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Chapter 1

Abstract

Computing general problems using the graphical processing unit (GPU) of a
device is an emerging field. The parallel structure of the GPU allows for mas-
sive concurrency, when executing a program. Therefore, by execute (a part of)
the code on the GPU, a previously unused resource can be used, to achieve a
speed-up of an application. Previously, programming on GPUs was a tedious
job, and the implementation was depending on the manufacturer - or even on
the model of the GPU. With the arrival of OpenCL, an open and broad plat-
form was offered, focussed to deliver General Purpose computing on the GPU,
or GPGPU to a broader audience. Despite the sometimes simple appearance
of OpenCL code, it is important to keep in mind that threads running the
code can be executed concurrently with thousands of threads. All these threads
concurrently executing, and potentially accessing the same memory locations,
can easily lead to implementation errors. This research is focussed on verifying
OpenCL code, using permission-based separation logic, to prevent those errors
in an early stage. Moreover, we have investigated what the consequences are
of optimizations of a OpenCL-program for the verification of that program. It
is common practice to use optimization in GPGPU, since the code executed on
the GPU is often "resource-hungry", either for memory, processing power, or
both. Therefore, optimizing the GPGPU part of a program will often result in
a significant speed-up.
As a verification use-case, we have developed a simple implementation of Con-
way’s Game of Life, a well-known zero player game, based on a cellular automa-
ton. We have verified this implementation using permission-based separation
logic, enriched with some rules specifically for OpenCL. Therefore, we had to
annotate the code in a similar way when using the VerCors tool-set. Further-
more, we developed three optimizations of this code using common optimization
techniques. To verify each of the optimizations we have looked at the changes
needed in the verification, in relation to the original verification. Our optimized
versions, upon execution, are indeed faster than the original implementation.
Moreover, we can show several patterns for changing our verification to fit our
optimization. Using these patterns, one could possibly automatically optimize
OpenCL code, whilst still guaranteeing the correctness of the program, given
that the previous implementation was correct.
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Chapter 2

Introduction

A lot of everyday puzzles and in nature occurring phenomena look rather com-
plex - but do actually oblige to a simple set of basic rules. Some examples are
problems of finding the shortest path (e.g. in train planning or behaviour of an
ant colony). A way to solve such problems by use of a computer is by divid-
ing the problem in smaller (simple) sub-problems. In this way, a very complex
looking problem can be split into more manageable sub-problems. Each sub-
problem can then be solved with relative ease and will often have more lenient
requirements regarding memory or processing power.

All these sub-problems together still require a tedious amount of calculations.
Luckily, the processing power of computers still increases; however, single chips
are approaching their frequency limits and the focus of fast computing shifts
towards parallel processing on multiple processor-cores. Another possibility to
speed up computing is by making use of the Graphical Processing Unit (GPU)
when computing parallel tasks. The GPU is highly optimized for processing a
huge number of identical tasks running in lockstep, up to thousands at a time.
This approach is also known as SIMD or SIMT (single instruction; multiple data
or multiple thread).

2.1 GPU Programming

This field of General-purpose computing on GPU, also known as GPGPU or
GP2U, is often fitted for computing earlier stated problems [32]. This is be-
cause these problems can be split up in a set of smaller identical sub-problems,
each assigned to a thread, processing a different data set - the basic premise for
using SIMD. The strength of GPGPU, being able to run thousands of threads
in parallel, also comes with its drawbacks. Thousands of interleaving threads all
potentially accessing the same data and waiting on each other can lead to unex-
pected problems [16]. Errors caused by data races are known to actually occur
on seemingly random moments. By the time these errors occur the software
may be already in a production environment. Bug hunting and solving errors
in a production environment is very expensive [31]. As a result, it is important
to prove that a GPGPU-program is correct i.e. that the program satisfies its
pre-defined behaviour.
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2.2 Correctness of a Program
The field of formal verification allows us to prove the correctness of a program.
By analysing the code or by running it with specific tools a program can be
proved to be correct. In this project we describe a manual way of verifying
GPGPU-programs, and which extra operations are needed to make the code
verifiable. Therefore we will introduce a sample code.

In addition, we looked at optimizations that we can apply to our sample
code. These optimizations can range from using smarter algorithms to memory
optimizations [13]. Optimizations, however, have the nature to make the code
less transparent which increases the possibility for errors. Those errors might
lead to incorrect results, for example by floating point errors. Harder to catch
are racing conditions caused by badly distributed access to memory locations,
e.g. a thread having read access to a location to which another thread has write
access, can lead to unexpected results depending on the execution order of both
threads.

The error-proneness of optimizations gives us additional motivation for de-
veloping a formal verification tool for GPGPU-programs [20].

2.3 Conway’s Game of Life
For this project we have implemented, on the GPU, a game called Conway’s
Game of Life. This game consists of a two-dimensional, infinitely large grid.
Each square, or "cell", in the grid can either be alive or dead. The state of this
cell depends on the current state of the eight cells surrounding it.

The game of life is a well-known example of a so called cellular automaton.
Cellular automatons are broadly applicable and can be used for simulations
in the field of biology, physics and or computer science [33]. This automaton,
Conway’s Game of Life, is rather simple but still allows for a high degree of
parallelization, because each cell can be calculated by a parallel thread and
only requires access to the last state of its surrounding cells.

This parallel nature and the fact that after the initial state the game does
not require any user input makes it a suitable problem for this project.

Another advantage is that this problem allows for multiple optimizations.
The concrete optimizations we have implemented and their effect will be ex-
plained in detail in Chapter 5 and further.

2.4 The Project
We have verified our Game of Life implementation. After proving the cor-
rectness of this code, we applied a specific optimization and verified this new
implementation, we iterated this process for several optimizations. With these
multiple verifications we are also interested in the effect of our optimizations on
the verification of our code in respect to the verification of the original imple-
mentation.

These can be trivial with simple GPGPU-programs. However, when we
deduce some rules about certain optimizations, those optimizations can be di-
rectly applied in the future, without the necessity to prove the correctness of
the complete program again.

7



Being able to automatically add such optimization without introducing er-
rors in the code will decrease verification and programming time of GPGPU
programs. Additionally, these optimizations can even be used in automatically
generated GPGPU-code. This however is out of the scope of this project.

In summary, the focus of this project lays on the verification of GPGPU-code;
therefore, we have written an implementation of the Game of Life and verified
it to be correct. In Chapter 3 and 4 we will explain our verification method
and its background. We are also interested in which optimizations we can apply
and their effect on the verification of our code in respect to the verification of
the original implementation (Chapter 5 - 8). Chapter 9 and 10 contain related
work, the results, and the conclusions, where we hope to sufficiently answer the
following research questions:

• How can we formally specify and reason about programs implemented on
GPU devices?

• Which common optimizations can we use for such programs?

• What are the effects of code optimization on its verification and vice versa?

Happy reading,
- Jeroen
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Chapter 3

Background

3.1 OpenCL
We verified GPGPU-programs written in OpenCL. OpenCL is an open standard
developed by the Khronos group [24]. To be exact, OpenCL is a royalty-free
standard for general purpose parallel programming across CPUs, GPUs and
similar devices. The way the OpenCL platform is set up makes it possible to
execute a single implementation on a broad range of GPUs and even on some
CPUs [22][1][6]. This property makes OpenCL very suitable for our project.
The fact that OpenCL is designed for a broad range of devices, makes it both
practical to use for us and possibly a common standard for years to come. There-
fore, focusing research on OpenCL is potentially more valuable than research of
some other GPGPU-language e.g. CUDA, a language specifically targeted at
the NVidia hardware [23][10].

Figure 3.1: OpenCL structure (in relation to a graphics card)

OpenCL-code consists of the host code and the kernel code, the host code is
a regular program that sets up some parameters and executes the kernel code.
After execution the result of the calculations by the kernels can be retrieved by
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the host [2]. This kernel code is executed on the GPU multiple times in parallel
in separate threads, each instance having a unique identifier, thread id (tid)
ranging from 0 to gid_size-1, with gid_size being the total amount of threads.
The threads can access these values in run time by using the get_global_id(0)
and get_global_size(0) functions, respectively. Multiple instances of the kernel
are grouped in so called work groups. This structure, as shown on the left
side in figure 3.1, is chosen by the Khronos group because it is very similar
to the memory structure of the GPU. A GPU consists of multiple streaming
multiprocessors, each multiprocessor is able to run several threads, similar to
the mapping of threads in work groups as seen in OpenCL. Each streaming
multiprocessor is supplied with local memory, that can be shared by the threads
ran by that multiprocessor. Figure 3.1, shows a schematic view of a GPU in
relation to the OpenCL structure.

3.2 Permission-based Separation Logic
To verify our sample program we have used a version of permission-based sep-
aration logic. To understand the basis of permission-based separation logic a
short history is needed.

The formal specification of programs basically started with David Hilbert,
the founder of mathematical field called ’logic’. Robert Floyd pioneered using
this logic to reason about programs. He did this with so called assertions;
statements that are true at specific program locations.

In 1969 Sir Tony Hoare proposed the Hoare-Floyd logic, or now commonly
known as Hoare Logic [18]. The Hoare Logic consists of the Hoare Triple and
a set of rules. A Hoare Triple consists of a piece of code, or a command (S),
and two assertions: the pre-condition (P ), and the post-condition (Q), written:
{P}S{Q}. The rules specify the relations between several Hoare Triples e.g.

{P}S{Q}, {Q}T{R}
{P}S;T{R}

This rule states that we can combine the two commands S and T , when the
pre-condition of T is the same as the post-condition of S.

With the coming of pointers and heaps Hoare Logic needed an addition.
John Reynolds et al. provided this in the form of Separation Logic [29]. Sepa-
ration logic provides a way to reason about pointers that may point to the same
location in the memory. Two main operators are *(separating conjunction) and
-*(separating implication). These operators are used to prove that two pointers
point to distinctive locations.

Separation Logic is also useful for reasoning about parallel programs. Log-
ically, when two threads never access the same variables, they do not interfere
with each other.

This is rather restrictive, for example, two threads will never enter a data
race when they access the same variable only for reading. This is solved by
the introduction of permissions, known as: permission-based separation logic.
A pointer x to a location v is assigned a permission π in the domain (0, 1], or:
PointsTo(x, π, v) [17]. The sum of all the permissions to one location never
exceed 1. A thread needs permission to be able to read a variable, and iff a
thread has a permission equal to 1 it is allowed to write to the variable.
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3.3 VerCors
Hurlin and Huisman used permission-based separation logic to verify a Java
like language including the support for parallelism [21]. In relation to this work
is VerCors, an ongoing project on the University of Twente with the goal to
develop a specification language, program logic for concurrent programs and
concurrent data structures[3]. Subsequently they want to make the program
logic applicable by building a tool set implementing this program logic. The
VerCors project uses permission-based separation logic and in order to verify a
program, it requires the user to add annotations in the code. These annotations
are written in-line in a JML-like style. VerCors is currently suited for use with
concurrent Java programs.

In parallel with this project, a formal method for OpenCL verification is
devised. Mihelcic, Huisman and Blom are currently working on extending the
VerCors approach and the tool set to include verification of OpenCL code. As
stated above, verification of GPGPU-programs is different from concurrent pro-
grams; GPGPU code is usually constrained to a few thousand lines of code and
forks and joins are not common practice. However, GPGPU-programs can eas-
ily be executed concurrently with more than a thousand threads; moreover each
of these threads can potentially read and write to the same memory locations.
Complexity of the verification can thus potentially be nk∗1000 in comparison to
two concurrent similar threads, when one would be using dynamic verification.
The verification is realized with the permission-based separation logic provided
by the VerCors project. However, the memory model and executional struc-
ture of OpenCL-threads require additional properties to be proven such as the
behavior of work groups, barriers and the access to memory locations [20][19].

3.4 Game of Life
The Game of Life is a well known and studied cellular automaton (CA) [5], how-
ever, although the basic premises for the game are simple, the implementation
can get rather complicated, due to its possibly infinite playing field. Algorithms
to circumvent this are developed[11] with the best known one being HashLife
described in the 1980s by Gosper[15].

The general rules of the Game of Life are as follows [33]. The Game of Life
happens on a two-dimensional infinite grid. Each square on the grid represents
a cell, the state of a cell can be either dead or alive. A cell on the grid has 8
(direct) neighbours. The game is a zero player game. The goal of the game,
once an initial field is loaded, is to calculate the next generation of the field
based on its previous state. The state of an individual cell can be determined
based on: a) the current state of the cell, and b) the amount of neighbours that
are currently alive. Those rules are:

• A live cell with two or three live neighbours stays alive

• A cell with exactly three live neighbours becomes/stays alive.

