which
are of interest to integrate into GROOVE.

Therefore, the main research question of this thesis is: “How can the current import and export capabili-
ties in GROOVE be improved?”, where the improvement aims at both the current Ecore importer and
exporter, as well as the addition of new languages.

1.5 Requirement analysis

Based on experiences with the previous importer/exporter and the desire to add new languages to
GROOVE, a few requirements are imposed on the new importer/exporter. Since the aim of this thesis
is to improve on the existing importer/exporter, the current capabilities are taken as the baseline.
From the experiences with the current importer/exporter, the following issues were identified:

1. The generated graphs are sometimes overly complex;

2. Only instance models can be exported, not type models;

3. The import and export features are not integrated into the GROOVE interface, but are rather
implemented as a separate command line interface.

Furthermore, Ecore is the only graph based modeling language supported, which means that support
for other popular languages is lacking. Therefore, the aim is to add support for other languages as
well, and provide an interface that makes it easier to add other graph based modeling languages
which are not covered by this thesis. This can be done by providing some intermediate interface
which connects external languages with GROOVE, and promotes code reuse.

1.5.1 Configuration

To tackle the problem of the inability to exert any influence on the generated graph, the ability to con-
figure the import and export process is proposed. This configuration determines what representation
is used for the various aspects of models that may be imported or exported. Thus, one model may be
represented in different ways, depending on how the importer and exporter are configured.

Some models benefit from a simplified representation, whereas other models may require a com-
plete or more verbose representation. For example, when a model is imported just to be able to get
an overview, a simpler representation makes understanding the generated graphs easier. When the
model needs to be transformed and exported back again, this process is most useful if most, if not all,
information is retained, which requires a more complete and expressive representation.

Since a graph imported with a specific configuration may have to be exported again, the same con-
figuration has to be available. Therefore, some mechanism is required in order to keep track of the
used configurations so that they may be reused. This means that the configuration has to be made
persistent, and that the user has to be able to select and modify the existing configuration(s).

Finally, if a model is imported or exported and the user wishes to create or modify a configuration,
then a GUI should be available in order to do so. This provides for a better workflow when the
GROOVE GUI is used to initiate an import or export operation.

CHAPTER 1. INTRODUCTION 5

1.5.2 Use cases

This section describes the various use cases for the new importer/exporter. These use cases will
guide the design decisions and determine what capabilities are needed or desired in order for the
importer/exporter to be useful.

Model checking

One of the main use cases is that of model checking using GROOVE. In this case, a model is generat-
ed/created outside of GROOVE in one of the supported languages, for example Ecore. The model is
then imported into GROOVE, upon which various transformations can be applied to check for various
properties.

First, the model is created in one of the external languages. After having done this, it is imported
into GROOVE. At this point, the model can be treated as any graph in GROOVE and as such model
checking can be performed on the instance graphs (which represent instance models).

Model transformation

Another important use case is that of model transformation. In this case, a model is imported, trans-
formed and then exported back again. Here, GROOVE is used as a model transformation tool. Since
GROOVE is capable of performing model transformations, this use case suits GROOVE well.

First, an instance model is created in one of the external languages as with the previous use case. After
importing it into GROOVE, GROOVE may be used to transform the generated graph for this instance
model. This transformed model may then be exported back again.

Model editing

Editing a model in GROOVE should be supported by the importer/exporter. Although editing the
graph does not change the import/export functionality directly, it will affect the required configura-
tion. If a graph is imported with a specific configuration, and it is later on edited in such a way that it
does not correspond to that configuration (for instance, a change in naming convention), the config-
uration will have to be adjusted. The importer/exporter may try to do so automatically, but this will
quickly become very complex for all but the most trivial changes. Rather, it will be left up to the user
to make the proper adjustments.

There are 3 main case distinctions:

1. Making small changes in the grammar,

2. Changing the structure of graphs in the grammar, or the grammar itself,

3. Breaking the graph grammar.

Small changes in the graph that do not affect its structure with regard to the configuration require
no special treatment (no changes in the configuration are required). Exporting the graph can still be
handled without any new input required. Larger changes that do affect the graph structure in such a
way that the configuration does not match anymore will require the user to modify the configuration
accordingly. This requires an interface that allows the user to do this (this interface can be the same as
that is offered during the import process). Optionally, the importer/exporter can try to validate the
current graphs using this configuration. Finally, it is possible that some changes break the grammar

6 1.5. REQUIREMENT ANALYSIS

..External languages. CM. GROOVE.

Configuration

Figure 1.2: Overview of the proposed importer/exporter components.

in such a way that no configuration will allow the exporter to function correctly. In such cases, a
message should be generated that indicates what the problem is (or might be), allowing the user to
fix the issue.

Model porting

Another use case is that of porting models from one language to another. In this case, GROOVE is only
used as an intermediate tool that translates a model from one language to another, without changing
it.

First, a model in one external language is imported into GROOVE via the conceptual model. Then,
it is exported back again via the conceptual model, but to a different target language. This allows
GROOVE to be used as a tool to provide model translations, when an editor for such a model does
not provide the option of exporting to one of the languages supported by the exporter of GROOVE.

Model generation

The importer/exporter can also be used to export models created within GROOVE to be used by other
tools. This allows operations to be performed on those models that are otherwise out of the scope of
GROOVE. For example, a model in GROOVE may be exported to Ecore, which can then be used to
create concrete Java classes. The creation of a model requires the creation of a type graph that fits
within the conceptual model and optionally accompanying instance graphs.

In this case no configuration exists yet and a new one has to be created. This can be done by copying
an existing configuration (adjusting it where necessary) or creating a new one entirely (as is possible
during the import process).

1.5.3 Conceptual model

Reusing as much code as possible helps speed up development and improves maintainability. In
order to achieve this, a conceptual model (CM) is proposed, which connects the various external
languages to GROOVE via some intermediate representation, based on the concepts found in these
external languages. By keeping the level of expressiveness of the conceptual model between that of
the external languages and the graphs of GROOVE, the import and export process of the various
languages can be simplified, as part of the translation process (namely, the part of the conceptual
model that GROOVE cannot directly represent) can be reused for each external language.

Based on the requirements and the proposed conceptual model, an overview of how the various
elements of the import/export process are connected is shown in fig. 1.2. It is important to recognize
that the configuration only affects the translation between the conceptual model and GROOVE, and
not between the conceptual model and the external languages.

CHAPTER 1. INTRODUCTION 7

1.6 Research question refinement

Based on the requirements analysis, various subquestions can be identified that play a role in answer-
ing the main research question, where each subquestion answers a part of the main research question.

As part of this thesis, some preliminary research, called the research topics, was performed to identify
the boundaries of the problem. Part of this research has been incorporated in this thesis. For example,
during the research topics a selection was made of the languages that were going to be added to the
new importer and exporter and the conceptual model was defined.

The following research questions were identified:

1. “What are suitable languages for importing and exporting to and from GROOVE?”
A choice needs to be made on what languages will be supported by the importer, and possibly
what subset of the features of these languages. The various modeling and graph languages in
existence all have different features and capabilities which may not be representable by a single
conceptual model. It is therefore necessary to find out what languages lend themselves best
for inclusion and how much overlap they have. This question has been answered during the
research topics phase.

2. “How can different languages be covered while reusing as much code as possible?”
Ideally, the importer/exporter would be generic enough to be able to import and export differ-
ent languages while reusing as much code as possible. This helps speed up development of
translators for new languages and improves maintainability of the code base (as there is less
code to maintain). The answer to this question lies with the conceptual model, which has been
defined as part of the research topics.

3. “How to map the languages from and to the conceptual model, and GROOVE from and to the
conceptual model?”
When the various languages are selected (or subparts thereof), a mapping needs to be defined
between these languages and the actual conceptual model. The conceptual model will then act
as the bridge between languages and GROOVE. Likewise, the conceptual model also needs to
be mapped to GROOVE, and in such a way that it is configurable and flexible enough to allow
the resulting graph to be either very detailed (with as little loss of information as possible), or
simplified in some form to make the graphs more manageable.

4. “How can the import and export facilities be implemented?”
Part of this thesis is the actual implementation of the exporter and importer, which requires an
implementation of the conceptual model as the core. Additionally, the mappings between the
conceptual model and both the external languages and GROOVE must be implemented, as well
as integrated into the GROOVE GUI. Finally, parsers are required for the external languages as
well.

5. “How can the results be validated?”
The resulting output of the importer/exporter has to be validated in order to determine that
the output is correct and conveys the right meaning. Furthermore, the actual implementation
must be bench-marked in order to verify that it performs well enough to be used in GROOVE.
Therefore, some quantifying (and qualifying) metrics are required to be able to measure the
performance, which need to be determined.

1.7 Related work

Many different approaches exist to deal with model transformations. Two main types of transforma-
tions can be distinguished: endogenous and exogenous. Endogenous model transformations allow

8 1.8. OUTLINE

one model to be translated into another within the same language. Exogenous model transformations
allow a model to be transformed from one language to another. Since the model transformations de-
scribed in this thesis are of an exogenous nature, the focus lies on these type of transformations.

A project that is closely related to this work is EMF Henshin, which provides a model transformation
language. The Henshin language supports both endogenous and exogenous model transformations
and uses a declarative model transformation language. It allows users to create pattern based trans-
formation rules to transform models. These rules can then be structured into nested transformation
units [2]. Henshin also features a state space generator, which can be used to model check the model
transformations.

The Object Management Group (OMG) has defined the QVT (Query/View/Transformation) stan-
dard, which is comprised of a set of languages that allow model transformations. This set of lan-
guages consists of the QVT-Core language, QVT-Operational, QVT-Relations, and the QVT-BlackBox
languages. Various implementations of these languages exist, as can be seen in [25].

Similar to QVT is Tefkat [26], which provides a declarative model transformation language. Tefkat
makes use of the EMF, allowing it to work with models based on MOF, UML2 and XML Schema. It
is closely related to QVT, but its design is based on a number of additional requirements.

The ATLAS Transformation Language (ATL) [23] consists of a hybrid of declarative and imperative
constructs. ATL is capable of translating models which are typed by some other meta models. These
meta models themselves are then modeled by the MOF. Likewise, ATL specifications make use of the
ATL meta model, which itself is modeled by the MOF as well.

MOFLON [1] is a meta modeling framework based on the Fujaba platform. It adds the capability to
use the MOF meta model and allows XMI models to be imported and exported. MOFLON can be used
with both visual and textual representations and allows modularisation techniques to be applied.

An algebraic approach to model transformations is the MOMENT framework [6]. This framework
uses a ModelGen operator, which is based on the Maude term rewriting system [12]. This operator
supports the QVT-Relations language. By using an algebraic specification, efficient translations are
possible, and the algebraic features can be proved (including transformation confluence and termina-
tion).

An algebraic semantics for the MOF standard is defined by Boronat and Meseguer [7], which contin-
ues the work of the MOMENT framework. This algebraic semantics gives a clear formal definition for
the notions of a meta model, a model and the conformance of the model to the meta model. These
formal semantics are executable due to the use of the Maude language, and have been implemented
as a plugin for the Eclipse IDE by the name of MOMENT2.

AToM3 is a visual meta modeling tool that is capable of handling a large number of components [15].
AToM3 can be used to generate a tool to process models specified by graphical formalisms, which can
be created using AToM3. AToM3 uses graph grammars to represent model transformations.

As a final reference, the work of Czarnecki and Helsen [14] gives an extensive overview of possible
model transformation approaches and implementations of these approaches. They provide a classifi-
cation framework for the various types of model transformations, and distinguish between two major
categories: model-to-model transformations and model-to-text transformations.

1.8 Outline

This thesis begins with giving some background information on the GROOVE tool and the external
graph languages used in this thesis in chapter 2. Here, some information is given on what these ex-
ternal languages are used for and why they are included in this thesis, as well as some theoretical

CHAPTER 1. INTRODUCTION 9

background for the GROOVE tool. This chapter aims at answering the first research question. Next,
the conceptual model is introduced in chapter 3, which provides the bridge between the external lan-
guages and GROOVE, providing a part of the second research question. A full formal specification
is given, as well as a few small examples. For a description of its actual implementation, answering
the second research question completely, see appendix A. Based on this information, chapters 4 and 5
provide an overview of the mappings between the conceptual model and GROOVE, and the con-
ceptual model and the external languages respectively. These chapters give the answer to the third
research question. A more detailed description with more implementation details can be found in
appendices B and C. An overview of the implementation, as well as the results of the experiments
performed can be found in chapter 6, answering research questions 4 and 5. The final conclusions
and some remarks about some further improvements can be found in chapter 7.

10 1.8. OUTLINE

.. Chapter2. Background
This chapter starts with an overview of the graph languages that were investigated as possible targets
for the importer/exporter. From these languages, a selection is made that will actually be included
in the final importer/exporter, based on a set of criteria of those languages. The actual details of the
selected languages are not discussed until chapter 5 and appendix B. This provides an answer to the
first research question which concerns languages suitable for importing and exporting.

This is followed by some theoretical background on GROOVE, or more specifically the graphs that
GROOVE uses. This background is used to provide a mapping between these graphs and the concep-
tual model, which will be discussed in chapter 4 later on.

2.1 Graph languages

This section gives a short overview of a few graph based languages. These languages are a selection
within many other graph languages available. This selection is based on a few criteria, which are:

1. Common usage,

2. Existence of a self describing meta model (meta schema),

3. Concrete notation, well defined interpretation,

4. Unique in its kind.

The selection of graph languages and the selection criteria are based on preliminary research from the
research topics. For an overview of this research, see appendix D. Appendix D provides a description
of each language that has been considered, as well as a description of each selection criterion.

An overview of the languages that have been considered can be found in table 2.1. Based on the criteria
given and this overview, a selection was made that was implemented in the final importer/exporter.
These were the Ecore, GXL and DOT languages. Of these languages, a short description is given in
the following sections.

The most interesting aspect of this choice of languages is its diversity. The Ecore language, being part
of the Eclipse Modeling Framework (EMF) is intended to be used to design tools and applications
using a structured data model. GXL on the other hand can be used to model graphs instead. These
graphs may then be used for any applicable purpose. Finally, DOT is not used for modeling at all
but simply allows for graphs to be visualized in various ways. Implementing this combination of lan-
guages in the importer/exporter is most likely to give a clear view of the capabilities and limitations
of the new importer and exporter.

2.1.1 Ecore

Ecore [16] is a modeling language serialized using XMI based on the (E)MOF specification. Ecore
supports concepts such as classes, relations, attributes, types, inheritance and packages (namespaces).

11

Language

Included?

Reasoning

C
om

m
only

used

M
eta

schem
a

C
oncrete

notation

U
nique

in
itskind

GXL Yes GXL provides an interesting target, as it defines both a language
for graphs and a meta schema for this language, allowing GXL
to be used as a modeling language for graphs. Additionally, it is
intended as a general graph exchange language, which means it
adds extra versatility to the GROOVE tool if supported.

✓ ✓ ✓ ✓

XMI No XMI defines only an exchange format rather that directly provid-
ing a model/graph by itself. It is too general to be supported di-
rectly, but rather forms a basis for more concrete languages (such
as Ecore).

✓ ✓ ✓

Ecore Yes The Ecore language is taken as the baseline for this research.
Therefore, the list of concepts Ecore defines is the minimum sub-
set the importer should support, which can possibly extended by
the concepts of other languages.

✓ ✓ ✓ ✓

UML No UML is a popular and widely used language for modeling ob-
ject oriented software. Using the MOF it can be encoded in XMI
similar to Ecore. However, the scope of UML is very large and
there are multiple combinations of XMI versions and UML ver-
sions possible, which are not directly compatible with each other.
This makes compatibility with UML using XMI hard (see [37]).
Thus, UML is not included.

✓ ✓ ✓

GML/XGMML No GML and XGMML both provide a syntax for storing graphs, but
do not define any model or schema on top. This makes these lan-
guage less interesting, as virtually any type of graph can be de-
scribed with no restrictions, making interoperability harder.

✓ ✓

GraphML No GraphML very closely resembles GXL and a conversion between
the two is possible (although not completely without loss of infor-
mation). Since GXL is already on the list of included languages,
and GraphML does not provide a language model of its own, it is
not included.

✓ ✓

OWL (RDF(S)) No The OWL language makes an interesting target as it is used to
represent knowledge databases, as opposed to, for example, UML
or Ecore, which represent object oriented software artifacts. OWL
makes use of RDF(S) as its language model, just like the MOF
for Ecore. However, due to time and resource constraints, this
language is not included as it is fairly complex.

✓ ✓ ✓ ✓

KM3 No KM3 is a language that is based on Ecore, and in fact is a textual
representation of Ecore. This means that KM3 and Ecore can eas-
ily be converted into each other without loss of information, and
as such, since Ecore is already defining the baseline, KM3 does
not make an interesting target.

✓ ✓ ✓

Kermeta No Kermeta can be compared to KM3, with the addition of exe-
cutability properties. In fact, Kermeta can also be converted to
Ecore and vice versa just like KM3. So, for the same reasons as
KM3, Kermeta is not included.

✓ ✓ ✓

DOT Yes Like GML, DOT is a very general graph description language,
without any direct modeling aspects. It is however a popular lan-
guage to represent graphs and is often used by tools to visualize
graphs. It is fairly simple on the conceptual side which should
make the inclusion in an importer fairly easy when other, more
complex language are already included.

✓ ✓ ✓

Table 2.1: Overview of investigated languages.

CHAPTER 2. BACKGROUND 13

Since Ecore was used as the main language in the previous importer/exporter [37], and this is the
continuation of that work, Ecore will be used as the baseline language. That is, at least every concept
in the Ecore model previously supported should be supported by the new importer/exporter.

The main editor for Ecore can be found in the EMF, which can create Ecore type models and instance
models. This is a graphical editor with an interface which can generate graphs that closely resemble
(UML) class diagrams, although it is also possible to use an editor that works directly on the hierar-
chical structure of an Ecore document.

2.1.2 GXL

GXL (Graph eXchange Language) [39] is intended to be a standard language for exchanging graphs.
GXL is XML based, and originates from merging the Graph Exchange Format (GraX), the Tuple At-
tribute language (TA) and the PROGRES graph rewriting system format. It is designed to make dif-
ferent software reengineering tools interoperable, with two features that make it particularly suited
for software data exchange: its conceptual model is a typed, attributed, directed graph and it can be
used to represent instance data as well as schemas describing the data structure [39].

GXL supports, besides standard nodes and edges, relations (which are hyperedges), subgraphs, at-
tributes and types, which can be primitive types or composite types such as sets and tuples. GXL
allows both schema graphs (for which a meta schema is defined) and instance graphs to be defined.
These graphs are linked to each other via type specifiers using the XML xlink specification1.

GXL currently provides two versions: 1.0 and 1.1. At the moment, 1.0 is the current version, with 1.1
being offered but not yet finalized (although the last change dates from 2002). Since 1.0 is marked as
current, version 1.0 will be used in this research.

One of the tools designed to support GXL is GXLGraphPath, which implements a subset of GXL. It
stores the graph in a GXL formatted document, and the layout in a separate GXLLayout document
(which itself is not written in GXL). However, it does not fully support the entire GXL language (for
example, subgraphs appear to be ignored). Being XML-based, GXL can also be edited by any XML
editor, such as the Eclipse XML editor, which supports the GXL schema to create a correct GXL doc-
ument. This does not give any visual feedback however.

2.1.3 DOT

DOT [4] is a simple text based graph language. In addition to defining graphs, it supports specifica-
tions for the layout of a graph, although not all the tools that can read DOT files support this. DOT
supports the use of subgraphs, attributes and edge ports. A language definition of DOT can be found
at [4].

DOT does not define any model concepts. It can easily be imported if layouting is ignored, as it simply
defines a set of nodes and connecting edges, optionally with labels.

A collection of tools that can read (and in some cases write) DOT files can be found in the Graphviz
suite [17]. It is commonly used for the exchange of graph structures.

1http://www.w3.org/TR/xlink11/

http://www.w3.org/TR/xlink11/

14 2.2. GROOVE

2.2 GROOVE

An overview of GROOVE was given in section 1.3. However, the graphs in GROOVE have a formal
specification which can be used to define a mapping between GROOVE and the conceptual model
(to be defined in chapter 4). The formal models given in the following sections are not the complete
formalisation of GROOVE, but rather the subset that the mapping makes use of.

GROOVE has a set of labels Lab inside its (current) grammar. These labels are used by the type,
instance, and rule graphs in GROOVE. The labels can be further subdivided into labels for types,
flags and edges. The intersection of these sets has to be empty, and the sets are defined as:

• The set of type labels Labt ⊆ Lab,

• The set of flag labels Labf ⊆ Lab,

• The set of edge labels Labe ⊆ Lab.

Flags are special types of edges which always have an identical source and target node. GROOVE
uses flags on nodes to indicate that a certain property holds for such a node. GROOVE also reserves
a few labels for its primitive data types, namely

Labprim = {bool, int, real, string}

which may not intersect with the aforementioned sets of labels. These labels allow the use of attributes
(and values). They represent the types for boolean values, integers (in N), real numbers (in R), and
strings.

2.2.1 Type graphs

In GROOVE, a type graph is modeled by the tuple

TG = ⟨N,E,⊑, abs,mult, contains⟩

where

• N ⊆ Labt ∪ Labprim is the set of nodes in the type graph. This is a subset of the set of labels,
used to identify the type of the nodes. Note that both type labels and primitive type labels are
used, as primitive types need to be explicitly added to the type graph for them to be used in an
instance graph.

• E ⊆ N× (Labe∪Labf)×N is the set of edges, each of which consists of a source and target node,
as well as an edge label or flag label used to identify the edge.

• ⊑ ⊆ N × N is the inheritance relation, which is a set of tuples of nodes between which an
inheritance relation exists. It defines a partially ordered set.

• abs ⊆ N is the set of nodes which are abstract in the type graph. Abstract nodes cannot occur
in instance graphs, but their subtypes may.

• mult : E → M×M where M = N× (N+ ∪{*}) with the lower bound always smaller or equal to
the upper bound. It holds that ∀n ∈ N : n < *. It is the function which maps a multiplicity pair
to edges. A multiplicity pair consists of an incoming and outgoing multiplicity. The incoming
multiplicity determines the allowed amount of nodes that share the same target node with this
edge type. The outgoing multiplicity determines the number of target nodes a single source
node may have edges to. A multiplicity consists of two values: the lower bound and the upper

CHAPTER 2. BACKGROUND 15

bound. The lower bound determines the minimum of the multiplicity, the upper bound the
maximum. Since this range must always contain a positive number of values, the maximum is
at least as large as the minimum. For any multiplicity, we define

– in : M×M → M

– out : M×M → M

such that ∀m = (min,mout) ∈ mult : in(m) = min ∧ out(m) = mout. Furthermore, we say that
∀m = (lower, upper) ∈ M, n ∈ N : n ∈ m ⇔ lower ≤ n ∧ n ≤ upper.

• contains ⊆ Te is the set of edges which identify a containment relation. A node in an instance
graph may not share multiple incoming containment edges, and a cycle of containment edges is
not allowed in an instance graph. Furthermore, containment implies the incoming multiplicity
of an edge is equal to 0..1, since a node is contained by at most one container.

Note that a GROOVE grammar allows multiple type graphs to be active at the same time. The type
graph used by the grammar will then be inferred from all the active type graphs. This allows the
various aspects of a type graph to be represented by multiple (sub) type graphs for easier editing.
When two type graphs TG1 and TG2 are combined, the new type graph TG

′ is defined as

TG
′ = ⟨N1 ∪N2, E1 ∪ E2,⊑′, abs1 ∪ abs2,mult′, contains1 ∪ contains2⟩

The set of nodes and edges is simply the union of those of the two type graphs. The inheritance rela-
tion is defined as the transitive closure of the union of the subtype relations in the two type graphs.
The set mult′ is defined such that ∀e ∈ E1 \ E2 : mult′(e) = mult1(e), ∀e ∈ E2 \ E1 : mult′(e) =
mult2(e) and ∀e ∈ E1 ∩ E2 : mult′(e) = mult1(e) ∩mult2(e), where the intersection of two multiplic-
ities is defined as the maximum of both lower bounds and the minimum of both upper bounds.

It is entirely possible that two arbitrary type graphs cannot be combined together into one single type
graph, for example because a shared edge has incompatible multiplicities (if one type graph specifies
a multiplicity of 0..1 and another 3..4, then no valid multiplicity can be created). Such type graphs
cannot be combined by GROOVE and would in fact result in an error. If the merging of two type
graphs can be seen as a function, then it could be defined as the partial function (where TG is the
complete set of all possible type graphs)

merge : TG× TG ↪→ TG

2.2.2 Instance graphs

We assume there exists a global set Node, which can be mapped into two disjoint and covering sets
Nodet and Nodev which, for every label in Labt and Labprim respectively, provide the set of typed nodes.
Thus, there is a mapping

nodeType : (Nodet → Labt) ∪ (Nodev → Labprim)

Furthermore, the set Nodev is mapped to actual data values in GROOVE by the function value :
Nodev → B ∪ Z ∪ R ∪ S (see also definition 4). Finally, a set of node identifiers Id is defined, which is
used to assign a unique identifier to each node in an instance graph.

Like type graphs, multiple instance graphs can be combined into a new instance graph. However, this
is beyond the scope of this thesis and only single instance graphs in a grammar will be considered.

16 2.2. GROOVE

Instance graphs in GROOVE are modeled by the tuple

HG = ⟨Hn, He, ident⟩

where

• Hn ⊆ Nodet ∪ Nodev is the set of nodes with a type label and the set of value nodes.

• He ⊆ Hn × E ×Hn is the set of edges, consisting of a source and target node and typed by an
edge in the type graph.

• ident : Id → Hn is the identifier function which maps an identifier onto each node in the instance
graph.

Such an instance graph is always typed by some type graph TG = ⟨N,E,⊑, abs,mult, contains⟩.

The types of nodes and edges in an instance graph can be retrieved by the function type, which is
defined as

type : (Hn → N) ∪ (He → E)

which maps nodes and edges in an instance graph to their types in the type graph of the grammar.
This function is defined by the instance graph. For the nodes, it holds that ∀n ∈ Hn : type(n) =
nodeType(n). For edges, it holds that ∀e ∈ He = (src, etype, tgt) ∈ He : type(e) = etype.

As instance graphs are typed by a type graph, the type graph imposes a few constraints on the allowed
instance graphs. These constraints are defined as follows:

• The source of each edge must be properly typed: ∀e ∈ He : type(src(e)) ⊑ src(type(e))

• The target of each edge must be properly typed: ∀e ∈ He : type(tgt(e)) ⊑ tgt(type(e))

• Abstract nodes may not be instantiated: ∀n ∈ Hn : type(n) ̸∈ abs

• The outgoing multiplicity of each edge type must be adhered to: ∀te ∈ E : ∀n ∈ Hn : |{e ∈
He|src(e) = n ∧ type(e) = te}| ∈ out(mult(te))

• The incoming multiplicity of each edge type must be adhered to: ∀te ∈ E : ∀n ∈ Hn : |{e ∈
He|tgt(e) = n ∧ type(e) = te}| ∈ in(mult(te))

• Nodes must be contained by at most one other node: ∀n ∈ Hn : |{e ∈ He|target(e) = n ∧
type(e) ∈ contains}| ≤ 1

• There may be no cycle between all containment edges in HG.

2.2.3 Rules

Just like instance graphs, rule graphs are typed by a type graph. Rule graphs introduce transformation
semantics in the graph grammar, by offering the capability to transform one instance graph into an
other (possibly identical) instance graph. Both instance graphs are also typed by the same type graph.
Rules can match, create and delete nodes, as well as flags and edges. For this reason, rule graphs
introduce a few special node and edge types in order to specify these operations, which are matching,
creator, deleter, and NAC nodes/edges. Formally, rules use a left hand side and a right hand side as
explained in [32], but for this thesis these are collapsed into the aforementioned node types.

Besides the matching, creator, deleter, and NAC nodes and edges, other node types are also supported
by rule graphs. For example, quantifier nodes are not directly related to any type graph, but rather
allow multiple nodes to be matched by a single rule node under certain circumstances.

Figure 2.1: Example rule graph with only match nodes. This rule matches if a Student node has two
different courses nodes pointing to the same Course node.

Figure 2.2: Example rule graph with creator edge. This rule matches if a Student node has no studyTime
edge, and creates one to a PartTime node.

Figure 2.3: Example rule graph with deleter node. This rule matches a University node with a course
edge connected to a Course node, and deletes both this edge and the Course node.

Figure 2.4: Example rule graph with NAC node. This rule matches only if a Course and Student node
exist, which are connected by an intermediate students node, but not by an intermediate courses node.

Figure 2.5: Example rule graph with quantifier node. This rule matches a University node and all
course edges and Course nodes connected to this University node. These edges and Course nodes are
then deleted.

18 2.3. CONCLUSION

A rule can be applied when it can be matched to the current instance graph. Such a match can occur
only if all the nodes in the rule graph match. It is possible for a single rule to have multiple matches
on any given instance graph. The application of these rule matches may result in any instance graph,
possibly identical to another instance graph.

The following types of rule nodes are used by the new importer/exporter:

1. Figure 2.1 shows an example of a rule graph with matching nodes and edges, which are displayed
with black thin lines. These nodes and edges match when their types occur in the current in-
stance graph. They have no effect on the instance graph when the rule is applied and thus these
nodes and edges are kept in the instance graph after the rule is applied. In the example, the rule
would match if the instance graph contains a node of type University, two nodes of type courses
and a node of type Course with corresponding matching edges between them. (The != edge is a
special case which matches when the source and target nodes are not identical). This rule does
not transform the instance graph in any way, but simply matches if a certain property holds, in
this case if two different courses nodes have a val edge pointing to the same Course node.

2. Creator nodes and edges, displayed with thick (green) lines as seen in fig. 2.2, do not try to
match any nodes or edges in the current instance graph (and thus always match), but rather
create new nodes and edges of their given type in the transformed instance graph. In the given
example, the rule would create a new courses node and a new Course node, with a new edge
between them and between the courses and University nodes. This rule effectively adds a single
course to a university.

3. Deleter nodes and edges, drawn with thin, dashed (blue) lines such as in fig. 2.3, match when
their types occur in the current instance graph. When the rule is applied, these nodes and edges
are removed from the instance graph. In the example, the courses edge, courses node, and Course
node are first matched, and then removed from the instance graph. This rule effectively removes
a single course from a university.

4. NAC (Negative Application Condition) nodes and edges are drawn with thick dashed (red) lines,
as shown in fig. 2.4, and match when their types do not occur in the current instance graph. In
the example, these nodes and edges would match if there does not exist a courses node with an
incoming courses edge (from a Student node) and outgoing val edge (toward a Course node). This
rule effectively checks if a students relation is not matched by an inverse courses relation.

5. Quantifier nodes, as used in fig. 2.5, allow nodes to be matched optionally and with different
counts. Their exact definition is beyond the scope of this thesis, but a definition can be found
in [33]. Quantifiers may be nested to arbitrary depth, which allows more complicated logic
formulas to be used. In the example, the ∀ quantifier node will match any number of courses
and Course nodes together. Since the University node will match only a single node in the instance
graph, and there is a deleter edge that has to match between the courses nodes and the University
node, only those courses (and Course) nodes will be matched that have such an incoming edge
from a single University node. This rule effectively removes all courses from a single university.

A grammar can typically contains multiple active rule graphs. Each active rule is evaluated for the
current instance graph. Such a rule may match zero or more times on the instance graph. Each match
may be evaluated individually, resulting in a new instance graph. Thus, a state space can be generated
by following the possible matches.

2.3 Conclusion

Having decided what languages are added to the importer and exporter, the answer to the first re-
search question is readily available. The languages that are included are Ecore, GXL and DOT. Al-

CHAPTER 2. BACKGROUND 19

though other interesting languages were found as well, due to limited time and resources only a
selection could be included.

The formal description of the GROOVE graphs that are used to represent the various models gives a
clear definition of the capabilities of these graphs and provides a foundation to define the mapping
between the conceptual model and these graphs.