• In all other cases, < 2 or > 3 live neighbours, the cell dies.

An example of a succession of iterations can be seen in figure 3.2.
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Figure 3.2: Example of a succession of iterations

The Game of Life has also been implemented on multiple occasions to run
on GPU’s[30][28][32] - some even implementing versions of HashLife[25].

For the scope of this project, being mainly on verification of possible opti-
mizations, a simple implementation of the Game of Life will be used.
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Chapter 4

Research Method

For the verification of the Game of Life implementation, we have chosen for a
straightforward implementation. This first implementation is rather naive, but
allows us to apply various optimizations in the later stages of the research. The
exact implementation and the design choices are explained in the section below.

4.1 Implementation
The main problem in any implementation of the Game of Life is the infinite
size of the playing field. There are several ways to deal with this. One option
is storing only the cells that are "alive". Storing only the live cells allows for a
huge improvement in memory usage, however, this will require a data structure
different from a two-dimensional grid, resulting in the need for a fast search
algorithm to find neighbouring cells. Another option is to use a X ∗ Y -sized
array of a finite size. To cope with the case where live cells reach the edge of
this array there are two common options: either when live cells reach the outer
borders of this grid they can "wrap around" or they can "die" on those edges.
An easy way to visualize this is that the field is a plane where on the outer
edges the cells die or that the field is a torus, allowing for the wrapping around.
The scope of our research made us decide to use the X ∗Y -sized array approach
with "dying cells" at the edges.

4.1.1 Host and Client Side
Implementing this in OpenCL requires an additional step in the design process.
OpenCL requires us to split up our problem in two parts; the part running on
the host side and the part of the algorithm running on the GPU (or client side).
The host side of our implementation is written in C++, a general version can be
found in appendix ??. The host code is designed for setting up and launching
the OpenCL kernel, and measuring the timing of several actions of this kernel.
The host side code is based on the samples by AMD, the changes we have applied
are related to doing measurements, the used data structure, loading and saving
the data. The only way of communication between the host side and kernels
on the OpenCL-devices is by using this data structure. The host side initializes
a buffer containing the field with the initial state of the game and provides an
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empty buffer for the resulting game after the iteration. After the execution of
the kernels these buffers are passed back to the host side. The kernel code is
executed by the OpenCL-device. This is done many times in parallel. Based
on the threadid a kernel thread is given, it calculates the next generation of a
specific cell by looking at the current state of its neighbours. This result is then
written to the memory allocated by the host side. After the execution of all the
kernels the host can read the result, the next generation of the initialized board.
In a nutshell this is our implementation. We have made several optimizations,
each can be seen in their corresponding chapters. Each optimized version is
based on the previous implementation and we tried to apply our optimizations
with as minimal changes as possible.

4.2 Manual Verification
Each version of our Game of Life implementation is manually checked for cor-
rectness. For this manual checking we have devised a procedure based on two
main sources. For the permission-based separation logic we have used the work
in progress by Mihelcic and Huisman [20], which we briefly described in Chapter
3. The manual checking process is based on the lecture notes by Gordon [14].

Gordon’s work describes mechanizing program verification. Mechanized ver-
ification may seem contradictory with the goal to manually verify our code.
Having a strict, or mechanized, procedure to verify our code may be beneficial
for future implementation, and reduces human errors in the, currently, man-
ual verification. In the future use, people can follow the same procedure and
yield the same result or even implement the steps in a program to automate the
verification. The machine verification described by Gordon allows us to struc-
turally analyze the code with the help of annotations written in line. Additional
verification rules are introduced by Mihelcic and Huisman [20].

Figure 4.1: Verification steps in ma-
chine verification

The machine verification consists
of several steps. First, the user has to
annotate the code defining the pre-
and post-conditions of the commands
at predefined points. These annota-
tions can be translated to a set of
logic statements, or verification con-
ditions, see figure 4.1. These veri-
fication conditions (or VCs) can be
condensed and simplified to a form
that can be inspected for its correct-
ness. The verification conditions are
generated by standard rules posed in
Gordon’s material. These rules for
translation of code and annotations to
VCs are based on Floyd Hoare Logic.
Permission-based separation logic is
based on Hoare Logic, this makes it
possible to introduce some additional
statements from the work of Mihelcic

and Huisman. Additional statements are related to the use of barriers and mem-
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ory structures in OpenCL; Also, the pre- and post-conditions for the kernel code
need to be done separately since the verification is done on both the Thread,
and Kernel level. The double pre- and post-conditions allow us to detect possi-
ble data races on the kernel level. When working with multiple work groups an
additional pre- and post-condition needs introduced for the verification on the
work group level.

Chapter 5 shows in detail how this is done in practice.

4.3 Optimizations
The optimizations that we made are common when optimizing programs to run
on a GPU [13]. We have used the following optimizations:

• Our main implementation uses loop unrolling, a common opportunity for
optimization [13], we have used it for reading the neighbouring values in
the grid. Unrolling the commands in a loop leads to an increase of the
size of the code, but can lead to significant speed-ups at execution time.

• In our first optimization we have limited the amount of threads that need
to be initialized, thus avoiding the need to reinitialize the buffers needed
for every iteration of the Game of Life. This is realized by giving each
thread more cells to calculate, skewing the ratio of initialization time vs.
execution time in our favour.

• In our second optimization we have included barriers and a second iterator.
This results in a situation where we only have to start our kernel once.

• The third optimization uses the local memory of work groups; the local
memory can be factors faster than the global memory. Therefore, the
data is copied from the global memory to the local memory, where the
data can be manipulated, and then the resulting values are copied back to
the global memory. Even though the data are copied two times more, this
overhead is often quickly compensated by the speed-up achieved using the
local memory.

4.4 Platform
The first implementation was done on a Dell Inspirion 6400 running 32-bit
Windows 7, a rather outdated laptop with 2GB of memory, a 2GHz processor,
with no hardware support for multi-threading; and an unsupported graphics
card. In our first implementation, this was not a real problem and it illustrated
the versatility of OpenCL, it was clearly possible to compile and execute the
OpenCL code on this machine. However, not using a dedicated GPU made it
impossible to use the classical optimizations and trade-offs that come with a
GPU. For example, the use of local memory vs global memory clearly revealed
that. Therefore, after this initial acquaintance with OpenCL, we moved to a
more mature platform. A 64-bit machine running Scientific Linux with two
quad-core Intel Xeon Processors at 2.40GHz and a Tesla S2050. The Tesla
S2050 consists of 4 NVIDIA Tesla M2050-cards each with up to 1TFLOP of
peak performance. This was suitable for our research, even forcing us to run
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the Game of Life for a considerable amount of iterations, to allow for a reliable
timing of our program execution.
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Chapter 5

Main Implementation

__kernel void kernel (__global unsigned int ∗ nextgen ,
__global unsigned int ∗ board ,
const unsigned int height ,
const unsigned int width )

5 {
int pos , up , down , outofbounds , ne ighbours ;

pos = get_global_id (0) ;
up = pos − width ;

10 down = pos + width ;

outofbounds = ( pos < width ) ; // upper edge
outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge
outofbounds |= ( pos % width == 0) ; // l e f t edge

15 outofbounds |= ( pos % width == width−1) ; // r i g h t edge

i f ( outofbounds )
{
nextgen [ pos ] = 0 ;

20 }
else

{
neighbours = board [ up−1] +board [ up ] +board [ up+1] ;
ne ighbours += board [ pos−1] +board [ pos +1] ;

25 neighbours += board [ down−1] +board [ down ] +board [ down+1] ;

nextgen [ pos ] = ( board [ pos ] && neighbours == 2) | | ( ne ighbours == 3) ;
}

}

Listing 5.1: Main Implementation1

1The fully annotated version can be found in appendix A.1
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5.1 Implementation
Our basis implementation, see above or in appendix A.1, is a fully functional
implementation of the Game of Life. This code consist of a host side program
compiling and initializing the OpenCL implementation of the Game of Life. The
kernel consists of OpenCL-code that implements a straightforward implementa-
tion of one iteration of the Game of Life. The only aspect of this code that can
be considered an optimization is the checking for the neighbouring cells on lines
21-23, this could be done with a loop. Technically, we have used loop unrolling
in this implementation. This first implementation will henceforth be referred
to as the Single Iteration kernel, or in shorthand 01_SI. An uncommented and
un-annotated version of this kernel can be seen in the snippet at the beginning
of this chapter.

The host side code, which can be found in appendix ??, is based on the frame-
work given by the AMD OpenCL SDK. The host side compiles the OpenCL code
and configures some parameters. Part of these parameters determine how the
OpenCL kernel is executed: the amount of threads and how they are grouped.
The other parameters are the variables that are provided to each kernel, in
our case those parameters are: board, nextgen, height, and width. Board is an
one-dimensional integer array containing the initial state of the Game of Life,
0 stands for "dead" and 1 for "alive". The width and height parameters are
provided to translate the one-dimensional array to a two-dimensional field in
each kernel. Next, the host side launches the OpenCL kernel with given pa-
rameters and the GPU calculates one step in the Game of Life. Using the
get_global_id(0)-function each kernel gets its unique (global) threadid, from
which it can calculate to which field on the board the id corresponds (line 6).
When the field is on the edge of the board it will automatically die, this can
be seen on lines 10-18. The last parameter provided to the kernel is nextgen,
which contains the resulting board after one iteration of the Game of Life. The
host uses an optimized command to swap the input buffer (board) containing
the initial state of the automaton with the output (nextgen) and reissue the
command for execution of the kernel. After a set of iterations the result will be
loaded from the output buffer and be used on the host side.

Our first implementation used boolean arrays, however the implementation
of booleans in OpenCL depends on the used platform, therefore, to make the
code work on the Tesla we needed to resort to the more resource consuming
integer arrays.

5.2 Verification
To verify our code we need to provide certain annotations at certain places.
First of all, it needs to be annotated at the beginning and at the end of the
kernel. Usually this needs to be done on the thread (Tres, Tpre, Tpost), work
group (Wres,Wpre,Wpost) and kernel level (Kres,Kpre,Kpost). Since we are using
only one work group, (Wres,Wpre,Wpost) will be identical to (Kres,Kpre,Kpost).
Therefore, we can omit our work group specification. The other places where
the code needs te be annotated are explained by Gordon:

A command is said to be properly annotated if statements have been
inserted at the following places:
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• Before each command Ci (where i > 1) in a sequence "C1;C2; :::
;Cn" which is not an assignment command,

• After the word DO in WHILE and FOR commands.

Next, we split up the code of the Single Iteration code to its separate com-
ponents as can be seen below, according to Gordon’s work.
{ANNOTATION_A}
C − BLOCK

BEGIN
VAR pos ;

5 VAR up ;
VAR down ;
VAR outofbounds ;
VAR neighbours ;
C − Sequence

10 C − Assignment ;
pos = get_global_id (0) ;

C − Assignment ;
up = pos − width ;

C − Assignment ;
15 down = pos + width ;

C − Assignment ;
outofbounds = ( pos < width ) ;

C − Assignment ;
outofbounds = outofbounds | ( pos > ( width ∗ ( height −1) ) ) ;

20 C − Assignment ;
outofbounds = outofbounds | ( pos % width == 0) ;

C − Assignment ;
outofbounds = outofbounds | ( pos % width == width−1) ;

{ANNOTATION_B}
25 C − Two armed cond i t i ona l ;

IF outofbounds
THEN
C − Assignment

nextgen [ pos ] = 0 ;
30 ELSE

C − Sequence
C − Assignment

ne ighbours = board [ up−1] +board [ up ] +board [ up
+1] ;

C − Assignment
35 neighbours = neighbours + board [ pos−1] +board [ pos

+1] ;
C − Assignment

ne ighbours = neighbours + board [ down−1] +board [ down ] +board
[ down+1] ;

C − Assignment
nextgen [ pos ]= ( board [ pos ] && neighbours == 2) | | ( ne ighbours

== 3) ;
40

END
{ANNOTATION_C}

Listing 5.2: 01_SI - split up

Annotation_A and Annotation_C will be respectivly Tpre and Tpost . An-
notation_B can be seen as both a pre-condition for our conditional and a post-
condition of the assignments in the code.

Annotation B and (Tres, Tpre, Tpost) can be found in the appendix A.1 and
are:
// Tres − resources needed f o r the thread

//@ requires perm(width , p) ∗∗ perm( height , p) ;
//@ requires ! oob ( g t id ) ==> perm( board [ gt id−width−1] ,p ) ∗∗ perm( board [

gt id−width ] , p ) ∗∗
//@ perm( board [ gt id−width+1] ,p ) ∗∗ perm( board [ gt id −1] ,p ) ∗∗ perm(

board [ g t id +1] ,p ) ∗∗
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5 //@ perm( board [ g t id+width−1] ,p ) ∗∗ perm( board [ g t id+width ] , p ) ∗∗ perm
( board [ g t id+width+1] ,p )

//@ requires perm( nextgen [ g t id ] , 1 )

// Tpre − precondi t ions f o r the thread
// The amount of threads must equal the s i z e of the boards

10 //@ requires ( width∗ he ight ) == gt id_s i z e ;
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;
// Tpost

// i f we are out of bounds , the c e l l i s always dead . Otherwise the
r e s u l t should be the r e s u l t o f the r u l e s of the Game of L i f e

//@ ensures oob ( g t id ) ==> nextgen [ g t id ]==0;
15 //@ ensures ! oob ( g t id ) ==> nextgen [ g t id ]==go l ( g t id )

Listing 5.3: Thread specification

//@ assert outofbounds == oob ( g t id )
//@ assert up = pos − width ;
//@ assert down = pos + width ;
//@ assert pos = gt id ;

Listing 5.4: Annotation_B

As we can see from our thread specification Tpre, only contains a pre-
condition about the size of the board, thus we can assume Annotation_A to be
true. Therefore, there are no specific conditions for the population of the board.
Annotation_B mostly says that all the variables used in our implementation
need to have the correct value. The names oob and gid are model variables,
as explained in listing 5.5. Annotation_C, or Tpost , guarantees that the next
generation for a cell is calculated, except for cells that lay on the border of the
field: cells on the border of the field will always die, as previously specified.

Now that we have set up our annotations, we can construct our Verification
Conditions or VC’s. We will do this with the classical Floyd-Hoare logic used by
Gordon; in parallel we will check for the permission-based separation part. By
separating these aspects we can make the manual verification easier. To simplify
the verification with respect to this project’s scope, a part of the proof will be
informal, mostly, the permissions redistribution at barriers and the verification
of the kernel.

In our annotations we use JML-variables [26]. The use of these model vari-
ables gives a better insight during manual verification. However, these variables
are simply shorthands and the use of these variables do not influence the veri-
fication.

Our model-variables are:
// g t i d i s used as shorthand f o r the unique ( g l o b a l ) thread i d e n t i f i e r .
//@ private model int g t id ;
//@ private represents g t id <− get_global_id (0) ;
// g t i d _ s i z e returns the t o t a l amount of threads .

5 //@ private model int g t id_s i z e ;
//@ private represents g t id_s i z e == get_globa l_s i ze (0 ) ;
// oob stands f o r Out Of Bounds , and t e l l s us whether c e l l i , i s on the

border of the f i e l d .
//@ private model f unc t i on oob ( i ) ;
//@ private represents oob ( i ) <− ( i < width ) | | ( i > ( width ∗ ( height −1) ) )

| | ( i % width == 0) | | ( i % width == width−1) ;
10 // nb , g i v e s the amount of d i r e c t , l i v e neighbours of c e l l i .

//@ private model f unc t i on nb( i ) ;
//@ private represents nb( i ) <− board [ i−width−1]+board [ i−width ]+board [ i−

width+1]+board [ i−1]+board [ i +1]+board [ i+width−1]+board [ i+width ]+
board [ i+width +1] ;

// g o l returns the expected s t a t e of c e l l i , g iven the current board ,
r e s p e c t i n g the r u l e s of the game of l i f e
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//@ private model f unc t i on go l ( i ) ;
15 //@ private represents go l ( i ) <− ( board [ i ] && nb( i ) == 2) | | (nb ( i ) ==

3)

Listing 5.5: 01_SI - Model variables

• gid is the global identifier or threadid of the thread

• oob stands for "out of bounds" and describes whether the cell is on the
border of the field.

• nb(i) represents the count of live neighbours of cell i

• gol(i) calculates the state of a given cell i when the rules of the Game of
Life are applied upon it.

• gid_size returns the total amount of threads executed.

Next, we introduce several snippets where we show the construction of the
VC’s. Annotation_A only tells us that the amount of threads should be equal to
the size of the board, so for the sake of this part we can say that Annotation_A
is true. Our model variables is assumed to be part off the context in our verifi-
cation, so it will not be explicitly mentioned in every pre- and post-condition.
{true}

C − Assignment ;
pos = get_global_id (0) ;

C − Assignment ;
5 up = pos − width ;

C − Assignment ;
down = pos + width ;

C − Assignment ;
outofbounds = ( pos < width ) ;

10 C − Assignment ;
outofbounds = outofbounds | ( pos > ( width ∗ ( height −1) ) ) ;

C − Assignment ;
outofbounds = outofbounds | ( pos % width == 0) ;

C − Assignment ;
15 outofbounds = outofbounds | ( pos % width == width−1) ;

{( outofbounds == oob ) ∗(up = pos − width ) ∗(down = pos + width ) ∗( pos = gid
) }

C − Two armed cond i t i ona l ;
{( oob∗nextgen [ g id ]==0) | | ( ! oob∗nextgen [ g id]==go l ( g id ) ) }

Listing 5.6: 01_SI - Condensed

We can now apply the assignments, for example:

{true ∗ gid = get_global_id(0)}pos = get_global_id(0){(pos = gid) ∗ ....}
true ∗ gid = get_global_id(0) => ((pos = gid) ∗ ....)[get_global_id(0)\pos]

which leaves us with the proof obligation:

gid = get_global_id(0) => ((pos = gid))[get_global_id(0)\pos]

or simply:

gid = get_global_id(0) => get_global_id(0) = gid

The other assignments are proved in a similar manner. This leaves us with
the verification of the conditional.
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{ANNOTATION_A}
.
.
.

5 {ANNOTATION_B: ( outofbounds == oob ) ∗(up = pos − width ) ∗(down = pos +
width ) ∗( pos = gid ) }

{ANNOTATION_B && outofbounds}
C − Assignment

10 {( oob∗nextgen [ g id ]==0) | | ( ! oob∗nextgen [ g id]==go l ( g id ) ) }

{ANNOTATION_B && ! outofbounds}
C − Sequence

.
15 .

.
{( oob∗nextgen [ g id ]==0) | | ( ! oob∗nextgen [ g id]==go l ( g id ) ) }

Listing 5.7: 01_SI - conditional

The outofbounds=true arm of the conditional results in the following proof
obligation:

{outofbounds(outofbounds == oob) ∗ (pos == gid) ∗ ....}
nextgen[pos] = 0

{(oob ∗ nextgen[gid] == 0)||....}

The false arm is a similar procedure, except that it demands more substitu-
tions.

5.2.1 Proving the Correctness of the VCs using Permission-
based Separation Logic

Now we have constructed the two VCs as specified by Gordon [14]. With the
Annotations inserted in these VCs, we can combine them with Huisman and
Mihelcics work [20]. According to Huisman and Mihelcic we need two triples,
one for the kernel and one for our thread specification. The kernel specifica-
tion (Kres,Kpre,Kpost) consists of the pre-condition (Kpre) and a postcondition
(Kpost) alongside of Kres, which represents all the resources provided by the
host side to the kernel. The thread specification (Tres, Tpre, Tpost) is quite sim-
ilar to the kernel specification. Only the thread specification is in relation to
every thread. So Tpre and Tpost specify the pre- and postcondtions for each
separate thread. And Tres expresses the global and local recources allocated for
each thread. To prove the correctness of our code, we take the following steps:

1. Check the VC’s against the Thread (Tpre & Tpost used for Annotation_A
and Annotation_C)

2. Check the used variables in the code against Tres

3. Check if the total of (Tres, Tpre, Tpost) for all threads accumulates to (Kres,Kpre,Kpost)

1. Check the VC’s against the Thread

Mihelcic and Huisman proposed

{Tres *Tpre} Kbody{Tpost}
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to be proven correctly by using standard rules for permission-based logic. In
our case we will prove, using Hoare logic, that {Tpre} Kbody{Tpost} is true.
Therefore, we still will have to prove that there are no resource conflicts, which
we will do in step 2.
Above we have checked whether {Tpre} Kbody{Tpost} holds, with help of the
rules provided by Gordon. The next step is checking whether Tres is sufficient.

2. Check the used variables in the VCs against Tres

We will check for resource conflicts by analysing for each used variable whether
the thread has sufficient permissions to access this variable (as stated in Tres).
A check is needed to verify that two threads do not access the same local mem-
ory. The following formula states that if a thread has write permission for each
variable in the local memory, than these accumulated rights will be sufficient to
satisfy all the permissions, for local variables, needed by all the threads together.

* v∈Local Perm(v, 1) -* * ltid∈LTid Tres|loc

Additionally, we will check whether a thread does not has more permissions
than needed in order to keep Tres as minimal as possible.
The code shows that the permissions for all the locations we used in the ker-
nel are correctly allocated in Tres. Moreover, none of the threads share local
memory (on the work group level). We can state that Tres is respected by the
code and that we do not have any resource conflicts on the kernel level. Our
additional check is to see whether Tres is as strict as possible, this is not an
actual requirement for verification, but doing this is more likely to catch pos-
sible faults when a thread accidentally writes to an unintended location. In
our specification Tres is strict. Since we only give permissions to locations used
by the thread. Additionally, write permission is only given if a thread actually
writes to a location.

3. Check if the total of (Tres, Tpre, Tpost) for all threads accumulates to
(Kres,Kpre,Kpost)

At the beginning we have to check if all resources allocated to the kernel are
sufficient for all Tres|glob. Additionally, we have to check if all the preconditions
(Tpre) summate to Kpre. Formally, this can be done by proving the following
formula to be true. Kres&Kpre -* * tid∈Tid (Tres|glob&Tpre)

(In our project, however, this is done in a more informal manner. )
The last check we need to do is checking Tpost against Kpost . We do this by
proving that the disjoint set of al post-conditions for all the threads implicate
Kpost . * tid∈Tid Tpost -*Kpost
Our pre-conditions for both the Thread and the kernel are true, resulting in:

true&Kres -* * tid∈Tid (true&Tres|glob)

Where Tid is a set of natural numbers in the range [0..get_global_size(0)).

* i∈{0..global_size} Perm(next_gen[i], 1) -* * tid∈Tid Perm(next_gen[tid], 1)
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This, of course, is correct. The permissions for board look a bit more compli-
cated. However, the specification on the thread level simply says:

• Iff the thread calculates a cell on the border of the field, it does not need
access to board. This is because we already decided that all cells on the
border die.

• Otherwise we need Perm(board[n], π) with n being the id of all direct
neighbours of the cell represented by this thread.

By specifying Kres to contain * tid∈Tid Perm(board[tid], π) does guarantee this
in the strictest manner.

Checking whether * tid∈Tid Tpost -*Kpost is true requires us to prove the
following:

* i∈{0..gid_size} oob?nextgen[i] == 0 : nextgen[i] == gol(i) -*

* tid∈Tid ((oob ∗ nextgen[tid] == 0)||(!oob ∗ nextgen[tid] == gol(tid)))

5.3 Conclusion
This concludes the verification of our main implementation. Manual verification
of this seemingly simple kernel, even in an informal manner, still requires an
awful lot of writing. Automatic verification and maybe even annotation of
kernels would be preferable if one would want programmers to make verification
of their code a common practice. Since OpenCL kernels usually contain a limited
amount of code, it is natural that a programmer would not want to put a
tedious amount of time in annotation and formally verifying its code. The
catch with OpenCL-code is that it is very profitable to optimize one’s code,
resulting in a complicated code, and introducing possible errors. In the next
chapters we analyse several optimizations of the current implementation; at each
optimization we focus on what we have actually changed in our code, and how
it changes our verification. In those chapters we will explore the possibility of a
"blueprint" for similar optimizations, allowing to speed up manual verification,
and in the future maybe even automatic verification of OpenCL code.
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Chapter 6

Thread Count Optimization

__kernel void kernel (__global unsigned int ∗ nextgen ,
__global unsigned int ∗ board ,
const unsigned int height ,
const unsigned int width )

5 {
int pos , up , down , outofbounds , ne ighbours ;

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )
{

10
outofbounds = ( pos < width ) ;
outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ;
outofbounds |= ( pos % width == 0) ;
outofbounds |= ( pos % width == width−1) ;

15
i f ( outofbounds )

{
nextgen [ pos ] = 0 ;
}

20 else
{
int neighbours = board [ up−1] +board [ up ] +board [ up+1] ;
ne ighbours += board [ pos−1] +board [ pos +1] ;
ne ighbours += board [ down−1] +board [ down ] +board [ down+1] ;

25
nextgen [ pos ] = ( board [ pos ] && neighbours==2) | | ( ne ighbours == 3) ;
}

}
}

Listing 6.1: Thread Count Optimization1

1The fully annotated version can be found in appendix A.2
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6.1 Implementation
In our main implementation we execute a separate thread for the calculation
of the value in every cell. However, this is far from optimal. The overhead for
creating a separate thread for the calculation of each cell is massive. Further-
more, the hardware limitations of a graphics card limit the physical amount
of concurrent executing threads, creating significantly more threads than this
limit, which does not make the application any faster. Another consideration is
that, when using barriers, all the threads in a work group wait for each other
to enter the same barrier. When one would create more threads than the GPU
physically can execute concurrently, it will slow the application down.