20 2.3. CONCLUSION

.. Chapter3. Conceptualmodel
This chapter describes a single conceptual model used to formalize the various concepts found in the
previously discussed languages. This model will be used as an intermediate form for a mapping be-
tween GROOVE and the various languages. It is based on the distinction between the type model level
(which relates to the type graphs in GROOVE, accompanied by rule graphs for various constraints)
and the instance model level (which relates to the instance graphs).

One of the main difficulties of translating an external language to GROOVE graphs is the fact that
GROOVE has less expressive power than such a language in some cases1. For example, a language
might impose certain constraints on a graph that GROOVE cannot directly represent. By using a
conceptual model that has a larger expressive power than GROOVE, only a single mapping has to
be made which has to overcome a large gap in expressive power (this problem will be addressed
in chapter 4). The mapping between the various external languages and the conceptual model is
considerably simpler, since their expressive power is more closely matched. Thus, all languages can
reuse the more difficult mapping between the conceptual model and GROOVE and only have to define
a mapping between the language itself and the conceptual model. See also fig. 3.1.

..

External language

.

CM

.
GROOVE

.Ex
pr

es
si

ve
po

w
er

.
Language

Figure 3.1: Difference in expressive power of the various importer/exporter components.

3.1 Global concepts

Before the type models and instance models can be defined, first some global concepts need to be
introduced, which are used by both the instance models and type models.

In both the type model and the instance model some elements have to be identifiable by a name.
For this a globally unique set of names is defined, of which a textual representation is written as
exampleName.

Definition 1 (Name)

Name is a globally fixed set of names (shared between instance models and type models). This set
contains at least the names boolean, integer, real and string, as well as true, false and nil.

Just a set of names is not enough for most languages, as there usually also exists some structure within
these names, often referred to as a namespace. Within a namespace, all names have to be unique, but

1Here, expressive power should be read as the capability to concisely represent a certain concept.

21

22 3.1. GLOBAL CONCEPTS

names can be shared between different namespaces. A combination of a namespace and a name is
referred to as an identifier, and uniquely identifies anything within a type model or instance model.
The namespace that is not contained within any other namespace is defined as ⊥ and is also called
the root namespace.

Definition 2 (Identifier/Namespace)

Identifiers and namespaces are defined as

Id = Namespace × Name
Namespace = Id ∪ {⊥}

where the set of identifiers is the smallest solution of the given set of equations and ⊥ is the root
namespace.

Note that namespaces are recursively defined up until the root namespace ⊥.

To write down identifiers a notation may be used which separates namespaces and names using dots,
omitting the root namespace. For example, the identifier ⟨⊥, name⟩ can be written as .name, and ⟨⟨⊥,
name⟩, space⟩ as .name.space.

To distinguish between the different types of data that may be present in an instance model, a set of
data types is defined that models the different set of data values. These data types can be used in a
type model, of which the values they model may be used in a corresponding instance model.

Definition 3 (Data types)

The set of data types is defined by DataType = {boolean, integer, real, string}

Definition 4 (Data type values)

For the various data types a single set defines the possible values. Besides Z and R for the number
types, the following sets of values are defined:

• B = {true, false} (the set of boolean values)

• C = The set of all printable characters

• S = C∗ (the set of possible strings)

For certain types in a type model, a ‘not assigned’ value can be used, indicating there is no actual
reference to any value in an instance model. This is defined as the nil value.

Definition 5 (Nil value)

nil defines the unassigned value for some types in the type model.

Definitions 8 and 16 specify in what context this value can be used.

In some cases, the number of assigned values that is allowed by a type model is limited. This is
indicated by a multiplicity, which defines a lower bound and an upper bound. The lower bound defines
the minimum number of values that can be assigned, and the upper bound defines the maximum
number of values that can be assigned.

CHAPTER 3. CONCEPTUAL MODEL 23

Definition 6 (Multiplicity)

A multiplicity is specified by a lower bound (which is any natural number) and an upper bound
(which is possibly unbounded). The upper bound is defined by the set M, defined as M = (N \
{0}) ∪ {∗}, where ∗ means unbounded (that is to say, ∀n ∈ N : n < ∗).
The set of possible multiplicities is defined as

Mult = N×M

where ∀⟨x, y⟩ ∈ Mult : x ≤ y.

Members of Mult can be expressed as x..y, where x defines the lower bound and y defines the upper
bound.

3.2 Type models

This section provides the formal definition of type models. This definition, along with other defini-
tions, fully specifies the type model level to which the various language concepts of this level will be
mapped.

A type model provides a set of definitions and constraints that describe a set of instance models, which
may or may not be valid according to the type model. On the top level, it defines a set of classes of
which instances (objects) may be used within an instance model. These classes contain a set of fields
which are identified by a name (unique within the class) and are both typed and have a multiplicity.
Class instances may assign values to these fields (specific for that instance) which must adhere to both
the type and multiplicity of the field. The type model also defines an inheritance relation between these
classes, which allows classes to inherit from other classes, providing a specialization of that class.

A type model also defines a set of enumerations and their values, which defines a unique type with
a fixed set of values. Furthermore, a set of constants and their types define a symbolic typed value,
which relates to a specific value in an instance model. A set of custom data types is also provided by
the type model, which allows user defined data types to be represented.

Finally, a set of properties of the type model specifies the properties an instance model of this type
model has to satisfy in order to be valid. These properties specify constraints on the values and struc-
ture of such an instance model.

The definition of a type model depends on the definition of various types. These types again depend
on the definition of the type model. The solution to this cyclic dependency is the smallest solution to
the set of equations given for the types and type model.

The suffix Tm is used when the definition of something depends on any type model Tm, for example
ClassTm.

Definition 7 (Type model)

A single type model is defined as

Tm = ⟨Class,Enum,UserDataType, Field,FieldSig,EnumValue, Inh,Prop,Constant,ConstType⟩

with

• Class ⊆ Id is the set of classes in Tm.
• Enum ⊆ Id is the set of enumerations in Tm.

24 3.2. TYPE MODELS

• UserDataType ⊆ Id is the set of custom data types in Tm.
• Field ⊆ (Class × Name) is the set that maps a class to a set of field names in Tm.
• FieldSig : Field → (TypeTm × Mult) is the function that maps fields to their type (as defined

in definition 8) and multiplicity (as defined in definition 6) in Tm.
• EnumValue ⊆ Enum × Name is the set of possible values for the enumerations in Tm.
• Inh ⊆ Class × Class is the direct inheritance relation between classes in Tm.
• Prop ⊆ PropertyTm is the set of properties that apply to Tm (see definition 11).
• Constant ⊆ Id is the set that contains all possible constants that may be used as a (symbolic)

default value.
• ConstType: Constant → TypeTm is the function that maps constants to their respective

types.

where

• Class, Enum, UserDataType and DataType are pairwise disjoint.
• None of the elements in Class∪Enum∪DataType∪UserDataType may be in the namespace

of another element in that set.
• Inh is an asymmetric relation, of which the transitive closure is irreflexive.

An example type model is depicted in fig. 3.2. It shows three classes (Person, Student and Course) and
a single enumeration (StudyTime). The Person class has two fields, age and name. The Student class has
a field follows, which is depicted as a relation between the Student and Course classes. The Student class
also has a field studyTime, which makes use of the StudyTime enumeration. The Course class has a field
subject, and a field students. Finally, there is an inheritance relation between the classes Person and
Student (Student inherits from Person).

The fields in a type model are always associated with a specific type, which defines the set of possible
values that may be assigned in an instance model. The possible types are defined by the set of data
types, classes and enumerations. The set of types also consists of various aggregations of these types,
namely containers or tuples. Containers provide types for multiple values of the same type, but of
which the values may differ in number and ordering. Tuples provide types for the combination of
values for arbitrary types, of which the numbering and ordering is always fixed.

Definition 8 (Types)

Given any type model Tm, the set of types is defined as

TypeTm = DataType ∪ ClassTypeTm ∪ EnumTm ∪ UserDataTypeTm ∪ ContainerTm ∪ TupleTypeTm

The ClassTypeTm set defines both a set of nullable and proper classes. Nullable classes are classes
for which the nil (see definition 5) value is valid, and proper classes are those classes for which the
nil value is not valid (hence both sets of classes are disjoint). The ClassTypeTm set is defined as

ClassTypeTm = {nullable, proper} × ClassTm

Given a C ∈ ClassTm, ?C = ⟨nullable,C⟩ is the nullable variant of C, and !C = ⟨proper,C⟩ the
proper variant.
A container is a type that may contain multiple values in an instance. Containers define the type
of values they contain, and the multiplicity of the container. They are defined by

ContainerTm = {bagof, setof, seqof, ordof} × TypeTm

For the interpretation of the values in {bagof, setof, seqof, ordof}, see definition 14.

.

.

.

Person

.

name : string
age : integer

...
Student

.
studyTime : StudyTime = FullTime

. ..
Course

.
subject : string

.

.

.

Department

..

.

.

<<enumeration>>
StudyTime

.

PartTime
FullTime

.................

houses

.

1..*

....
follows

.

0..*

....

1..*

. students.

(a) Graphical representation of a type model

ClassTm = {.Person, .Student, .Course, .Department}
EnumTm = {.StudyTime}
FieldTm = {⟨.Person, age⟩, ⟨.Person, name⟩, ⟨.Student, studyTime⟩, ⟨.Student, follows⟩,

⟨.Course, subject⟩, ⟨.Course, students⟩, ⟨.Department, houses⟩}
FieldSigTm = {⟨⟨.Person, age⟩, ⟨integer, 1..1⟩⟩, ⟨⟨.Person, name⟩, ⟨string, 1..1⟩⟩,

⟨⟨.Student, studyTime⟩, ⟨.StudyTime, 1..1⟩⟩,
⟨⟨.Student, follows⟩, ⟨bagof, ⟨!.Course⟩, 0..∗⟩⟩, ⟨⟨.Course, subject⟩, ⟨string, 1..1⟩⟩,
⟨⟨.Course, students⟩, ⟨⟨bagof, !.Student⟩, 1..∗⟩⟩,
⟨⟨.Department, houses⟩, ⟨⟨bagof, !.Course⟩, 0..∗⟩⟩}

EnumValueTm = {⟨.StudyTime, FullTime⟩, ⟨.StudyTime,PartTime⟩}
InhTm = {⟨.Student, .Person⟩}

PropTm = {⟨abstract, .Person⟩, ⟨keyset, follows, {⟨.Course, subject⟩}⟩,
⟨identity, {⟨.Person, age⟩, ⟨.Person, name⟩}⟩,
⟨containment, ⟨.Department, houses⟩⟩,
⟨opposite, ⟨.Student, follows⟩, ⟨.Course, students⟩⟩,
⟨opposite, ⟨.Course, students⟩, ⟨.Student, follows⟩⟩,
⟨defaultValue, ⟨.Student, studyTime⟩, .Constant.StudyTime.FullTime⟩}

ConstantTm = {.Constant.StudyTime.FullTime, .Constant.StudyTime.PartTime}
ConstTypeTm = {⟨.Constant.StudyTime.FullTime, .StudyTime⟩}

(b) Formal description of a type model

Figure 3.2: Example type model.

26 3.2. TYPE MODELS

. ..
Student

....
Course

.
1..1 workGroup : Workgroup

. ..

<<tuple>>
Workgroup

.
Student
Student

.

(a) Graphical representation of a type model with a tuple.

ClassTm = {.Student, .Course}
FieldTm = {⟨.Course,workGroups⟩}

FieldSigTm = {⟨⟨.Course,workGroup⟩, ⟨⟨tuple, ⟨.Student, .Student⟩⟩, 1..1⟩⟩}
(b) (Partial) formal description of a type model with a tuple.

Figure 3.3: Example of a very simple type model with a tuple.

TupleTypeTm is the set of types that is defined by an ordered list of types (which may be equal). It is
defined by

TupleTypeTm = {tuple} × TypeTm
∗

The set of types is recursively defined as the smallest solution of the given set of equations for TypeTm,
ContainerTm and TupleTypeTm.

Note that the TupleTypeTm set defines tuples with a single cardinality fromN, which means the number
of values is always fixed (as opposed to containers which do not impose any limit on the amount of
values they contain). The example in fig. 3.3 shows a type model that defines a class Course with a
single field of which the type is a tuple. This tuple consists of two Students. Note that the elements of
a tuple are not fields (even though they appear similar in the example) as can be seen by the formal
definition of the type model.

In the example in fig. 3.2, the various fields make use of different types. The fields depicted as a
relation between two classes are actually of a type based on the ClassTm set. For example, the students
field of class Course is typed by the Student class. As no further constraints are given for this container
relation, it can be assumed to be a bagof container, where ordering does not matter and multiple
identical values are allowed. Additionally, this type is a container type, as it represents multiple
Students. The studyTime field of the Student class is typed by the StudyTime enumeration. Finally, the
Person class shows two fields that are typed by some of the data types available, integer and string for
the age and name fields respectively.

Definition 9 (Field)

Given any type model Tm, the FieldTm relation defines a binary relation between classes and fields.
To retrieve the set of fields for a given class (and the fields inherited from superclasses), the following
function is defined:

fields : ClassTm → P(FieldTm)

such that
fieldsTm(c) = {f ∈ FieldTm| f = ⟨c’, n⟩ ∧ c ⊑Tm c’}

Given any type model Tm, the FieldSigTm function defines a mapping between fields and their
attributes. To retrieve the various components of this function, the following mappings are defined

• class : FieldTm → ClassTm

• type: FieldTm → TypeTm

• lower : FieldTm → N

CHAPTER 3. CONCEPTUAL MODEL 27

TypeTm Multiplicity
{proper} × ClassTm 1..1
{nullable} × ClassTm 0..1
ContainerTm x..y (0 ≤ x ≤ y ∧ 1 ≤ y)
DataType 1..1
EnumTm 1..1
UserDataTypeTm 1..1
TupleTypeTm 1..1

Table 3.1: Possible multiplicities for types.

• upper : FieldTm → M

such that

• classTm(f) = class if and only if f = ⟨class, name⟩
• lowerTm(f) = lower if and only if FieldSigTm(f) = ⟨type, ⟨lower, upper⟩⟩
• upperTm(f) = upper if and only if FieldSigTm(f) = ⟨type, ⟨lower, upper⟩⟩

Fields can be separated into relation and attribute sets, where attributes reference (containers or
tuples of) data types, user data types and enumerations, and relations reference other types. They
are defined by

• AttrTm = {f ∈ FieldTm| type(f) ∈ (DataTypeTm ∪ EnumTm ∪ UserDataTypeTm) ∨ type(f) ∈
{setof, bagof, ordof, seqof} × (DataTypeTm ∪ EnumTm ∪ UserDataTypeTm)}

• RelTm = FieldTm \ AttrTm

Note that fields with a tuple type are not considered relations, but attributes. This is because even
though tuples can contain classes, they are not classes themselves.

Taking for example the field follows from the Student class in the type model example, the following
properties can be identified: The type refers to Course, which is an element of the ClassTm set. The
lower and upper values are 0 and * respectively (which means it can be an arbitrary number of courses).
Furthermore, the follows field is an element of the RelTm set (it is a class container type) and part of the
fieldsTm(Student) set, which is {studyTime, follows}.

The various types have an underling subtype relation, which generalizes inheritance. A subtype de-
fines a specialization of a supertype, and as such all values valid for the subtype are also valid for the
supertype.

Definition 10 (Subtypes)

Given any type model Tm, ⊑Tm⊆ TypeTm × TypeTm defines the subtype relation, which is a gener-
alization of inheritance (InhTm). It is a reflexive partial order relation, for which the following rules
can be defined (with t1, t2, t3 ∈ TypeTm, c1 and c2 ∈ ClassTm):
Transitivity:

t1 ⊑Tm t2 t2 ⊑Tm t3
t1 ⊑Tm t3

Reflexivity

t1 ⊑Tm t1

28 3.2. TYPE MODELS

Generalization of inheritance

c1 InhTm c2
? c1 ⊑Tm ? c2

c1 InhTm c2
! c1 ⊑Tm ! c2

Nullable/Proper classes

! c1 ⊑Tm ? c1

Thus, in the example, ⟨nullable,Student⟩⊑Tm⟨nullable,Person⟩ (since Student InhTm Person). Furthermore,
it also holds that ⟨proper,Student⟩⊑Tm⟨nullable,Student⟩, as a proper class is a subtype of a nullable class.

A type model may specify a set of properties which specify a set of constraints, which an instance
model has to satisfy in order to be valid. The following properties are defined:

• The abstract property. This property, specified for a specific class in the type model, forbids the
instantiation of that class in any instance model. As such, it is satisfied when no object exists in
an instance model which is an instance of that class.

• The readonly property. This property, specified for a field in the type model, forbids a new value
being assigned to the field in any instance model. This property only affects the possible trans-
formations of an instance model, and is always satisfied for any specific instance model.

• The keyset property. This property is specified for a set of attributes of a class and a relation
towards that class. It ensures that each instance of that class within the given relation, can
uniquely be identified by the values of the set of attributes. It is satisfied when two objects have
pairwise identical values for these attributes, they must be the same object if they are the target
of the given relation.

• The identity property. This property is specified for a set of attributes. Similar to the keyset prop-
erty, the values of this set of attributes uniquely identify any object of the class of the attributes,
though globally in an instance model rather than within a single relation as is the case of the
keyset property. As such, it is satisfied when no two objects exist in an instance model that are
an instance of the class and that have pairwise the same value for all the attributes.

• The containment property. This property, specified for a relation, states that all objects that are the
target of this relation are contained within a single source object. Objects can be contained by at
most one other object, and contained cycles are not allowed. When an instance model transfor-
mation removes a container object, all contained objects are removed as well. The constraint is
satisfied when an object is the target of no more than one containment relation, and there exists
no cycle between containment relations.

• The opposite property. This property specifies that two relations are opposite of each other,
which means that for each instance of one of those relations, another instance exists that has
an opposite target and source. It is satisfied when for each pair of objects, for each relation that
exists between these objects, a reverse relations exists if both these relations are opposite.

• The defaultValue property. This property specifies a default value for a field which has not been
explicitly assigned a value in an isntance model. It specifies a constant for a field, which repre-
sents a value in an instance model. It is always satisfied, and influences the behavior of possible
model transformations.

CHAPTER 3. CONCEPTUAL MODEL 29

Definition 11 (Type model Properties)

For a type model Tm a set of properties PropertyTm is defined which contains all the possible prop-
erties. This set is defined as

PropertyTm = {⟨abstract, c⟩|c ∈ ClassTm} ∪ {⟨readonly, f⟩|f ∈ FieldTm}
∪ {⟨keyset, r,A⟩|r ∈ RelTm ∧ A ⊆ AttrTm} ∪ {⟨identity,A⟩|A ⊆ AttrTm}
∪ {⟨containment, r⟩|r ∈ RelTm} ∪ {⟨opposite, r, r’⟩|r, r’ ∈ RelTm ∧ r ̸= r’}
∪ {⟨defaultValue, f, v⟩|f ∈ FieldTm ∧ v ∈ ConstantTm}

where

• ⟨identity,A⟩ is defined such that ∃c ∈ ClassTm : ∀⟨ac, an⟩ ∈ A : c = an.
• ⟨keyset, r,A⟩ is defined such that ∀⟨ac, an⟩ ∈ A : typeTm(r) = an, and typeTm(r) ∈ ({setof,

ordof} × ClassTypeTm).
• ⟨opposite, r, r’⟩ is defined such that when r = ⟨c1, n1⟩, r’ = ⟨c2, n2⟩, then c1 = typeTm(r’)∧

c2 = typeTm(r), typeTm(r) /∈ {bagof, seqof} × TypeTm and finally typeTm(r’) /∈ {bagof,
seqof} × TypeTm (containers must have unique values).

• ⟨defaultValue, f, v⟩ is defined such that type(f) = ConstTypeTm(v).

The example also shows a few properties:

• The Person class is declared abstract (indicated by an italicized font for its name).

• The houses relation of the Department class is a containment relation (shown by the filled diamond
at one end of the containment relation).

• The follows and students relations are opposites (as indicated by the formal definition).

• The Course subject is the keyset of the follows relationship (as indicated by the formal definition).
This means that a student can follow only one Course on a specific subject at any given time.

• The name and age fields of a Person are its identity (as indicated by the formal definition). Al-
though these details are most likely not unique in the world, they may be in the given instance
model.

• Finally, the field studyTime has a default value of FullTime.

With the given definitions, it is possible to define an inconsistent type model. Such a type model is
correct according to the given definitions, but does not specify any valid instance model. For example,
because of conflicting properties or multiplicities. Therefore, a definition is given for a consistent type
model, based on the consistency of the multiplicities and properties within the type model.

Definition 12 (Type model consistency)

The multiplicities of the fields in FieldTm are consistent if it holds that:

lowerTm(f) =

1, if type(f) ∈ DataType ∪ EnumTm ∪ UserDataType ∪ TupleTypeTm

∪ (proper × ClassTm)

0, if type(f) ∈ (nullable × ClassTm)

0 or more, otherwise

upperTm(f) =
{
1 or more, if type(f) ∈ ContainerTm

1, otherwise

30 3.3. INSTANCE MODELS

as indicated by table 3.1.
The properties in PropTm are consistent if the following holds:

• ⟨keyset, r,A⟩ ∈ PropTm ∧ ⟨keyset, r,A’⟩ ∈ PropTm ⇒ A = A’ (unique for r).
• ⟨opposite, r, r’⟩ ∈ PropTm ∧ ⟨opposite, r, r”⟩ ∈ PropTm ⇒ r’ = r” (unique for r).
• ⟨opposite, r, r’⟩ ∈ PropTm ⇔ ⟨opposite, r’, r⟩ ∈ PropTm (symmetry).
• ⟨defaultValue, f, v⟩ ∈ PropTm ∧ ⟨defaultValue, f, v’⟩ ∈ PropTm ⇒ v = v’ (unique for f).
• ⟨containment, r⟩∧⟨opposite, r, r’⟩ ⇒ upperTm(r’) = 1 (opposite of containment relation must

have upper bound of 1).

Then a type model Tm is consistent if and only if

• The multiplicities of all fields in FieldTm are consistent.
• All properties in PropTm are consistent.

3.3 Instance models

An instance model represents an instance of a type model. An instance model consists of a set of
objects, which are mapped to both a class they instantiate and an optional identifier. All objects are
an instance of a specific class, and as such are typed by that class (and implicitly its superclasses). An
instance model also specifies the values for each field of an object. The set of fields for each object is
determined by its class and all its superclasses, which are defined by the subtype relation of the type
model. Finally, the instance model specifies a set of default values, which maps the constants from
the type model to actual values in the instance model, allowing default values to be assigned to fields.

As with the type model and type definitions, there is a cyclic dependency between instance models
and values. In the same manner, the solution is set to be the smallest solution to the set of equations
for the instance model and values.

The suffix Im is used when the definition of something depends on any instance model Im, which
itself depends on the definition of any type model Tm. For example ObjectIm.

Definition 13 (Instance Model)

For a type model Tm = ⟨Class,Enum,UserDataType, Field,FieldSig,EnumValue, Inh,Prop,Constant,
ConstType⟩, a single instance model Im is a tuple

Im = ⟨Object,ObjectClass,ObjectId,FieldValue,DefaultValue⟩

where

• Object is the set of objects (class instances) in Im.
• ObjectClass : Object → ClassTm is the function that maps each object in Im to a class.
• ObjectId: Object ↪→ Name is the partial function that maps each object in Im to a unique

identifier.
• FieldValue: (Object × FieldTm) ↪→ ValueIm is the partial function between each FieldTm of

an ObjectIm and a ValueIm (see definition 14).
• DefaultValue: ConstantTm → ValueIm is the function that maps the constants from the type

model to actual values in the instance model.

where

• ∀⟨o, n⟩, ⟨o’, n’⟩ ∈ ObjectId : n = n’ ⇒ o = o’

...
John:Student

.name = “John Doe”
age = 23
studyTime = FullTime

..

1

.

.

Jane:Student

.

name = “Jane Doe”
age = 22
studyTime = PartTime

..

2

.. Calculus I:Course.
subject = “calculus”

..

3

.. EWI:Department...

4

........... follows.....
students

........

follows

........

students

..... houses..

(a) Graphical representation of an instance model.

ObjectIm = {1, 2, 3, 4}
ObjectIdIm = {⟨1, .John⟩, ⟨2, .Jane⟩, ⟨3, .Calculus I⟩, ⟨4, .EWI⟩}

FieldValueIm = {⟨⟨1, ⟨.Person, age⟩⟩, ⟨int, 23⟩⟩,
⟨⟨1, ⟨.Person, name⟩⟩, ⟨string, “John Doe”⟩⟩,
⟨⟨1, ⟨.Student, studyTime⟩⟩, ⟨enum, ⟨.StudyTime, FullTime⟩⟩⟩,
⟨⟨1, ⟨.Student, follows⟩⟩, ⟨bagof, ⟨⟨obj, 3⟩⟩⟩⟩,
⟨⟨2, ⟨.Person, age⟩⟩, ⟨int, 22⟩⟩,
⟨⟨2, ⟨.Person, name⟩⟩, ⟨string, “Jane Doe”⟩⟩,
⟨⟨2, ⟨.Student, studyTime⟩⟩, ⟨enum, ⟨.StudyTime,PartTime⟩⟩⟩,
⟨⟨2, ⟨.Student, follows⟩⟩, ⟨bagof, ⟨⟨obj, 3⟩⟩⟩⟩,
⟨⟨3, ⟨.Course, subject⟩⟩, ⟨string, “calculus”⟩⟩,
⟨⟨3, ⟨.Course, students⟩⟩, ⟨bagof, ⟨⟨obj, 1⟩, ⟨obj, 2⟩⟩⟩⟩,
⟨⟨4, ⟨.Department, houses⟩⟩, ⟨bagof, ⟨⟨obj, 3⟩⟩⟩⟩}

DefaultValueIm = {⟨.Constant.StudyTime.FullTime, ⟨enum, ⟨.StudyTime, FullTime⟩⟩⟩}
(b) Formal description of an instance model.

Figure 3.4: Example instance model.

32 3.3. INSTANCE MODELS

• ∀o ∈ Object, f ∈ FieldTm : ⟨o, f⟩ ∈ domFieldValue ⇔ ObjectClass(o) ⊑Tm class(f).

An example model is represented by fig. 3.4. It is based on the type model from the example in fig. 3.2.
It shows two instantiations of the Student class: the John and Jane objects. Furthermore, there is one
instantiation of the Course class (Calculus I) and one instantiation of the department class (EWI). The
ObjectClassIm of each object in the instance model is represented by the text after the colon in the
header of each object. The ObjectIdIm is represented by the text preceding the colon. The Student
objects have values assigned for all fields, including the fields of the classes they inherit from. This
also holds for the Course object. For attributes, this is represented by an assignment, such as age =

23 (meaning the value 23 is assigned to the age field). For relations, this is represented by an arrow
from one object to another, with the name of the field shown on the arrow.

Note that the objects themselves are represented by elements from N. The conceptual model does not
give a concrete specification for elements in the ObjectIm set, but by convention objects (or in graph
terms, nodes) are represented by numbers.

For each instance model a set of possible values is defined by the values for all data types, the possible
enumerations of the type model and the objects in the instance model. Each value has a symbol that
defines its type, allowing the values in an instance model to be typed by the types in the type model.
This also allows values with identical content but different type to be separated. For example, any
value in Z ∩ R (which can be of type integer or real). Multiple values can be aggregated by container
values and tuple values, which are typed by container and tuple types respectively.

Definition 14 (Values)

Given any instance model Im, the set of values is ValueIm.
The set of values is then defined as

ValueIm = AtomValueIm ∪ ContainerValueIm ∪ TupleValueIm

with

• AtomValueIm = ClassValueIm ∪ LiteralValue ∪ ({enum} × EnumValueTm) ∪ ({data × S})
• LiteralValue = ({bool} × B) ∪ ({int} × Z) ∪ ({real} × R) ∪ ({string} × S)
• ClassValueIm = {obj} × (ObjectIm ∪ {nil})
• ContainerValueIm = {setof, bagof, seqof, ordof} × ValueIm

∗

(where ValueIm
∗ allows containers to recursively contain other containers.)

• TupleValueIm = {tuple} × ValueIm
∗

The set of values is recursively defined as the smallest solution of the given set of equations for
ValueIm, ContainerValueIm and TupleValueIm.

For custom data types, the value is an element from the set S. This way, these data types can be
considered opaque, with the value being a string representation of the data type. Thus, the data type
can be stored in the conceptual model, but it cannot be further interpreted.

Containers attributed as setof or ordof are considered to have unique values, whereas containers at-
tributed as bagof or seqof are not. This means for example that a tuple with two or more identical
values is not a valid value for a container attributed as setof or ordof, see also definition 16.

Additionally, the values of a container attributed as bagof or setof are considered unordered, and seqof
or ordof ordered. This affects the equivalency of containers, as defined in definition 15.

In the example, the set of atomic values that are assigned consists of {⟨string, “John Doe”⟩, ⟨string,
“Jane Doe”⟩, ⟨string, “calculus”⟩, ⟨int, 22⟩, ⟨int, 23⟩, ⟨enum,PartTime⟩, ⟨enum, FullTime⟩}. Note that none of

CHAPTER 3. CONCEPTUAL MODEL 33

the objects are in an atomic assigned value, all the relations in the type model are container types, and
as such all the objects are contained in a container value as well. For example, the container value for
the students field of the Course objects is ⟨bagof, ⟨⟨obj, 1⟩, ⟨obj, 2⟩⟩⟩ (in no particular order, as the relation
is of a bag container type).

For each instance model a value equivalence relation is also defined. This relation allows aggregate
values to be compared, and more specifically defines equivalency for unordered container values.

Definition 15 (Value equivalency)

Two values are equivalent (≡ ⊆ ValueIm×ValueIm) if both the type is identical and the actual value
content is equivalent. It consists of the smallest reflexive relation between values and the relations
defined by the rules given next.
For atomic values equivalence is defined as

v1 ∈ ValueIm v2 ∈ ValueIm v1 = v2
v1 ≡ v2

Sequences and ordered sets are equivalent if the values in their tuples are pairwise equivalent.
Sequence container equivalency

c1 = ⟨seqof, ⟨v1, · · · , vn⟩⟩ c2 = ⟨seqof, ⟨u1, · · · , un⟩⟩ v1 ≡ u1, · · · , vn ≡ un

c1 ≡ c2

Ordered set container equivalency

c1 = ⟨ordof, ⟨v1, · · · , vn⟩⟩ c2 = ⟨ordof, ⟨u1, · · · , un⟩⟩ v1 ≡ u1, · · · , vn ≡ un

c1 ≡ c2

Sets and bags are equivalent if there exists a bijective function which maps elements from one set/bag
to the other, such that the mapped values are equivalent. Set container equivalency

c1 = ⟨setof, ⟨v1, · · · , vn⟩⟩ c2 = ⟨setof, ⟨u1, · · · , un⟩⟩ ∃ f : {1, · · · , n} ↣→ {1, · · · , n} : vi ≡ uf(i)
c1 ≡ c2

Bag container equivalency

c1 = ⟨bagof, ⟨v1, · · · , vn⟩⟩ c2 = ⟨bagof, ⟨u1, · · · , un⟩⟩ ∃ f : {1, · · · , n} ↣→ {1, · · · , n} : vi ≡ uf(i)
c1 ≡ c2

Tuple equivalency

c1 = ⟨tuple, ⟨v1, · · · , vn⟩⟩ c2 = ⟨tuple, ⟨u1, · · · , un⟩⟩ v1 ≡ u1, · · · , vn ≡ un

c1 ≡ c2

In the example, the value ⟨bagof, ⟨⟨obj, John Doe⟩, ⟨obj, Jane Doe⟩⟩⟩ would thus be equivalent to ⟨bagof,
⟨⟨obj, Jane Doe⟩, ⟨obj, John Doe⟩⟩⟩, as the ordering does not matter for bag container types.

For each type in TypeTm, there exists a set of values from ValueIm which is considered valid. This is
defined by a relation ValidIm ⊆ (TypeTm × ValueIm) which defines a tuple for each valid value given a
type.