Therefore, we have optimized our main implementation to let every thread
process multiple cells. The kernel will automatically calculate which cells it
has to evaluate based on the total amount of threads, the total amount of cells
(width*height) and its (global) thread id. This is illustrated in figure 6.1 and
can be seen in the kernel on line 8. In this illustration we have a field of 2 by
5 cells, a work group size (or global_size) of 5 and we look at the execution of
the thread with the identifier (global_id) 1; First the thread will calculate the
cell at position 1, the next position is at 6 (or global_id+1*global_size), the
next position (global_id+2*global_size) will be out of the range (width*height).
And it is easy to see that the accumulated result of all the threads results in
the calculation of the complete field.

Figure 6.1: Loop for multiple cells per thread

This optimization is commonly used, and it has proven to be possible to
automatically annotate such loops to include the needed loop invariants [12].
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6.2 Verification
The optimization used in this kernel is common and as stated earlier requires
an additional loop invariant to hold true during execution. Bets et al. have
deduced this invariant automatically for several common loops in their tool
chain GPUverify[4]:

• Loops with a constant offset

• Loops with a constant offset and a strided offset (like our implementation)

• Loops where one thread accesses a continues range.

• Looping in powers of two

In our implementation, a loop with a constant offset and a strided offset is
used, we access the following data:

nextgen[global_id+(global_size*n)] where global_id+(global_size*n)
< width*height

In general, the introduction of a loop needs an invariant. In our optimiza-
tion case we use the loop to execute the same task multiple times for different
memory locations and can be seen as the serialization of multiple parallel kernel
executions. Therefore, when we have proven the original kernel to be correct
we have to:

• Define an invariant for the loop and prove it to be correct.

• Adjust Tres to include the additional memory locations.

• Adjust Tpre and Tpost to include the verification of the additional cells

The kernel specification (Kres,Kpre,Kpost) would not need changes and the
following property can be easily proven to be correct as long as the memory
locations, for each cell, in each loop are disjoint.

Kres *Kpre -* * tid∈Tid (Tres|glob *Tpre)

The Loop Invariant

Since our loop has a set offset defined by the identifier of our kernel and a strided
offset based on the work group size, we can define our loop invariant to be of
this form:

( i t e r a t o r − g loba l_id ) % group_size == 0 AND
i t e r a t o r < board_size+group_size

Proving our loop to be correct can then be done in the following fashion:

loop(statement,condition,update) + invariant:

{invariant&condition}body,update{invariant}
___________________________________________
{invariant}loop(body){invariant&!condition}
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The (Tres, Tpre, Tpost)-Triple

To include the additional cells the thread has to calculate in our thread-specification
we can look at our loop invariant, since the loop invariant exactly describes
which cells we access, we can adjust (Tres, Tpre, Tpost) accordingly. For example,
when a thread accesses an array in location tid to write some value it needs
write permission for the location array[tid ]. We can adjust the specification by
replacing tid with something we can deduce from the iterator of the loop. For
example, the write permissions for the cell in 01_SI was:

//@ requires perm(nextgen[gid],1)

With the introduced invariant, it becomes:

//@ requires \forall int i; i>=gid && i<width*height &&
(i-gid)%gid_size==0;perm(nextgen[i],1)

6.2.1 Verification in Relation to 01_SI
When we look at the changes in our kernel (verification) in relation to the
Single Iteration kernel, we can determine a strategy to accomplish an informal
verification with help of the, proven to be correct, Single Iteration kernel. What
we have changed is the statements (Tres, Tpre, Tpost) and the added invariant.
First we look at our loop and its invariant. We have constructed an invariant
by combining the previous Tpost with the boundaries of our iterator. Therefore
we can deduce that the code inside the loop is proven with respect to the Tpost-
part for locations i where i ∈ (tid..pos)&(i%gid_size == 0) with pos being the
iterator. The "iterator part" of our invariant determines the set for which this
will be proven correct. Our iterator starts at pos = tid and increments with
gid_size. The loop condition is pos < width ∗ height. Thus the set of pos(tid)
will be:

{pos|pos = tid + gid_size ∗ n,
n ∈ {0..floor((width ∗ height− 1)/gid_size)}}

The new Tpost is defined as:
// Tpost

// We check a l l the c e l l s t h a t where reached ( s t r i d e d ) by t h i s thread .
// I f we are out of bounds , the c e l l i s always dead . Otherwise the

r e s u l t should be the r e s u l t o f the r u l e s of the Game of L i f e
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e==0;oob ( i ) ==> nextgen [ i ]==0;
5 //@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==> nextgen [ i ]==go l ( i )

Listing 6.2: Thread specification

Since the iterator follows exactly the same values (the set mentioned above)
and we have argued that for all those values for pos (or i) the loop invariant
holds, we can say that our invariant implies Tpost .

To completly prove our optimization we have to prove thatKres&Kpre -* * tid∈Tid

(Tres|glob&Tpre) and * tid∈Tid Tpost -*Kpost still holds. This can be concluded,
in an informal manner, from figure 6.1, where we can see that the optimized
kernel still accesses each location once.
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6.3 Conclusion
Introducing a loop to do the same operation multiple times at several locations
in the memory is quite common practice. We have considered a case where the
locations are:

1. Disjoint and thus, did not depend on each other

2. No barriers were used.

3. All functions dependent on tid were in the loop body.

To apply this optimization at a given kernel one has to define the following:

• Define operation(tid) as the operation inside the loop

• Define pos to be a set containing a range of values dependent on tid. With
the combined set of pos for each new thread being the same as the set of
all tid at the previous implementation.

• Split up (Tres, Tpre, Tpost) (and all annotations) in (Tres, Tpre, Tpost)’ and
(Tres, Tpre, Tpost)tid , with (Tres, Tpre, Tpost)tid being all the thread specifi-
cations that are not disjoint from tid, and (Tres, Tpre, Tpost)’ with all thread
specifications disjoint from tid.

Generally, the specified code will look like this:

Kpre ∗Kres

T ′pre ∗ (Tpre)tid

T ′res ∗ (Tres)tid

.

annotation_pre′ ∗ annotation_pretid

operation(tid)
annotation_post′ ∗ annotation_posttid

.

T ′post ∗ (Tpost)tid

Kpost

We can now change (Tres, Tpre, Tpost)tid to (Tres, Tpre, Tpost)pos, with (Tres, Tpre, Tpost)pos

being the disjoint set with the original specifications but now for all values in
pos.

Now we will have to create an invariant inv, based on pos and on annotation_postpos

and you can include that invariant in the loop around operation(tid). If this
is done correctly, the following will hold:

{inv ∗ loop_condition ∗ annotation_prepos}operation(tid){inv}

We know that (Tpost)tid holds for operation(tid), our invariant holds for all
values of postid and now we have changed the range of (Tpost)tid to (Tpost)tid .
Therefore our kernel is still correct.
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Chapter 7

Barrier Optimization

__kernel void kernel (__global unsigned int ∗ B,
__global unsigned int ∗ A,
const unsigned int height ,
const unsigned int width ,

5 const unsigned int i t e r a t i o n s )
{
int pos , up , down , outofbounds , ne ighbours ;

__global unsigned int ∗ board ;
10 __global unsigned int ∗ nextgen ;

for ( int i =0; i<i t e r a t i o n s ; i++)
{
board = ( i%2==0)?A:B;

15 nextgen = ( i%2==0)?B:A;

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )
{

20
outofbounds = ( pos < width ) ;
outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ;
outofbounds |= ( pos % width == 0) ;
outofbounds |= ( pos % width == width−1) ;

25
i f ( outofbounds )

{
nextgen [ pos ] = 0 ;
}

30 else
{
int neighbours = board [ up−1] +board [ up ] +board [ up+1] ;
ne ighbours += board [ pos−1] +board [ pos +1] ;
ne ighbours += board [ down−1] +board [ down ] +board [ down+1] ;

35
nextgen [ pos ] = ( board [ pos ] && neighbours==2) | | ( ne ighbours == 3) ;
}

}
b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

40 }
i f ( i t e r a t i o n s%2==0)

for ( pos=get_global_id (0) ; pos<width∗ he ight ; pos+=get_globa l_s ize (0 ) )
B[ pos ] = A[ pos ] ;

}

Listing 7.1: Barrier Optimization1

1The fully annotated version can be found in appendix A.3
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7.1 Implementation
In our current (optimized) implementation we still revoke the kernel from the
host for each iteration. After an iteration board and next_gen get swapped
by the host with the clEnqueueCopyBuffer()-command. Using the clEnqueue-
CopyBuffer()-command is already a huge improvement, since it simply swaps
the pointers instead of copying board and next_gen to the host, swap the values
and sending it back. Still, the extra time needed to restart the kernel for each
iteration will accumulate when we are doing millions of iterations. Therefore
an additional speed-up can be achieved by implementing the iteration, and the
swapping, at the kernel. We will use our implementation only on one work
group. This in order to simplify the synchronization between multiple threads.
Since the use of barriers will suffice when using only one work group. How-
ever, when using multiple work groups, synchronization on the host side or with
atomics would be needed. To implement this we have three actions that we now
have to handle on the kernel:
• Iteration.

• Swapping the input and output.

• Guaranteeing that each kernel is working on the same iteration, to prevent
errors. With only one work group, a barrier will suffice.

7.2 Verification
As in the last implementation we have added a for-loop to calculate multiple cells
per thread, this required us to do a similar operation as we have to do for our
new iterator. However, our last implementation expected the operations to be
disjoint, this iterator is swapping the buffers and thus the operations will write
to the same location at several times in the loop. OpenCL offers a method to
prevent data-races in such cases [19]: barriers. Barriers constitute two important
properties. Foremost, when a thread reaches a barrier, the thread will halt until
all the other threads in the work group also reach this point. Secondly, because
of the property that all threads will wait for each other allows us to redistribute
the permissions within the work group. Either on work group memory level,
global level or both. Mihelcic and Huisman describe each barrier with a triple,
similar to the kernel specification. A pre- and postcondition and a specification
of the resources that will specify how the permissions will be redistributed within
the work group. Mihelcic and Huisman proposed the following rules to be true
for barrier verification [20]:
• The global memory from Kres is redistributed over Bres and Bres is not

greater than Kres

Kres -* * tid∈Tid Bres|glob

• The same goes for the local memory within a work group.
* v∈Local Perm(v, 1) -* * ltid∈LTid Bres|loc

• Show that Bpost , restricted by the locations that tid can read, is implied
by Bpre

* tid∈Tid Bpre -* * tid∈T id Bpost |RGPerm(tid)
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For the verification of the barrier implementation, the following needs to be
done:

1. Use the Tpost of the previous implementation to construct the invariant
for the outer loop, in a similar manner as the previous implementation.

2. Add (Bres, Bpre, Bpost)

3. Define new (Tres, Tpre, Tpost) and (Kres,Kpre,Kpost) in a similar manner
as the previous implementation.

7.2.1 Invariant
For our invariant we use a part associated with the iterator:

i >= 0 & i <= iterations

Secondly, we want to prove that all the previously calculated generations are
correct. In our last implementation this was done by checking it for all the val-
ues of our iterator. This is not possible since our operations are not disjoint. For
example, we use the same memory for all our iterations, reading from location
A, writing to B and vice versa. For this we have introduced ghost-variables. A
ghost variable simply refers to the state of a variable at a given time, or in our
case the state of the board at a given iteration. For example,
ghost{A, i}, gives the value of the variable A representing the board at iteration
i, while
ghost{A, 0} describes the state of the board at initialization. Now we have
designed a model method that can calculate the state of a cell at a given gener-
ation. Therefore we have to keep a ghost variable for both A and B, and prove
by induction that each calculated board is correct. We define the method:
goli(n,A) with i being the iteration, A the initial state of the board at iteration
i, and n the location of the cell. The result of the method is the calculated result
for cell n, based on the given parameters, respecting the rules of the Game of
Life.