34 3.3. INSTANCE MODELS

Definition 16 (Valid type values)

The ValidIm set contains tuples which indicate what values are valid for a given type, which is
defined by

Valid ⊆ (Type × Value)

An element ⟨T, v⟩ ∈ ValidIm may be written as

v : T

The contents of the ValidIm set may then be derived as follows:
Data type values:

v ∈ B
⟨bool, v⟩ : boolean

v ∈ Z
⟨int, v⟩ : integer

v ∈ R
⟨real, v⟩ : real

v ∈ S
⟨string, v⟩ : string

Class values

ObjectClassIm(o) = c ! c ⊑Tm t t ∈ ClassTypeTm
⟨obj, o⟩ : t

t ∈ {nullable} × ClassTm

⟨obj, nil⟩ : t

Enumeration values

⟨ename, eval⟩ ∈ EnumValueTm ename ∈ EnumTm

⟨enum, ⟨ename, eval⟩⟩ : ename

Container values

v1 : T, · · · , vn : T ⟨v1, · · · , vn⟩distinct ⟨setof,T⟩ ∈ ContainerTm

⟨setof, ⟨v1, · · · , vn⟩⟩ : ⟨setof,T⟩

v1 : T, · · · , vn : T ⟨bagof,T⟩ ∈ ContainerTm

⟨bagof, ⟨v1, · · · , vn⟩⟩ : ⟨bagof,T⟩

v1 : T, · · · , vn : T ⟨v1, · · · , vn⟩ distinct ⟨ordof,T⟩ ∈ ContainerTm

⟨ordof, ⟨v1, · · · , vn⟩⟩ : ⟨ordof,T⟩

v1 : T, · · · , vn : T ⟨seqof,T⟩ ∈ ContainerTm

⟨seqof, ⟨v1, · · · , vn⟩⟩ : ⟨seqof,T⟩

TupleType values

v1 : T1, · · · , vn : Tn ⟨tuple, ⟨T1, · · · ,Tn⟩⟩ ∈ TupleTypeTm
⟨tuple, ⟨v1, · · · , vn⟩⟩ : ⟨tuple, ⟨T1, · · · ,Tn⟩⟩

CHAPTER 3. CONCEPTUAL MODEL 35

...
A
.. ..

B
....... has.

1..2
.

(a) Example type model

...
a:A

.. ..
b1:B

..

.

.

b2:B

......... has.....

has

..

(b) Valid instance model

...
a:A

..

(c) Invalid instance model: car-
dinality of B too low

...
a:A

..

.

.

b1:B

.. ..
b2:B

..

.

.

b3:B

...........

has

..... has.....

has

..

(d) Invalid instance model: cardinality
of B too high

Figure 3.5: Examples of valid and invalid multiplicities.

The validity of an instance model depends on the multiplicity of field values. The multiplicities spec-
ified in the type model also depend on the type, so both the type of a value has to be correct, and its
multiplicity. The multiplicity is of most influence for container values, as they can contain an arbitrary
amount of values.

Definition 17 (Multiplicity validity)

A field value ⟨⟨object, field⟩, value⟩ ∈ FieldValueIm has a valid multiplicity if the following prop-
erty holds:

value : type(field) ∧
value = ⟨t, ⟨v1, · · · , vn⟩⟩ ∈ ContainerValueIm ⇒ lower(field) ≤ n ≤ upper(field)

This may be written as validMul(⟨⟨object, field⟩, value⟩).

Figure 3.5 shows some examples of different multiplicities in instance models. More specifically,
fig. 3.5a shows a type model that specifies a multiplicity of 1..2 for the has relation. Figures 3.5c
and 3.5d show two instance models that have an invalid multiplicity (too low and too high respec-
tively), whereas fig. 3.5b shows an instance model with correct multiplicity (an alternative correct
instance model could have only a single instance of class B).

In order to simplify reasoning over value assignments, the edgeCount and edge operators are defined,
which specify the number of relations (and the existence thereof) between any two objects.

Definition 18 (Value edges)

Let a, b ∈ ObjectIm and r ∈ FieldTm where r ∈ fieldsTm(ObjectClassIm(a)). Furthermore, we

36 3.3. INSTANCE MODELS

...
John:Student

.name = “John Doe”
age = 23
studyTime = FullTime

.

.

.

Jane:Person

.

name = “Jane Doe”
age = 22

. ..
Calculus I:Course

.
subject = “calculus”

. ..
EWI:Department

........... follows.....
students

..... houses..

Figure 3.6: Model not satisfying the abstract property.

define containerCountIm(a, r, b) as

containerCountIm(a, r, b) = |{i ∈ N|⟨⟨⟨obj, a⟩, r⟩, ⟨v1, · · · , vn⟩⟩ ∈ FieldValueIm∧vi = ⟨obj, b⟩}|

Then edgeCountIm(a, r, b) is defined as

edgeCountIm(a, r, b) =

0, if type(r) /∈ ContainerTm

∧ ⟨⟨⟨obj, a⟩, r⟩, ⟨obj, b⟩⟩ /∈ FieldValueIm

1, if type(r) /∈ ContainerTm

∧ ⟨⟨⟨obj, a⟩, r⟩, ⟨obj, b⟩⟩ ∈ FieldValueIm

containerCountIm(a, r, b), otherwise

The edgeIm(a, r, b) predicate is defined as

edgeIm(a, r, b) = edgeCountIm(a, r, b) ≥ 1

As previously mentioned, the properties specified in a type model must be satisfied by the instance
model in order for it to be valid. For each property there is a satisfaction formula defined, which must
hold for a given instance model for that instance model to be valid. The following definition specifies
such a formula for each possible property in a type model.

Definition 19 (Property satisfaction)

Given an instance model Im and a type model Tm, a property p ∈ PropTm can be satisfied, written
as Im |= p, if the satisfaction formula holds for p.

• The satisfaction formula for an abstract property ⟨abstract, c⟩ given an instance model Im is
defined as

∄o ∈ ObjectIm : ObjectClassIm(o) = c

The example in fig. 3.4 shows an instance model that satisfies this formula for the Person class,
as no direct instantiations of the Person class exist. Figure 3.6 shows an instance model that
does not satisfy the property, as the Person class has been instantiated (by the object Jane).

• Let, for a constraint ⟨identity,A⟩, ac ∈ ClassTm ∧ ∀a ∈ A : a = ⟨ac, n⟩. The satisfaction
formula for the identity property given an instance model Im is then defined as

∀o, o’ ∈ ObjectIm : ObjectClassIm(o) = ac ∧ObjectClassIm(o’) = ac
∧ ∀a ∈ A : FieldValueIm(⟨o, a⟩) ≡ FieldValueIm(⟨o’, a⟩)

⇒ o = o’

CHAPTER 3. CONCEPTUAL MODEL 37

...
John1:Student

.name = “John Doe”
age = 23
studyTime = FullTime

.

.

.

John2:Student

.

name = “John Doe”
age = 23
studyTime = FullTime

. ..
Calculus I:Course

.
subject = “calculus”

. ..
EWI:Department

............. follows.....
students

........

follows

........

students

..... houses..

Figure 3.7: Model not satisfying the identity property.

...
John:Student

.name = “John Doe”
age = 23
studyTime = FullTime

. ..
Calculus I:Course

.
subject = “calculus”

.

.

.

Calculus II:Course

.

subject = “calculus”

. ..
EWI:Department

.............. follows.....
students

........

follows

........

students

..... houses........

houses

..

Figure 3.8: Model not satisfying the keyset property.

Assume the type model in fig. 3.2 specifies an identity property for the name and age attributes
of the Person object. Figure 3.7 shows an instance model that does not satisfy the property, as
both Student objects (which inherit from the Person class) do not have a unique set of values
for the name and age attributes. In fig. 3.4 this is not the case and the property would be
satisfied.

• The satisfaction formula for a keyset property ⟨keyset, r,A⟩ given an instance model Im is
defined as

∀o, o’, p ∈ ObjectIm : ⟨ObjectClassIm(p), r⟩ ∈ FieldTm

∧ edgeIm(p, r, o) ∧ edgeIm(p, r, o’)
∧ ∀a ∈ A : FieldValueIm(⟨o, a⟩) ≡ FieldValueIm(⟨o’, a⟩)

⇒ o = o’

• The containment property ⟨containment,R⟩ is satisfied for an instance model Im, when any
object in Im, which is the target for a containment relation, is contained by no more than 1
object, and there are no cycles in the instance model given the containment values.
Let CR = {R|R ∈ RelTm∧⟨containment,R⟩ ∈ ConsTm} be the set of all containment relations
in a type model Tm. The satisfaction formula for the containment property given an instance
model Im is then defined as

∀o ∈ ObjectIm : |{⟨⟨fo, ff⟩, fv⟩|⟨⟨fo, ff⟩, fv⟩ ∈ FieldValueIm ∧ ⟨obj, o⟩ = fv ∧ ff ∈ CR}| ≤ 1

∧ {(fo, fv)|⟨⟨fo, ff⟩, fv⟩ ∈ FieldValueIm ∧ ff ∈ CR} is acyclic

38 3.3. INSTANCE MODELS

...
A
.. ..

B
.........

inA
.....

inB

..

(a) Example type model with two con-
tainment relations

...
a:A

.. ..
b:B

.........
inA

.....

inB

..

(b) Model not satisfying the contain-
ment property

...
a1:A

.. ..
b1:B

..

.

.

a2:A

.........
inA

.....

inB

..

(c) Model satisfying the containment
property

Figure 3.9: Examples of the containment property.

...
John:Student

.name = “John Doe”
age = 23
studyTime = FullTime

.

.

.

Jane:Student

.

name = “Jane Doe”
age = 22
studyTime = PartTime

. ..
Calculus I:Course

.
subject = “calculus”

. ..
EWI:Department

.......... follows........

students

..... houses..

Figure 3.10: Model not satisfying the opposite property.

Figure 3.9a shows a type model with two containment relations, in opposite direction. The
model given in fig. 3.9b does not satisfy this containment property, as there exists a cycle of
containment relations. This is corrected in the instance model in fig. 3.9c, where such a cycle
does not exist (and each object is containment by at most one other object).

• The satisfaction formula for an opposite property ⟨opposite, r, r’⟩ given an instance model Im
is defined as

∀o, o’ ∈ ObjectIm : edgeCountIm(o, r, o’) = edgeCountIm(o’, r’, o)

In fig. 3.10, an example model is shown which does not satisfy the opposite property for the
students and follows relations. Although the number of relations is equal, they do not have
the same source and target objects (in opposite direction). The example model in fig. 3.4 does
satisfy the property.

With the previous definitions, it is now possible to define when an instance model itself is valid, given
its type model.

Definition 20 (Model validity)

An instance model Im is said to be valid if and only if

• All values are correctly typed: ∀⟨⟨obj, field⟩, val⟩ ∈ FieldValueIm : val : typeTm(field)
• All container multiplicities are valid: ∀fv ∈ FieldValueIm : validMul(fv).
• All properties are satisfied: ∀p ∈ PropTm : Im |= p

CHAPTER 3. CONCEPTUAL MODEL 39

• All default values have the correct type:
∀c ∈ ConstantTm : DefaultValueIm(c) : ConstTypeTm(c)

• Tm is consistent, as defined in definition 12.

This is written as Tm ⊢ Im.

3.4 Conclusions

This chapter has introduced the conceptual model. The conceptual model provides a bridge between
the various external languages and GROOVE graphs. This chapter only provides a formal definition,
the actual implementation is discussed in appendix A. By defining this conceptual model, an answer
has been found for the second research question. By using this conceptual model as an intermedi-
ate layer, it provides a framework that can be used to implement the various mappings between the
external languages and GROOVE. These mappings are discussed in chapters 4 and 5.

40 3.4. CONCLUSIONS

.. Chapter4. MappingCM-GROOVE
This chapter describes how the conceptual model is mapped to GROOVE graphs, based on the defini-
tions from section 2.2 and chapter 3. First, a general description is given of this mapping for the default
graph structure. Later on, a description is given of the various configuration possibilities which affect
the way graphs are generated and interpreted. The definition of the mapping is divided between the
type and instance models. The type models are mapped to type graphs and rule graphs, as will be
described, whereas instance models are mapped to instance graphs.

The mapping between GROOVE and the conceptual model is configurable. This means that for sev-
eral parts of the conceptual model multiple (partial) mappings exists. Which mapping is chosen then
depends on the configuration. In some cases these mappings influence each other, which means that
only the entire configuration determines the entire mapping, which is not always simply the con-
junction of each partial mapping determined by a single element of the configuration. This chapter
first describes the mapping for the default configuration (which is the configuration used if the user
does not actively change it). For the parts of the mapping that may be influenced by the configura-
tion, section 4.4 will describe the alternatives. This section also gives an overview of all the available
configuration options.

4.1 Global level

The Id set in the conceptual model can be mapped to the Lab set in GROOVE. However, since an identi-
fier consists both of a name and a namespace, and a label is just a string, some conversion is required.
The configuration determines how an identifier is mapped. The result is always a string which is
mapped to the Lab set in the GROOVE type graph. This string consists of any of the namespaces of
the identifier, separated by the configured separator symbol. Optionally, some part of the identifier
may have been rewritten by a manual override. The other way around, any override is applied in
reverse. Then, the label is split into namespaces and names using the separator symbol, resulting in
the final identifier in Id.

The globally defined data types are mapped to data type nodes in GROOVE. For example, the string
data type is mapped to the string type in GROOVE. Values are mapped similarly, in the instance
graphs. Thus, DataType is mapped to Labprim. The value mappings are kept the same, as both the
conceptual model and GROOVE use the exact same sets of values.

The global level also specifies the Nil value. This value is mapped to a special Nil node in the type graph
(with the configurable label Nil), which is a direct subtype of every nullable class in the type graph.
Thus, this node can be instantiated in the instance graph and be used as a value for every reference
to a nullable class. For an example of this, see fig. 4.2, which shows two classes with nullable types,
and the Nil node.

4.2 Type model

Mapping the type model to GROOVE would ideally consist of a mapping between a type model and
a type graph only. However, this is not always possible because of the various constraints in the type
model which cannot be represented by a type graph alone. Thus, other graphs may be generated as

41

42 4.2. TYPE MODEL

Figure 4.1: Example graph representation in GROOVE for the University type model example.

Figure 4.2: Example typegraph with nullable classes.

well, which are usually rule graphs (though a meta graph may be generated as well, see section 4.2.2).

A type model is defined as

Tm = ⟨Class,Enum,UserDataType, Field,FieldSig,EnumValue, Inh,Prop,Constant,ConstType⟩

whereas a type graph in GROOVE is defined as

TG = ⟨N,E,⊑, abs,mult, contains⟩

The various parts of the type model are mapped as follows:

1. The set of classes Class is mapped to the set N in the type graph by mapping the identifier of
the class to the label of the type node. However, the conceptual model distinguishes two types
of classes: proper classes and nullable classes. In order to accommodate for this, a class in the
conceptual model is mapped to two type nodes in the type graph. One node represents the
nullable class (which is a supertype of the Nil node), a second node represents the proper class,
where the second node is a subtype of the first (as a proper class is a subtype of a nullable class).
To differentiate between the two, a configurable string (by default $nullable$) is appended to
the label of the nullable class node. An example of this is shown in fig. 4.2.

2. The set of enumerations Enum is mapped to the set N as well. However, the identifier is not
directly mapped, but rather mapped to a label with a postfix appended at the end, to be able to
distinguish class and enumeration nodes in the type graph (by default $enum$). The mapping

CHAPTER 4. MAPPING CM-GROOVE 43

Figure 4.3: Type graph for an enumeration mapped to nodes.

for the EnumValue set is configurable. By default, it is mapped to nodes in the set N. The name
part of each tuple in EnumValue is mapped to an identifier, consisting of that name and the
identifier of the corresponding enumeration as its namespace. This identifier is then mapped
to a label, which is used for a node in the type graph representing the enumeration value. The
value node will be a subclass of the node representing the enumeration itself. Figure 4.3 shows
an example of an enumeration mapped to nodes. More details about the configuration of the
enumeration mapping can be found in section 4.4.

3. The Field set is mapped to edges in the type graph from the corresponding class node to the
field node (which is determined based on the FieldSig function). The label of the edge is directly
mapped from the name of the field. FieldSig is mapped to field nodes and combined with the
edge of the corresponding element in the Field set. The type of the field is mapped to the node
corresponding to that type in the type graph, with the edge representing the field connecting
the node representing the class to the node representing the field type. The multiplicity does
require some changes. In the conceptual model, the multiplicity of a field with a nullable class
is always 0..1 (optional). However, if the configuration is set to use nullable classes, in GROOVE
such a field is required to always have a value, which may be Nil. So, the multiplicity is mapped
to an outgoing multiplicity in GROOVE of 1..1, the type of the field being that of a nullable
class. Furthermore, GROOVE allows to specify an incoming multiplicity as well. The incoming
multiplicity is not defined by the conceptual model, and is left at its default value (which is 0..*).
For other types, the multiplicity is always 1..1, with the exception of container types. For these
types, the multiplicity is exactly that of the one in the conceptual model, allowing a field to have
no value assigned at all.

4. The Inh set is directly related to the ⊑ set in the type graph. The nullable version of the classes
in the Inh set are mapped to the type nodes in the ⊑ set, and the pairs in Inh are subsequently
mapped to ⊑.

5. The Prop set is mapped as follows for each possible property:

• Abstract: The abstract property is mapped by adding the node from N to the set abs in the
type graph. Figure 4.4 shows an example of this.

• Containment: The containment property is mapped to the contains set in the type graph,
by mapping the relation to the generated edge for that relation. An example is shown in
fig. 4.5 and also in fig. 4.28.

• Identity and keyset: These properties are mostly similar, except that for the Keyset property
an additional check is added for the relation under which the keyset must hold. The rule
graph matches if the number of values for a given field matches and at least one of those
values is equal to the other. The test of value equality differs between different container
type values, and between values with or without intermediate nodes. If a value is not a
container value, it is considered an unique, unsorted container with one element. Examples
of keyset and identity property constraint graphs are shown in figs. 4.6 and 4.7. A complete
overview of the possible constraint checks is shown in fig. 4.11.

• DefaultValue: This property is mapped to a rule which adds the value specified by the prop-
erty to the instance graph if it is missing, of which an example is shown in fig. 4.10. Addi-
tionally, the value may be applied in the initial instance graph if the configuration is set to
do so. See also section 4.4.

44 4.2. TYPE MODEL

Figure 4.4: Mapping of the abstract property to abstract nodes. In this case, the class Person is declared
abstract (but its subclasses are not).

Figure 4.5: The containment property in GROOVE. In this example, the field b of class A is declared
to be a containment relation.

• Opposite: The property is mapped to a constraint rule that checks if either relation from the
opposite property is missing from the instance graph, of the other relation does exist. It
may optionally be mapped to two edges between two intermediate nodes of the relation
in the type graph, each for one direction of the opposite property. See figs. 4.8 and 4.9 for
example graphs of the opposite constraint checks and opposite edges.

6. The Constant set is mapped to transformation rules which apply a default value when no value
is assigned. For the exact mapping, see the above information on the DefaultValue property.

7. The ConstType function is, just like the Constant set, mapped with the DefaultValue property.

The type model also specifies types for containers and tuples. Containers are used for fields which
may contain multiple instances of a given type. These containers have two properties: uniqueness
and ordering. A container type may be mapped to a special node in the type graph, but may also
directly refer to the node of the type that is contained within the container. This choice between
using a special node for a container (an intermediate node) or directly referring to the underlying
type can be based on various settings as well. However, whatever the configuration is, the following
circumstances always require the use of an intermediate node:

• The underlying type of the container is again a container.

• The container allows the same item to occur twice; GROOVE does not support the same edge
twice between any two nodes.

Figure 4.6: Example of an identity constraint rule. This rule checks that no two instances of the Person
class have the same value of the name field.

Figure 4.7: Example of a keyset constraint rule. This rule checks that no instance of the Student class
has two Course instances with the same subject in the courses relation.

Figure 4.8: Example type graph for opposite edges.

Figure 4.9: Example constraint rules for opposite fields.

Figure 4.10: A rule graph for the defaultValue property.

Identity check for values without an interme-
diate node. This rule checks that for all val-
ues of attr of one Person node, an equal value
exists for the attr set of another Person, as well
as that the size of both containers is equal.

Identity check for values with an interme-
diate node, in a unique but unordered con-
tainer. The difference with the above rule
graph is that now a check is made for the ex-
istence of an intermediate node, rather than
a direct edge.

Identity check for values with an intermedi-
ate node, in a non-unique and unordered con-
tainer. This is the most complex rule, and
checks that for each value of one container,
the count of that value is the same for both
containers. This, combined with a check for
the total container size, matches containers
with multiple identical values.
Identity check for values with an intermedi-
ate node, in an ordered container. Since each
element has an index, it suffices to check that
for each element in one container, an equal el-
ement with the same index exists in another
container.

Figure 4.11: Example constraint rules for opposite fields.

CHAPTER 4. MAPPING CM-GROOVE 47

Figure 4.12: Example of a tuple in a type graph (left) and an instance graph (right).

• The items in the container are ordered, and cannot be modified in such a way that they can
represent this ordering by themselves (for example, they are shared between different ordered
containers). An intermediate node is required to store this ordering.

• An opposite edge is required between the relations.

If an intermediate node is created, first a mapping is made between the container and an identifier.
This identifier is based on the field of which the type is the container, or on the identifier of the con-
tainer that contains this container. The identifier consists of the identifier of the class of the field and
the name of the field. For sub-containers, the identifiers are based on the identifier of the above con-
tainer and a postfix indicating the intermediate node is an element of another container (by default
$elem$). The identifier of the container is then mapped to a node in N, with an edge from the field
or above container to the node, and from the node to the node in N representing the type contained
within the container.

The intermediate nodes for a container will be marked as an ‘edge node’, which will be drawn as a
small dot in instance graphs. This causes the node to more closely resemble an edge, making the
graph appear less convoluted. This is purely a graphical feature and does not modify the underlying
model in any way. See also fig. 4.16.

Tuples are represented by nodes like classes are. However, the elements in a tuple have no name,
but are rather accessed by their position in the tuple. Each tuple will first be mapped to an identifier.
This identifier gives no guarantee about its name other than that it is unique within the type graph.
However, to be able to distinguish it as a tuple, a postfix is added (by default $tuple$). The tuple
node will have an edge going to each node representing one of the types in the tuple. The edge will
be labeled with an index, ranging from 1 to the number of elements in the tuple. An example of a
tuple used in a type graph and in an instance graph is given in fig. 4.12. This tuple contains both a
single instance of a class of type B and a custom data type D.

4.2.1 Additional constraint checks

In addition to the mappings described before, additional constraints are added to the type graph, and
extra rule graphs may be generated as well. These constraints and rules help prevent invalid instance
models from being created/generated.

• For intermediate nodes, it is required that each intermediate node has exactly one parent node,
such that the intermediate node is an actual value of another node. This is enforced by set-
ting the incoming multiplicity of the edge pointing to the intermediate node to 1, ensuring the
intermediate node is always owned by exactly one parent.

• Intermediate nodes always have to point to exactly one value as well. This, combined with the

48 4.2. TYPE MODEL

Figure 4.13: Example constraint rule for ordered containers using an index and a next edge respec-
tively.

Figure 4.14: Example constraint rule for unique values.

previous constraint an intermediate node always forms an edge between two nodes. To enforce
this, the outgoing value edge of the intermediate node has an outgoing multiplicity of 1.

• For ordered containers, constraints need to be added to make sure all elements in the container
are well ordered. For an ordering based on edges pointing to the next and previous elements,
it is required that between each pair of consecutive nodes exactly one edge exists pointing to
the next node (and optionally the previous). This is enforced by specifying that each node in
an ordered container has at most one incoming and at most one outgoing next (and optionally
previous) edge. Furthermore, a constraint rule is added to make sure the container has no two
different nodes without an incoming edge (only one such node is allowed to exist). For index
based ordering, all the values in the container need to have a unique value within the container.
An outgoing multiplicity for the index value of 1 ensures each intermediate node has an index.
Uniqueness is enforced by a constraint rule that ensures no two nodes in the container have the
same index value. For examples of these rule graphs, see fig. 4.13.

• For containers with unique values, constraint rules are added to ensure each value is unique.
These constraint rules check that for each pair of values in the container, the nodes are not iden-
tical. An example of such a rule graph is shown in fig. 4.14.

• To ensure opposite edges are always present between two intermediate nodes of two opposite
relations, the outgoing multiplicity of opposite edges is set to exactly 1, so that each intermediate
node will point to an opposite intermediate. The rule graphs generated for opposite properties
ensure that these intermediate nodes always come in pairs, which guarantees the opposite edges
will always occur in opposite pairs as well.

4.2.2 Meta graph

The meta graph provides a bridge between the type model and the language model this type model
is based on. It has nodes for classes (and nullable classes), enumerations, containers (one for each
type), tuples, data types and intermediate nodes. Each of these nodes is marked as the supertype of
the nodes generated for a type graph that represent these various elements.

CHAPTER 4. MAPPING CM-GROOVE 49

Figure 4.15: Meta graph of University example.

The meta graph provides an optional graph structure which is used in aiding the exporter in deter-
mining what each node in the graph represents in the conceptual model. The meta graph adds some
extra complexity to the grammar, as the user has to ensure that it stays synchronized with other type
graphs when changes are made to the grammar. However, as the meta graph can store some of the
information required to create a type model for the grammar, other graphs may be simplified, which
makes them easier to work with.

The example in fig. 4.15 shows a meta graph which may accompany the type graph shown in fig. 4.1.
It shows how the various nodes are related to the meta nodes for Class and Enum, as well as the
various intermediate nodes. Identifying the intermediate nodes in the meta graph, and the exact type
of container they may represent, removes the need for extra constraints graphs for example, which
would otherwise be needed to identify the various constraints for a container.

4.3 Instance model

The mapping between an instance model in the conceptual model and GROOVE is based on a single
instance graph, for which a type graph and rules for the type model of the instance model are present.
An instance model Im is defined as

Im = ⟨Object,ObjectClass,ObjectId,FieldValue,DefaultValue⟩

and instance graphs are defined as

HG = ⟨Hn,He, ident⟩

The instance model is mapped as follows:

• The Object set can directly be mapped to Hn based on the ObjectClass function, which deter-
mines the type of the object and thus the node. Each element in the Object set is mapped directly
to a node in the Hn set.

• The ObjectId function is mapped to the ident set directly.

50 4.4. CONFIGURATION

Figure 4.16: An instance graph representation of the example University instance model.

• The FieldValue function is mapped by creating an edge (in He) between the node corresponding
to the object and the node corresponding to the value of the field. The label is the edge is that
of the label used in the type graph mapping of the field. The exact same structure is used as
with the type graphs, but now multiple nodes maybe created as container values may contain
multiple other values. For each such a contained value, an edge is created between the container
node and the value nodes, with optionally an extra intermediate node.

• TheDefaultValue function is not directly mapped. Rather, when a defaultValue property applies,
a value of the DefaultValue function may be used to directly assign a value to a field for a given
object. This only applies if the configuration has been set to do so. The value that is applied is
determined by the constant that is mapped from the defaultValue property via the type model.

An example instance graph for the University model (in part) is shown in fig. 4.16, using the default
configuration. Attribute values are shown inside the nodes representing object instances. Intermedi-
ate nodes are drawn as small circles, which gives a better indication of their meaning. Opposite edges
have been added to the relations between the Course and Student nodes.

Data type values are mapped directly to GROOVE data types. There is no conversion required and
each type can be mapped directly. For custom data types, their corresponding nodes are instantiated
from the type graph, with an additional string node for its literal value.

4.4 Configuration

The configuration will allow the models to be represented by different graph structures that can be tar-
geted towards more complete information and stricter type checking, or simpler graphs that present
a better overview of the model. The other way around, transforming graphs into models, the con-
figuration can be used to determine what graph structure corresponds to what model element. This
allows different graphs structures to be used for modeling the same information (although in some
cases more detailed than others).

The configuration is a list of settings that apply to the entire model, or only parts selected by the user.
These settings may influence or interfere with each other. Some options are incompatible with others.
For example, not using intermediate nodes but not allowing ordering information to be placed on
values either.

The configuration options can be structured using a feature tree. In figs. 4.17 and 4.18 this tree is
shown. It has been split into two parts: one part contains all the options for the various possible graph

CHAPTER 4. MAPPING CM-GROOVE 51

structures and features. The second tree contains the options concerning the use of the properties in
the conceptual model and the generated constraint graphs (rule graphs), as well as the generation of
an optional meta graph.

In the tree, abstract features represent subparts of the entire configuration, making up the tree. The
concrete nodes are the actual possible options. If such a feature (option) is marked optional, that
means it may be turned on or off independently of any other option under the same node. If the
options together form alternatives, then exactly one of these must be chosen.

• The Names option allows the namespace separator and the namespace usage to be configured.
The Separator option has two alternatives:

– $: The dollar symbol is used as a separator
– : The underscore symbol is used as a separator

Figure 4.19 shows the effects of this option.

• The Namespaces option has three alternatives:

– Full : The entire namespace is used in the graphs. This results in the most verbose and
complete graphs.

– NonAmbiguous : Only the parts of the namespace required to disambiguate all the iden-
tifiers are added to the graphs. All names are guaranteed to be unique but part of the
namespace information is lost.

– Flat : No namespace information is added to the graph. Identifiers (which are simple
names) may conflict with each other as a result, but the resulting names in the graph are
the simplest.

Figure 4.20 shows the effects of this option.

• The Overrides option allows the Id mapping to be overridden. This allows a specific Id or
Namespace to be represented in a completely custom manner. This applies to both the importing
and exporting of identifiers. This only applies to an Id as a whole, which may be the namespace
of another Id.

• When importing or exporting a type model, optionally a meta graph can be generated or used,
controlled by the MetaSchema option. This allows certain information to be stored in a separate
type graph, which allows the other graphs to be simplified. For example, the meta graph keeps
track of the intended meaning of a node in a type graph (for instance, a node representing either
a Class or an Enum), which allows more simple names to be used for the labels of these nodes.
When using a meta graph, various other elements in the grammar can be left out without losing
information required to be able to export the required models. For example, the constraint rules
created for the various container types, which are also used to determine their types, can be left
out. Although this disables the constraint checking in GROOVE, fewer rule graphs are required
without losing the ability to correctly export the type of the container. This also holds for the
ability to distinguish various node types in the type graph, such as class, enumeration and data
type nodes. These are normally distinguished by adding a postfix to their labels, but with the
use of a meta graph this is no longer required, simplifying the labels of these nodes.

Fi
gu

re
4.

17
:C

on
fig

ur
at

io
n

tr
ee

fo
rg

ra
ph

fe
at

ur
es

.

Fi
gu

re
4.

18
:C

on
fig

ur
at

io
n

tr
ee

fo
rp

ro
pe

rt
ie

sa
nd

ru
le

gr
ap

hs
.

CHAPTER 4. MAPPING CM-GROOVE 53

Figure 4.19: Effect of the Names option on labels in graphs. On the left the underscore separator is
used, on the right the dollar sign.

Figure 4.20: Effect of the Namespaces option on identifiers in graphs. The figure shows the Full,
NonAmbiguous and Flat alternatives respectively.

• The NullableClasses option controls the creation of nodes for nullable classes. It provides three
alternatives:

– All : Every class will have an associated nullable class node, even if it is not referenced by
any relation in the type model.

– OnlyUsed : Only those classes for which the nullable class is referenced in the type model
will have an associated nullable node.

– Never : No nullable nodes are created at all, and no difference is made between proper
and nullable classes. Additionally, the multiplicity for non-container references to nullable
classes is set to 0..1 in GROOVE, rather than 1..1.

In fig. 4.21 the effect of these three alternatives on the type graph is shown. Note that with each
consecutive alternative the type graph becomes smaller.

• For enumerations, the Enumerations option controls how they are represented. The Nodes alter-
native uses nodes to represent enumeration values. The Flags alternative uses flags instead. An
example of both alternatives is shown in fig. 4.22. If the latter alternative is selected, optionally
extra constraint rules may be added (depending on other configuration options discussed later
on). The default is to use nodes only for representing enumerations, where enumeration values

Figure 4.21: Effect of the NullableClasses option on type graphs.

54 4.4. CONFIGURATION

Figure 4.22: Type and instance graphs generated for enumerations using flags or nodes.

Figure 4.23: Rule graphs generated for enumerations using flags. The left rule checks if no flags exists,
the right rule checks that two flags exist (also matches if more than two flags exist).

are represented by nodes which are a sub type of an (abstract) node representing the enumer-
ation itself. When the Flags alternative is used, only one node is created for an enumeration,
with flags for each of its values. When this alternative is used, additional constraint rules may
be generated to enforce an enumeration value uses exactly one flag. Figure 4.23 shows an exam-
ple of such rules. One rule checks the absence of all possible flags. If an enumeration node has
no flags, this rule will match. The other rule uses a regular expression to match each possible
pair of flags. If an enumeration node contains two or more of such flags, one of these pairs will
match and consequently the entire rule will match.

• The Fields option controls the graph structures used to represent the various fields and their
types. OppositeEdges controls whether or not opposite edges are drawn and required between
fields that have been marked opposite. These edges are shown in fig. 4.8, and would not be
present if the option was turned off. This does not influence the opposite constraint checks
however. The Containers option controls the representation of container types in the graph.
The IntermediatePostfix option allows the type of the container to be appended to the name
of an intermediate node of that container if it exists. The postfixes used are Set, Bag, Ord and
Seq for the setof, bagof, ordof and seqof containers respectively. This is only applicable if a meta

graph is not used, otherwise the meta graph provides this information. The effect of this option
is shown in fig. 4.24. The Ordering option controls the representation of ordering information

Figure 4.24: Effect of the IntermediatePostfix option. On the left the option is turned off, on the
right it is turned on.

CHAPTER 4. MAPPING CM-GROOVE 55

Figure 4.25: Effect of the Ordering option on intermediate nodes of ordered container types in type
graphs. Note that the index of the values is hidden in the right graph, but internally still present.

When using next edges, not the index value,
but the next element is compared for equiva-
lency.

Figure 4.26: Constraint rule for the identity property, for an ordered container using next edges.

between container values. The Representation determines the graph structure used. Either an
index value is used (the Index option), or edges between the nodes (the Edge option).

– If the Index option is used, an integer attribute is added to the node representing the con-
tainer value which has an index value.

– If the Edge option is used, edges pointing to the next element are added to the graphs.
When this option is used, the Prev option may additionally be used to add edges pointing
to the previous element as well to the graph.

The effect of these alternatives is shown in fig. 4.25, which shows the resulting graph for the same
ordered containers with both alternatives chosen in the configuration. The effect on instance
graphs for the same containers is shown in fig. 4.27.
A constraint rule that is largely affected by this option is that of the identity property for ordered
containers. The constraint rule created for indexed containers is shown in fig. 4.11, the constraint
rule for values using next edges is shown in fig. 4.26. The Placement option controls what nodes
are used to add the ordering information to. This may be the intermediate nodes themselves (the
UseIntermediate alternative) or the value nodes when applicable (the PreferValue alternative).
If the latter is not possible, intermediate nodes are used instead. For the ordering information
to be placed on a value node, the following conditions must hold:

1. The type of the value node is a Class.
2. The name of the edge or attribute used to represent the ordering is not used by a Field of

the class or any of its superclasses.
3. The value is never shared between any other ordered container.
4. The value is contained within a containment relation.

• The IntermediateNodes option controls the creation and usage of intermediate nodes in the
graph for fields and container types. Three alternatives are possible:

56 4.4. CONFIGURATION

Figure 4.27: Effect of the Ordering option on intermediate nodes of ordered container types in instance
graphs.

– Always : All fields use an intermediate node. This results in the largest graphs, but all
fields will consistently have an intermediate node.

– Container : All container fields use intermediate nodes, even if not strictly required. Other
fields may use an intermediate node when required, such as for opposite fields.

– Required : Intermediate nodes are only created when required.

The Required alternative depends heavily on other options, since they may or may not depend
on the presence of intermediate nodes. An intermediate node is required when one or more of
the following conditions hold:

1. It represents a container with non-unique values.
2. It represents an ordered container, and the ordering representation is not placed on the

value of the container (the PreferValue option).
3. It is part of a field for which an opposite property exists, and the OppositeEdges option is

enabled.
4. The container contains other containers.

The effect of the IntermediateNodes option is shown in fig. 4.28. Note that for the image as-
sociated with the Required alternative, the PreferValue option was used to allow the use of a
direct edge. Furthermore, the relation between classes F and G was marked as containment to
allow the importer to infer that a unique index for all G instances is possible.

• The Default option controls the use of default values in the model (the defaultValue property).
The UseRule option creates a rule for the default value when enabled. This allows the actual
value used to be tracked and exported later on, and may be used during model transformations.
The ApplyImport options enables the application of the default value to actual instances when
applicable during import. This ensures that values that are unset in the instance model will be
assigned their default value when applicable.

• The second part of the configuration tree concerns the use of properties and constraint rules. The
Properties option controls the generation of properties during export. Each property can be
individually turned on or off. Turning a property off will stop the exporter from searching for
a certain graph pattern or constraint to generate the property, which may help if the graphs
contain structures which are not compatibly with the exporter. The ConstraintRule option
allows the types of constraints rules generated and analyzed to be selected. Each option controls
whether or not that kind of constraint rule is generated on import or searched for on export.
Certain properties may only be expressed as constraint rules (such as identity and keyset), so
turning these options off may cause this information to be lost.

• Finally, the configuration allows the strings used for the various graph structures and elements
to be changed. This entails the names of edges such as used for opposites and ordering, but also
names for container types and postfixes for enumerations and data types.

Figure 4.28: Effect of the IntermediateNodes option on intermediate nodes in type graphs. The effects
of the Always, Container and Required alternatives are shown respectively.

58 4.5. OVERVIEW

An important aspect of the configuration is that it is required to use the same configuration for both
exporting and importing the same model. If a different configuration is used, the exporter may in-
correctly interpret an existing graph, resulting in no model or an incorrect model being generated.
Therefore, the translator allows configurations to be stored and loaded as required, as is explained in
section 6.1.3.

4.5 Overview

An overview of the mapping between the conceptual model and GROOVE is given in the following
table. For each main concept in the conceptual model a short description is given on how it is repre-
sented in GROOVE graphs.

Feature Representation
Namespaces Type name in nodes with a separator
Classes Type nodes in type graph
Enums Type nodes in type graph, with a special enumeration postfix
Tuples Type nodes in type graph, with a special tuple postfix
Data types Using built-in data types
Custom data types Type nodes in type graph, with a special data type postfix. Additionally a

single string attribute is added
Inheritance Subtype edges in the type graph
Attributes An edge to the node representing the attribute type
Relations An edge to the node representing the attribute type
Multiplicities The out aspect for field edges
Abstract The abs aspect for type nodes
Opposite Using opposite edges between intermediate nodes, and/or an opposite rule.
Identity An identity rule
Keyset A keyset rule
Containment The part aspect for edges
Default value Directly inserting the value in instance graphs and/or a default value rule
Unique containers A unique value rule, or connecting values directly by an edge, omitting an

intermediate node
Ordered containers A ordered value rule
Objects Nodes in an instance graph
Object identities Optionally by using the id aspect on nodes in the instance graph

4.6 Conclusions

This chapter describes the mapping between GROOVE and the conceptual model. The actual imple-
mentation is discussed in appendix C. This mapping answers the second part of the third research
question, namely how the conceptual model can be mapped to GROOVE. In the following chapter, the
mapping between the external languages and the conceptual model is described, which will answer
the first part of this research question, solving the question entirely.

An important aspect of the mapping between the conceptual model and GROOVE is its configurabil-
ity. The configurability provides a means to change the way the conceptual model is represented by
graphs in GROOVE. This gives the user more control over the import and export process, and allows
a choice to be made between more detailed graphs or simpler graphs. Implementation details of the
configuration can be found in section 6.1.3.

.. Chapter5.

MappingCMtoEcore,GXLand
DOT

This chapter elaborates on the implementation of the mapping between the various graph languages
and the conceptual model. The mapping is split in a mapping between the language and the type
model, and between the language and the instance model. A separation is made between importing
and exporting. Although ideally importing and exporting would be the exact opposite of each other,
this is not always possible. In some cases the differences are minor, but in others the difference is
major, such as for DOT.

5.1 Ecore

The mapping from an Ecore model to a type model is fairly straightforward. This is mainly because
the conceptual model was designed with primarily Ecore in mind. Therefore, many of the concepts
found in Ecore match closely to those found in the conceptual model, and vice versa, which makes
the translation of them rather trivial. An Ecore document is translated to and from a Resource by
the Ecore runtime. Such a Resource is added to a ResourceSet, which may contain multiple of such
Resources. Such a Resource could be either an Ecore model, or an Ecore instance model. The use of
a ResourceSet allows the various references between these models to be automatically resolved.

5.1.1 Importing type models

When importing an Ecore model, a new ResourceSet is created and the resource associated with the
Ecore model is inserted. Then, all elements in this resource are traversed in order to translate it into
a type model. Each element in Ecore is always contained within a package, class or data type. Thus,
the following case distinctions are made:

1. EPackage

2. EClass

3. EDataType

4. EEnum (as a special case of EDataType)

Other Ecore elements will always be contained by these elements (such as references and attributes).

An example Ecore model and corresponding type graph are shown in fig. 5.1. It shows the use of
various container formats, intermediate nodes, abstractness and enumerations. In order to simplify
the type graph, opposite edges are hidden although they are used in the Ecore model.

EPackage

An EPackage is not directly mapped into the conceptual model. Rather, it will provide a namespace
for the elements contained within the package. Furthermore, each package will be explicitly put into
a registry of packages in the ResourceSet, so other models may reference these packages or elements

59

(a) Ecore type model

(b) GROOVE type graph

Figure 5.1: Example Ecore model and corresponding GROOVE type graph.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 61

Root

A

Sub

(from Root)

A

B

refB
0..1 refB0..1

(a) Ecore model with packages

(b) GROOVE type graph with namespaces

Figure 5.2: Example of an Ecore type model with packages and correspodning GROOVE type graph.

contained within these packages (such as classes). The namespace of a package is based on its name,
and the namespace of the parent package. A root package of an Ecore model will be contained in the
root namespace of the conceptual model.

EClass

An EClass will be mapped to an Id in the type model, which is an element of ClassTm. This Id is based
on the name of the class and the namespace provided by the package the class is contained in. If the
EClass is abstract (or an interface), an abstract property is added to the type model bearing the Id of
the class. For each superclass of the EClass, the corresponding class in the type model will be added
to the InhTm set paired with the current class in the type model.

For each EReference and EAttribute contained within the EClass, a new element is added to FieldTm in
the type model, complete with the proper signature inFieldSigTm. The name of the field is determined
by the name of the EReference/EAttribute, the multiplicity is determined by the lower bound and
upper bound. The type of the field is determined by the type of the attribute (which will be the type
created for the referenced EDataType) or reference (which will the class referenced by EClass). If the
type is a class and the multiplicity is 0..1, then the type will be that of a nullable class. Otherwise, it will
be of a proper class. If the upper bound is larger than 1, then a container type is generated. The type
of the container is determined by the ordered and unique attributes of the EReference/EAttribute.

For EAttributes, the default value is also taken into account. This will always be a literal string in an
Ecore document, which will be translated to the ConstantTm set in the type model, with the proper
entry in ConstTypeTm based on the type of the attribute. The actual value (which is already known
by Ecore) will be added into the DefaultValueIm function, mapping the generated ConstantTm element
to the actual ValueIm element. Finally, a defaultValue property is added to the type model, referencing
the EAttribute for which it is defined.

For EReferences it is possible to specify an opposite EReference. If this is the case, opposite properties
will be added to the type model, referencing both EReferences. Since each reference is visited when
translating the Ecore document, it is ensured that an opposite property is added for both directions.
Additionally, an EReference may specify a containment relation. If that is the case, a containment

62 5.1. ECORE

A
simpleField : SimpleType
enumField : Enum

<<enumeration>>
Enum

literalA
literalB

<<datatype>>
SimpleType

<<javaclass>> java.lang.String

(a) Ecore type model with different types

(b) Corresponding GROOVE type and instance graphs

Figure 5.3: Imported Ecore class, enum and data type, and corresponding GROOVE graphs.

property is added to the type model as well. Finally, if the reference specifies a set of keys, then a
keyset property is added, referencing the field generated for this EReference, as well as each field
generated for the EAttributes in the keyset.

Finally, an EClass can have one EAttribute designated as its identifying attribute. For this attribute
an identity property is added to the type model, referencing the field created for that attribute.

EDataType

Ecore defines a set of built-in data types, as well as allowing the user to specify custom data types.
The built-in data types are, where applicable, mapped to the data types in the conceptual models
(booleans, integers, real numbers and strings). Other EDataType elements are mapped to an element
in UserDataTypeTm in the type model. Just like a class, its Id based on the name of the data type and its
containing package. The underlying Java class information is ignored. Any values for this data type
will be treated as an opaque string.

EEnum

As a special case of EDataType, EEnum is mapped to an element in EnumIm in the type model. Like
classes and data types, the Id is based on its name and containing package. For each EEnumLiteral
contained within the EEnum, an element is added to EnumValueTm, based on the name of the literal
(other information of the literal is lost).

Operations and generics

Operations and generics are not supported. Both concepts are not represented in the conceptual
model. Operations and generics both have no influence on instance models. Because of this, the

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 63

choice was made not to include them, as they only apply to type models, which, considering from a
GROOVE point of view, are more or less static and not relevant to model transformations.

Operations model executability, which does not apply to a single instance model (but rather the trans-
formation thereof). Generics do not apply to instance models either, as the type of objects and values
in an instance model is always set to a specific type, and not a generic type.

5.1.2 Importing instance models

 A B
refB

0..1 refA

0..1

(a) Ecore type model with opposite relations

(b) GROOVE type and instance graphs with opposite edges

Figure 5.4: Imported Ecore model showing opposite relations, and corresponding GROOVE graphs.

Ecore instance models are imported in a similar fashion to type models. First, an Ecore instance model
document is loaded as a Resource and inserted into a ResourceSet. In order to be able to resolve all
types, this ResourceSet must also contain an appropriate Ecore model, such as one loaded when
importing a type model.

Each EObject in the instance Resource is translated to an element in ObjectIm. The type of the EObject
will be an EClass (the ResourceSet will automatically resolve this), which is used to map to an ele-
ment in ObjectClassIm. The EObject furthermore has a unique location in the Ecore document, as it is
contained by one other object (multiple objects contained by the same object are further distinguished
by their index in the document). This location is used as an entry in ObjectIdIm.

For each attribute and reference in the class that is the type of the object, a value entry is added to
FieldValueIm. The value is either another object for references, or a data type value (or enumeration
value) for attributes. For attributes and references with an upper bound larger than 1, an appropriate
ContainerValueIm is used instead. For attributes, the value can either be of a built-in data type or a
custom data type. Built-in types are translated accordingly, custom data type values are treated as
strings (and are available as such in the Ecore instance model).

5.1.3 Exporting type models

Just as importing an Ecore model requires a ResourceSet, so does exporting it. When exporting a type
model, first a ResourceSet is created, and an empty Resource is added to it. Next, all the elements
of the type model are added into the Resource by translating them to their Ecore counterparts. This
happens in a fashion similar to that of importing a type model, by iterating over the various elements
in the type model, and translating them and any elements contained within them or referenced by
them.

ClassA ClassB

ClassCClassD

refB

1..2
refA 0..2

refC
0..2

refD

2..3

(a) Ecore type model with various relations

(b) GROOVE type and instance graphs with different containers

Figure 5.5: Imported Ecore model showing various relation types. On the left the resulting type graph,
on the right an example instance graph.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 65

Before any element in the type model can be translated, first a way needs to be defined to translate the
namespaces in a type model to packages. This is done by walking through the namespaces of an Id
of each element that has one, and creating an EPackage in the Resource for each namespace, making
sure that the packages are properly contained within each other.

Type models are translating by visiting the classes (ClassTm), enumerations (EnumTm), custom data
types (UserDataTypeTm) and properties (PropTm).

Classes

Classes are translated into EClass objects. The name of this EClass will be the name part of the Id
that represents the class in the type model, and it will be added to the package that corresponds to
the namespace of the Id. Next, each relevant element in InhTm is translated into the EClass repre-
senting the superclass, which is added to the set of superclasses in the ECore model. Finally, each
relevant FieldTm entry (with corresponding FieldSigTm value) is translated into either an EAttribute
or EReference. For container types, the appropriate unique and ordered attributes are set.

If the type of the Field is a Class or a container of a Class, it will be translated into an EReference.
Otherwise, an EAttribute is created. For attributes, the type may be an EEnum (translated from the
referred EnumTm entry) or EDataType (if the type is one of the built-in data types or an entry in
UserDataTypeTm).

Recursive containers are not supported by Ecore. Therefore, if a recursive container is encountered,
a new EClass is generated, with one field that references the subcontainer. The field will have an
unbound multiplicity (as subcontainers in the conceptual model do not enforce a multiplicity as well),
and its uniqueness and ordering depend on the type of the container that it represents.

A special case is the translation of tuple types. Ecore has no notion of tuple types, so they are trans-
lated to a new EClass instead, with an EReference or EAttribute for each tuple element instead. A
similar problem exists for recursive containers (that is, containers within containers). However, these
occur infrequent enough not to be translated, and they will be ignored instead.

Data types and enumerations

The built-in data types can be mapped directly to the predefined data types in Ecore. The custom
data types are mapped to new instances of EDataType. However, there is no information about the
underlying Java class information in the conceptual model, so instead the String class is used, as it
is guaranteed to be able to hold the string that represents values of this data type.

Enumerations are mapped to EEnums. For each elements in EnumValueTm, a new EEnumLiteral is
created contained by an EEnum, of which the literal name is as it occurs in the conceptual model.

Properties

Properties allow themselves to be translated fairly trivially. They are translated as follows:

• Abstract: The class referenced by the abstract property is set as abstract in Ecore.

• Containment: The relation referenced by this property is set to be a containment relation in Ecore.

• Identity: The attribute referenced by this property is set to the Ecore identity property of the class
the attribute belongs to. Note that although the conceptual model allows multiple attributes in
identity properties, only one can be set as the identity property in Ecore. Other attributes are
simply ignored.

66 5.1. ECORE

• Keyset: Each attribute referenced by the keyset property is added to the keys property of the
EReference that is the translation of the relation referenced by the property.

• Opposite: Both EReferences, as translated from the relations of the opposite property, are marked
as opposite of each other.

• DefaultValue: Ecore only allows attributes to have default values. Default values for references in
the conceptual model are ignored. The ConstantTm in the conceptual model is mapped directly to
the literal string of the default value for the EAttribute that represents the field in the conceptual
model, for which the property was added.

5.1.4 Exporting instance models

Exporting an instance model to an Ecore instance model document requires, just like with an import, a
ResourceSet which contains the references to the required types. When exporting an instance model,
all the elements in ObjectIm are mapped to an EObject. This is done by using the Ecore factories of each
EClass that is the translation of the corresponding ClassTm entry from ObjectClassIm. The ObjectIdIm
function is ignored, as Ecore does not support names for objects. The DefaultValueIm function is
ignored as well, as the literal values for default values are used instead, and mapped from the type
model.

For each entry in FieldValueIm, the corresponding attribute or reference value in Ecore is set. The
normal data type values are trivially translated into their Ecore counterparts. For custom data types,
the string value can directly be used, as the corresponding EDataType always accepts a string literal as
its value for storage. Enumeration values are created using the corresponding EEnum, which creates
the correct value when given the literal from the conceptual model.

Just as in the type model, tuples in the instance model cannot directly be translated. Therefore, an
instance is created of the EClass representing the tuple, and each value of the tuple in the conceptual
instance model is translated into an attribute or reference value in the Ecore instance model. Recursive
containers are treated similarly, with an instance being created for the class representing the recursive
container. The values of the container are translated and assigned to the EAttribute or EReference of
this container class representing the container values.

5.1.5 Issues

Because the conceptual model is mostly based on Ecore, there are not many issues when importing
or exporting. The main issue is that some information is lost when importing, most notably the oper-
ations and generics information. In appendix B.1 some more details are given to how and why this
information is lost. Most of the other problems occur during the export process, as in some cases the
conceptual model is capable of representing information that Ecore is not. For example, recursive
containers are a concept that Ecore does not support.

Information loss occurs also when importing data types and enumerations. In both cases some of the
properties which are closely related to the underlying Java model are ignored. For data types, this
is for example the Java class that would be used and for enumerations the value of the literal. The
conceptual model would need to be modified to support this, but this would lead to a too close focus
to the Ecore/Java models which introduces additional problems for other languages.

Finally, Ecore also supports the definition of interfaces, which are, in short, abstract classes with only
abstract operations defined. Since operations are not supported, these classes are marked as abstract
instead. Upon export, the fact that these were originally interfaces is lost. However, this only has a
small impact on the model compared to the loss of other information.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 67

Figure 5.6: Simple GXL type graph with ordered edges.

Figure 5.7: Simple GXL type graph with attributed nodes.

5.2 GXL

The mapping from GXL to the conceptual model has to deal with a few more incompatibilities than
the mapping of Ecore, as the conceptual model is less closely related. In a GXL document, multiple
graphs can be found. A graph is either a GXL type graph (which makes use of the GXL meta schema)
or a GXL instance graph (which is typed by the aforementioned GXL type graphs).

Elements in GXL can be typed (and this is often required). These types refer to elements in other
GXL documents (possibly the same document). In the GXL meta schema these types are often self-
referential as the meta schema can describe itself. For instance graphs, these types refer to elements
in the type graph, the type graph refers to the meta schema.

5.2.1 Importing type graphs

The GXL meta schema mainly consists of three parts: The graph part, the attribute part and the value
part. The graph part describes the structure of the graphs it types, such as allowed nodes, edges and
subgraphs (as well as relations). The attribute part describes the various possible (types of) attributes
of elements in the graphs. Finally, the value part allows default values to be specified in a type graph
for various attributes.

A type graph consists of a single actual graph with nodes and edges typed by the meta schema. Other
elements are not allowed or ignored. Nodes specify the elements that are allowed in instance graphs,
including attributes and edges. Edges specify various relations between, or properties of, such ele-
ments.

68 5.2. GXL

<gxl xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.gupro.de/GXL/gxl

-1.0.dtd">

<graph id="ordering-schema" edgeids="true">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#gxl-1.0"/>

<node id="orderingSchema">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#GraphClass"/>

<attr name="name">

<string>orderingSchema</string>

</attr>

</node>

Listing 5.1: Example GXL document header and graph node

Figure 5.8: Complex GXL type graph with an attributed edge.

GraphClass

First, all GraphClass nodes are identified, and their hierarchy is computed. These nodes provide
the namespaces of the elements in the conceptual model. The nodes and edges contained by the
graphs these GraphClass nodes represent will have their corresponding identifiers in the conceptual
model based on the name of the GraphClass node as their namespace. GXL does not support graphs
directly containing other graphs, but rather nodes, edges and relations containing other graphs. When
determining the namespace, these elements are ignored and only the name of the GraphClass nodes
is taken into account.

NodeClass

NodeClass nodes are translated into classes in ClassTm. The related AttributeClass nodes are trans-
lated into the fields of such classes. The Id of the class is based on the name of the NodeClass and its
containing GraphClass. If the NodeClass is attributed as abstract, a new abstract property is added
to the type graph. A NodeClass may inherit from another NodeClass via the isA edge. If this is the
case, the proper subclass relation will be added to InhTm in the type model.

EdgeClass

EdgeClass nodes, and their subtypes AggregationClass and CompositionClass, are translated into
either relations or fields. If the edge is a simple edge directed from one NodeClass to another Node-
Class, then a new relation is added to FieldTm based on the class Id of the source NodeClass with the
type being that of the class Id of the target NodeClass.

It is possible that edges connect to other edges. Additionally, edges may be abstract, inherit from
other edges or feature attributes. Such edges are promoted to classes in the conceptual model as well,
as these features cannot be represented by relations. Such promoted classes will have two relations,
namely that of the class they connect to and the class they originate from. If an edge is the source or
target of such a promoted edge, it will be promoted to a class as well.

<edge id="c3" from="orderingSchema" to="W">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#contains"/>

</edge>

<node id="W">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#NodeClass"/>

<attr name="name">

<string>W</string>

</attr>

<attr name="isabstract">

<bool>false</bool>

</attr>

</node>

<edge id="c4" from="orderingSchema" to="E">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#contains"/>

</edge>

<node id="E">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#EdgeClass"/>

<attr name="name">

<string>E</string>

</attr>

<attr name="isabstract">

<bool>false</bool>

</attr>

<attr name="isdirected">

<bool>true</bool>

</attr>

</node>

Listing 5.2: Example GXL nodes and edges

70 5.2. GXL

<node id="domainSeq">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#Seq"/>

</node>

<node id="domainString">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#String"/>

</node>

<edge id="e1" from="Prog" to="file">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#hasAttribute"/>

</edge>

<edge id="e2" from="file" to="domainSeq">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#hasDomain"/>

</edge>

<edge id="e3" from="domainSeq" to="domainString">

<type xlink:href="../../../metaschema/gxl/gxl-1.0.gxl#hasComponent"/>

</edge>

Listing 5.3: Example of GXL attributes

If the edge is either an AggregationClass or CompositionClass, a new composite property is added to
PropTm featuring the class the edges connects from. If the edge was promoted, the property is based
on the relation from the source class to the promoted class.

The multiplicity of the created field is determined by the limits property of the target edge. For
promoted classes, the limits property of the source edge is also taken into account. Edges can be given
an ordering. If this is the case, an ordered container type will be used for these edges. GXL always
allows multiple edges of the same type to connect the same nodes, so the containers for relations in
the type model are always of a non-unique type.

RelationClass

The RelationClass and RelationEndClass node types are ignored, as the conceptual model does not
support relations.

AttributeClass

Almost all elements in a GXL type graph support the specification of attributes. However, these
can only be mapped to the fields in the conceptual model, which only classes support. Therefore,
attributes are only supported for the NodeClass types, and promoted EdgeClass types. Attribute-
Class nodes define attributes, which have a specific Domain indicating their type, and optionally a
Value as a default value. The Locator domain is treated as a string as locators can always be repre-
sented as such. The AtomicDomain types (Bool, Float, Int, String) are mapped to the built-in types
in the conceptual model. CompositeDomain types are mapped to container types for Bag, Set and
Seq, and tuple types for Tup. Finally, for Enum domains a new enumeration is added to EnumTm,
with each contained EnumVal being translated to a corresponding EnumValueTm entry based on the
value string. Note that in GXL, attributes have no multiplicity specification. Rather, the multiplicity
of container types is always assumed to be 0..*, that of other types is 1..1.

If an AttributeClass has a default Value, it is translated to a ConstantTm entry based on the value string,
URI string or collection of those. The type in ConstTypeTm is that of the Domain of the attribute.
Instance models will have an actual DefaultValueIm entry based on the generated ConstantIm entry
and the actual value it represents.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 71

Figure 5.9: Simple GXL instance graph with ordered edges.

Figure 5.10: Simple GXL instance graph with attributed nodes.

Names

Names in the type graph are treated as being able to represent having a namespace as well, being
separated by a period. The reason is that although on import a subgraph can represent a namespace,
on export this is not always possible and namespaces are flattened to names instead, using the dot as
a namespace separator (see section 5.2.3).

5.2.2 Importing instance graphs

Instance graphs are imported by iterating through all subgraphs and nodes contained by those sub-
graphs. Each node is typed by a NodeClass node in the type graph, which has been translated to a
class in the type model. Edges between those nodes are typed by an EdgeClass, which is translated
either as a field or a class if it was promoted.

First, all nodes that do not contain any subgraphs are traversed. For each such a node, a new element
is added to ObjectIm, and the identifier of that node (if any is available in the GXL document) is used
for ObjectIdIm. Next, for each outgoing edge that is of an edge type which was not promoted, an
entry is added to FieldValueIm. For edges that were promoted, a new object is added to ObjectIm, and
an entry is added to FieldValueIm for both the source and the target. For each attribute of a node or
promoted edge an entry is added to FieldValueIm as well, based on the actual value of the attribute.

Nodes that do contain subgraphs are not instantiated as objects. Rather, their subgraphs are explored
and the nodes contained within it are translated. The node containing the graph is not instantiated
as an object and the relation of containing a graph is not supported.

5.2.3 Exporting type graphs

Whereas the type graph importer allows the use of subgraphs by treating them as namespaces, the
type graph exporter will not use the same approach. The reason is that when exporting a type model
with multiple namespaces inside the root namespace (for example the Ids namespace1.class1 and
namespace2.class1), actually two root graphs would be required in the associated exported instance

72 5.2. GXL

Figure 5.11: Complex GXL instance graph with an attributed edge.

models. However, a GXL graph allows only one such a root graph. Therefore, Ids are flattened into
single strings which are used for the names of the exported elements (the importer has provisions to
support both types of namespacing).

When exporting the type model, first all classes are exported as attributed nodes, with edges to other
nodes for each relation. Thus, each element in ClassTm is translated into a NodeClass node, with
for each corresponding element in FieldTm either an AttributeClass or an EdgeClass depending on
whether the field specifies an attribute or a relation.

For attributes, the multiplicity is ignored, as GXL has no provisions for this concept for attributes.
Additionally, GXL has no type for the ordof container type. This type is exported as a GXL Seq type,
which allows for a wider range of values (they do not have to be unique as opposed to ordof values).

The built-in data types are mapped directly to their counterparts in GXL. For the custom data types
the String type is used, as GXL has no direct provision for custom data types. This will cause the
fact that this is a custom data type (with its own Id) to be lost, but the actual values can still be stored.
Enumerations are mapped to the Enum data type in GXL, and EnumVal nodes for each literal value
in the type model. Tuples are mapped either to Tuple attributes or nodes representing the tuple. If the
tuple is used as an attribute and consists only of attribute types, then the tuple is translated to a GXL
attribute. Otherwise, a node representing the tuple is created, with attributes and edges referencing
the types the tuple consists of.

Not all the properties in the type model can be translated to GXL. The abstract property is translated to
the isabstract attribute of the various class nodes. The containment property is translated by promoting
the EdgeClass nodes corresponding to the containment relation to CompositionClass nodes. The
default property is translated by creating the proper Value nodes representing the default value, and
adding a hasDefaultValue edge to the AttributeClass node corresponding to the attribute, pointing
to the default Value node. The identity, keyset and opposite properties are ignored, as they are not
supported by GXL.

5.2.4 Exporting instance graphs

Instance models are exported by iterating over all ObjectIms and creating nodes in the graph for each
object. For each object, a new node is created typed by the NodeClass that is linked to the class as
determined by ObjectClassIm. For attributes in FieldValueIm entry, an attribute value is set for the
node, based on the name of the field and its value. For relations, an edge is created, based on the
EdgeClass (or CompositionClass) node in the type graph related to the corresponding relation.

For relations with container values, multiple edges are created to the corresponding nodes. If the
container is ordered, then the edges will be given an ordering as well.

The built-in data types are exported as the corresponding GXL attributes. For custom data types, a
string attribute is used. Enumerations in GXL instance graphs are represented by strings as well, and
for this the string literal from the type model is used.

Attribute containers are exported to their GXL counterparts as well. The only exception is that of

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 73

the ordof container type, for which no analogue exists. Instead, a Seq attribute is used instead, as it
preserves the ordering and only looses the fact that the container was originally for unique values
only. Attribute tuples can be exported directly to GXL, other tuples are translated into nodes with
values assigned for the components of the tuple.

5.2.5 Issues

The main problem when importing GXL is that edges may be attributed as well as connect to graph el-
ements other than nodes (although they may not be mixed). This is handled by promoting such edges
to nodes with a to and from edge, which does allow attributes, as well as inheritance and abstraction.
However, when exporting back again, such a promoted edge is kept as a node and thus the exported
graph will show a higher complexity. This is also the case for the imported type model, which has
an extra class for each such an edge. An alternative would be to ignore the attributes of such edges
and treat them as simple references instead. However, this does lose some information which may be
significant and so the promotion solution was used instead.

GXL also supports the concept of relations, which are the equivalent of hypergraphs. This is also not
supported by the conceptual model. A solution would be to promote these kind of elements as classes
as well, with incoming and outgoing relations for each endpoint of such a GXL relation. However,
such elements occur not very often and as such the current importer ignores them instead.