The state of a cell at a given time can thus be calculated with:

goli(n,A) =


i = 0



outofbounds(A,n) dead

else


(neighbours(A,n) == 2&&
A[n] == alive)||
(neighbours(A,n) == 3) alive
else dead

i 6= 0 gol(i−1)(n, \ghost{A, i− 1})

• With neighbours(A,n) denoting the amount of live neighbours of cell n
given board A. And the function outofbounds(A,n) returning true when
cell n is positioned on the boarder of board A

• We can use nextgen[pos] == gol0(pos,board) as assurance at line 37 of
the kernel shown at the beginning of this Chapter.
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• The invariant at line 18 contains the following formula:

\forall(int i;
i >= gid & i < pos&(i− gid)%gid_size == 0;

nextgen[pos] == goli(pos,board))

The invariant of the outer loop (line 12) contains:

\forall(inti;
i >= gid&i < pos&(i− gid)%gid_size == 0;

\forall(intj;
j >= 0&j < width ∗ height;

nextgen[j] == goli(j,board))

Note that for the outer loop invariant we can check the correct outcome for
the complete board at thread level, this is because of the nature of the barrier.
This shows that the creation of an invariant for a loop in a rather simple looking
kernel can be quite a challenge.

7.2.2 Barrier
For the barrier we defined, we state:

• When a thread reaches the barrier, the next generation for the cells asso-
ciated with the tid of that thread have been correctly calculated. This is
Bpre;

• When the rights are redistributed the two arrays are swapped. The next
generation will become the current generation and vice versa. This is
described in Bres

• Bpost describes that after the barrier it is guaranteed that each cell is one
generation "older".

This is shown in the code as follows:
//Bpre
//@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e==0;oob ( i ) ==> nextgen [ i ]==0;
//@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==> nextgen [ i ]==go l ( i )

5 ba r r i e r (CLK_GLOBAL_MEM_FENCE) ;

//Bres
// f l i p r i g h t s
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==>
10 //@ perm ( ( ( i%2==0)?B:A) [ i−width−1] ,p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i−width

] , p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i−width+1] ,p) ∗∗
//@ perm ( ( ( i%2==0)?B:A) [ i −1] ,p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i +1] ,p ) ∗∗

perm ( ( ( i%2==0)?B:A) [ i+width−1] ,p ) ∗∗
//@ perm ( ( ( i%2==0)?B:A) [ i+width ] , p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i+width

+1] ,p) ∗∗ perm ( ( ( i%2==0)?A:B) [ i ] , 1 )

//Bpost
15 // make sure we c a l c u l a t e d the r i g h t r e s u l t
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//@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; oob (n) ==> nextgen [ n
]==0;

//@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; ! oob (n) ==> nextgen [
n]==go l (n , i )

Listing 7.2: Barrier and the barrier-specification

From our previous implementation, and/or Bpre, we know that when a
thread reaches the barrier all the cells for which the thread is responsible are
correctly calculated. When all the threads have passed the barrier, the rela-
tion between Bpre and Bpost is quite similar to parts of Tpost and Kpost in our
previous implementation. Thus, we can argue that after the barrier, we can
guarantee that the complete board has evolved one generation. The third el-
ement in our barrier specification (Bres) guarantees that we have the correct
right distribution for the next iteration. Moreover, Kres -* * tid∈Tid Bres|glob
still holds.

After the execution of the two nested loops, the correct field is copied to the
array that the host expects the result to be (array B). The postcondition of the
kernel states that that field is the field that was given as input, after iteration-
generations of the Game of Life. For this we use the following statement in the
code, seen in the appendix:

B[pos] == goli(pos,board)

We say that this statement is correct, if the invariant of the outer loop is correct
(and when the copy to field B is done correct).

7.3 Conclusion
The use of a barrier has not led to a general "recipe" for the appliance of barriers,
but it gives us an idea about what to do with loops containing a barrier. Let’s
consider a kernel, with an input and an output buffer, and a correct specification
for that kernel. This kernel is executed multiple times, using one work group,
and each time with the result of the previous execution as input. Then we can
introduce a new kernel, with a loop containing the code from the original kernel
combined with a barrier. When we make sure that this barrier guarantees the
following:

• Bpre contains Tpost of the old kernel.

• Bpost contains Kpost from the old kernel.

• Bres guarantees that the correct right distribution for that specific itera-
tion.

For each iteration we make sure that we use the output from the previous
iteration as input, for example, by using the first buffer for the odd iteration and
the second one for the even iterations. Then by introducing an ghost-variable
for both the input and output, and the old Tpost , we can make an invariant for
the loop. For Kpost one could use the same function, based on Tpost and the
ghost-variables.

The nature of the barrier allows us to eliminate Tpost or use Kpost for Tpost .
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Chapter 8

Localization Optimization

__kernel void kernel (__global unsigned int ∗ nextgen ,
__global unsigned int ∗ board ,
const unsigned int height ,
const unsigned int width ,

5 const unsigned int i t e r a t i o n s )
{
int pos , up , down , outofbounds , ne ighbours ;
__local int cached [ 2 ] [ 1 6 ∗ 1 2 8 ] ;
for ( pos=get_global_id (0) ; pos<width∗ he ight ; pos+=get_globa l_s ize (0 ) )

10 {
cached [ 0 ] [ pos ] = board [ pos ] ;
cached [ 1 ] [ pos ] = nextgen [ pos ] ;
}

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
15 for ( int i =0; i<i t e r a t i o n s ; i++)

{
for ( pos=get_global_id (0) ; pos<width∗ he ight ; pos+=get_globa l_s ize (0 ) )

{
outofbounds = ( pos < width ) ;

20 outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ;
outofbounds |= ( pos % width == 0) ;
outofbounds |= ( pos % width == width−1) ;

i f ( outofbounds )
25 {

cached [1−( i %2) ] [ pos ] = 0 ;
}

else
{

30 neighbours = cached [ i %2][up−1] +cached [ i %2][up ] +cached [ i %2][up+1] ;
ne ighbours += cached [ i %2][ pos−1] +cached [ i %2][ pos +1] ;
ne ighbours += cached [ i %2][down−1] +cached [ i %2][down ] +cached [ i %2][down+1] ;
cached [1−( i %2) ] [ pos ] = ( cached [ i %2][ pos ] && neighbours==2) | | ( ne ighbours==3) ;
}

35 }
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
}

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )
nextgen [ pos ] = cached [ i t e r a t i o n s %2][ pos ] ;

40 }

Listing 8.1: Localization Optimization1

1The fully annotated version can be found in appendix A.5
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8.1 Implementation
Our last optimization is to use the local memory. Using the local memory in
OpenCL usually corresponds to using a physically different kind of memory
(also see fig. 3.1). The local memory is usually significantly faster (and more
expensive, thus smaller) [10]. Local memory cannot be accessed from the host,
so using local memory requires copying at the beginning and the end of the
kernel. One can imagine that those write- and read operations require additional
time, and that using local memory only pays off when a kernel does sufficient
operations on that memory. In our case we use two fields representing the
current state of the board and the state of the board for the next generation.
With millions of iterations to calculate the millionth generation of the Game of
Life, the fields are approximately read 9∗iterations

2 , and iterations
2 times written

to. Therefore, localizing the fields to the work group-level would allow for a
significant speed up. Note that we still use only one work group, therefore it
is possible to use the work group memory. Using multiple work groups could
be possible, but would require us to synchronize the work groups; an operation
that is not implemented in OpenCL with a simple mechanic like barriers. Each
work group would calculate a part of the field, and upon synchronization the
work groups would share the cells on the border of these fields. Another change
in relation to our previous implementation is that, since we are swapping local
memory instead of global memory, we have to use a barrier with a local memory
fence, instead of a global one.

8.2 Verification
We have added two operations to our code:

• Copy the input to the local memory

• Copy the output from local memory to the global memory.

We have replaced all the occurences of the input and output buffer with the
equivalent in the local memory. The changes can be seen as follows:

{Tpre}
copy_to_localmem

{A}
previous_kernel_implementation

{Tpost [local\global]}
copy_to_globalmem

{Tpost}

In this {A} is the assertion that describes that all the data is copied correctly
to the local memory. Now we only have to prove that {Tpre}copy_to_localmem{A}
holds - so that the data is copied correctly, which we can re-use to show that we
have copied the data correctly back. All the other proofs can be re-used from
the previous proof, with the exception that all the accesses to global memory
are substituted by the local cache, and that the barrier uses a local memory
fence.
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8.3 Conclusion
A common approach when optimizing a GPGPU-program is using the fast lo-
cal memory. When we look at this optimization, in relation to the previous
optimizations, we can see the following: provided that the copying to the local
memory happens at the beginning and the end of the kernel, the localization
optimization possibly introduces the least amount of additional proving.
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Chapter 9

Results and Conclusion

We have looked at several implementations and common optimizations of an
OpenCL kernel depicting Conway’s Game of Life. We ran each of the imple-
mentations on a Tesla M2050 graphical card and timed the execution time.
The amount of threads in the initial implementation was equal to the size of
the board (width*height=27 ∗ 24) and we calculated the resulting board after
214 iterations. For our optimizations we used one workgroup, containing 1024
threads. Using a less excessive amount of threads, speeded our application up.
Additionally, we chose for only one work group because that made synchroniza-
tion between threads more feasible. Synchronization between multiple work
groups, would possible force us to synchronize on the host side, and thus force
us to verify the host code (which is out of the scope of this project). Table 9.1
and figure 9.1 shows that we have made 5 implementations. Only four of them
are mentioned in the report, this is because Localization1 did not show the
expected speed up, which we solved in the version described in this thesis. The
list of implementations is as follows:

• Main: This implementation is a simple implementation, which is optimized
in the next implementations. This implementation calculates one iteration
of the Game of Life, and for each cell on the board we need to start a
thread.

• Threadcount: Here we started a less excessive amount of threads, with
each thread being responsible for the calculation of the next generation of
multiple cells.

• Barrier: We have introduced a barrier, allowing us to iterate through
multiple generations of the Game of Life on the kernel side, instead of
invoking the kernel from the host for each iteration.

• Localization: We have copied our buffers to the shared work group mem-
ory. This allowed us to take advantage of the faster memory available for
the work groups on the GPU.
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9.1 Verification

We verified our implementation using permission-based separation logic, with
additional rules exclusively designed for the use with the OpenCL. We annotated
the code with JML in a similar style as used with the VerCors project. The
actual verification was done manually, based on the style described by Gordon.
After the verification of the initial implementation we have looked at the changes
needed in the verification when one would introduce certain optimizations.

9.1.1 Loops

In our first optimization we saw that with the help of a loop we could let a
single thread do the work that in our previous version was done by multiple
threads. Therefore, we had to introduce a loop structure. In our verification
we needed to introduce a loop invariant, which we could base on the thread
post condition from the previous version, known as Tpost . And we needed to
adjust (Tres, Tpre, Tpost) to account for the fact that a single thread would now
be responsible for the work that was previously done by multiple threads. The
problem with this optimization is that we can not guarantee correctness when
the tasks done by the new thread are not originally disjoint.

9.1.2 Barriers

With our barrier implementation we introduced iterations of the Game of Life on
the kernel side. For each iteration we need the result of the previous iteration to
calculate the new field. Since multiple threads are responsible for the calculation
of the complete field, it was necessary to ensure that all the threads are always
working on the same iteration. Therefore we introduced a barrier, along with the
rules needed to verify the barrier. To verify our code we also had to introduce
the use of ghost-variables, since the values stored in the board are overwritten
every other iteration. For the barrier specification (Bres, Bpre, Bpost), we have
adapted (Tres, Tpre, Tpost) to use as (Bres, Bpre, Bpost). Furthermore, we have
used Tpost and Kpost from the previous version, as a base for respectively Bpre
and Bpost .

9.1.3 Localization

For localization we replace all the occurrences of a global buffer with its local
equivalence. In the beginning and the end of the code we copy these values re-
spectively from and to the global memory, protected by a barrier, to make sure
that all the threads have their data copied before we start the "refurbished"
middle of the code, being the old kernel. The verification of this optimization
is rather easy, as long as we can assure that all the threads can access this local
equivalence. When using multiple work groups, this can not always be guaran-
teed, and additional schemes would have to be devised to allow synchronization
of the work groups and synchronization of the data used by the multiple work
groups.
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9.2 Future work
In this thesis we have seen a manual verification of a simple implementation of
Conways Game of Life. We have seen both in this thesis as in the ongoing work
of Huisman, Blom and Mihelcic that formal verification of OpenCL kernels,
is both a possibility and a necessity. This work, even though it is limited to
manual verification of OpenCL code and only using one work group shows that
there might be valuable abstractions to automatically verify optimized OpenCL
code, whilst still guaranteeing the correctness of that specific code. Therefore,
future work should include the automatic verification of OpenCL-code on both
the kernel and host side to provide verification for multiple, synchronizing, work
groups. With a rigid theoretical platform and a tool set, perhaps similar to the
VerCors tool set, the patterns discussed in this thesis could be implemented in
a formally correct manner, and automatic optimization and verification sugges-
tions could be presented to the user of the tool set.