Finally, the last major incompatibility arises from the use of subgraphs. Subgraphs add an extra struc-
ture to a GXL graph, but the conceptual model does not support this. Rather, subgraphs are treated
as namespaces, and elements contained within a subgraph will be translated to identifiers contained
in this namespace. An alternative could be for example to create special classes in the type model
that represent such subgraphs, containing all the elements of that subgraph. However, this adds a
fair amount of complexity to the resulting type model and requires the exporter to be able to distin-
guish such classes from regular classes, which also adds complexity to the type model. Therefore,
the more simple namespace approach was taken. Note however that when exporting, namespaces
are not translated back into subgraphs, but rather flattened node names. This has been done to pre-
vent issues that occur when multiple namespaces would required multiple root graphs to be created,
which is not possible.

5.3 DOT

The DOT language can represent simple attributed graphs. Unlike Ecore or GXL, it does not make a
distinction between type models and instance models. This creates a large gap between the concep-
tual model and DOT. Furthermore, DOT is intended for graph visualization and as such many of its
features are directed towards changing the visual attributes of the graph, such as coloring and layout.
In fig. 5.12 an example DOT graph is shown, for which a GROOVE representation is given in fig. 5.13.

5.3.1 Importing type and instance models

As DOT does not make any distinction between instance and type graphs, importing a DOT graph
as a type model does not make much sense. An approach to this could be to define a fixed set of
semantics on DOT graphs and use that for defining type and instance graphs, but this would leave
little room for many of the DOT graphs used.

The current approach is to import a DOT graph as an instance graph, and build a type model dynami-
cally based on this graph. That is, the type model is generated on the fly when importing the instance
model. Although the type model only reflects that graph specifically, it allows a typed graph to be

digraph finite_state_machine {

rankdir=LR;

size="8,5"

node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;

node [shape = circle];

LR_0 -> LR_2 [label = "SS(B)"];

LR_0 -> LR_1 [label = "SS(S)"];

LR_1 -> LR_3 [label = "S($end)"];

LR_2 -> LR_6 [label = "SS(b)"];

LR_2 -> LR_5 [label = "SS(a)"];

LR_2 -> LR_4 [label = "S(A)"];

LR_5 -> LR_7 [label = "S(b)"];

LR_5 -> LR_5 [label = "S(a)"];

LR_6 -> LR_6 [label = "S(b)"];

LR_6 -> LR_5 [label = "S(a)"];

LR_7 -> LR_8 [label = "S(b)"];

LR_7 -> LR_5 [label = "S(a)"];

LR_8 -> LR_6 [label = "S(b)"];

LR_8 -> LR_5 [label = "S(a)"];

}

(a) Source of a DOT graph

LR_0

LR_2SS(B)

LR_1

SS(S)

LR_3

LR_4

LR_8

LR_6
S(b)

LR_5

S(a)

S(A)

SS(b)

SS(a)

S($end)

S(b)

S(a)
S(a)

LR_7

S(b)

S(b)

S(a)

(b) Rendering of a DOT graph

Figure 5.12: Example DOT graph, both as source and the generated image.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 75

used in the conceptual model without having to generalize too far. Then, all nodes and edges in the
DOT graph have a tailor made type in the type model, which can be kept as simple as possible. This
leaves little room for other instance models given the type model, but may provide better models for
analysis purposes.

When a DOT file is read, the graphs and subgraphs are mapped into namespaces, similar as is done
for GXL. Thus, each (sub)graph becomes a namespace within the namespace of the parent graph, or
the root namespace. Next, each node and edge is mapped to a Class and Field. The Id of the class is
based on the namespace of the graph the node is contained within and the identifier of the node. This
identifier may be either the identifier as it appears in the DOT file, or its label (which is an attribute of
the node). For edges, the label is used as the name of a field for the class. If the edge has no label, it is
mapped to a field named edge (optionally with an index appended if a node has multiple unlabeled
outgoing edges).

Aside from the generated Class and Field in the type model, an Object is added to the instance model
typed by the generated Class, together with a reference value to the object representing the target node
of the edge represented by the generated Field.

Attributes for nodes are mapped to attributes in the Class of the type string, which is capable of repre-
senting all attributes as they appear as strings in the source DOT file. Attributes for graphs and edges
(other than the label attributes) are ignored.

An alternative approach defines a fixed type model for DOT graphs, containing a class for nodes with
fields for attributes and edges to other nodes. This is a very rough generalization, but keeps the result-
ing instance models simple. The type model could be extended by allowing edges to be attributed as
well (which they often are in DOT graphs), but this causes each edge to have an associated ObjectIm as
well, complicating the instance model. Because this generalisation adds such an amount of overhead
in both the instance and type graph, this alternative has not been chosen. This means quite a bit of
information is lost, but the overall structure of the (instance) graphs remains the same.

5.3.2 Exporting type models

When exporting a type model to DOT, most of the semantic information will be lost. However, the
resulting graph can be made to give a graphical representation of the model similar to what GROOVE
would show. Note, however, that since type models cannot be imported from DOT, there is a clear
difference between importing and exporting, unlike the other languages which provide a more sym-
metric approach to importing and exporting.

First, namespaces in the type model are exported as subgraphs in DOT. Unlike GXL, DOT is capable
of using multiple root graphs, so this poses no problems. The classes in the type model are exported
as nodes in the DOT graph. For each field, a label is added to the node indicating the name and type
of that field. Furthermore, if there is a relation between classes in the type model, an edge is added to
the DOT graph for that relation. Inheritance relations are exported as arrows which visually resemble
those used in UML diagrams to indicate inheritance (which is an empty arrowhead).

Enumerations are also exported to nodes, with a text entry for each enumeration literal. Tuples are
exported as nodes with markup which visually separates the various elements of the tuple. Contain-
ers are not supported, but field multiplicities are indicated by adding that multiplicity to the label (or
edge) of that field. Other data types are not exported to nodes, but simply as labels with a textual
representation of the type.

Of the properties, the identity, keyset, and opposite properties are not supported and will not be exported.
The abstract property is represented by drawing the class node with a dashed outline. The containment
property is indicated by drawing the edge of a containment relation with a diamond arrow tail. The
defaultValue property is represented by adding a string representation of the value to the label of an

(a) Instance graph

(b) Type graph

Figure 5.13: Instance graph and type graph of the FSM DOT graph.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 77

finite_state_machine

LR_5 S(a)
0..-1

LR_7

S(b)
0..-1

S(a)

0..-1

LR_8

S(b)
0..-1

S(a)

0..-1

LR_6

S(b)
0..-1

S(a)

0..-1

S(b)
0..-1

LR_1

LR_3

S($end)
0..-1

LR_2

SS(a)

0..-1

SS(b)

0..-1

LR_4

S(A)
0..-1

LR_0

SS(S)
0..-1

SS(B)
0..-1

finite_state_machine

LR_2

LR_4

S(A)

LR_6

SS(b)

LR_5

SS(a)

LR_8

S(b)

S(a)

S(b)

S(a)

S(a)

LR_7

S(b)

S(b)

S(a)

LR_1

LR_3

S($end)

LR_0

SS(B) SS(S)

Figure 5.14: Exported type graph (left) and instance graph (right), rendered by DOT.

attribute with that default value.

The exported type models retain very little information. However, as DOT is primarily used to visu-
ally represent graphs rather than interpret them, this approach is still useful to be able to show graphs
outside of GROOVE. Other applications would have no knowledge of any special structure imposed
by a type model, so exporting them with some special structure only known to GROOVE would add
very little benefit.

5.3.3 Exporting instance models

Instance models are exported by creating a node for each object, of which the name is either the name
of the object as specified by the ObjectIdIm function, or the type of the object if such a name is not
defined. Like the fields of a class, the assigned field values are shown as labels in the object’s node,
and an edge is created for each relation between two objects.

As with the type model, namespaces in the instance model are translated to subgraphs, each bearing
the name of each namespace. The same method is used as for type models.

5.3.4 Issues

As DOT is mainly intended for visualisation, there is no semantic model for the type and instance
graphs. Thus, it is not possible to map the type and instance models from the conceptual model to
DOT while keeping all these semantics. Thus, the choice has been made to import DOT graphs as
instance graphs with an implicit type model and export them to graphs that visually represent them,
rather that semantically. This means that the import and export are asymmetrical and with much loss
of information.

78 5.4. MAPPING OVERVIEW

5.4 Mapping overview

For each language and the conceptual model, a short overview is be presented which gives an indica-
tion of the various features that are supported by the importer/exporter. Since not every feature or
element is supported, this overview will help indicate what information will remain and what will
be lost when importing from and exporting to the various different languages.

5.4.1 Ecore

Feature Mapping Comment
EObject Object Objects from Ecore instance models are di-

rectly mapped to Objects in the conceptual
model.

EFactory EFactory is generally used only in dynamic
models at runtime, which the exporter uses
at runtime, but is not relevant to instance or
type models directly.

EAnnotation Annotations are not supported.
EPackage Id Packages are mapped to namespaces.
EClass ClassTm The name of an EClass is mapped to a Class,

various attributes are mapped to Field and
Property.

EDataType DataType and CustomDataTypeTm Built-in data types are mapped to DataType.
Other data types are mapped to Custom-
DataType with a string representation.

EEnum EnumTm Enumerations are mapped to Enum.
EEnumLiteral EnumLiteralTm Enumeration literals are mapped to EnumLit-

eral using only their string representation.
EAttribute FieldTm Attributes are mapped to fields of a (container

of) a data type.
EReference FieldTm References are mapped to Field of a (container

of) a class.
EOperation Operations are not supported.
EParameter Operation parameters are not supported.

CHAPTER 5. MAPPING CM TO ECORE, GXL AND DOT 79

5.4.2 GXL

Feature Mapping Comment
GraphClass Id A GraphClass defines a namespace.
RelationClass Relations are not supported.
RelationEndClass Relations are not supported.
NodeClass ClassTm Nodes are mapped to Class.
EdgeClass FieldTm Edges are mapped to fields. The type of

the field is defined by the target of the
edge.

AggregationClass FieldTm Mapped like EdgeClass, but with an ad-
ditional containment property.

CompositionClass FieldTm Like AggregationClass.
AttributeClass FieldTm Mapped to fields typed by a data type.
Locator string Locators are mapped to the string type.
Bool/Float/Int/String DataType Each of these data types is mapped to a

matching built-in data type.
Enum EnumTm Enumerations are mapped to Enum.
EnumVal EnumValueTm Enumeration values are mapped to

EnumVal.
Bag/Set/Seq/Tup ContainerTm Each of these composite types is mapped

to a container type, or a tuple.
LocatorVal ConstantTm Values in graph schemas are solely used

for default values, and are mapped to
Constant, ConstType, and DefaultValue.

BoolVal/FloatVal/IntVal/StringVal ConstantTm Same as above.
BagVal/SetVal/SeqVal/TupVal ConstantTm Same as above.

5.4.3 DOT

Feature Mapping Comment
Graph Id Graphs are mapped to namespaces.
Graph attributes Graph attributes are not supported.
Node ClassTm/ObjectIm Nodes are mapped to classes in type graphs and objects

in instance graphs.
Node attributes FieldTm Node attributes are mapped to fields with a string type.
Edge FieldTm Edges are mapped to fields typed by the class mapped to

the target node. The label is used as the field name.
Edge attributes Edge attributes are not supported (with the exception of

the label, see above).
Default attributes Default attributes (defined for nodes, edges and sub-

graphs) are not supported.

80 5.5. CONCLUSION

5.4.4 Conceptual model

A short overview of supported elements of the conceptual model by the various graph languages is
given in table 5.1. A ✓means the feature is supported, otherwise it is either not supported at all or
not without loss of information.

Feature Ecore GXL DOT
Namespaces ✓ 1 3
Classes ✓ ✓ 4
Enums ✓ ✓
Tuples ✓
Data types ✓ ✓
Custom data types ✓
Inheritance ✓ ✓
Attributes ✓ ✓ 5
Relations ✓ ✓ 6
Multiplicities ✓ ✓
Abstract ✓ ✓
Opposite ✓
Identity ✓
Keyset ✓
Containment ✓ ✓
Default value ✓ ✓
Unique containers ✓ 2
Ordered containers ✓ 2
Objects ✓ ✓ ✓
Object identities ✓

1. Namespaces in GXL are imported both using subgraphs and delimited names and exported just
as delimited names.

2. For relations, uniqueness is always implied and non-unique relations are not supported. For
attributes, ordered, non-unique containers are not supported.

3. Namespaces in DOT are represented using named subgraphs.
4. Nodes are treated as classes in DOT, with a field for each assigned attribute.
5. Attributes are imported as string types, and exported always using a string representation.
6. Edges between nodes are imported as simple, 1-valued relations.

Table 5.1: Supported features in various languages.

5.5 Conclusion

In this chapter, an overview has been given of the various mappings between the external languages
and the conceptual model. These mappings provide the answer of the first part of the third research
question, namely how the external languages can be mapped to and from the conceptual model. This,
combined with the results in chapter 4, gives a complete answer for the third research question. Hav-
ing determined how the conceptual model is defined and how it is mapped to GROOVE and the
external languages, the next step is to implement this and make it usable in GROOVE itself. For this,
chapter 6 will give a description of the actual implementation. Note that not every aspect of all the
languages is supported. Some issues still remain, which have been covered for each language inde-
pendently. Although this means that not every possible model of these languages can be imported
without problems, most still can and the importer is still useful for most cases.

.. Chapter6.

Implementationand
Validation

This chapter consists of two parts: first, a description is given of the actual implementation of the var-
ious components that are involved in the importer/exporter. Next, some experiments are performed
to see how well the implementation performs and to verify its output. This chapter provides the an-
swer to the last two research questions, namely how the importer and exporter can be implemented,
and how its output can be validated.

The actual implementation is written in the Java programming language, since this is the language
GROOVE is written in. This simplifies the integration of the importer/exporter. Furthermore, parsers
for the external languages will also be required, and for many of these various Java libraries exist to
interface with them.

6.1 Design

6.1.1 Conceptual model

The implementation of the conceptual model has been made to closely resemble the formal definition
of it. This way, changes to the formal definition of the conceptual model can be integrated more easily
into the implementation. For example, fig. 6.1 shows a (simplified) class diagram for the type model
and its various types. As can be seen, a type model contains sets of classes, enumerations, custom
data types and properties as does the type model in the formal definition. Classes, enumerations and
custom data types inherit from an Identifiable interface, which indicates that the definition of these
classes depends on an identifier, as their counterparts do in the formal definition.

An exception to this close resemblance is the use of default values. In the formal model, both the
type and the instance model have provisions for the use of default values (the type model defines
constants, which an instance model links to actual values). In the implementation the separation
between constants and values is not required (and would actually complicate the implementation)
and so the choice has been made to simply directly refer to a value for the defaultValue property.

An addition to the implementation of the conceptual model in respect to the formal model is the
inclusion of names for the type and instance models. These names are mainly used to keep track of
names of models imported from external languages or graphs from a GROOVE grammar, in order to
be able to provide a (default) name for exported models or graphs.

6.1.2 Mapping

The mappings for the external languages and GROOVE have been set up similar to each other, us-
ing the conceptual model as a common interface. The mappings from the conceptual model to the
external languages and GROOVE all use the same visitor pattern, which visits each element of the
conceptual model. This allows similar patterns to be reused, and when a new element in the concep-
tual model is added or an existing concept is modified, the scope of the change is clearly defined in
the implementation. When importing an external model to the conceptual model however, such a
pattern cannot be used as each language has a different interface.

81

82 6.1. DESIGN

Figure 6.1: Part of the implementation of the type model.

All mappings make use of a Java Resource interface, which allows the generated models and graphs
to be collected and saved in one go. For example, the GROOVE mapping contains a GrooveResource

class using this Resource interface. This class is responsible for adding all the graphs generated by
the GROOVE mapping to the current grammar. The advantage of the Resource interface is that for
languages that can store a relation between models, the Resource can collect all the necessary models
and create these relations. Additionally, a Resource allows a many-to-one or one-to-many relationship
to exist between models and their files (for example, GXL can store both instance graphs and type
graphs in a single file).

Ecore/GXL/DOT

The mappings from the external languages to the conceptual model all consists of components to
individually translate type and instance models. For Ecore and GXL, this leads to four components
(import and export for type and instance models), but for DOT only three such components exist
(import and exporter for instance models, but only an exporter for type models). This is due to the
fact that there is no mapping for DOT to type models.

GROOVE

The GROOVE mapping translates type models to and from type and rule graphs, and instance mod-
els from instance graphs. To this end, four components have been defined for both exporting and
importing. These components handle four different types of graphs individually, and are shown in
section 6.1.2.

The importer and exporter make use of different graph types in GROOVE. For a short overview of
these graphs, see table 6.2. These graphs provide a stacked model of information richness. Each
graph type may be build on top of another graph, deriving information from its structure. For exam-
ple, the default graph may specify edges labeled as sub:, which an aspect graph will interpret as an
inheritance edge. A type graph may then use these inheritance edges to build the actual inheritance
relations between nodes.

CHAPTER 6. IMPLEMENTATION AND VALIDATION 83

Component Description
Type graph This component translates between type models and their direct type graph

representations.
Meta graph This component translates between type models and their related meta graphs

when enabled via the configuration (see section 4.2.2).
Constraint graph This component provides the mapping between the constraints for the type

model and their corresponding rule graphs.
Instance graph This component provides the mapping between instance models and their di-

rect instance graph representations.

Table 6.1: Overview of different graph components used by thew GROOVE mapping.

Graph type Description
Default graph Most basic graphs, used to store graphs in the file system. Supports

simple labeled nodes and edges.
Aspect graph Based on Default graphs, features different aspects such as flags and

type labels.
Type/Host (instance) graph Based on aspect graphs, these graphs are the closest to the actual

type and instance graph models used by GROOVE. Feature infor-
mation such as inheritance, multiplicities and abstractness.

Table 6.2: Graph types in GROOVE.

The importer generates aspect graphs for GROOVE as its result. These aspect graphs can be seen as
an intermediate form between the actual type, instance and rule graphs (and their internal models)
and the basic graph structures that are used to store the graphs (which are simple nodes and edges).
These aspect graphs provide elements for the different aspects such as flags and type labels (on top
of nodes and edges), but do not actual model information such as subtyping and multiplicities. Of
course the labels required to represent this model information can be added to the aspect graph.

The importer cannot create the type and instance graphs directly, as an aspect graph is required to
build these. However, using an aspect graph has the advantage that multiple representations can be
used to model the same information, which makes it easier to change this if so required.

When exporting, the converter reads the grammar and finds the graphs related to the graph selected
for export. When a type graph is exported, the exporter looks for an additional meta graph, if the con-
figuration requires so, and any related rule graphs which may provide additional model constraints.
When exporting an instance graph, the exporter will look for the related type graphs, as well as the
related rule graphs in addition to the selected instance graph.

The exporter uses the names of the graphs to identify their relationships and possible roles. When
exporting a graph, its namespace is used to identify other related graphs. For example, if the current
selected graph is named models.university.TypeModel, then only those graphs are considered that
have a name in the namespace models.university. Next, graphs that have a name ending in meta are
considered to be meta graphs. It is up to the configuration whether or not they are required. Finally,
if multiple possible matches exist for the various roles, the user is asked to select those graphs that
need to be exported.

Integration

The converter has been integrated into GROOVE in various places. GROOVE provides a common
interface for all importers and exporters, to which the converter has been added. This interface pro-
vides the name of an external file to the import interface, upon which the import operation can be

84 6.1. DESIGN

..Ecore/GXL/DOT. Type/Instance Model..

Configuration

. Instance graphs.
Type graphs

.

Rules

.

Type model importer
Instance model importer

.

Type model to graph
Instance model to graph

.

Ecore/GXL/DOT

.

Type/Instance Model

..

Instance graphs

.

Type graphs

.

Rules

.

Type model exporter
Instance model exporter

.

Graph to type model
Graph to instance model

Figure 6.2: Overview of conversion process.

performed. The export interface provides the graph that is to be exported and the name of the file
that it is to be exported to. This interface provides the connection between the user interface and the
converter, and from here all operations start.

When exporting, the GROOVE host graphs and type graphs are used, as opposed to the aspect graphs.
These graphs correspond to the actual models used in the formal description of GROOVE type and in-
stance graphs. As such, information such as inheritance, multiplicity and abstractness is represented
by these models. These are the most information rich graph structures which makes exporting easier
to accomplish, since the information does not have to be derived manually, as would be the case for
aspect graphs.

6.1.3 Configuration

The converter has been designed in such a way that the configuration should both be able to be read
and modified by the underlying Java implementation, as well as being able to persist it in a GROOVE
grammar. Furthermore, the configuration should be editable by the user, so a GUI has to be created
as well. In order to be able to do all of this, the configuration has been implemented using various
XML techniques, which allow themselves to be parsed and stored in multiple ways.

The configuration itself is stored in an XML document. There are many parsers for these kind of
documents, including various XML libraries in Java. As such, XML parsing could be added to the
converter without requiring any additional libraries. In order to make use of the XML documents for
configuration, various other libraries have been used for various steps in the import/export process.

First, an XML Schema [10] has been created describing the configuration itself. An XML Schema is a
document that describes a certain type of XML document, much like a type model in the conceptual
model describes an instance model. The XML Schema imposes a certain structure on the allowed
XML document and various constraint. This XML Schema allows other applications to determine the
structure of any XML document that describes a configuration.

Based on the XML Schema, a set of Java classes has been generated using the Java Architecture for XML
Binding (JAXB [22]). This allows any configuration file to be loaded into Java as a set of Java objects,
giving easy access to the various parts of the configuration. These Java objects (possibly modified)
can be exported back to XML as well. This way, the configuration can be loaded and stored by the
importer/exporter.

To make the configuration accessible to the user, a GUI is generated from the XML Schema as well.
This way, if the configuration structure is changed, a new GUI can easily be generated. In fact, the GUI

CHAPTER 6. IMPLEMENTATION AND VALIDATION 85

CancelOK

typeModel

fields

defaults

NoYesuseRule

containers

ordering

NoYesusePrevEdge

useIntermediatemode

indextype

NoYesuseTypeName

intermediates

requiredwhen

NoYesopposites

nodeenumMode

NoYesmetaSchema

newConfiguration

Figure 6.3: A generated configuration GUI.

can be generated at runtime, adding no extra cost to the developer. In order to do so, a new library
is used which is capable of parsing an XML Schema and generating a GUI from it. Two alternatives
have been identified during the development of the converter:

1. JaxFront: [34] This library can generate a basic GUI for any XML Schema, and optionally allows
a special GUI description file to be loaded to change the default GUI, which allows for more
advanced interfaces. The main strength of this library lies in its extensiveness. However, this
does make the library quite heavy and only a fraction of the functionality is used.

2. Xample: [18] This library can generate a simple tree for the various XML elements which may
be modified by the user. Unfortunately, the library is quite old and incompatible with other
libraries used. Therefore, this is not a viable alternative.

An example of a generated configuration dialog is shown in fig. 6.3, which shows radio buttons for
options that may be toggled on or off, and a drop down list of possible values for options that consist
of alternatives.

6.1.4 GROOVY

In order to prototype the converter and allow quick access to its various parts, GROOVY [35] was
used to invoke the converter. The GROOVY language is a superset of Java, which may be compiled at
runtime rather than during the compilation of GROOVE itself. Thus, Java code invoking the converter
could be written without having to completely recompile GROOVE. Additionally, any exceptions or
errors can be caught during the script’s execution, allowing for a safe continuation of the execution
of GROOVY when such an event occurs in the converter.

GROOVY was added to GROOVE by means of an extra panel in the simulator with a text editor and
the ability to select a GROOVY script and execute it. Figure 6.4 shows this panel being used.

One of the main advantages of including a scripting language in GROOVE is the ability to quickly pro-

86 6.2. VALIDATION

Figure 6.4: The GROOVY panel in GROOVE.

totype new features or testing current functionality. However, if GROOVY were to be more closely in-
tegrated into GROOVE, other possibilities would include the capability of executing arbitrary scripts
based on events in the GROOVE simulator. For example, before a rule is applied, a callback into
GROOVY could perform various checks, allowing a more fine grained control over the rule applica-
tion process (and even the state space exploration strategies).

6.2 Validation

In this section, some experiments and tests are performed on the implementation, as well as a review
of the implementation itself. The experiments give some insight in the usability of the implemented
importer and exporter, concerning the amount of nodes it can generate and the time it takes for im-
port and export various models of different sizes. The tests check that the various concepts from
the conceptual model are supported by the various external languages. Finally, the code for the im-
plementation is analyzed to check if the decision for use a conceptual model helped to improve the
implementation.

6.2.1 Testing concept support

To verify that the import and export capabilities that were created do indeed work, some tests were
performed to check that various features of the conceptual model are retained when exporting and
importing. To this end, some artificial type and instance models were created, each of which contains
a concept from the conceptual model that is tested. This list of concepts is identical to the lists used
in section 5.4.

CHAPTER 6. IMPLEMENTATION AND VALIDATION 87

Since these tests only consider the importing and exporting of the conceptual model to the external
languages, the configuration does not have to be considered.

• Class: This tests consists of a type model which contains a single class, and an instance model
containing an object which is typed by this class.

• Enum: This test consists of a type model with a single class and a single enumeration, with
the class having an attribute referencing the enumeration, and the enumeration having a single
literal. An instance model is also included with a single object assigned an enumeration value.

• Data type: This test contains a single class with a single attribute, which is of a custom data
type. It is combined with an instance model containing an object that is assigned a value for the
custom data type.

• Inheritance: This test tests the inheritance concept, using a type model with 4 classes, which
form a diamond shaped inheritance relation and define a single attribute which is inherited.
An instance model is provided which contains an instance of each class, with each (inherited)
attribute assigned a value.

• Attributes: This test checks the various data types. It consists of a type model with a single
class having an attribute for each of the built-in data types, as well as an instance model with
an object that is assigned a value for each of these attributes.

• Container types: This test contains a type model with classes defining relations using the four
different container types. An instance model has objects for each class with values assigned for
each relation.

• Recursive containers: This test contains a type model with a class that has a relation using re-
cursive containers. An instance model provides objects with values assigned for these recursive
containers.

• Tuples: This test contains a type model with three different kinds of tuples. These are tuples
with only data types, tuples with only class types and tuples with these types mixed. The reason
that these tuples are included is that in the case of GXL, a difference is made between these
tuple types. Therefore, to test this all types are included. An instance model is provided which
contains class instances with all values for all these tuples.

• Abstract property: This test consists of only a type model which contains a class and an abstract
property for this class.

• Containment property: This tests consists of a type model with a relation between two classes
and a containment property for this relation. It also contains an instance model with objects
for these classes and values assigned for the relation, as the containment property changes the
behavior of the Ecore import and export.

• Identity property: The test for the identity property contains a type model with a class with an
attribute that has an identity property. No instance model is used.

• Keyset property: The test for the keyset property contains a type model with two classes, one
of which has a relation to the other class, and the other class has an attribute. The relation and
attribute are used by a keyset property. No instance model is used.

• Opposite property: This test checks if the opposite property can be exported and imported. It
consists of a single type model with two classes and two opposite relations. An instance model
contains multiple instances of each class with opposite relations to other instances.

• Default property: This test checks the defaultValue property. Only a type model is used, with a
single class with an attribute that has a defaultValue property associated. An instance model is
not used, as this property only applies during the instantiation of the instance model.

88 6.2. VALIDATION

• Namespaces: This test checks the use of namespaces. A type model provides different classes
each in a different namespace, with relations between them, and an instance model with an
object for each of these classes (and values for the relations).

For each external language, a table is provided which gives an overview of the results of these tests.
It gives the name of each test and whether it showed no information loss, some information loss or
complete information loss. The information loss of a test is based on whether the concept that is being
tested is retained. If the concept is successfully exported and imported, the information loss is marked
as a none. If the concept remains only in certain situations, the information loss is marked partially. If
the concept does not remain at all, the information loss is complete. Note that in some cases a concept
may successfully be imported or exported, but not both. In that case the test’s information loss still
marked as complete.

Ecore

Concept Information loss Remark
None Some cases All

Class ✓
Enum ✓
Data type ✓
Inheritance ✓
Attributes ✓
Container types ✓
Recursive containers 7 Classes are used to represent recursive con-

tainers.
Tuples 7 Tuples are exported as classes.
Abstract property ✓
Containment property ✓
Identity property ✓
Keyset property ✓
Opposite property ✓
Default property ✓
Namespaces ✓

CHAPTER 6. IMPLEMENTATION AND VALIDATION 89

GXL

Concept Information loss Remark
None Some cases All

Class ✓
Enum ✓ Enums are only included if they are refer-

enced to by an attribute.
Data type 7 Data types are implemented as classes.
Inheritance ✓
Attributes ✓
Container types ✓ Only set and ord types are retained. Non-

unique containers are not supported (they
are exported as unique).

Recursive containers ✓ Recursive containers are supported for at-
tributes. For relations, they are exported as
classes.

Tuples ✓ Tuples with relations are implemented as
classes, tuples with only attributes are ex-
ported as tuples.

Abstract property ✓
Containment property 7

Identity property 7

Keyset property 7

Opposite property 7

Default property ✓
Namespaces ✓ Subgraphs are imported as namespaces.

The namespaces are exported as delimited
names.

DOT

Concept Information loss Remark
None Some cases All

Class ✓
Enum 7

Data type 7

Inheritance 7

Attributes ✓ Only string attributes are supported.
Container types ✓ Only set containers are supported.
Recursive containers 7

Tuples 7

Abstract property 7

Containment property 7

Identity property 7

Keyset property 7

Opposite property 7

Default property 7

Namespaces ✓ Namespaces are imported and exported as
subgraphs.

90 6.2. VALIDATION

6.2.2 Space performance

Since one of the desired features of the implementation was to be able to configure the generated
graphs in GROOVE, the configuration allows various parts of the conceptual model to be represented
in different ways, some more verbose than others. The effects of this are visible in tables 6.3 to 6.5,
which show a comparison between two different configurations. The differences between these con-
figurations are as follows:

Option Big configuration Small configuration
Meta graph Yes No
Enum Node Flag
Opposite edges Yes No
Intermediates Always Required
Ordering Edge Index
Prev edge Yes Node
Nullable All Node

For all three implemented external languages, some example models were collected and imported
using the different settings. The tables refer to a number of elements for each of these models, which
is defined as follows:

• For Ecore, the number of elements is the count of EClass, EEnum and EDataType instances.
Attributes and relations are not counted.

• For GXL, the number of elements is defined as the number of NodeClass and EdgeClass (and
derivatives) elements in all graphs of the imported model.

• For DOT, the number of elements is defined as the number of nodes in the DOT file.

For each model, the number of generated graph nodes and edges in GROOVE is shown for both
the small and big configuration. What these tables show is that the configuration indeed has a big
influence on the number of generated nodes and edges (which, depending on the model, may be up
to two or three times as much for the big configuration compared to the small configuration). Another
observation that can be made is that for GXL and DOT, the number of generated nodes with the small
configuration is close to the number of elements in the source model. However, for Ecore this number
can be much higher. One explanation for this is that in Ecore relations often allow multiple identical
values, necessitating the use of intermediate nodes, whereas with GXL and DOT this is often not the
case.

6.2.3 Time performance

The main purpose of these tests is to find out how well the implementation can handle very large
models. The models that were generated for this test are very simple, but very large. The model
size indicates the number of classes and relations that were generated. Each class was connected to
three different classes by a single relation, with the model size being the total number of classes. For
instance models, one instance of each class is generated, with a single value assigned for each relation
of that class.

These tests were performed on an 3.00 GHz Intel Core 2 Duo CPU, with 4GB of RAM running Win-
dows 7, using Sun Java version 1.6. The Java heap size was limited to 256MB, which is the default
setting. Higher values were not used, as most users are not likely to adjust this value when running
GROOVE, allowing the tests to more closely resemble what would happen on a normal installation.

Model name #elements #rules Graph size Graph size
big configuration small configuration
Nodes Edges Nodes Edges

Ecore.ecore 52 111 141 292 67 127
Security.ecore 9 32 40 85 19 34
University.ecore 7 19 32 58 15 22
type.ecore 3 2 10 11 4 3
JavaVMTypes.ecore 47 60 158 305 75 124
TCS.ecore 80 85 298 566 100 222
binding.ecore 50 42 154 238 54 90
XtextTest.ecore 21 57 130 252 51 103
Salesmodel.ecore 10 37 48 101 25 39
Domainmodel.ecore 8 12 30 51 14 19

Table 6.3: Ecore import resulting graph sizes.

Model name #elements #rules Graph size Graph size
big configuration small configuration
Nodes Edges Nodes Edges

hypergraphSchema.gxl 3 0 7 6 3 0∗
attredgesSchema.gxl 3 2 13 15 5 5
undirectedSchema.gxl 3 1 10 10 4 3
attributesSchema.gxl 1 1 5 6 3 2
hypergraph2Schema.gxl 2 0 7 7 3 2
crossingSchema.gxl 6 6 21 26 7 6
simpleExampleSchema.gxl 4 4 17 22 6 8
hierarchicalGraphSchema.gxl 16 9 36 51 12 17
complexExampleSchema.gxl 7 8 24 33 9 11
orderingSchema.gxl 6 5 10 16 5 5

* In the case of the small configuration, the amount of edges is 0 since hyperedges are ignored by the
mapping. For the big configuration, the edges are used for node attributes.

Examples retrieved from http://www.gupro.de/GXL/examples/index.html

Table 6.4: GXL import resulting graph sizes

http://www.gupro.de/GXL/examples/index.html

Model name #elements #rules Graph size Graph size
big configuration small configuration
Nodes Edges Nodes Edges

NodeEdge.viz 23 11 40 22 29 11
switch.viz 25 80 144 160 64 80
inet.viz 24 51 76 104 24 52
transparency.viz 50 100 150 200 50 100
world.viz 49 49 97 98 48 49
unix.viz 41 49 90 98 41 49
root.viz 1054 4103 8177 8206 4074∗ 4103
datastruct.viz 13 30 56 60 26 30
process.viz 10 13 23 26 10 13
sdh.viz 23 131 206 262 75 131
crazy.viz 41 243 478 486 235 243
fsm.viz 9 14 23 28 9 14
hello.viz 2 1 3 2 2 1
fdpclust.viz 6 4 11 8 7 4
test.viz 21 20 46 42 25 21
cluster.viz 10 15 27 30 12 15
profile.viz 61 145 266 290 121 145
softmain.viz 213 673 1290 1346 617 673
* In this specific model, each node has four attributes, which explains the fourfold increase in size
for the small configuration (eightfold for the big configuration due to the intermediate nodes for

attributes).
Examples retrieved from http://www.graphviz.org/Gallery.php

Table 6.5: DOT import resulting graph sizes

http://www.graphviz.org/Gallery.php

CHAPTER 6. IMPLEMENTATION AND VALIDATION 93

Each test was performed by exporting and importing the same models 5 times, taking the mean aver-
age of the resulting times. The times are divided into the following columns:

1. Export TM: Performing the mapping from a type model in the conceptual model to the target
language.

2. Export IM: Performing the mapping from an instance model in the conceptual model to the
target language.

3. Save: Storing the actual generated elements in the target language. This all occurs within the
external libraries used, or within GROOVE.

4. Load: Loading the generated models back in. The models are not transformed yet, but either
loaded from disk or from the GROOVE grammar.

5. Import TM: Performing the mapping from a loaded model to a type model in the conceptual
model.

6. Import IM: Performing the mapping from a loaded model to an instance model in the conceptual
model.

The model size column indicates the size of both the type model and instance model generated (as
the number of classes and objects respectively). Though it is not rare for instance models to have
such a large number of objects, the type model is completely artificial, as in most cases the number
of elements remains in the hundreds. Therefore, it is not expected that such large models are used
during normal use of the importer/exporter.

GROOVE

The test results for the import and export of the type and instance models to and from GROOVE
graphs are shown in table 6.6. When considering the translation of the conceptual models from and to
GROOVE graphs, it is clear that the most time is spent saving the generated graphs into the grammar.
The time it takes to process all these graphs can range from a few seconds to (in extreme cases) minutes.
Trying to insert even larger graphs will cause the application to run out of memory. Because of this,
no data is available for the translation of GROOVE graphs back to the conceptual model for models
with a size larger than 1600. However, at this point the time required to translate these graph has
increased so much that the exporter has become unusable from an UI perspective.

Profiling shows that much time is needed to parse the generated type graphs, with the instance graph
being parsed much faster. Considering the generated type models are much larger than what is used
in practice, the actual import and export times may considerably less than what these tests show (the
tests can be considered a worst case).

Ecore

Table 6.7 shows the tests results for the Ecore importer and exporter. The Ecore translation performs
fairly well. The timings of the mapping operations themselves stay well within a second and appear
to increase linearly with the model size. However, the saving and loading of the Ecore models to and
from disk takes much longer. Past 3200 elements, the save times exceed 2000ms, indicating there is
a noticeable delay. However, profiling shows most of the time required to save the models is spend
saving the type model. The instance model takes significantly less time to load.

A special case is the model with 25600 elements, which shows an almost four-fold increase in save and
load time. This is most likely because the amount of available memory becomes very little, causing
the Java VM to spend much time garbage collecting.

94 6.2. VALIDATION

Model size Export TM Export IM Save Load Import TM Import IM
50 0.42 0.36 1547.04 8.46 0.48 1.59
100 0.81 0.56 1976.91 20.08 0.78 2.70
200 1.62 1.10 3197.63 49.18 1.20 4.18
400 3.03 2.24 5355.28 134.97 2.44 8.43
800 5.96 4.56 10 261.25 515.73 4.97 17.44
1600 12.63 9.61 23 092.81 1889.05 10.83 37.08
3200 113.93 111.63 - - - -
6400 349.92 219.57 - - - -
12800 719.79 2273.45 - - - -
25600 2153.37 11 661.61 - - - -

Table 6.6: Time required (in ms) to parse and generate models for GROOVE graphs.

To give an indication of how much influence the size of the type model has on performance, another
test was performed with the Ecore exporter and importing using a smaller type model. The results
of this test are presented in table 6.8. The type model had a fixed size of 200 classes, whereas the
instance model had a variable number of instances as described by the model size column. As the
results show, the performance improves dramatically, with the save operations now taking less than
half a second (as opposed to half a minute or more).

GXL

For GXL, the tests results are shown in table 6.9. From the three external languages, GXL performs the
worst. The main bottleneck lies with the actual serialisation of the GXL documents. Although generat-
ing the GXL models takes little time, the actual XML serialization takes a very long time, more than a
minute for a model with 6400 classes. At this point memory will run out as well, causing further tests
to fail. A solution could be to use a different serialization library, or perhaps a more extensive library
such as Ecore uses, which may use more semantic information to improve performance. Loading
GXL documents however goes much faster, but since this depends on saving documents (otherwise
they do not exist), no results are available for model with a size larger than 6400.

An interesting observation is that for both GXL and GROOVE the same library is used to save GXL
data, as GROOVE uses a subset of GXL to store its graphs. Improving the GXL serialisation should
help both GROOVE and GXL in terms of performance.

DOT

Table 6.10 gives the tests results for the DOT importer and exporter. Considering performance, the
DOT language performs better than Ecore and GXL. The DOT exporter is fairly fast, which is not too
surprising as it is very simple and looses much of the information from the conceptual model. The
import shows comparable timings.

6.2.4 Code analysis

In order to give some indication of how the conceptual model has affected the implementation, a few
metrics were collected on the code of the implementation. One of the goals of the conceptual model
is the reduction of effort required to add new languages to import and export. This effort can be
expressed in multiple ways, including size of the code base and the complexity of the code. For this,
the following metrics were collected:

Model size Export TM Export IM Save Load Import TM Import IM
50 0.28 0.26 8.59 3.35 0.44 0.31
100 0.58 0.51 15.48 6.74 0.87 0.63
200 1.01 1.03 38.12 13.11 1.73 1.28
400 2.02 2.00 101.97 32.18 3.52 6.12
800 4.09 4.02 380.15 94.63 6.89 6.41
1600 8.02 8.24 891.03 291.43 21.38 11.34
3200 15.96 18.05 2611.68 1033.83 42.69 24.23
6400 36.16 42.38 9768.01 3835.37 58.70 73.14
12800 70.40 138.19 35 011.38 14 608.08 154.03 140.95
25600 147.53 307.65 136 967.33 63 244.26 274.77 359.52

Table 6.7: Time required (in ms) to parse and generate models for Ecore models.

Model size Export TM Export IM Save Load Import TM Import IM
50 1.05 2.56 13.94 23.79 1.81 0.85
100 1.15 0.88 7.30 14.91 1.60 0.76
200 1.03 1.19 7.72 15.53 1.53 1.17
400 1.03 1.27 7.86 16.31 1.52 1.60
800 1.01 1.91 9.29 16.53 1.52 3.03
1600 1.02 3.19 12.42 19.25 1.52 5.97
3200 1.01 5.77 20.77 23.04 1.53 16.56
6400 1.02 10.92 45.34 38.01 1.66 24.79
12800 1.04 21.64 127.85 57.35 1.82 78.02
25600 1.02 46.16 433.66 91.22 1.80 149.11

Table 6.8: Time required (in ms) to parse and generate models for Ecore models, using a small type
model.

Model size Export TM Export IM Save Load Import TM Import IM
50 0.77 0.13 543.69 50.13 3.85 0.54
100 1.52 0.25 1093.52 82.82 3.32 0.92
200 2.98 0.49 2171.88 149.22 21.88 2.02
400 5.99 1.03 4683.00 255.10 68.02 4.05
800 17.07 2.10 9627.21 576.25 74.41 7.95
1600 33.69 4.90 18 772.88 1161.09 160.33 95.90
3200 70.30 10.40 36 303.81 2282.32 436.47 363.73
6400 259.13 22.99 73 957.47 6656.07 960.06 3319.48
12800 - - - - - -
25600 - - - - - -

Table 6.9: Time required (in ms) to parse and generate models for GXL graphs.

Model size Export TM Export IM Save Load Import IM
50 0.17 0.25 2.83 2.50 0.20
100 0.32 0.53 5.73 4.79 0.39
200 0.61 0.98 14.32 7.82 0.76
400 1.21 1.95 34.50 15.14 1.51
800 2.36 5.17 70.84 26.11 3.33
1600 6.15 9.71 145.50 73.24 7.43
3200 9.31 38.62 290.34 145.85 27.95
6400 19.34 76.10 573.63 266.01 53.15
12800 45.29 163.45 1153.93 573.36 71.70
25600 107.71 337.53 2305.49 1692.64 923.71

Table 6.10: Time required (in ms) to parse and generate models for DOT (instance) graphs.

...
..

100

.

1 000

.

10 000

. 100.
101

.

102

.

103

.

104

.

Model size

.

tim
e

(m
s)

(a) GROOVE time performance

...

..

100

.

1 000

.

10 000

.

10−1

.
101

.

103

.

105

.

Model size

.

tim
e

(m
s)

(b) Ecore time performance

...
..

100

.

1 000

.

10 000

. 100.
101

.

102

.

103

.

104

.

105

.

Model size

.

tim
e

(m
s)

(c) GXL time performance

..

. ..Export TM

. ..Save

. ..Load

. ..Import TM

Figure 6.5: Time performance of GROOVE, Ecore and GXL mappings.

CHAPTER 6. IMPLEMENTATION AND VALIDATION 97

...

..

100

.

1 000

.

10 000

.

10−1

. 100.

101

.

102

.

103

.

Model size

.
tim

e
(m

s)
.

. ..Export IM

. ..Save

. ..Load

. ..Import IM

Figure 6.6: Time performance of the DOT mapping.

1. Method lines of code (MLOC) : This is the number of lines of code contained within methods.
Since most of the functional code in an implementation resides in methods (as opposed to field
declarations, comments and Java import statements), this metric gives a good indication of the
amount of code written that is actually used.

2. Total lines of code (TLOC) : This is the total number of lines of code in the implementation,
including all lines of code not included by the MLOC metric.

3. Mean McCabe cyclomatic complexity [27] : This metric measures the number of linearly inde-
pendent paths through the source code. It gives an indication of the complexity of the code,
with higher numbers indicating more complex code.

The results of these metrics can be found in table 6.11. The first two columns show the MLOC metric
both in absolute lines of code and in percentage. The second column shows the TLOC metric, and the
last column the means McCabe cyclomatic complexity. The mean cyclomatic complexity is calculated
by taking the cyclomatic complexity of each method in the unit referred to be the table, and taking
the mean average of all these values.

The table has been divided into sections. Each section may be divided up into subparts which shows
the metrics for those parts. Note that these parts do not have to cover the entire section, sometimes
various implementation details such as utility functions are not included by these parts, but are taken
into account for the entire section. The 6 sections in the table are defined as follows:

1. The first section shows the metrics for the implementation of the conceptual model. It is further
divided up into the implementation of the type model, instance model and the properties used
by the type model.

2. The second section shows the metrics for the Ecore importer and exporter. It is further divided
into im- and exporters for the type and instance models. These correspond to section 5.1.

3. The third section gives information about the GXL implementation of the im- and exporter just
as for the second section, corresponding to section 5.2.

4. The fourth section gives the metrics for the DOT im- and exporter, corresponding to section 5.3.
As DOT has no explicit importer for type models, it has no entry for a type model importer.

5. The fifth section shows the metrics for the GROOVE mapping. It consists of the importers and
exporters for the type and instance models, but it also shows the importer and exporter for the
meta graphs and the constraint graphs (rules).

6. The final section shows the metrics for the implementation of the configuration, which is used
by the GROOVE graph importer and exporter. This includes the implementation of the config-
uration editor and the management of configuration files.

Part MLOC MLOC % TLOC Mean McCabe
Conceptual model 275 4.43 538 1.83

Type 252 4.06 563 1.13
Instance 130 2.09 321 1.43
Prop 68 1.09 229 0.22

Ecore 773 12.44 1176 3.69
import type 206 3.32 281 4.41
import instance 136 2.19 191 1.89
export type 264 4.25 382 2.73
export instance 127 2.04 199 2.10

GXL 1598 25.72 2197 4.24
import type 464 7.47 584 7.58
import instance 163 2.62 216 4.86
export type 388 6.24 525 3.34
export instance 135 2.17 213 2.93

DOT 507 8.16 769 3.42
import inst 106 1.71 153 4.67
export type 136 2.19 194 3.80
export inst 151 2.43 225 2.87

GROOVE 2519 40.54 3445 4.34
import type 258 4.15 352 4.15
import meta 186 2.99 250 4.23
import constraint 490 7.89 628 3.70
import instance 233 3.75 325 3.83
export type 348 5.60 427 10.92
export meta 86 1.38 125 6.17
export constraint 490 7.89 628 3.70
export instance 233 3.75 325 3.83

Configuration 541 8.71 791 3.42
Total 6213 8916

Table 6.11: Collection of various code metrics of the implementation of the importer and exporter.

CHAPTER 6. IMPLEMENTATION AND VALIDATION 99

Looking at the MLOC metric, it is clear that the most code resides in the GROOVE graph importer and
exporter. This is to be expected, as this part is what is configurable, which increases the amount of
code required to handle all possible cases. Furthermore, the GROOVE importer and exporter do not
map a type or instance model to a single graph, but multiple graphs of different types. This increases
the amount of code required as well. The conceptual model itself has a relatively small amount of
code (approximately 4%), which gives an indication that its introduction did not require much effort
implementation wise.

The various importers and exporters for the external languages are all considerably smaller than the
GROOVE importer and exporter, although the GXL mapping, most notably the type model importer,
is still fairly large. This is paired with a relatively high cyclomatic complexity of the GXL type importer.
This can be attributed to the fact that the GXL library used to import GXL graphs does not have any
provisions for handling the GXL meta schema. For example, inheritance has to be resolved by the
importer itself while, for example, the Ecore library does this transparently. However, these high
values only apply to the type model importer for GXL, the other importers and exporters are not as
complex.

Looking at the overall picture, it is clear that, implementation wise, the amount of effort required
to implement a mapping expressed in size and complexity of the code shows some significant dif-
ferences. The DOT mapping is the smallest of all, which can be explained by the fact that the DOT
language itself does not support many of the concepts from the conceptual model and is in itself fairly
simple. DOT is followed by Ecore, which matches the closest to the conceptual model and has a fairly
extensive library that handles much of the work necessary to interpret its models. Next comes GXL,
which, as mentioned before, is fairly large. However, this can be attributed to the fact that it supports
a fair amount of concepts but its library is not as extensive as that of Ecore. Finally, the GROOVE
graph mapping is significantly larger in terms of size (40% compared to 25% for GXL, which comes
second) and has a relative high cyclomatic complexity.

It appears that the size of the mappings for external languages fluctuates with the complexity of the
language combined with the extensiveness of the library used for that language, but still remains
under the size of the mapping between the GROOVE graphs and the conceptual model. This fact
indicates that most of the work in adding a mapping for an external language resides in parsing the
information in that language, rather than the translation to the conceptual model. This gives a careful
hint that the conceptual model has indeed helped reduce the effort to add other external languages
to the importer and exporter.

6.3 Conclusions

This chapter has shown how the implementation was made, and has shown some insights in its perfor-
mance. The conceptual model has been used as an intermediate layer between the external languages
and GROOVE, with the configuration affecting the translation between the conceptual model and
GROOVE. Thus, the first part of this chapter answers the fourth research question. The test results
from section 6.2.1 are in line with the expected results from section 5.4. The timings from section 6.2.3
indicate that the implementation is efficient enough to be considered usable. However, the actual
saving and rendering of the graphs after importing takes a considerable amount of time and memory,
which prevents large models from being imported into GROOVE completely. These tests answer the
fifth research question, validating and benchmarking the implementation. Finally, an analysis of the
implementation indicates that the use of a conceptual model has helped reduce the effort required to
make the implementation, though no definitive conclusion can be made about this.

100 6.3. CONCLUSIONS

.. Chapter7. Conclusion
In this chapter an overview is given of the findings of this thesis. First, a summary is presented of
this work. Then, the work is evaluated and the research questions are answered. This evaluation is
followed by a number of possible improvements to the current results.

7.1 Summary

The main goal of this thesis was to improve the support for importing and exporting external graph
languages to and from GROOVE. This improvement consisted of increasing the number of languages
supported by the GROOVE importer and exporter, as well as adding the ability to configure the import
and export process. This goal has been achieved by creating a new importer and exporter using an in-
termediate conceptual model, which allows various concepts from external languages to be abstracted
away, as well as provide a single mapping between itself and GROOVE that can be configured.

The conceptual model has been created based on a number of concepts that may be found in a selection
of external languages. These concepts have been formalized in a type model and an instance model.
This formalization gives a clear definition of the concepts that are supported. The distinction between
the type and instance levels allows for a closer mapping to GROOVE and various modeling languages,
including Ecore and GXL. There is a clear separation between these two levels, and care has been taken
that the type model does not refer to the definitions of the instance model, allowing a type model to
be defined without any instance model, but an instance model is always typed by a single type model.

Following the definition of the conceptual model, mappings were defined between the conceptual
model and three external languages: Ecore, GXL, and DOT. These mappings are defined based on
the various concepts or elements that can be found in these languages. The mappings are not com-
plete; not every concept of each language is covered by the mapping to the conceptual model, and
not every concept from the conceptual model is covered by the mapping to any of the external lan-
guages. In some cases this has been mitigated to some degree by using different concepts to represent
these missing concepts. However, this is not always possible or desirable. For the remaining gaps, in-
formation is simply lost when translating between the conceptual model and the external language.
However, care has been taken to try and include the most commonly used concepts in the mappings,
allowing most models to be imported and exported without loss of information.

GXL and Ecore can describe type models and instance models. In contrast, DOT is not a modeling
language and therefore has no notion of these concepts. The inclusion of DOT has been used as an
exercise to see how well a non-modeling language could be added to the conceptual model. The re-
sulting mapping shows a big difference with those of Ecore and GXL. When importing DOT, only
instance models are created based on the DOT input, with a corresponding type model being derived
for this specific instance model. When exporting an instance or type model, no actual semantic in-
formation is exported, but rather a DOT representation that graphically mimics these models. This
approach has been chosen as DOT is intended for graph visualization, rather than modeling.

A single mapping has been defined between GROOVE and the conceptual model, which is config-
urable. This is the most complex mapping, as its translation involves a bigger difference in expres-
siveness and is configurable. A formal definition of GROOVE type and instance graphs has been
given, which allows the mapping between GROOVE and the conceptual model to be described at a
formal level. However, no formal definition has been given for rule graphs, which have been used to

101

102 7.2. EVALUATION

implement various constraints. Rule graphs have been described by their semantics, discussing the
subset of features used by the constraint graphs.

Type models in the conceptual model are mapped to type graphs in GROOVE, with additional rule
graph for various constraints in the type model that cannot be expressed by a type graph alone. In-
stance models are translated to instance graphs with no additional graphs needed. The mapping
allows an optional meta graph to be generated, which may simplify the type graph but introduces
an extra graph. Since the mapping is configurable, different representations are possible for the vari-
ous concepts in the conceptual model. To be able to keep track of the configuration that applies to a
specific graph, multiple configurations can be stored into and loaded from a single grammar.

The conceptual model and the mappings have been implemented in Java, the language that was also
used to implement GROOVE. The implementation of the conceptual model follows the formal def-
inition as close as possible, in order to make it easier to maintain it. One of the design goals was
to make the conceptual model extensible. Following the formal definition more closely allows the
implementation to follow changes in the formal definition more easily.

The configuration has been designed with the same principle in mind, although rather than a formal
specification, XML Schema was used. XML Schema allows a GUI for the configuration editor to be
automatically generated, as well as automatically generate an interface for Java to read and write the
XML files created by the configuration editor.

Some tests have been performed to validate the resulting implementation as well. Three aspects of the
implementation have been validated: the generated model files, the performance of the importer/ex-
porter and the written code. For the generated output, test were performed to check that the support
for various features matched the predictions of the mappings, by means of checking whether or not
information was lost for various concepts. The results correspond to these predictions, indicating the
implementation for the mapping follows the specification. Furthermore, the effect of the configura-
tion on the size of the generated graphs has been tested, by comparing the size of the generated graph
for the same model with different configurations. This effect is predictable, with the configuration ca-
pable of creating a significant difference is graph sizes. The difference between model sizes and graph
sizes varies depending on the structure of the model, with the graph generally being around a factor
two larger than the original model with the configuration set for smaller graphs.

The performance tests show that there is a linear relation between the size of the model and the time
it takes to translate the model. The mapping process itself performs well, however the entire process
shows a significant drop in performance for larger (type) models. This can mainly be attributed to the
retrieval and storage of the generated models and graphs. However, experiments indicate that this is
most likely the results of using very large type models, which in practice do not occur often. Smaller
type models with (still) large instance models perform better, at least in the case of Ecore.

Analyzing the written code gives an indication that the use of the conceptual model has allowed some
of the code to be reused for the various mappings, and move some of the complexity of mapping to
external languages to the mapping between GROOVE and the conceptual model.

7.2 Evaluation

In the introduction, several questions have been asked that guided this research. Based on the results
of the previous chapters, the answers to these questions can now be given:

“What are suitable languages for importing and exporting into and from GROOVE?”
This question has been answered by evaluating a set of (graphical) languages against a set of criteria,
such as concreteness and uniqueness. Based on these criteria, a subset of these languages was selected
for inclusion in the im- and exporter (namely Ecore, GXL and DOT).

CHAPTER 7. CONCLUSION 103

“How can different languages be covered while reusing as much code as possible?”
The key to this answer lies with the conceptual model. By using the conceptual model as an inter-
mediate between the various external languages and GROOVE, an interface can be created that each
external language may use when mapping to the conceptual model. Additionally, the larger gap in ex-
pressiveness lies with the mapping between the conceptual model and GROOVE, ensuring the more
complex translation operations only need to be performed once when mapping between GROOVE
and the conceptual model. Finally, using the conceptual model, the configuration only has to be ap-
plied to this mapping between GROOVE and the conceptual model, preventing the other mappings
from requiring extra code for the configuration.

“How to map the languages from and to the conceptual model, and GROOVE from and to the conceptual model?”
These mappings have been defined in chapters 4 and 5. In essence, each feature from the external lan-
guages is considered independently and is either included in the mapping or ignored. This inclusion
is based on how close the feature matches to a concept (or concepts) in the conceptual model, the
influence of the feature on the various models, and how often it is used in the external language. If a
feature is not included in the mapping, then a model making use of this feature will lose information
either when importing or exporting.

“How can the import and export facilities be implemented?”
The implementation has been created using the Java language, and can roughly be defined by the
implementation of the conceptual model, the various mapping of the external languages to the con-
ceptual model, the mapping between the conceptual model and GROOVE, and finally the implemen-
tation of the configuration. The implementation of the conceptual model has been kept as close to
the formal definition as possible, which allows a change in the formal definition to be easier reflected
in the implementation, for example, when the conceptual model gets extended. The configuration
makes use of an XML Schema, which is used to generate the configuration editor GUI, as well as the
binding between Java and the XML documents that are the actual configurations. This binding is then
used by the mapping between GROOVE and the conceptual model to read the configuration settings
and adjust the mapping accordingly.

“How can the results be validated?”
The results are validated by the output, expressed as information loss, model and graph sizes, per-
formance expressed in time to translate models, and finally an analysis of the written code. The
validation of the output gives some indication of the supported language features of the mappings,
as well as the size of the generated graphs, which influences the readability and maintainability of
these graphs. The performance is evaluated by means of the time taken to translate generated models
to and from the external languages and GROOVE. This time is measured both for the time spent per-
forming the actual mapping, and the time taken to generate the models or graphs by either external
libraries or GROOVE itself. Finally, the code base is analysed by means of the number of lines of code
written, and the complexity of the code as expressed by the McCabe cyclomatic complexity.

The main question asked at the beginning of this thesis was: “How can the current import and export ca-
pabilities in GROOVE be improved?”. Using the results of the preceding chapters, this question can now
be answered. The improvement that is the subject of this question has been defined as the inclusion
of more languages to the importer and exporter, as well as the possibility to configure the import and
export processes. This improvement has been realized by the inclusion of two new languages, namely
GXL and DOT, with the use of a conceptual model. This same conceptual model allows a single map-
ping to be defined between itself and GROOVE, which has been extended with a configuration that
affects all the import and export operations between GROOVE and the external languages.

104 7.3. FUTURE WORK

7.3 Future work

Although the implemented importer and exporter allow GROOVE to use Ecore, GXL and DOT models
and graphs, further enhancements and changes can still be made, both in the implementation and
the formal definitions. Although the current exporter and importer are able to handle most models,
improvements can give more accurate results, or improve performance.

7.3.1 Command line

Although the main use case for the current importer and exporter assume the GROOVE GUI is used,
it would be beneficial to add a command line interface as well, such as provided by the previous
Ecore importer and exporter. One of the current issues with the graphical interface is that it takes a
considerable amount of time to load a visual representation of graphs which have a large size. Using
the system from the command line allows the visualization to be bypassed, giving the opportunity to
work with more and larger graphs. Additionally, multiple models can be converted in a batch process,
allowing multiple models to be translated without manual intervention.

An additional advantage of such a command line interface would be the ability to directly translate
external models from one language to another using the conceptual model as an intermediate, with-
out having to go through a GROOVE graph representation. This allows for a faster translation in
situations where a model simply has to be represented in a different language, without requiring
modification.

7.3.2 Extend CM

One of the problems of the current conceptual model is that it does not capture all the concepts from
each language. Future work may add additional concepts to the conceptual model, or improve the
current mappings. This allows these currently unsupported concepts to be integrated as well, prevent-
ing loss of information upon translation. For example, the current conceptual model is not capable
of handling hypergraphs (relations in GXL), or attributed references and attributes. Adding these
concepts would improve the support for the GXL and DOT languages.

7.3.3 Alternative CM

A more structural problem of the conceptual model lies with the fact that it is entirely geared towards
models based on a type and instance system. Although this fits well with modeling languages such as
GXL and Ecore, for other graph languages such as DOT this model is less suited. It would be worth-
while to see how well a different conceptual model would work geared more towards (attributed)
graphs instead, resembling for example the GXL graph model.

7.3.4 Library performance

Experiments show that some of the external libraries used to store and load external models perform
badly with large (type) models. This may be mitigated to some degree by using different libraries.
For example, for storing and loading GXL, a simple XML layer is used without much knowledge of
GXL itself, but which is very generic. Using a more dedicated library may allow knowledge of GXL
to be used which can speed up the storing and loading of graphs.

... Bibliography
[1] C. Amelunxen, A. Knigs, T. Rtschke, and A. Schrr. Moflon: A standard-compliant metamodeling

framework with graph transformations. In Model driver architecture - Foundations and applications:
Second European conference, volume 4066 of lecture notes in computer science (LNCS), pages 361–375.
Springer-Verlag, 2006.

[2] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: advanced concepts and
tools for in-place emf model transformations. In Proceedings of the 13th international conference on
Model driven engineering languages and systems: Part I, MODELS’10, pages 121–135, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[3] ATLAS group et al. Km3. http://www.eclipse.org/gmt/am3/km3/doc/

KernelMetaMetaModel%5Bv00.06%5D.pdf, accessed Monday 12th November, 2012.

[4] AT&T Bell Laboratories. DOT. http://www.graphviz.org/content/dot-language, accessed
Monday 12th November, 2012.

[5] Borland. Borland together. http://www.borland.com/us/products/Together/, accessed Mon-
day 12th November, 2012.

[6] A. Boronat, J. Cars, and I. Ramos. Algebraic specification of a model transformation engine. In
L. Baresi and R. Heckel, editors, Fundamental Approaches to Software Engineering, volume 3922 of
Lecture Notes in Computer Science, pages 262–277. Springer Berlin Heidelberg, 2006.

[7] A. Boronat and J. Meseguer. An algebraic semantics for mof. Formal Aspects of Computing, 22:269–
296, 2010.

[8] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Scott Marshall. GraphML progress
report (structural layer proposal), 2002.

[9] U. Brandes, J. Lerner, and C. Pich. GXL to GraphML and vice versa with XSLT. Electronic Notes in
Theoretical Computer Science, 127(1):113 – 125, 2005. Proceedings of the International Workshop
on Graph-Based Tools (GraBaTs 2004).

[10] C. E. Campbell, A. Eisenberg, and J. Melton. Xml schema. SIGMOD Rec., 32(2):96–101, June 2003.

[11] D. T. Chang and E. Kendall. Metamodels for rdf schema and owl. In Proceedings of the First
International Workshop on the Model-Driven Semantic Web (MDSW 2004, 2004.

[12] M. Clavel, F. Durn, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic, 2001.

[13] Cytoscape. Cytoscape. http://www.cytoscape.org/, accessed Monday 12th November, 2012.

[14] K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal, 45(3):621 –645, 2006.

[15] J. de Lara and H. L. Vangheluwe. Using AToM3 as a Meta-CASE environment.

[16] Eclipse community. Ecore. http://www.eclipse.org/modeling/emf/, accessed Monday 12th

November, 2012.

[17] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. Graphviz and dynagraph
- static and dynamic graph drawing tools. In Graph drawing software, pages 127–148. Springer-
Verlag, 2003.

105

http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf
http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf
http://www.graphviz.org/content/dot-language
http://www.borland.com/us/products/Together/
http://www.cytoscape.org/
http://www.eclipse.org/modeling/emf/

106 BIBLIOGRAPHY

[18] F. Golubov. Xample. http://www.felixgolubov.com/XMLEditor/, accessed Monday 12th

November, 2012.

[19] GROOVE. About GROOVE. http://groove.cs.utwente.nl/about/, accessed Monday 12th

November, 2012.

[20] GROOVE. Download GROOVE. http://groove.cs.utwente.nl/downloads/groove/, ac-
cessed Monday 12th November, 2012.

[21] M. Himsolt. GML. http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/

brandenburg/projekte/gml/gml-technical-report.pdf, accessed Monday 12th Novem-
ber, 2012.

[22] JAXB. http://jaxb.java.net/, accessed Monday 12th November, 2012.

[23] F. Jouault and I. Kurtev. Transforming models with ATL. In Satellite Events at the MoDELS 2005
Conference, volume 3844 of Lecture Notes in Computer Science, pages 128–138, Berlin, 2006. Springer-
Verlag.