40



Table 9.1: Table shows the execution time of the Kernels in ms
Kernel Initializing Compiling Running Completion

Time Time Time Time Cum.
Main 1 4029 4357 293 8680
ThreadCount 1 3628 252 151 4032
Barrier 0 3913 83 85 4081
Localization1 1 3228 88 121 3438
Localization 1 3248 66 75 3390

Figure 9.1: Speed ups for kernel execution time and total execution time
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Chapter 10

Related work

10.1 GPUVerify
GPUVerify is a tool chain developed by Betts et al. under the CARP project.
GPUVerify is specifically designed for verification of GPGPU programs and can
handle input in the form of OpenCL or CUDA code [4]. For this purpose the
authors devised Synchronous Delayed Visibility semantics, or SDV. Under the
hood, the tool with the help of SDV, translates multiple threads to a sequential
program. GPUVerify allows for thread interleaving, barriers and keeps track of
shared variables. The tool then generates Boogie code that can be verified with
conventional verification tools [9].

With this method GPUVerify is a tool that is fast - and produces a minimal
amount of false negatives - that is still being improved and has been proven to
work on real life examples [8][12].

10.2 Other Verification Work for GPGPU
Current verification methods are based on a range of techniques. Collingbourne
requires an OpenCL kernel with its equivalent in normal C-code [7]. By means of
symbolic execution of both versions it is able to detect errors when the symbolic
value does not match after execution. Additionally, data races are detected by
keeping track of memory access.

Another approach is used by Li and Gopalakrishnan [27]. Li suggested the
tool PUGPARA. The main motivation for creation of this tool is to see diver-
gences between optimized and unoptimized versions of an CUDA kernel. The
tool analyses only one parametrized thread of a kernel. By keeping track of the
(parametrized) operations done by this thread it can infer, with help of a SMT-
solver, what the effects of multiple threads executing identical (parametrized)
operations are, as well as discover possible errors.
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Appendix A

Listing of Kernels

Listing A.1: Main Implementation Kernel
// MODEL VARIABLES
// g t i d i s used as shorthand f o r the unique ( g l o b a l ) thread i d e n t i f i e r .
//@ private model int g t id ;
//@ private represents g t id <− get_global_id (0) ;

5 // g t i d _ s i z e returns the t o t a l amount of threads .
//@ private model int g t id_s i z e ;
//@ private represents g t id_s i z e == get_globa l_s i ze (0 ) ;
// oob stands f o r Out Of Bounds , and t e l l s us whether c e l l i , i s on the

border of the f i e l d .
//@ private model f unc t i on oob ( i ) ;

10 //@ private represents oob ( i ) <− ( i < width ) | | ( i > ( width ∗ ( height −1) ) )
| | ( i % width == 0) | | ( i % width == width−1) ;

// nb , g i v e s the amount of d i r e c t , l i v e neighbours of c e l l i .
//@ private model f unc t i on nb( i ) ;
//@ private represents nb( i ) <− board [ i−width−1]+board [ i−width ]+board [ i−

width+1]+board [ i−1]+board [ i +1]+board [ i+width−1]+board [ i+width ]+
board [ i+width +1] ;

// g o l returns the expected s t a t e of c e l l i , g iven the current board ,
r e s p e c t i n g the r u l e s of the game of l i f e

15 //@ private model f unc t i on go l ( i ) ;
//@ private represents go l ( i ) <− ( board [ i ] && nb( i ) == 2) | | (nb( i ) ==

3)

// THREAD SPECIFICATION
// Tres − resources needed f o r the thread

20 //@ requires perm(width , p) ∗∗ perm( height , p) ;
//@ requires ! oob ( g t id ) ==> perm( board [ gt id−width−1] ,p ) ∗∗ perm( board [

gt id−width ] , p ) ∗∗
//@ perm( board [ gt id−width+1] ,p) ∗∗ perm( board [ gt id −1] ,p ) ∗∗ perm(

board [ g t id +1] ,p ) ∗∗
//@ perm( board [ g t id+width−1] ,p ) ∗∗ perm( board [ g t id+width ] , p ) ∗∗ perm

( board [ g t id+width+1] ,p )
//@ requires perm( nextgen [ g t id ] , 1 )

25
// Tpre − precondi t ions f o r the thread

// The amount of threads must equal the s i z e of the boards
//@ requires ( width∗ he ight ) == gt id_s i z e ;
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;
30

// KERNEL SPECIFICATION
// Kres − resources needed f o r the k e r n e l

// r e q u i r e wri te access to each l o c a t i o n on the output−board , and read
access to each l o c a t i o n of the input−board

//@ requires \ f o r a l l int i ; i>=0 && i <(width∗ he ight ) ; perm( board [ i ] , p )
35 //@ requires \ f o r a l l int i ; i>=0 && i <(width∗ he ight ) ; perm( nextgen [ i

] , 1 )

//@ requires perm(width , p) ∗∗ perm( height , p) ;
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// Kpre − precondtions f o r the k e r n e l
40 // The amount of threads must equal the s i z e of the boards

//@ requires ( width∗ he ight ) == gt id_s i z e ;
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;

45 __kernel void Kernel ( __global unsigned int ∗ nextgen ,
__global unsigned int ∗ board ,

const unsigned int height ,
const unsigned int width )

{
50

int pos , up , down , outofbounds , ne ighbours ;

pos = get_global_id (0) ;

55 // pos −/+ width g i v e s same p o s i t i o n but one row higher / lower
up = pos − width ;
down = pos + width ;

// out of bounds i s when pos i s on an edge
60 outofbounds = ( pos < width ) ; // upper edge

outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge
outofbounds |= ( pos % width == 0) ; // l e f t edge
outofbounds |= ( pos % width == width−1) ; // r i g h t edge

65 // Outofbounds should be c o r r e c t here
//@ assert outofbounds == oob ( g t id )
//@ assert up = pos − width ;
//@ assert down = pos + width ;
//@ assert pos = gt id ;

70
// a l l l i v e c e l l s on the edges die . Period . Therefore , a thread does

not need read permissions f o r a c e l l t h a t i s out of bounds
i f ( outofbounds )
{

nextgen [ pos ] = 0 ;
75 }

else
{

//sum up a l l the neighbours
neighbours = board [ up−1] +board [ up ] +board [ up+1] ;

80 neighbours += board [ pos−1] +board [ pos +1] ;
ne ighbours += board [ down−1] +board [ down ] +board [ down+1] ;

/∗∗ \ b r i e f We play "B3/S23 L i f e "
So a c e l l comes a l i v e when i t has e x a c t l y 2 neighbours .

85 Stays in the same s t a t e when i t has 2 or 3 neighbours .
And d i e s in a l l other cases
∗∗/
nextgen [ pos ] = ( board [ pos ] && neighbours == 2) | | ( ne ighbours == 3) ;

}
90

}

//THREAD SPECIFICATION
// Tpost

95 // i f we are out of bounds , the c e l l i s always dead . Otherwise the
r e s u l t should be the r e s u l t o f the r u l e s of the Game of L i f e

//@ ensures oob ( g t id ) ==> nextgen [ g t id ]==0;
//@ ensures ! oob ( g t id ) ==> nextgen [ g t id ]==go l ( g t id )

//KERNEL SPECIFICATION
100 // Kpost

// Make sure t h a t the c o r r e c t va lue i s c a l c u l a t e d f o r a l l the c e l l s .
//@ ensures \ f o r a l l int i ; i>=0 && i<width∗ he ight ; oob ( g t id ) ? nextgen [ i

]==0: nextgen [ i ]==go l ( i )
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Listing A.2: Thread Count Optimzation Kernel
// MODEL VARIABLES
// g t i d i s used as shorthand f o r the unique ( g l o b a l ) thread i d e n t i f i e r .
//@ private represents g t id <− get_global_id (0) ;
// g t i d _ s i z e returns the t o t a l amount of threads .

5 //@ private represents g t id_s i z e == get_globa l_s i ze (0 ) ;
// oob stands f o r Out Of Bounds , and t e l l s us whether c e l l i , i s on the

border of the f i e l d .
//@ private represents oob ( i ) <− ( i < width ) | | ( i > ( width ∗ ( height −1) ) )

| | ( i % width == 0) | | ( i % width == width−1) ;
// nb , g i v e s the amount of d i r e c t , l i v e neighbours of c e l l i .
//@ private represents nb( i ) <− board [ i−width−1]+board [ i−width ]+board [ i−

width+1]+board [ i−1]+board [ i +1]+board [ i+width−1]+board [ i+width ]+
board [ i+width +1] ;

10 // g o l returns the expected s t a t e of c e l l i , g iven the current board ,
r e s p e c t i n g the r u l e s of the game of l i f e

//@ private represents go l ( i ) <− ( board [ i ] && nb( i ) == 2) | | (nb( i ) ==
3)

// THREAD SPECIFICATION
// Tres − resources needed f o r the thread

15 //@ requires perm(width , p) && perm( height , p) ;
//@ requires \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i )
//@ ==> perm( board [ i−width−1] ,p ) ∗∗ perm( board [ i−width ] , p ) ∗∗ perm(

board [ i−width+1] ,p) ∗∗
//@ perm( board [ i −1] ,p ) ∗∗ perm( board [ i +1] ,p ) ∗∗ perm( board [ i+width

−1] ,p ) ∗∗
//@ perm( board [ i+width ] , p ) ∗∗ perm( board [ i+width+1] ,p ) ∗∗ perm(

nextgen [ i ] , 1 )
20

// Tpre − precondi t ions f o r the thread
// The given s i z e must equal the s i z e of the boards
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;

25 // KERNEL SPECIFICATION
// Kres − resources needed f o r the k e r n e l

// r e q u i r e wri te access to each l o c a t i o n on the output−board , and read
access to each l o c a t i o n of the input−board

//@ requires \ f o r a l l int i ; i>=0 && i<width∗ he ight ; perm( board [ i ] , p )
//@ requires \ f o r a l l int i ; i>=0 && i<width∗ he ight ; perm( nextgen [ i ] , 1 )

30
//@ requires perm(width , 1 ) ∗∗ perm( height , 1 ) ;

// Kpre − precondtions f o r the k e r n e l
// The given s i z e must equal the s i z e of the boards

35 //@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (
int )==(width∗ he ight ) ;

__kernel void Kernel ( __global unsigned int ∗ nextgen ,
__global unsigned int ∗ board ,

40 const unsigned int height ,
const unsigned int width )

{

int pos , up , down , outofbounds , ne ighbours ;
45

// LOOP − c a l c u l a t e s a l l the c e l l s s t r i d e d (amount : g t i d _ s i z e ) and with
o f f s e t g t i d

// the loop i n v a r i a n t c o n s i s t s of two parts :
// 1) Keeping the loop within bounds

50 // pos>=g t i d && pos<width∗ h e i g h t+g t i d _ s i z e && ( pos−g t i d )%g t i d _ s i z e==0
// 2) Assert ing t h a t a l l the c a l c u l a t e d r e s u l t s are c o r r e c t
// \ f o r a l l i n t i ; i>=g t i d && i<pos && ( i−g t i d )%g t i d _ s i z e ==0;oob ( i )?

nextgen [ i ]==0: nextgen [ i ]==g o l ( i )

//@ loop_invariant pos>=gt id && pos<width∗ he ight+gt id_s i z e && ( pos−g t id )
%gt id_s i z e==0 && \ f o r a l l int i ; i>=gt id && i<pos && ( i−g t id )%
gt id_s i z e==0;oob ( i ) ? nextgen [ i ]==0: nextgen [ i ]==go l ( i )

55 for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )
{
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// pos −/+ width g i v e s same p o s i t i o n but one row higher / lower
up = pos − width ;

60 down = pos + width ;

// out of bounds i s when pos i s on an edge
outofbounds = ( pos < width ) ; // upper edge
outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge

65 outofbounds |= ( pos % width == 0) ; // l e f t edge
outofbounds |= ( pos % width == width−1) ; // r i g h t edge

// Outofbounds should be c o r r e c t here
//@ assert outofbounds == oob ( g t id )

70 //@ assert up = pos − width ;
//@ assert down = pos + width ;