[24] Kermeta. Kermeta architecture. http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.
documentation/build/html.chunked/KerMeta-Manual/ch03.html#section_architecture.

link, accessed Monday 12th November, 2012.

[25] I. Kurtev. State of the art of qvt: A model transformation language standard. In Andy Schrr,
Manfred Nagl, and Albert Zndorf, editors, Applications of Graph Transformations with Industrial
Relevance, volume 5088 of Lecture Notes in Computer Science, pages 377–393. Springer Berlin Hei-
delberg, 2008.

[26] M. Lawley and J. Steel. Practical declarative model transformation with tefkat. In Proceedings
of the 2005 international conference on Satellite Events at the MoDELS, MoDELS’05, pages 139–150,
Berlin, Heidelberg, 2006. Springer-Verlag.

[27] T.J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, SE-2(4):308 – 320,
dec. 1976.

[28] Microsoft. Microsoft visio. http://office.microsoft.com/en-us/visio/, accessed Monday
12th November, 2012.

[29] P.A. Muller, F. Fleurey, and J.M. Jézéquel. Weaving executability into object-oriented meta-
languages. In International Conference on Model Driven Engineering Languages and Systems (MoD-
ELS), LNCS 3713, pages 264–278. Springer, 2005.

[30] Object Management Group. Ocl. http://www.omg.org/spec/OCL/2.2/, accessed Monday 12th

November, 2012.

[31] J. Punin and M. Krishnamoorthy. XGMML. http://www.cs.rpi.edu/research/groups/pb/

punin/public_html/XGMML/, accessed Monday 12th November, 2012.

[32] A. Rensink. The GROOVE simulator: A tool for state space generation. In J. L. Pfaltz, M. Nagl,
and B. Böhlen, editors, Applications of Graph Transformations with Industrial Relevance (AGTIVE),
volume 3062 of Lecture Notes in Computer Science, pages 479–485, Berlin, 2004. Springer-Verlag.

[33] A. Rensink. Nested quantification in graph transformation rules. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Graph Transformations (ICGT), Natal, Brazil,
volume 4178 of Lecture Notes in Computer Science, pages 1–13, Berlin, September 2006. Springer-
Verlag.

[34] Smart GUI Solutions. Jaxfront. http://www.jaxfront.com/, accessed Monday 12th November,
2012.

http://www.felixgolubov.com/XMLEditor/
http://groove.cs.utwente.nl/about/
http://groove.cs.utwente.nl/downloads/groove/
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://jaxb.java.net/
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked/KerMeta-Manual/ch03.html#section_architecture.link
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked/KerMeta-Manual/ch03.html#section_architecture.link
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked/KerMeta-Manual/ch03.html#section_architecture.link
http://office.microsoft.com/en-us/visio/
http://www.omg.org/spec/OCL/2.2/
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/
http://www.jaxfront.com/

BIBLIOGRAPHY 107

[35] SpringSource and the Groovy Community. Groovy. http://groovy.codehaus.org/, accessed
Monday 12th November, 2012.

[36] Stanford Center for Biomedical Informatics Research. Protégé. http://protege.stanford.edu/,
accessed Monday 12th November, 2012.

[37] S. Teijgeler. Connecting GROOVE to the world using XMI, August 2010.

[38] W3C. IsaViz. http://www.w3.org/2001/11/IsaViz/, accessed Monday 12th November, 2012.

[39] A. Winter, B. Kullbach, and V. Riediger. An overview of the GXL Graph Exchange Language. In
Revised Lectures on Software Visualization, International Seminar, pages 324–336, London, UK, 2002.
Springer-Verlag.

[40] yWorks. yEd. http://www.yworks.com/en/products_yed_about.html, accessed Monday 12th

November, 2012.

http://groovy.codehaus.org/
http://protege.stanford.edu/
http://www.w3.org/2001/11/IsaViz/
http://www.yworks.com/en/products_yed_about.html

108 BIBLIOGRAPHY

.. AppendixA.

Implementing theconceptual
model

This appendix describes the Java implementation of the conceptual model as it is used by the im-
porter/exporter. This implementation closely resembles the formal definition of the conceptual model,
though there are some differences. The goal of this implementation is to provide an intermediate layer
between the graph grammar in GROOVE and the various documents of the external graph languages.
The implementation has been written in Java for the same reasons stated in chapter 6, namely to ease
the integration in GROOVE, with the various mappings, and with other tools.

A.1 Names and identifiers

Names in the conceptual model are represented by a Name class in Java. It contains a String which
represents the literal name that is used in the type and instance model. The namespaces and identifiers
are represented by the Id class in Java. An Id consists of a Name instance, and another Id which
represents the namespace of the Id. The root namespace is modeled by a static Id instance named
ROOT (which refers to itself for its namespace).

In order to link the identities used in the conceptual model to the various Java classes, an interface
Identifiable is used to specify that a certain class is associated with an Id. This interface can then
be used to mark all classes that represent the various elements in the conceptual model that are part
of the Id set.

A.2 Data types

Data types are represented by an abstract DataType class, which is inherited by concrete classes for the
various data types in the conceptual model. The boolean, integer, real and string types are mapped
to the BoolType, IntType, RealType and StringType classes respectively. The DataType class itself
uses the Identifiable interface, as data types in the conceptual model are all mapped to an Id in the
root namespace (bool, int, real and string). The DataType class itself derives from an abstract Type class,
which is used as a base class for all types in the conceptual model. A class diagram for the DataType

class is provided in fig. A.2.

Figure A.1: Names and identifiers.

109

110 A.3. TYPE MODEL

Figure A.2: Java classes for various (data) types.

Figure A.3: The Java classes for the type model.

A.3 Type model

The type model is mapped to a TypeModel Java class, which contains all the entities that are rele-
vant to the type model. In the conceptual model, a type model is specified as a tuple Tm = ⟨Class,
Enum,UserDataType, Field,FieldSig,EnumValue, Inh,Prop,Constant,ConstType⟩. The TypeModel class
only has 4 fields, namely a set of classes, enumerations, custom data types and properties, represent-
ing the Class, Enum, UserDataType and Prop elements in the type model tuple respectively. All the
other elements in the tuple are indirectly defined through the classes that represent the fields in the
TypeModel class.

APPENDIX A. IMPLEMENTING THE CONCEPTUAL MODEL 111

A.3.1 Types

The types in the type model are all represented by the abstract Type class. Concrete types in the
implementation inherit from this class, and may refer to other types for instance to define relations.
The Type class identifies two kinds of types: simple and complex. Complex types are build from other
(complex or simple) types, such as tuples and containers. Simple types are defined on their own.

The classes in the type model are represented by a Class Java class. A class in the type model consists
of an element in the Class set in the type model, the set of related Fields in the type model and the
FieldSig function. All this information is represented by the Class Java class in combination with
the Java Field class. The Class class uses the Identifiable interface which provides the relation
between the Class class and the element in the Class set in the type model that is represented. The
fields related to the class are represented by the Field class, which provide both the name of the
field (and thus the corresponding element in the Field set in the type model) and the signature of
the field (corresponding to the FieldSig function in the type model). This representation consists of
a Name field, a Type field, and two integer fields that define the lower and upper bound. The Class

class represents both the Class set in the type model (by means of the Identifiable interface) and the
ClassType (by inheriting from the Type class). An instance of this class can therefore represent a nullable
or a proper class. This is represented by automatically creating two instances of Class for each class
in the conceptual model, one representing the nullable class and one representing the proper class.
The proper class is automatically defined as being a sub-class of the nullable class. For every Class,
the functions getNullableClass and getProperClass allow the corresponding class to be retrieved.
The Inh relation in the type model is modeled by a field in the Class class which contains all its
superclasses. As Class actually models the class types, this directly defines the subtype relations
based on the inheritance.

The enumerations in the type model are represented by the Enum class, which, just like Class, im-
plements the Identifiable interface and inherits from the Type class. Thus this class provides an
implementation for the Enum set in the type model. The EnumValue set is represented, for each enu-
meration, by a field in the Enum class which is a set of names for each enumeration value.

The complex types in the type model (containers and tuples) are modeled by the Container and
Tuple classes respectively. The Java Container class has a field referencing the type of the elements
the container may contain (which may be of another complex type). The type of a Java Container

is represented by a field of a Java ContainerType enumeration. This enumeration contains the val-
ues ContainerType.BAG, ContainerType.SET, ContainerType.SEQ and ContainerType.ORD, which
represent the bagof, setof, seqof and ordof containers respectively. Another possibility would have been
to use Java subtypes to define the various types of containers (for example, a BagContainer class),
but this would mean that the logic for these containers would either have to be duplicated (for exam-
ple, both seqof and ordof containers are ordered) or abstracted up to the point where a subtype of the
Container class would add little value. Tuples are mapped to the Tuple Java class, which has a single
field which is a list of other types. Just as with containers, these types may be complex and recursive.

As the data types are also part of the set of types for a type model, they also extend the Type class.
Thus, just like classes and enumerations, the fact that they are represented as an element in the Id set
is modeled by the Identifiable interface, and they are used as types in the type model by extending
the Type class.

Finally, the properties in a type model are represented by the Property interface. The actual prop-
erties themselves are modeled by the AbstractProperty, ContainmentProperty, IdentityProperty,
KeysetProperty, OppositeProperty and DefaultValueProperty classes. Each class defines its own
set of fields which relate to the property. For instance, the AbstractProperty class contains a field for
the class type that this property relates to. Likewise, the KeysetProperty has a field for the relation
(Field) the keyset property relates to, and the set of attributes (also Fields) that define the keyset.

Figure A.4: The class and enum types.

Figure A.5: The complex types.

Figure A.6: The properties.

APPENDIX A. IMPLEMENTING THE CONCEPTUAL MODEL 113

The DefaultValueProperty Java class represents both the Constant set and the ConsType function in
the type model. In the Java implementation, both this set and function, combined with the DefaultValue
function in the instance model, are consolidated into this single class to represent the default values
for a given field.

A.4 Instance model

The instance model is mapped to the InstanceModel class. In the conceptual model, the instance
model is a tuple Im = ⟨Object,ObjectClass,ObjectId,FieldValue,DefaultValue⟩. The Java implemen-
tation contains a set of objects and a reference to the type model this instance model is an instance of.
Figure A.7 shows an overview of the Java classes for the instance model.

Objects in the instance model are mapped to the Object class in the Java implementation (not to be
confused with the system class java.lang.Object). This class provide fields for the name of the
object (representing the ObjectId function in the model), the class (type) of the object (representing
the ObjectClass function) and any field values assigned (representing the FieldValue function).

Figure A.7: The instance model.

Figure A.8: Value types used within the instance model.

114 A.4. INSTANCE MODEL

.. AppendixB.

Implementationof thegraph
languagemappings

In chapter 5 an overview was given of the implementation of the mapping between the conceptual
model and the graph languages. This appendix gives a more detailed description of this mapping,
which is closer to the actual implementation.

B.1 Mapping Ecore-CM

As was mentioned previously, Ecore models can be compared to the type model, and instance models
derived from these Ecore models can be seen as instance models in the conceptual model. Both the
Ecore models and instance models are well defined by the underlying formats (such as XMI) and
the specifications of Ecore itself. In fact, large parts of Ecore models can be modeled by Ecore itself
(various constraints being the notable exception, this would require a more expressive language such
as OCL [30]).

In [37] an extensive description is given about the capabilities of Ecore. This appendix will give a
description on how the new converter will map Ecore models and instance models to the conceptual
model, and what limitations apply.

B.1.1 Type model

In some cases, some attributes of an Ecore element are marked as ‘derived’. This means that the
value of the attribute is derived from some other attributes in the model. An example of this is the
ePackage attribute, which is specified by the EClassifier element (and used by the various elements
that inherit from it). The value of this attribute is the exact opposite of the eClassifiers attribute of an
EPackage element, which specifies all elements contained within that EPackage. Therefore, mapping
the eClassifiers attributes will automatically provide a mapping for the ePackage attribute (albeit in
this case the reverse). Thus an explicit mapping for the ePackage attribute is thus not needed.

EObject

EObject is the top level class in the Ecore model. It does not define any attributes or relations by itself
and does normally not occur in any Ecore model. Therefore, it does not have to be mapped to any of
the concepts.

EGenericType

EGenericType is not supported by the conceptual model, as the conceptual model does not support
generic types. Since the actual instance models always contain objects of a concrete class, generic
classes are not required: The required concrete class can be created upon import (see also [37] for
further details on generics).

115

116 B.1. MAPPING ECORE-CM

ETypeParameter

Used in combination with EGenericType, and for the same reasons also not required.

EOperation

Models operations for classes in Ecore. As operations are not supported in the conceptual model (and
have no influence in instance graphs), they are not mapped.

EParameter

EParameter models parameters for operations modeled by EOperation. As operations are not sup-
ported, EParameter is neither and will not be mapped.

EFactory

EFactory does not require a representation in the formalization, as it is only used to instantiate Ecore
objects during runtime.

EAnnotation

The EAnnotation class inherits from EModelElement, and represents annotations in Ecore models.
It is not modeled by the conceptual model, and annotations in an Ecore model are ignored.

EStringToStringMapEntry

This Ecore class is not supported by the conceptual model. They are primarily used for annotations,
which are also not supported.

EPackage

An EPackage is mapped to a namespace in the conceptual model. The names of the elements inside
the EPackage will be within this namespace. An EPackage has the following attributes:

• eAnnotations: Models annotations. This is not mapped to the conceptual model.

• name: The name of the package. This, together with the name of all superpackages, will provide
the Namespace for all contained classes (see eClassifiers).

• nsURI: Not used, used for XML serialization.

• nsPrefix: Not used, used for XML serialization.

• eFactoryInstance: Not used, provides the factory for creating object instances for this package.

• eClassifiers: The classifiers contained in this package. The names of these classifiers will be
prefixed with the Id of this package.

• eSubpackages: The packages contained within this package. The Id of these packages use the
Id of this package as a Namespace (see name).

APPENDIX B. IMPLEMENTATION OF THE GRAPH LANGUAGE MAPPINGS 117

• eSuperPackage: Derived, opposite of eSubpackages.

Thus, based on these attributes, an EPackage will be mapped to a certain Id based on its name and
any Id of a super package, if such a package exists. This Id will then be used as the namespace of any
Id of either a mapped EClassifier or EPackage contained within this package.

EClass

EClass represents classes in the Ecore model, and is directly related to the Class set in a type model.
It inherits from the abstract classes EClassifier, ENamedElement and EModelElement. Therefore,
EClass provides the following relations and attributes:

• eAnnotations: Models annotations. This cannot be represented in the conceptual model, al-
though the importer might add them as commentary in the imported graphs.

• name: The name of the class. This is the name part of the Id of the class in the conceptual model
(the namespace is provided by the packages that contain the EClass)

• instanceClassName: Name of the Java instance class this object represents. Not used in the
conceptual model.

• instanceClass: Java class this object represents. Not used in the conceptual model.

• defaultValue: Default value in Java of the Java class this object represents. Not used in the
conceptual model.

• instanceTypeName: Name of the Java type this object represents. Not used in the conceptual
model.

• ePackage: Derived, opposite of the EPackage eClassifiers relation. Used to determine the Id of
this class.

• eTypeParameters: Not used, see ETypeParameter.

• abstract: The abstract property of a class is modeled by the abstract property in the conceptual
model. If a class is abstract, this property is added to the type model for that class.

• interface: Property indicating the class is an interface. This property is not present in the con-
ceptual model, but it can be modeled with the abstract property (as interfaces only provide
operation definitions and thus cannot be instantiated).

• e(All)SuperTypes: Relation to other classes that this class inherits from. This is modeled by
the Inh set. The ‘All’ variant provides every supertype, not only the direct supertypes. This is
modeled by the ⊑Tmrelation, which is transitive.

• e(All)Operations: Relation to operations this class has. This is not modeled by the conceptual
model.

• e(All)Attributes: Reference to all the attributes of this class. This is modeled by the Field set for
this class. The ‘All’ variant also provides the attributes of superclasses.

• e(All)References: Reference to all the references of this class. This is modeled by the Field set
for this class. The ‘All’ variant also provides the references of superclasses.

• e(All)StructuralFeatures: Reference to all Ecore structural features of this class, which is the
entire Field set for this class.

• eIDAttribute: Reference to the attribute which provides an identifier for this class. This is mod-
eled by the identity property.

118 B.1. MAPPING ECORE-CM

• e(All)GenericSuperTypes: Not used, as the conceptual model does not model generics (See
EGenericType).

An EClass is thus mapped to various elements in a type model. The Id generated for this EClass will
be based on its name and containing package, and becomes an elements of the Class set. The abstract
and interface properties determine if an abstract property is added to the type model bearing the Id of
this class. This means that for interface classes in Ecore, the conceptual model will use abstract classes
instead. Thus, when exporting the type model back to Ecore again, this information is lost and the
class is mapped to an abstract class instead. However, as interfaces do not allow for attributes and
relations but abstract classes do, no further information is lost. The eSuperTypes property is mapped
to elements in the set Inh, where for each class in this relation, a pair is added to Inh with the Id of this
class and the super class. For each element in the eStructuralFeatures property, an entry to the Field
set is added using the Id of this class. For the exact representation of these structural features, see
appendix B.1.1. Finally, the eIDAttribute property is mapped to an Identity property in the conceptual
model if it has been set. If so, the Field generated for the references EAttribute and the Id of this classes
will define this identity property.

EDataType

This class in the Ecore model is used to represent built-in data types, user defined data types, as well
as a super type for EEnums. It supports the following properties:

• eAnnotations: Models annotations. This cannot be represented in the conceptual model, al-
though the importer might add them as commentary in the imported graphs.

• name: The name of the data type, which for user defined data types will be mapped to an Id
based on this name and the namespace of the containing package.

• instanceClassName: Name of the Java instance class this object represents. Not used in the
conceptual model.

• instanceClass: Java class this object represents. Not used in the conceptual model.

• defaultValue: Default value in Java of the Java class this object represents. Not used in the
conceptual model.

• instanceTypeName: Name of the Java type this object represents. Not used in the conceptual
model.

• ePackage: Derived, opposite of EPackage eClassifiers.

• eTypeParameters: Not used, see ETypeParameter.

• serializable: Indicates that the data type can be serialized to XML. This is not directly related
to the conceptual model, but non-serializable data types cannot be imported or exported.

As mentioned, Ecore has a set of built-in data types. The follow list gives an overview of these data
types and the types they are mapped to in the conceptual model.

• EBoolean, EBooleanObject: These types are mapped to the boolean data type.

• EBigDecimal, EBigInteger, EInt, EIntegerObject, ELong, ELongObject: These integer types
are mapped to the integer data type.

• EDouble, EDoubleObject, EFloat, EFloatObject: These types are mapped to the real data type.

APPENDIX B. IMPLEMENTATION OF THE GRAPH LANGUAGE MAPPINGS 119

• EChar, ECharacterObject, EString: These types are mapped to the string data type.

• EByte, EByteArray, EByteObject, EDate, EDiagnosticChain, EEList, EEnumerator, EFeature-
Map, EFeatureMapEntry, EJavaClass, EJavaObject, EMap, EResource, EResourceSet, ETree-
Iterator: These are either complex data types, or unserializable data types and thus are not
supported.

User defined data types are mapped to the UserDataType set, using the Id generated for this data type.
Note that the actual Java instance class name will be lost upon import, but the data type itself may
still be referenced.

EEnum

Inherits from EDataType. Represented by an element in the Enum set. Since it inherits from the
EDataType class it supports the same properties. However, they are all ignored with the exception of
the name and the contained ELiterals.

• name: The name of the enumeration, which will be mapped to an Id based on this name and
the namespace of the containing package.

• eLiterals: Literals that belong to this enumeration. Represented by the EnumValue set for this
enumeration.

Thus, each EEnum is mapped to an element in Enum based on the generated Id. An entry is added to
EnumValue based on the Id of this enumeration and the contained EEnumLiterals.

EEnumLiteral

Defines a literal for an enumeration (EEnum). These are mapped to elements in the EnumValue set. It
supports the following properties:

• eAnnotation: Not used.

• name: Name of the literal, as it appears in EnumVal.

• value: Not supported, the conceptual model does not support a separate definition of values
for enumeration literals.

• instance: Not supported, this represents the Java instance.

• literal: String representation. This is not used in the conceptual model, but rather the name
(which most often is identical).

• eEnum: Derived, opposite of eLiterals of EEnum.

For each EEnumLiteral, an entry is added to EnumValue based on the Id of the containing EEnum and
the name of the EEnumLiteral, which is mapped directly to an entry in the set Name.

EReference/EAttribute

References and attributes are mapped to the Field set in the type model, based on their containing
class. Each reference and attribute specifies an element in the Field set and the FieldSig function.

120 B.1. MAPPING ECORE-CM

• eAnnotations: Models annotations. This cannot be represented in the conceptual model.

• name: The name of the reference. This is the name part of the Field descriptor.

• ordered: Only relevant if the type will be mapped to a container. If this is true, the container is
ordered and thus either of type ordof or seqof.

• unique: Only relevant if the type will be mapped to a container. If this is true, the container
contains only unique items and thus either of type setof or ordof.

• lowerBound/upperBound: Specifies the multiplicity of the reference, which is the Mult ele-
ment of the Field descriptor.

• many: Derived from upperBound (true if upperBound ¿ 1).

• required: Derived from lowerBound (true if lowerBound ¿ 0).

• eType: Type of the reference. Modeled by the Type element in the Field descriptor of this refer-
ence.

• changeable: Modeled by the readonly property as its inverse.

• volatile: Not used, indicates whether a field will be generated in an implementation class in
Java.

• transient: Not used directly, indicates the value will be persisted when saving the model. If a
reference or attribute is transient, the value of it will not be persisted in an instance model and
as such it will not occur when importing such an instance model. Normally these values are
created during runtime.

• defaultValueLiteral: Modeled by the defaultValue property in combination with an element in
the Constant set in the type model, and an element in the DefaultValueIm set in an instance model.

• defaultValue: Derived from defaultLiteralValue and represents the actual Java object for the
default value.

• unsettable: Not supported by the conceptual model. Indicates the reference/attribute can be
‘unassigned’.

• derived: Not used. Means derived from other attributes/references.

• eContainingClass: Opposite of eStructuralFeatures in EClass.

An entry is added to the set Field based on the Id of the containing class (eContainingClass property)
and the name of this attribute/reference. The lowerBound/upperBound and eType properties de-
termine the matching entry that is added to FieldSig. The pair lowerBound/upperBound is mapped
directly to an entry in Mult. The class, enumeration or data type referenced to by the eType prop-
erty is mapped to an element in Type. For classes, this is a nullable class if lowerBound equals 0 and
upperBound equals 1, otherwise it is a proper class. If the upperBound is larger than 1, the type of
the field (and as mapped to FieldSig) will be wrapped in a container type (an element from Container).
This container will be setof if both unique is true and ordered is false, bagof if both properties are false,
ordof if both properties are true and seqof if unique is false and ordered is true. The FieldSig entry
will then be based of the selected element in Mult and the selected element in Type.

References in Ecore also have a set of properties not found in attributes. Properties specific for refer-
ences:

• container: Derived, value based on the containment property of an eOpposite, if it exists.

• containment: Modeled by the containment property.

APPENDIX B. IMPLEMENTATION OF THE GRAPH LANGUAGE MAPPINGS 121

• resolveProxies: Not used, proxies are not used in the conceptual model.

• eKeys: references a set of EAttributes in the target EClass and is modeled by the keyset property.

• eOpposite: Modeled by the opposite property.

• eReferenceType: Derived from eType and not used directly.

Of these properties, the containment, eKeys and eOpposite properties are relevant to the mapping.
If the containment property is true, a containment entry is added to the set Prop in the type model,
based on the element in Field generated for this reference. If eOpposite is set, an opposite entry is
added to the set Prop in the type model, based on the element in Field generated for this reference,
and the element in Field for the reference as referenced by eOpposite. Finally, the eKeys attribute,
if set, creates an entry keyset in the set Prop. This entry is based on the entry in Field generated for
this reference, and the set of elements generated in Field generated for each EAttribute referenced by
eKeys.

Likewise, attributes have a few properties not found on references. Properties specific for attributes:

• iD: Specifies that the attribute is the identifier of the containing class. This is modeled by the
identity property, as discussed for EClass.

• eAttributeType: Derived from eType and not used directly.

No extra property of EAttribute is used by the conceptual model, so only the previous mentioned
properties are used.

B.1.2 Instance model

Ecore instance models consist of objects. When serialized to XML (using the XMI standard), these
objects are represented as elements in the XML document. Attributes and references are then defined
as either XML attributes (possibly referring to other elements in the XML tree) or child elements
for containment relations. As each element in the XML document has to be contained by another
elements (with the exception of the root elements), the importer should find all those objects which
are not contained by another object by means of a containment relation. These objects are then added
to the Ecore Resource, which ensures that all objects are contained by that Resource

Objects are represented by elements in the set ObjectIm. Within the XML document, objects are re-
ferred to by a path, which is unique for each object (as each object is contained by at most one other
object, although it may be referenced by multiple others). This may be mapped to an element in Id,
thus providing an element in the ObjectIdIm function.

XML attributes and child elements in the document provide the values for all the fields of objects.
Attribute values may be either literal values, which are already represented by the ValueIm set for the
data types or enumerations, or references to other elements in the XML document, in which case
they will be treated as a value for an element in the ObjectIm set. For reference or attributes that refer
to multiple values, the element mapped to in ValueIm will be retrieved from the set ContainerValueIm.
The Type of the Field as determined by the reference or attribute in the type model will determine
that actual type of the Container for the ContainerValueIm. Each element in ValueIm of the reference
or attribute will be appended to the list of values of the ContainerValueIm, maintaining the order as it
was found in the Ecore instance model (even if the order may be arbitrary for unordered types). For
user defined data types, the values are mapped to elements in the set of strings S, as they are always
serialized as strings. These strings will be handled as opaque in the conceptual model and will be
exported back again verbatim.

122 B.2. MAPPING GXL-CM

contains

0..10..n

1 0..n

hasAttribute0..n 0..n

0..n

0..n

0..n

1

1

1 to

from

relatesTo

GXL Metaschema
Version 1b
(graph part)
30.01.2003 (OH)

AttributeClass

name: string
AttributedElementClass

GraphClass

name: string

relatesTo

limits: int x int
isordered: bool

AggregationClass

aggregate: (from, to)

CompositionClass

hasRelationEnd

1

0..n

hasAsComponentGraph

role: string
limits: int x int
isordered: bool

GraphElementClass

name: string
isabstract: bool

isA

0..n 0..n

GraphClass GXL
composes all
concepts

<<GraphClass>>
GXL

upper bounds
defining infinity ("*"
in UML, "n" in
Rose) are encoded
by "-1" (cf. XMI)

RelationClass NodeClass EdgeClass

isdirected: bool

RelationEndClass

directedto: (relation, target, undirected)
role: string

from

limits: int x int
isordered: bool

to

limits: int x int
isordered: bool

Figure B.1: Graph part of the GXL meta schema.

The importer will define the contents for DefaultValueIm based on the given type model. This process
will be based on the serialization functionality of the Ecore model, where the default value in the type
model will be deserialized into a value in the set ValueIm.

B.2 Mapping GXL-CM

In GXL, a single document can provide multiple type models and multiple instance models. These
type models and instance models are provided by ’graph’ elements in the document. More specifi-
cally, a graph in a GXL document is either an instance graph, or a graph describing one or more type
graphs. Although it is possible for these elements to recursively contain other graphs (embedded by
nodes, edges or relations), this is not always supported by the importer. A type model may contain
subgraphs, but these are ignored. However, it is allowed for multiple graphs to be defined by a type
model, which may be defined by special nodes (see the following explanation of type models). Sub-
graphs in instance graphs are allowed, and are treated as providing the namespace for an object. The
actual interpretation of these subgraphs is explained in the following sections for the type model and
the instance model.

The type and instance models are linked by the use of the type attribute (which is also used by the
type model itself to refer to the meta schema). The type attribute of, for example, a node or edge in
an instance graph refers to a single node, or edge, in a type graph. Likewise, elements in a type graph
have a type that refers to elements from the meta schema.

hasComponent
{ordered}

GXL Metaschema
Version 1b
(attribute part)
30.01.2003 (OH)

0..n

1..n

Bool Float Int String Bag Set Seq Tup

CompositeDomainAtomicDomainLocator Enum

Domain

Value
AttributeClass

name: string

hasDomain

hasDefaultValue
0..n0..1

0..n

0..1
Value structure
matches domain
specification

Bag, Set and
Seq have
exactly one
domain
component0..n

1..n

contains
Value

EnumVal

value: string

Figure B.2: Attribute part of the GXL meta schema.

hasComponentValue
{ordered}

LocatorVal

uri: string

GXL Metaschema
Version 1b
(value part)
30.01.2003 (OH)

Value

CompositeValAtomicVal

value: string

BoolVal FloatVal IntVal StringVal EnumVal BagVal SetVal SeqVal TupVal

0..n

0..n

Figure B.3: Value part of the GXL meta schema.

124 B.2. MAPPING GXL-CM

B.2.1 Type model

A GXL type model always references the GXL meta schema. In the meta schema, nodes represent
the various elements which will be mapped to the conceptual model, and edges represent various
relations between these elements. The nodes and edges themselves may be attributed as well.

The meta schema specifies various nodes representing the actual elements that exist in a GXL model.
These nodes may be abstract, in which case they are not mapped directly, but do specify various
attributes and relations for subtypes. A graphical representation of this meta schema may be found
in fig. B.1.

The following sections describe the mapping for the various parts of the meta schema, which may
occur in a GXL type graph.

GraphClass

This node is used to represent a graph in an instance model, which is represented by using a names-
pace bearing the name of the graph that is defined by the GraphClass node. This name is derived from
the name attribute. Graph attributes are not supported. GraphClass nodes always have a contains
relation with all the nodes, edges and relations that are defined to be in this graph. This containment
relation defines this graph to be the namespace of the contained nodes. If a GraphClass node is con-
tained within another GraphClass (indirectly by a NodeClass, EdgeClass or RelationClass node),
then the containing GraphClass will be used as the namespace of this GraphClass. Otherwise, the
namespace will be the root namespace. The name of the graph element that contains the subgraph
by the hasAsComponentGraph will not be used in the namespace.

RelationClass, RelationEndClass

These nodes are used to represent relations in a GXL model, which is not supported by the conceptual
model. Hence, these node types are not supported.

NodeClass

This node is used to represent actual nodes in a GXL model. These nodes are mapped directly to
classes in the conceptual model. The name attribute is used as the name of the class, and the graph
that contains the NodeClass is used as its namespace. Attributes of this node are mapped as Fields
in the conceptual model, of which the type is the type of the attribute (see AttributeClass) and the
name is the name of the attribute. The abstract attribute is mapped to the abstract property in the
conceptual model. The type model may also specify isA edges, which are mapped to the Inh set in
the conceptual model.

EdgeClass

This node is used to represent actual edges in the type model. These edges are mapped to relations in
the conceptual model as Fields. The to edge is used to define the type of the Field, the from edge is used
to define the class that contains the field. GXL supports limits on both sides, however the conceptual
model does not (only on the to side). Hence, the limits on the to side are directly mapped, the limits
on the from side are only used for ‘complex’ edges (see below). If the upper bound of the limit of the
to side is larger than 1, then the type of the generated field will be a container type. Otherwise, if the
lower bound is 0, it will be that of a nullable class. A multiplicity of 1..1 is mapped to a proper class.

APPENDIX B. IMPLEMENTATION OF THE GRAPH LANGUAGE MAPPINGS 125

Edges are allowed to have attributes in GXL, as well as being abstract and inheriting from other edges.
Since references in the conceptual model do not support any of this, these properties are either ignored
or the edge is promoted to a class. If an edge is promoted to a class, it is mapped to the set of classes
in the conceptual model, with two fields for the to and from edges, each with the multiplicity set to
the limits attribute of each target. The attributes, abstract property and inheritance are mapped as
with NodeClass nodes. These edges are then referred to as ‘complex’ edges.

Since GXL allows edges to connect any graph elements (nodes, edges and relations), not all EdgeClass
nodes can be mapped, as only relations between classes are allowed. Thus, EdgeClass nodes connect-
ing relations cannot be mapped, and EdgeClass nodes connecting other EdgeClass nodes can only
be mapped if these targeted EdgeClass nodes are mapped to classes.