// a l l l i v e c e l l s on the edges die . Period . Therefore , a thread does
not need read permissions f o r a c e l l t h a t i s out of bounds

i f ( outofbounds )
75 {

nextgen [ pos ] = 0 ;
}
else
{

80 //sum up a l l the neighbours
neighbours = board [ up−1] +board [ up ] +board [ up+1] ;
ne ighbours += board [ pos−1] +board [ pos +1] ;
ne ighbours += board [ down−1] +board [ down ] +board [ down+1] ;

85 /∗∗ \ b r i e f We play "B3/S23 L i f e "
So a c e l l comes a l i v e when i t has e x a c t l y 2 neighbours .
Stays in the same s t a t e when i t has 2 or 3 neighbours .
And d i e s in a l l other cases
∗∗/

90 nextgen [ pos ] = ( board [ pos ] && neighbours == 2) | | ( ne ighbours ==
3) ;

}
// make sure t h a t the c a l c u l a t e d r e s u l t f o r t h i s c e l l i s c o r r e c t
//@ assert oob ( pos ) ? nextgen [ pos ]==0: nextgen [ pos]==go l ( pos )
}

95 }

//THREAD SPECIFICATION
// Tpost

100 // We check a l l the c e l l s t h a t where reached ( s t r i d e d ) by t h i s thread .
// I f we are out of bounds , the c e l l i s always dead . Otherwise the

r e s u l t should be the r e s u l t o f the r u l e s of the Game of L i f e
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e==0;oob ( i ) ==> nextgen [ i ]==0;
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==> nextgen [ i ]==go l ( i )

105 //KERNEL SPECIFICATION
// Kpost

// Make sure t h a t the c o r r e c t va lue i s c a l c u l a t e d f o r a l l the c e l l s .
//@ ensures \ f o r a l l int i ; i>=0 && i<width∗ he ight ; oob ( g t id ) ? nextgen [ i

]==0: nextgen [ i ]==go l ( i )
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Listing A.3: Barrier Optimization Kernel
// MODEL VARIABLES
// g t i d i s used as shorthand f o r the unique ( g l o b a l ) thread i d e n t i f i e r .
//@ private represents g t id <− get_global_id (0) ;
// g t i d _ s i z e returns the t o t a l amount of threads .

5 //@ private represents g t id_s i z e == get_globa l_s i ze (0 ) ;

// oob stands f o r Out Of Bounds , and t e l l s us whether c e l l n , i s on the
border of the f i e l d .

//@ private represents oob (n) <− (n < width ) | | ( n > ( width ∗ ( height −1) ) )
| | ( n % width == 0) | | ( n % width == width−1) ;

10 // nb , g i v e s the amount of d i r e c t , l i v e neighbours of c e l l n at
i t e r a t i o n i .

//@ private represents nb( i , n ) <− ghostboard ( i ) [ n−width−1]+ghostboard ( i )
[ n−width ]+ghostboard ( i ) [ n−width+1]+ghostboard ( i ) [ n−1]+ghostboard ( i )
[ n+1]+ghostboard ( i ) [ n+width−1]+ghostboard ( i ) [ n+width ]+ghostboard ( i )
[ n+width +1] ;

// g o l returns the expected s t a t e of c e l l n , given the board A and
i t e r a t i o n i , r e s p e c t i n g the r u l e s of the game of l i f e

//@ private represents go l ( i , n ) <− ( ghostboard ( i ) [ n ] && nb( i ) == 2) | | (
nb( i ) == 3) :

15
// ghostboard g i v e s the array r e p r e s e n t i n g the board at a given

i t e r a t i o n
//@ private represents ghostboard ( i ) <− ( i%2==0)?ghost (A, i ) : ghost (B, i ) ;
// ghostnextgen g i v e s array r e p r e s e n t i n g nextgen at a given i t e r a t i o n
//@ private represents ghostnextgen ( i ) <− ( i%2==1)?ghost (A, i ) : ghost (B, i )

;
20

// GHOST VARIABLES
// ghost (A, i ) , ghost (B, i ) r e s p e c t i v l y g i v e the s t a t e of A and B at

i t e r a t i o n i . With ghost (A, 0 )==A && ghost (B, 0 )==B

25
// THREAD SPECIFICATION
// Tres − resources needed f o r the thread

//@ requires perm(width , p) && perm( height , p) ;
//@ requires \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i )
30 //@ ==> perm( board [ i−width−1] ,p ) ∗∗ perm( board [ i−width ] , p ) ∗∗ perm(

board [ i−width+1] ,p) ∗∗
//@ perm( board [ i −1] ,p ) ∗∗ perm( board [ i +1] ,p ) ∗∗ perm( board [ i+width

−1] ,p ) ∗∗
//@ perm( board [ i+width ] , p ) ∗∗ perm( board [ i+width+1] ,p ) ∗∗ perm(

nextgen [ i ] , 1 )

// Tpre − precondi t ions f o r the thread
35 // The given s i z e must equal the s i z e of the boards

//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (
int )==(width∗ he ight ) ;

// KERNEL SPECIFICATION
// Kres − resources needed f o r the k e r n e l

40 // r e q u i r e wri te access to each l o c a t i o n on the output−board , and the
input−board

//@ requires \ f o r a l l int i ; i>=0 && i<width∗ he ight ; perm( board [ i ] , 1 )
∗∗ perm( nextgen [ i ] , 1 )

//@ requires perm(width , 1 ) ∗∗ perm( height , 1 ) ∗∗ perm( i t e r a t i o n s , 1 ) ;

45 // Kpre − precondtions f o r the k e r n e l
// The given s i z e must equal the s i z e of the boards
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;

50 __kernel void Kernel ( __global unsigned int ∗ B, // nextgen
__global unsigned int ∗ A, // board
const unsigned int height ,
const unsigned int width ,
const unsigned int i t e r a t i o n s )
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55 {

int pos , up , down , outofbounds , ne ighbours ;

__global unsigned int ∗ board ;
60 __global unsigned int ∗ nextgen ;

//@ loop_invariant i>=0 && i<=i t e r a t i o n s &&
//@ \ f o r a l l int j ; j>=0 && j<i ;
//@ \ f o r a l l k>=gt id && k<=width∗ he ight+group_size && (k−g t id )%

gt id_s i z e==0 &&
65 //@ ghostboard ( j ) [ k ] == go l ( j , k ) ;

for ( int i =0; i<i t e r a t i o n s ; i++)
{
board = ( i%2==0)?A:B;
nextgen = ( i%2==0)?B:A;

70 //@ assert board = ( i%2==0)?A:B;
//@ assert nextgen = ( i%2==0)?B:A;

//@ loop_invariant pos>=gt id && pos<width∗ he ight+gt id_s i z e && ( pos−
g t id )%gt id_s i z e==0 &&

75 //@ \ f o r a l l int j ; j>=gt id && j<pos && ( j−g t id )%gt id_s i z e==0;oob ( j ) ?
nextgen [ j ]==0: nextgen [ j ]==go l ( i , j )

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )
)

{

// pos −/+ width g i v e s same p o s i t i o n but one row higher / lower
80 up = pos − width ;

down = pos + width ;

// out of bounds i s when pos i s on an edge
outofbounds = ( pos < width ) ; // upper edge

85 outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge
outofbounds |= ( pos % width == 0) ; // l e f t edge
outofbounds |= ( pos % width == width−1) ; // r i g h t edge

// Outofbounds should be c o r r e c t here
90 //@ assert outofbounds == oob ( g t id )

//@ assert up = pos − width ;
//@ assert down = pos + width ;

95
// a l l l i v e c e l l s on the edges die . Period .
i f ( outofbounds )

{
nextgen [ pos ] = 0 ;

100 }
else

{
//sum up a l l the neighbours
neighbours = board [ up−1] +board [ up ] +board [ up+1] ;

105 neighbours += board [ pos−1] +board [ pos +1] ;
ne ighbours += board [ down−1] +board [ down ] +board [ down+1] ;

nextgen [ pos ] = ( board [ pos ] && neighbours == 2) | | ( ne ighbours ==
3) ;

}
110 // make sure t h a t the c a l c u l a t e d r e s u l t f o r t h i s c e l l i s c o r r e c t

//@ assert oob ( pos ) ? nextgen [ pos ]==0: nextgen [ pos]==go l ( i , pos )
}

//Bpre
115 //@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e==0;oob ( i ) ==> nextgen [ i ]==0;
//@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==> nextgen [ i ]==go l ( i )

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

120 //Bres
// f l i p r i g h t s
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//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%
gt id_s i z e ==0;!oob ( i ) ==>

//@ perm ( ( ( i%2==0)?B:A) [ i−width−1] ,p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i−width
] , p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i−width+1] ,p) ∗∗

//@ perm ( ( ( i%2==0)?B:A) [ i −1] ,p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i +1] ,p ) ∗∗
perm ( ( ( i%2==0)?B:A) [ i+width−1] ,p ) ∗∗

125 //@ perm ( ( ( i%2==0)?B:A) [ i+width ] , p ) ∗∗ perm ( ( ( i%2==0)?B:A) [ i+width
+1] ,p) ∗∗ perm ( ( ( i%2==0)?A:B) [ i ] , 1 )

//Bpost
// make sure we c a l c u l a t e d the r i g h t r e s u l t
//@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; oob (n) ==> nextgen [ n

]==0;
130 //@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; ! oob (n) ==> nextgen [

n]==go l (n , i )

}

135 i f ( i t e r a t i o n s%2==0)
for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )

)
B[ pos ] = A[ pos ] ;

}
140

//THREAD
//@ ensures true

//KERNEL
145 //@ ensures

//@ \ f o r a l l int j ; j>=0 && j<i t e r a t i o n s ;
//@ \ f o r a l l k>=gt id && k<=width∗ he ight+group_size && (k−g t id )%

group_size==0 &&
//@ ghostboard ( j ) [ k ] == go l ( j , k ) ;
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Listing A.4: Localization Optimization Kernel - first version
__kernel void Kernel ( __global unsigned int ∗ B, // nextgen

__global unsigned int ∗ A, // board
const unsigned int height ,
const unsigned int width ,

5 const unsigned int i t e r a t i o n s )
{

int pos , up , down , outofbounds , ne ighbours ;

10 // needs the id to span from 0 to h e i g h t ∗width AND a l l to be in the same
memory ( workgroup )

//__local i n t cached [ width∗ h e i g h t ] ;
__local int cached [ 1 6∗ 1 2 8 ] ;

15 for ( int i =0; i<i t e r a t i o n s ; i++)
{
for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )

)
cached [ pos ] = ( i%2==0?A:B) [ pos ] ;

20 ba r r i e r (CLK_LOCAL_MEM_FENCE) ;

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )
)

{
25

// pos −/+ width g i v e s same p o s i t i o n but one row higher / lower
up = pos − width ;
down = pos + width ;

30 // out of bounds i s when pos i s on an edge
outofbounds = ( pos < width ) ; // upper edge
outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge
outofbounds |= ( pos % width == 0) ; // l e f t edge
outofbounds |= ( pos % width == width−1) ; // r i g h t edge

35
// a l l l i f e on the edges die . Period .
i f ( outofbounds )

{
( i%2==0?B:A) [ pos ] = 0 ;

40 }
else

{
//sum up a l l the neighbours
neighbours = cached [ up−1] +cached [ up ] +cached [ up+1] ;

45 neighbours += cached [ pos−1] +cached [ pos +1] ;
ne ighbours += cached [ down−1] +cached [ down ] +cached [ down+1] ;

( i%2==0?B:A) [ pos ] = ( cached [ pos ] && neighbours == 2) | | (
ne ighbours == 3) ;

}
50 }

ba r r i e r (CLK_GLOBAL_MEM_FENCE) ;
}

i f ( i t e r a t i o n s%2==0)
55 for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )

)
B[ pos ] = A[ pos ] ;

}
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Listing A.5: Localization Optimization Kernel
// MODEL VARIABLES
// g t i d i s used as shorthand f o r the unique ( g l o b a l ) thread i d e n t i f i e r .
//@ private represents g t id <− get_global_id (0) ;
// g t i d _ s i z e returns the t o t a l amount of threads .

5 //@ private represents g t id_s i z e == get_globa l_s i ze (0 ) ;

// oob stands f o r Out Of Bounds , and t e l l s us whether c e l l n , i s on the
border of the f i e l d .

//@ private represents oob (n) <− (n < width ) | | ( n > ( width ∗ ( height −1) ) )
| | ( n % width == 0) | | ( n % width == width−1) ;

10 // nb , g i v e s the amount of d i r e c t , l i v e neighbours of c e l l n at
i t e r a t i o n i .