AggregationClass, CompositionClass

These nodes are specialisations of EdgeClass and behave the same. However, they additionally spec-
ify composition which is mapped to the containment property. The aggregate attribute of these nodes
specifies the direction of the composition.

AttributeClass

This node is mapped to a Type in the conceptual model. An AttributeClass node may have an edge
pointing to a Value as its default value by a hasDefaultValue edge. This is mapped to a Constant in the
conceptual model, with a corresponding entry inConstantTypewhich is the type of the attribute. The
value itself is placed in the DefaultValue function in the conceptual model, and a defaultValue property
is created in the type model. The type of the attribute is specified by the Domain pointed to by the
hasDomain edge. A graphical overview of attribute nodes can be found in fig. B.2.

Domain and subtypes

These node classes represent the actual types in the conceptual model apart from the classes. Bool,
Int, Float and String are mapped to their data type counterparts in the conceptual model (Float being
mapped to real). The Locator type is mapped to string, as the conceptual model does not support this
type directly. However, locators can generally be represented by string without loss of information
(but with a change in semantic meaning).

The Bag, Set and Seq classes are mapped to containers in the conceptual model of which the type
is bagof, setof or seqof respectively. The Tup type is mapped to a tuple in the conceptual model. The
contained types are recursively defined by the hasComponent edge or edges (multiple edges can be
used in the case of a Tup node).

The Enum node is mapped to an Enum in the conceptual model. Enumerations in GXL do not have
their own name. However, they are defined by a node which is referenced to by a unique ID, which
can be used to define the name of the enumeration. The Enum node contains containsValue edges
pointing to EnumVal nodes. These nodes represent the values of the enumeration, and are mapped
to the EnumVal function in the conceptual model. The value attribute of these nodes is used as the
name of these enumeration values.

B.2.2 Instance Model

A GXL graph that is typed by a GXL type graph may be mapped to an instance model in the con-
ceptual model. This relation is defined by the type attribute of the graph, which should point to a

126 B.3. DOT-CM

GraphClass node in a type graph. The actual graph then consists of nodes, edges and relations. Since
the conceptual model does not support relations, they are ignored.

Nodes are mapped to Objects in the conceptual model. The Class that is the type of the object is
determined by the type of the node. This type should point to a class in the conceptual model, via
the mapping of a GXL type graph to the conceptual model. The Id of the Object is determined by
the ID attribute of the node. The attribute values of the node are mapped to the field values in the
conceptual model for these attributes.

Edges are mapped either to Field values, or Objects. This depends on the type of the edge. If the edge
is not complex, it will be used as a field value for the object that represents the node that is the source
of the edge. The edge type determined the field that is assigned a value. It is possible for multiple
edges of the same type to exist. In this case, the value will be part of a container value.

If the edge is complex, it is mapped to an Object, of which the type is that of the class that was generated
for the edge. The attribute values of the edge (if any) are mapped to the field values of the edge Object.
The source and target nodes of the edge are the values for the from and to fields generated for this
edge.

B.3 DOT-CM

DOT as a language does not provide semantics as detailed as Ecore and GXL. Rather, DOT itself is
defined by an EBNF grammar (see listing B.1 and [4]), with only a few predefined constructs. A
DOT file consists of the definition of a graph, which may contain node definitions, edge definitions
(which may implicitly define nodes) and subgraphs (which may recursively contain other graphs).
Furthermore, graphs, nodes and edges may be attributed. The meaning of these attributes is not
defined by the language itself, but by the tools that read DOT files. However, many attributes are
shared between these tools with the same meaning. An example of this is the label attribute, which
defines the textual label associated with an element in the graph.

The DOT language also defines the use of default attributes. Within a graph, a default value may
be assigned for the graphs, nodes, and edges that follows the specification of this default. The use
of these default attributes is not supported. Although they relate to the defaultValue property in the
conceptual model, their semantics differ too much under the current interpretation of DOT graphs.

Edges may be defined as being directed (when the graph is specified to be a directed graph defined by
the digraph keyword) or undirected (for plain graphs, defined by graph). The importer and exporter
only consider directed graphs, as all relations and references in the conceptual model have a direction.
Furthermore, nodes may specify ports in DOT. Ports identify certain points on a single node that an
edge may connect to. This is not supported by the importer and exporter as well, and thus node ports
are ignored.

B.3.1 Type models

Type models can only be exported. A DOT file can only be imported as an instance model, for which
the type model will implicitly be created. Section 5.3 describes how a type model is exported. As the
process itself is fairly simple, this description is very close to the actual implementation.

APPENDIX B. IMPLEMENTATION OF THE GRAPH LANGUAGE MAPPINGS 127

Exporting

When a type model is exported, the following steps are taken:

1. For each class, a node is created with a label that contains all the fields of which the type is a
data type. For fields that are typed by other classes, an edge is created instead. Based on the
namespace of the class, a subgraph is created representing that namespace. If the class has an
abstract property, the node is drawn with a dashed outline.

2. For each superclass, an edge is created between the two nodes representing the superclass and
the subclass, in a style resembling that of UML inheritance relations.

3. For enumerations, a new node is created of which the label contains all the enumeration values.

4. For tuples, a record type node is created, which visually distinguishes the various elements of
the tuple. Primitive types in the tuple are embedded in the node label, other types are referenced
to by an edge.

5. Edges created for field that have a containment property are drawn with a diamond shaped tail.

B.3.2 Instance models

Instance models can both be imported from and exported to DOT. When an instance model is im-
ported, a type model is implicitly created as well. When exporting an instance model, no relation is
made to the type model of that instance model in the resulting DOT graph. Rather, the graph will
stand on its own.

Importing

The importing process consists of the following steps:

1. An instance model is created for the graph, with the graph providing the root namespace.

2. Each node in the graph is visited. A new class is created for the node in the implicit type model,
and a new object is created of that class in the instance model. The name of the class is based on
the label of the node or, barring this, the ID of the node. Next, for each attribute assigned to the
node explicitly, a new field is added to the implicit class of a string type. In the instance graph,
the value of the attribute is assigned to this field.

3. Next, each subgraph is visited. This happens recursively, with each subgraph providing a new
namespace.

4. Finally, all the edges of the graph are visited. Each edge creates a field in the implicit type model,
of which the type is the class of the node the edge points to. Visiting the edges as the last step
ensures the node classes and objects are created before the relations between these classes and
objects.

Exporting

Exporting an instance model is fairly trivial. The export is performed exactly as is described in sec-
tion 5.3. This results in a DOT graph that is not suitable for interpretation, but allows the instance
model to be graphically visualized using the various tools available that can parse DOT files and
generate images from them.

128 B.3. DOT-CM

graph : [strict] (graph | digraph) [ID] ‘{’ stmt_list ‘}’

stmt_list : [stmt [‘;’] [stmt_list]]

stmt : node_stmt

| edge_stmt

| attr_stmt

| ID ‘=’ ID

| subgraph

attr_stmt : (graph | node | edge) attr_list

attr_list : ‘[’ [a_list] ‘]’ [attr_list]

a_list : ID [‘=’ ID] [‘,’] [a_list]

edge_stmt : (node_id | subgraph) edgeRHS [attr_list]

edgeRHS : edgeop (node_id | subgraph) [edgeRHS]

node_stmt : node_id [attr_list]

node_id : ID [port]

port : ‘:’ ID [‘:’ compass_pt]

| ‘:’ compass_pt

subgraph : [subgraph [ID]] ‘{’ stmt_list ‘}’

compass_pt: (n | ne | e | se | s | sw | w | nw | c | _)

Listing B.1: DOT language grammar

The export process of an instance model is very similar to that of a type model:

1. All objects are enumerated. A node is created for each object in a (sub)graph based on the
namespace of the class that types the object. For each assigned field value, either the label of the
object is appended with this field value (for data types and enumerations), or an edge is created
to another node representing the value.

2. For tuples, a node is created similar to one created in the type model.

.. AppendixC.

Implementationof the
GROOVEmapping

This appendix describes the import and export process of GROOVE graphs in more detail. When a
type or instance model is imported to or exported from a GROOVE grammar, various graphs may be
involved, which are used by different steps. The import process happens as follows:

1. A type model is exported to a type graph. As much information as possible from the type model
is added to the graph.

2. If enabled, a meta graph is generated as well, providing more detailed information about the
type model.

3. Information not representable by the type and meta graphs may be added by means of rule
graphs. If they are enabled, they will be added at this point.

4. Next, instance models can be imported as instance graphs. An instance model is represented by
exactly one instance graph, which is typed by the previously created type graphs.

Exporting graphs happens in a similar manner:

1. First, the meta graph is analyzed. Some node type information is retrieved from the graph, but
no type model is created yet. Note that this is an optional step.

2. The actual type graph is exported into a type model. The information from the meta graph may
be used to aid this process.

3. When applicable, rule graphs are analyzed next. These may be used to further enrich the type
model, for instance by adding extra properties.

4. Finally, instance graphs may be exported to instance models. This requires the mapping infor-
mation from the type model export.

C.1 Type graphs

C.1.1 Import

Importing a type model into a GROOVE type graph consists of a number of (recursive) steps, each of
which creates some nodes or edges. The procedure works as follows:

1. A new empty graph is created for the type model. Each class in the type model is enumerated.

2. When a class is being enumerated, a new node is created for that class. If the class being ref-
erenced is a nullable class, an abstract nullable node is created. Otherwise, a concrete proper
node is created. For the nullable node an inheritance edge is created between that node and the
global Nil node, as well as the proper node representing the same class.

3. For a proper class, the node for each superclass in its inheritance relation is retrieved (recur-
sively) and an inheritance edge is created. Next, each field of the class is enumerated, and the
node representing its type is retrieved. Between the class node and the field node an edge is
created with the name of the field and its multiplicity.

129

130 C.1. TYPE GRAPHS

4. Fields are represented by the node representing their type. This may be a node for a single type
directly, or an intermediate node. This depends on the configuration.

5. For types with an intermediate node, the intermediate node is created, with a type name based
on the name of the node referencing it. The intermediate node will point to a node representing
its underlying type by means of a single value edge. Additionally, it may be assigned a next
(and optionally prev) edge, or an index value.

6. Primitive data types are represented by primitive nodes. This applies to booleans, integers, real
numbers and strings.

7. Tuples are represented by a single node, which has an edge pointing to each type element of the
tuple.

8. Containers are represented by an intermediate node.

9. Custom data types are represented by a single node with a string attribute.

10. Next, the enumerations and custom data types referenced by the type model but not related to
any class are enumerated, thus ensuring all types are added to the graph.

11. Finally, the properties of the type model are visited and handled as follows:

(a) Abstract properties are represented by adding the abstract modifier to the nodes represent-
ing the proper class that is abstract.

(b) Containment properties are represented by adding the containment property to edges for
fields. If the field is represented by a type directly, the containment property is added to the
field edge. If the field is represented by an intermediate node, the containment property is
added to the value edge of that node.

(c) The Opposite property is represented by two opposite edges between the intermediate
nodes representing the opposite fields. Note that this has to be enabled by the configura-
tion. The importer will ensure that for opposite fields an intermediate node will always be
used.

(d) The identity, keyset and defaultValue properties are not represented by the type graph, but by
rule graphs.

C.1.2 Export

Exporting a type graph tends to be more complicated then importing one, as the concept that a node
represents may have to be determined by looking at its neighbors or other contextual information. To
aid in this, certain postfixes are used which are appended to type names, as well as the optional meta
graph.

When a meta graph is used, it is parsed first as it unambiguously defines the type of each node that
is added to the meta graph. The meta graph is parsed by first identifying the meta nodes which
represent classes, enumerations, data types, intermediate nodes, and containers. Since the names of
these nodes are always predetermined, this is trivial.

Next, the nodes representing elements from the conceptual model are identified by looking at their
inheritance relation in the graph. When a node inherits from a meta node, it is interpreted to be of that
class of nodes. Thus, a node inheriting from the meta class node will be treated as a node representing
a class in the type model.

Next, the actual type graph is analysed. This happens in two phases. First, each node is classified
using the same system of classes as the meta graph. Then the actual type model is created by walking
through all these nodes.

APPENDIX C. IMPLEMENTATION OF THE GROOVE MAPPING 131

The first phase occurs in several iterations:

1. The names of all unidentified nodes are checked for certain postfixes. This will be used to iden-
tify enumerations and custom data types. When configured as such, this will also be used to
identity intermediate nodes and container types.

2. All the edges between the unidentified nodes are checked to see if they point to an interme-
diate node. Such nodes can be recognized by the fact that the name of the source node is the
namespace of the target node.

3. In the final iteration, the rest of the nodes are classified. If the node inherits from an enumeration
node, it is classified as an enumeration value. Primitive type nodes and the Nil value node are
identified by their type. The rest of the nodes are assumed to be class nodes.

Next, the second phase will create the actual type model based on the information collected thus far.
Again, this happens in several iterations:

1. Classes, enumerations (though not their values) and data types are instantiated in the type
model for nodes classified as such. For classes, a check is made if the node is abstract, in which
case the Abstract property is created as well.

2. The class inheritance relation is built from the inheritance relation between all the (proper) class
nodes.

3. Enumeration values are instantiated and added to their respective enumerations.

4. Intermediate nodes are resolved to their types recursively (as an intermediate node may point to
another intermediate node). The type information is attached to these nodes, but not yet added
to the type model. If possible, the container type is determined here as well for intermediate
nodes representing containers.

5. Tuple nodes are mapped to a tuple type, and the type of the target of each outgoing edge is
added to the tuple.

6. Field edges are enumerated. For each edge a field is added to the class represented by its source
node, of which the type is that of the type of the target node. The edges are checked for the
containment property as well, for which the Containment property is added to the type model
if present.

After the second phase, the structure of the type model is complete. However, some constraints may
still have to be applied, either as a property or by means of changing the container type. This is done
by analyzing the rule graphs in the grammar as show in appendix C.3.

C.2 Instance graphs

C.2.1 Import

Importing instance models happens in a fashion similar to type models. The objects in the instance
model are enumerated and nodes representing those objects are created, with relations between them
and other values being added as edges.

132 C.2. INSTANCE GRAPHS

The import process follows the following steps:

1. The objects in the instance model are enumerated one by one.

2. Each enumerated object is represented by a node in the instance graph, which is created when
the object is enumerated.

3. For each object, all the assigned field values are enumerated. In addition, a defaultValue property
may apply to one of the fields of the object’s class. If no value is assigned and the configuration
is set to assign default values if applicable, the default value will be considered to be assigned
as well. The node representing the value is retrieved and an edge is created between the value
(which may in fact be another object) and the current object.

4. For values of primitive types, a primitive value node is created.

5. For values of a custom data type, a node representing that data type is created with a string
attribute assigned containing the string literal that represents the data value.

6. For tuples, a tuple node is created with an edge pointing to each value in the tuple.

7. For containers, multiple nodes are created, one for each contained value. Thus, a container is
not actually represented by a single node, but by many. If a reference is created to a container
node, an edge is created for each container value.

8. Finally, if there exists an Opposite property for two fields, and the configuration is set to use
opposite edges, these edges are added to the instance model as well.

C.2.2 Export

Exporting an instance graph to an instance model happens in two steps. First, all the object nodes are
identified. Then, the assigned field values are analyzed and assigned to those objects. This process
depends on the type information which is retrieved from a type graph which is exported to a type
model. By exporting a type graph first, the node types are linked to types in the type model which
allows the instance graph exporter to easily identify the various nodes it contains.

The process to export an instance graph works as follows:

1. All the object nodes are identified. Object nodes are recognized by being of a type that is directly
related to a class in the type model. If the object node has an identity assigned to it, it will be
assigned to the object in the instance model as well.

2. For each object node, each possible field value assigned is checked. If there exists an outgoing
edge representing such a field, the target of the edge will be the value of that field.

3. Primitive data type nodes are treated as simple primitive values.

4. For custom data type nodes, the assigned string attribute will be used to store its string repre-
sentation.

5. For intermediate nodes, a check is made if it represents a container or simply a field with a single
value. In case of the latter, the intermediate node will represent the value it points to. For the
first, it will represent the collection of values determined by its outgoing edges. Additionally,
for ordered containers the ordering is determined. When the ordering is based on an index,
the index values are sorted in ascending order. When edges are used, the order is based on the
sequence of these edges.

Note that for all these steps, the information from the type graph is necessary to identify the type of
each node.

APPENDIX C. IMPLEMENTATION OF THE GROOVE MAPPING 133

C.3 Rule graphs

When importing a type model, various constraint rule graphs may be created. These rule graph can
represent some information from the type model that it cannot represent by itself. Additionally, these
rules help keep the instance models in the grammar consistent with the type model, preventing the
creation of invalid models.

When a type model is exported, these rule graphs may be used again to retrieve the information they
represent. This could either be a property in the type model, or some extra information for various
types (such as container ordering and uniqueness). This requires the type graph to be exported to
a type model first, so that the information from that conversion may be used to identify the various
types of nodes in these rule graphs as well.

C.3.1 Opposite rules

Figure C.1: Example opposite rule graph.

The opposite rule graph represents the opposite property and serves a dual purpose. First, it specifies
which two relations are opposite, and puts a constraint check on instance graphs that this property
holds. The structure of the rule consists of two nodes representing a class, with in between them
edges (and possibly intermediate nodes such as in the example) representing the opposite relations.
Thus, the information of an opposite property is fully present in the rule (both relations are uniquely
identified). Alternatively an opposite edge may be present between two intermediate nodes in the
type graph. However, it can be configured not to be used, in which case the rule graph can be used to
retrieve the information instead. Second, the rule graph also adds a NAC to one of the relations. This
way, a constraint is added, which is matched when two nodes exist in an instance graph, which have
one relation between them but not the opposite. Opposite properties, and thus the opposite rules,
always come in opposite pairs such that the constraint is checked in both directions at all times.

C.3.2 Unique rules

Figure C.2: Example unique rule graph.

134 C.3. RULE GRAPHS

The unique rules are used both to determine whether or not a container is unique (if this information
is not stored in the type graph) and to enforce this uniqueness. These rule graphs are only used
to represent unique containers that use intermediate nodes, otherwise this information is implicitly
present and enforced (no two identical edges can connect the same pair of nodes in GROOVE). Unique
rules uniquely identify the intermediate nodes of unique containers, such that the information is
accurately represented. The constraint is enforced by checking if no two identical nodes are present
in the container, or, in the case of ordered containers, no two nodes with the same index. This is not the
exact same as the definition of equivalency in the conceptual model (see definition 15), as these rules
do not check equivalency for recursive containers (containers contained within other containers). This
would make the rules significantly more complex while such constructions rarely occur. Therefore,
only single node values are checked.

C.3.3 Ordered rules

Figure C.3: Example ordered rule graph.

The ordered rules represent the fact that a certain container is ordered. Its purpose is only to enforce
that elements of such containers are always well ordered in instance graphs. Since ordering can be
represented in two ways (using an index or using a next edge), two types of rules are present. The
first type, for use with indices, simply checks of no two elements in the same container have the same
index value. If this is the case, the elements are well ordered since each index value is either larger
or smaller than any other index value. The second type, for next edges, checks only if there are no
more than one node in the container that have no incoming next edge. This is sufficient, as the edge
multiplicities in the type graph ensure that each node has either zero or one outgoing next edge. Only
the last node in the container is allowed to have no outgoing next edge, as otherwise the constraint
rule would match (since there would be two nodes with no incoming next edge).

C.3.4 Enum

Figure C.4: Example enum rule graphs.

Constraint rules are also added for enumerations when they are represented using flags. These rules
ensure that enumeration nodes in instance graph have exactly one flag set indicating which enumer-
ation value they represent. To this purpose, two rules are created for each enumeration. One rule
matches nodes with no flags set, the other rule matches nodes with two flags set (thus also matching
nodes with three or more flags set).

APPENDIX C. IMPLEMENTATION OF THE GROOVE MAPPING 135

C.3.5 Identifier/Keyset

(a) Identity rule

(b) Keyset rule

Figure C.5: Example identity and keyset rule graphs.

The identity/keyset rules are used both to store the identity and keyset properties and to enforce these
constraints. The identity and keyset rules are mostly similar. Both rules check for a given pair of class
nodes whether or not a set of fields have the same values. Fields are considered to have the same
value if

• for fields with a single value, both values are equal (which translates to using the same node);

• for fields with multiple unique and unordered values, both instances have the same amount of
values for that field and for each value in one instance there is an identical value in the other
instance;

• for fields with multiple ordered values, both instance have the same amount of values for that
field, and each pair of subsequent values is identical.

For the same reasons that uniqueness rules do not check recursive containers, identity and keyset
rules do not check these either (additionally, Ecore does not have this notion and is the only language
currently supporting these constraints).

136 C.3. RULE GRAPHS

.. AppendixD. Graphlanguagesoverview
This appendix provides a short overview of each graph language that has been considered in the pre-
liminary research (except those described in section 2.1), giving a short description about its intended
purpose, capabilities and available tools. At the end of this appendix a series of criteria is given that
has been used to select the languages for importing/exporting.

D.1 XMI

XMI is intended to be an exchange language for metadata using XML (See also [37]). It is commonly
used to represent UML models, although other meta models can be used as well (see section 2.1.1).
XMI in itself is not a model/meta model language, but is an exchange format for meta models that
can be expressed in Meta-Object Facility (MOF). MOF is designed to be a standard for model driven
engineering, and is defined by the OMG.

As XMI is just an exchange format, it is not suitable to be imported/exported directly. Rather, a
language that makes use of XMI would be suitable for importing/exporting. An example of this is
the Ecore language, as well as various UML diagrams (see appendix D.2).

D.2 UML

UML is a general purpose modeling language. It consists of a set of graphical notations that are used
for modeling object-oriented software. It defines a multitude of diagrams depicting various aspects
of object oriented software. One of the ways to encode it is using XMI, using the MOF.

UML captures virtually all modeling concepts, which means that it supports all the Ecore model
concepts. The downside is that it makes the UML/XMI combination fairly complex, as is discussed
in [37]. However, a subset of UML may be supported, for example only the class diagrams and just
the parts of it that encompass the Ecore model.

Many editors for UML exist, each with their own way of encoding the data, though XMI can be used.
However, as previous work has shown this is not always compatible. Examples are Borland Together
[5] and Microsoft Visio [28].

D.3 GML/XGMML

GML (Graph Modeling Language) and the derived XGMML (eXtensible Graph Markup and Mod-
eling Language) are both languages for modelling graphs. GML is text based and XGMML is XML
based. XGMML allows for arbitrary attribute data, such as RDF descriptions (see also appendix D.5).

137

138 D.4. GRAPHML

GML is intended as a common file format for storing graphs. Its main features are platform indepen-
dence, ease of implementation, support for arbitrary data structures and flexibility. It is represented
in ASCII, which is easily handled by various standard routines (although limiting the possible char-
acters used). Although GML can be used to represent graphs (supporting graphs, nodes and edges),
it can also be used to represent other data, such as structures [21].

XGMML is based on GML. XGMML is intended to be a format to exchange graphs between different
graph authoring tools. It can be combined with other markup languages for adding additional data to
graphs, nodes or edges [31]. XGMML supports graphs, subgraphs, nodes and edges and hypergraphs.
Additionally, attributes can store extra data for elements, possibly using other markup languages.

Neither GML nor XGMML provide a model syntax, but rather a direct graph syntax (although strictly
speaking, GML could be used with a custom model language). This can be used to specify models
such as in Ecore, but would not be interoperable with other tools. Alternatively, a graph could be
specified with the same structure as an Ecore model, with Ecore meta data as attributes.

GML can be edited using yEd [40], although for instance UML entities do not retain much of their
properties. Cytoscape [13] is a tool that can store its data in XGMML. It was specifically designed
for working with molecular data structures, but can now be used for analysis and visualization of
complex networks.

D.4 GraphML

GraphML is an XML based language, resembling GXL. It is intended to describe the structural prop-
erties of a graph, with an extension mechanism for adding application-specific data [8]. It supports
subgraphs, hypergraphs and references to external data. In addition, it supports locator tags for ex-
ternal references, and ports for nodes (which can be used as an edge’s source or target).

GraphML is the main format of the yEd editor [40]. It can be used to store certain UML model in-
formation, such as classes and simple relations. The structure of GraphML is very similar to GXL. In
fact, it can be translated to and from GXL, as shown in [9], although there are slight differences. From
a conceptual point of view this makes GraphML a less interesting target for importing when GXL is
already supported, although extending an importer to GraphML should be fairly trivial.

D.5 RDF/OWL

D.5.1 RDF

RDF (Resource Description Framework) is used to represent information on the Web, in particular
metadata of web resources. It is intended to be machine readable, rather than human readable. It
allows machine-understandable information to be exchanged without loss of meaning.

The model of RDF is based on triples, consisting of a subject, a predicate and an object, which define
a statement about a resource. A predicate defines a relation between the subject and the object. RDF
does not define any data types by itself, but uses the standard XML schema 2 as a recommendation.
A description of the RDF metamodel can be found in [11].

RDF can be edited with the IsaViz RDF editor [38] which is developed by the W3C and can read and
write RDF/XML (XML serialized RDF).

APPENDIX D. GRAPH LANGUAGES OVERVIEW 139

D.5.2 OWL

OWL (Web Ontology Language) is an ontology language for the semantic web, based on Description
Logics. An OWL ontology allows a reasoner to infer information from a given set of axioms about the
world the given ontology describes. It is a based on the open world assumption, where the inability
to derive a fact does not mean that it is false (closed world assumption) but rather unknown. OWL
defines three sublanguages:

• OWL Lite: OWL Lite is intended as a simple sublanguage, for basic classification and con-
straints.

• OWL DL: OWL DL is a computational complete and decidable sublanguage (that is, all conclu-
sions can be derived and can be computed in finite time) with maximum expressiveness within
these constraints. OWL DL supports all the OWL language constructs, although with a few
extra restrictions.

• OWL Full: OWL Full is the full OWL language which allows the most expressiveness. It does
not give any computational guarantees, but allows any RDF vocabulary to be described.

A description of the OWL metamodel can be found in [11].

OWL is very closely related to RDF(S). RDF(S) is used to define the schema of a model. It allows
to specify classes and relationships, and makes use of typing and subtyping. OWL adds a semantic
layer on top of RDF(S). It provides functionality to add meaning to the schema. For example, it allows
to make statements about the equivalency of classes, or allow facts to be derived from other facts.
Multiple versions of OWL exist, most notably versions 1.0, 1.1 and 2.0.

An editor for OWL ontologies is Protégé, which is developed by the Stanford Center for Biomedi-
cal Informatics Research [36]. It can be used to define ontologies, as well as invoke a reasoner and
exporting to various formats, including the (common) RDF based syntax.

D.6 KM3 (Kernel MetaMetaModel)

KM3 is a language to write metamodels [3]. It has a simple, straightforward syntax which can be
serialized into XMI. It is based on Ecore and it can be transformed from and to Ecore models. It does
not define a syntax for model instances, although KM3 metamodels are themselves instances of the
metamodel of KM3 itself.

As it is similar to (and based on) Ecore, it supports the same concepts, such as packages, classes,
attributes, references and primitive data types. It is therefore not very interesting to support the KM3
language in an importer that can also handle Ecore files, as they are conceptually the same.

D.7 Kermeta (structural)

Kermeta is a modeling language that is based on the EMOF specification [29]. Its architecture is
divided in a structural and behavioral package. For this research, the structural aspect is the most
interesting, as the behavior architecture is used to describe executability, which is not relevant for
type and instance models. The structural package can be split in a named view for named elements
and a typed view [24]. It can be used as an object-oriented, a model-oriented, and an aspect-oriented
language. Kermeta is designed to add executability to object-oriented model languages.

140 D.8. SELECTION CRITERIA

Like KM3, Kermeta is a way of textually representing Ecore models, and as such does not show differ-
ent kinds of concepts that are relevant. The main exception is the addition of the concept of executabil-
ity, but this does not affect model instances and as such is not required for an importer in GROOVE,
just like operations in Ecore (see [37]).

Kermeta can be edited in Eclipse using a plugin, which allows it to be converted from/to Ecore models.
As with KM3, this makes Kermeta a less interesting target for importing.

D.8 Selection criteria

From the languages described above, a selection has to be made. For this, a set of criteria is defined.
These criteria are:

• Common usage: If a language is commonly used, it is more worthwhile to add it to the im-
porter/exporter. Languages that are not used much would not add much to the interoperability
of GROOVE with other tools, since not many tools support the language in the first place. If a
language is not commonly used, it will not be included.

• Existence of a self describing meta model (meta schema): If a language supports a meta schema,
it will be easier to reason about the meaning of a structure in that language, making importing
and exporting that language easier. This criterion provides more of a suggestion, it does not pro-
vide a definitive choice for inclusion of the language. Such a meta schema is usually described
in the modeling language itself, providing the top level in a modeling hierarchy (as the meta
model that describes the meta schema would be the meta schema itself). Examples of this are
the MOF and the GXL meta schema.

• Concrete notation: A language that provides its own fully concrete notation allows the scope of
the language to be bounded. Those that do not do this would be much harder to support, as the
same concept can be expressed in many different ways. Rather, more concrete sublanguages are
more suitable. For example, XMI allows a very broad scope of meta models to be expressed in
XML, as long as they are based on the MOF. This makes it hard to write an importer/exporter, as
it would become too much general-purpose. Ecore, on the other hand, provides a more concrete
implementation of XMI, which makes implementing it much more manageable. Therefore, if a
language presents itself as a ’carrier language’, it will not be included (the sublanguages provide
a more suitable target).

• Similarity to other languages: In some cases, languages are very similar and might only differ in
syntax, but not in expressiveness or meaning. An example of this is the KM3 language, which is
based on Ecore and defines a textual format with the same meaning. In some cases, converters
for these languages exists that can translate from one language to the other without any loss of
meaning. Including such a language in the importer/exporter would not add any new insights.
Therefore, if a language is similar enough to another language, it will not be included.

	Introduction
	Software development
	Tools and Interoperability

	Modeling
	Instance models
	Type models
	Language models

	Graphs and GROOVE
	Current importer/exporter

	Research question
	Requirement analysis
	Configuration
	Use cases
	Conceptual model

	Research question refinement
	Related work
	Outline

	Background
	Graph languages
	Ecore
	GXL
	DOT

	GROOVE
	Type graphs
	Instance graphs
	Rules

	Conclusion

	Conceptual model
	Global concepts
	Type models
	Instance models
	Conclusions

	Mapping CM-GROOVE
	Global level
	Type model
	Additional constraint checks
	Meta graph

	Instance model
	Configuration
	Overview
	Conclusions

	Mapping CM to Ecore, GXL and DOT
	Ecore
	Importing type models
	Importing instance models
	Exporting type models
	Exporting instance models
	Issues

	GXL
	Importing type graphs
	Importing instance graphs
	Exporting type graphs
	Exporting instance graphs
	Issues

	DOT
	Importing type and instance models
	Exporting type models
	Exporting instance models
	Issues

	Mapping overview
	Ecore
	GXL
	DOT
	Conceptual model

	Conclusion

	Implementation and Validation
	Design
	Conceptual model
	Mapping
	Configuration
	GROOVY

	Validation
	Testing concept support
	Space performance
	Time performance
	Code analysis

	Conclusions

	Conclusion
	Summary
	Evaluation
	Future work
	Command line
	Extend CM
	Alternative CM
	Library performance

	Implementing the conceptual model
	Names and identifiers
	Data types
	Type model
	Types

	Instance model

	Implementation of the graph language mappings
	Mapping Ecore-CM
	Type model
	Instance model

	Mapping GXL-CM
	Type model
	Instance Model

	DOT-CM
	Type models
	Instance models

	Implementation of the GROOVE mapping
	Type graphs
	Import
	Export

	Instance graphs
	Import
	Export

	Rule graphs
	Opposite rules
	Unique rules
	Ordered rules
	Enum
	Identifier/Keyset

	Graph languages overview
	XMI
	UML
	GML/XGMML
	GraphML
	RDF/OWL
	RDF
	OWL

	KM3 (Kernel MetaMetaModel)
	Kermeta (structural)
	Selection criteria