//@ private represents nb( i , n ) <− ghostboard ( i ) [ n−width−1]+ghostboard ( i )
[ n−width ]+ghostboard ( i ) [ n−width+1]+ghostboard ( i ) [ n−1]+ghostboard ( i )
[ n+1]+ghostboard ( i ) [ n+width−1]+ghostboard ( i ) [ n+width ]+ghostboard ( i )
[ n+width +1] ;

// g o l returns the expected s t a t e of c e l l n , given the board A and
i t e r a t i o n i , r e s p e c t i n g the r u l e s of the game of l i f e

//@ private represents go l ( i , n ) <− ( ghostboard ( i ) [ n ] && nb( i ) == 2) | | (
nb( i ) == 3) :

15
// ghostboard g i v e s the array r e p r e s e n t i n g the board at a given

i t e r a t i o n
//@ private represents ghostboard ( i ) <− ghost ( i ) [ i %2];
// ghostnextgen g i v e s array r e p r e s e n t i n g nextgen at a given i t e r a t i o n
//@ private represents ghostnextgen ( i ) <− ghost ( i ) [1−( i %2) ] ;

20

// GHOST VARIABLES
// ghost ( i ) , r e p r e s e n t s cached at generat ion i . With at i ==0, ghost [ i

][0]== board and ghost [ i ][1]== nextgen

25
// THREAD SPECIFICATION
// Tres − resources needed f o r the thread

//@ requires perm(width , p) && perm( height , p) ;
//@ requires \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i )
30 //@ ==> perm( board [ i−width−1] ,p ) ∗∗ perm( board [ i−width ] , p ) ∗∗ perm(

board [ i−width+1] ,p) ∗∗
//@ perm( board [ i −1] ,p ) ∗∗ perm( board [ i +1] ,p ) ∗∗ perm( board [ i+width

−1] ,p ) ∗∗
//@ perm( board [ i+width ] , p ) ∗∗ perm( board [ i+width+1] ,p ) ∗∗ perm(

nextgen [ i ] , 1 )

// Tpre − precondi t ions f o r the thread
35 // The given s i z e must equal the s i z e of the boards

//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (
int )==(width∗ he ight ) ;

// KERNEL SPECIFICATION
// Kres − resources needed f o r the k e r n e l

40 // r e q u i r e wri te access to each l o c a t i o n on the output−board , and the
input−board

//@ requires \ f o r a l l int i ; i>=0 && i<width∗ he ight ; perm( board [ i ] , 1 )
∗∗ perm( nextgen [ i ] , 1 )

//@ requires perm(width , 1 ) ∗∗ perm( height , 1 ) ∗∗ perm( i t e r a t i o n s , 1 ) ;

45 // Kpre − precondtions f o r the k e r n e l
// The given s i z e must equal the s i z e of the boards
//@ requires s i z e o f ( board )==s i z e o f ( nextgen ) && s i z e o f ( board ) / s i z e o f (

int )==(width∗ he ight ) ;

50 __kernel void Kernel ( __global unsigned int ∗ nextgen , //
nextgen

__global unsigned int ∗ board , // board
const unsigned int height ,
const unsigned int width ,
const unsigned int i t e r a t i o n s )

56



55 {

int pos , up , down , outofbounds , ne ighbours ;

// needs the id to span from 0 to h e i g h t ∗width AND a l l to be in the same
memory ( workgroup )

60 __local int cached [ width∗ he ight ] ;

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )
{
cached [ 0 ] [ pos ] = board [ pos ] ;

65 cached [ 1 ] [ pos ] = nextgen [ pos ] ;
}

//Bpre
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight ; ( i%gt id_s i z e==0) ;

cached [ 0 ] [ i ] = board [ i ] && cached [ 1 ] [ i ] = nextgen [ i ]
70 //Bres

// true
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
//Bpost
//@ ensures \ f o r a l l int i ; i>=0 && i<width∗ he ight ; cached [ 0 ] [ i ] = board

[ i ] && cached [ 1 ] [ i ] = nextgen [ i ]
75

//@ loop_invariant i>=0 && i<=i t e r a t i o n s &&
//@ \ f o r a l l int j ; j>=0 && j<i ;
//@ \ f o r a l l k>=gt id && k<=width∗ he ight+group_size && (k−g t id )%

gt id_s i z e==0 &&
80 //@ ghostboard ( j ) [ k ] == go l ( j , k ) ;

for ( int i =0; i<i t e r a t i o n s ; i++)
{

//@ loop_invariant
85

for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 )
)

{

// pos −/+ width g i v e s same p o s i t i o n but one row higher / lower
90 up = pos − width ;

down = pos + width ;

// out of bounds i s when pos i s on an edge
outofbounds = ( pos < width ) ; // upper edge

95 outofbounds |= ( pos > ( width ∗ ( height −1) ) ) ; // lower edge
outofbounds |= ( pos % width == 0) ; // l e f t edge
outofbounds |= ( pos % width == width−1) ; // r i g h t edge

// Outofbounds should be c o r r e c t here
100 //@ assert outofbounds == oob ( g t id )

//@ assert up = pos − width ;
//@ assert down = pos + width ;

105
// a l l l i v e c e l l s on the edges die . Period .
i f ( outofbounds )

{
cached [1−( i %2) ] [ pos ] = 0 ;

110 }
else

{
//sum up a l l the neighbours
neighbours = cached [ i %2][up−1] +cached [ i %2][up ] +cached [ i

%2][up+1] ;
115 neighbours += cached [ i %2][ pos−1] +cached [ i %2][ pos

+1] ;
ne ighbours += cached [ i %2][down−1] +cached [ i %2][down ] +

cached [ i %2][down+1] ;

cached [1−( i %2) ] [ pos ] = ( cached [ i %2][ pos ] && neighbours == 2) | | (
ne ighbours == 3) ;

}
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120 // make sure t h a t the c a l c u l a t e d r e s u l t f o r t h i s c e l l i s c o r r e c t
//@ assert oob ( pos ) ? cached [1−( i %2) ] [ pos ]==0: cached [1−( i %2) ] [ pos]==

go l ( i , pos )
}

//Bpre
125 //@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e==0;oob ( i ) ==> cached [1−( i %2) ] [ i ]==0;
//@ assert \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==> cached [1−( i %2) ] [ i ]==go l ( i )

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

130 //Bres
// f l i p r i g h t s
//@ ensures \ f o r a l l int i ; i>=gt id && i<width∗ he ight && ( i−g t id )%

gt id_s i z e ==0;!oob ( i ) ==>
//@ perm( cached [1−( i %2) ] [ i−width−1] ,p ) ∗∗ perm( cached [1−( i %2) ] [ i−

width ] , p ) ∗∗ perm( cached [1−( i %2) ] [ i−width+1] ,p) ∗∗
//@ perm( cached [1−( i %2) ] [ i −1] ,p ) ∗∗ perm( cached [1−( i %2) ] [ i +1] ,p ) ∗∗

perm( cached [1−( i %2) ] [ i+width−1] ,p ) ∗∗
135 //@ perm( cached [1−( i %2) ] [ i+width ] , p ) ∗∗ perm( cached [1−( i %2) ] [ i+width

+1] ,p) ∗∗ cached [ i %2][ i ] , 1 ) ∗∗
//@ perm( nextgen [ i ] , 1 )

//Bpost
// make sure we c a l c u l a t e d the r i g h t r e s u l t

140 //@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; oob (n) ==> nextgen [ n
]==0;

//@ ensures \ f o r a l l int n ; n>=0 && i<width∗ he ight ; ! oob (n) ==> nextgen [
n]==go l (n , i )

}
145

// copy e v e r y t h i n g to the output , we do not need a barr ier , s ince OpenCL
waits f o r a l l the threads to f i n i s h , b e f o r e the host can read the

r e s u l t
for ( pos = get_global_id (0) ; pos<width∗ he ight ; pos += get_globa l_s ize (0 ) )

nextgen [ pos ] = cached [ i t e r a t i o n s %2][ pos ] ;

150 }

//THREAD
//@ ensures true

155 //KERNEL
//@ ensures
//@ \ f o r a l l int j ; j>=0 && j<i t e r a t i o n s ;
//@ \ f o r a l l k>=gt id && k<=width∗ he ight+group_size && (k−g t id )%

group_size==0 &&
//@ ghostboard ( j ) [ k ] == go l ( j , k ) ;
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Appendix B

Hostcode

Listing B.1: Host code

#include "Main . hpp "

/∗ ============================================================
5

General host code f o r "FORMAL SPECICATION AND VERIFICATION OF OPENCL
KERNEL OPTIMIZATION"

by Jeroen Vonk (2013)

Based on a template by AMD
10 Copyright ( c ) 2009 Advanced Micro Devices , Inc . A l l r i g h t s reserved .

============================================================ ∗/

15 /∗
∗ \ b r i e f Host I n i t i a l i z a t i o n
∗ A l l o c a t e and i n i t i a l i z e memory
∗ on the host . Print input array .
∗/

20 int
i n i t i a l i z e H o s t (void )
{

width = pow(2 ,7 ) ;
input = NULL;

25 output = NULL;
he ight = pow(2 ,4 ) ;

s i z e = width∗ he ight ;

// NOTE: work_size equa ls s i z e when using MAIN IMPLEMENTATION
30 work_size = 1024 ;

i t e r a t i o n s = pow(2 ,20) ;

p r i n ta r r ay = f a l s e ;

35 /////////////////////////////////////////////////////////////////
// A l l o c a t e and i n i t i a l i z e memory used by host
/////////////////////////////////////////////////////////////////
c l_uint s i z e InByte s = s i z e ∗ s i z e o f ( c l_uint ) ;
input = ( c l_uint ∗) mal loc ( s i z e InByte s ) ;

40 i f ( ! input )
{

std : : cout << " Error : ␣ Fa i l ed ␣ to ␣ a l l o c a t e ␣ input ␣memory␣on␣ host \n" ;
return SDK_FAILURE;

}
45

output = ( c l_uint ∗) mal loc ( s i z e InByte s ) ;
i f ( ! output )
{

std : : cout << " Error : ␣ Fa i l ed ␣ to ␣ a l l o c a t e ␣ input ␣memory␣on␣ host \n" ;
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50 return SDK_FAILURE;
}

for ( c l_uint i =0; i<s i z e ; i++)
55 input [ i ] = f a l s e ;

return SDK_SUCCESS;
}

60
/∗∗
∗ Loads a saved game of l i f e .
∗ @return returns SDK_SUCCESS on success and the pat tern f i t s in the

f i e l d and SDK_FAILURE otherwise
∗/

65 int l o adF i e ld (void )
{

std : : s t r i n g const f i l ename = " input . txt " ;

70 std : : i f s t r e am f i l e ( f i l ename . c_str ( ) ) ;
f i l e . i gnore ( 256 , ’ \n ’ ) ;

c l_uint x , y ;

75 std : : cout << " Se t t ing ␣ f o l l ow ing ␣ c e l l s ␣ a l i v e : " << std : : endl ;

while ( f i l e >> x >> y)
{
std : : cout << " ␣␣ " << x << " : " << y << std : : endl ;

80 i f (x>0 && x<width−1 && y>0 && y<height −1) {
input [ x+(y∗width ) ] = true ;

} else {
std : : cout << " Error : ␣ Ce l l ␣ out␣ o f ␣bounds " << std : : endl ;
return SDK_FAILURE;

85 }
}
std : : cout << std : : endl ;

print2DArray ( std : : s t r i n g ( " Input " ) . c_str ( ) , input , height , width ) ;
return SDK_SUCCESS;

90 }

/∗∗
∗ Saves the f i e l d given
∗ @return returns SDK_SUCCESS on success and SDK_FAILURE otherwise

95 ∗/
int saveF i e ld (void )
{

std : : s t r i n g const f i l ename = " output . txt " ;
std : : o f stream f i l e ( f i l ename . c_str ( ) , std : : i o s : : trunc ) ;

100 f i l e << "#L i f e ␣ 1 .06 " << std : : endl ;

for ( c l_uint i =0; i<s i z e ; i++){
i f ( input [ i ] )

f i l e << i%width << " ␣ " << i /width << std : : endl ;
105 }

return SDK_SUCCESS;
}

110
/∗
∗ Converts the contents of a f i l e in to a s t r i n g
∗/

std : : s t r i n g
115 convertToStr ing ( const char ∗ f i l ename )

{
s i ze_t s i z e ;
char∗ s t r ;
s td : : s t r i n g s ;

120
std : : f s t ream f ( f i l ename , ( std : : f s t ream : : in | s td : : f s t ream : : b inary ) ) ;
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i f ( f . is_open ( ) )
{

125 s i z e_t f i l e S i z e ;
f . seekg (0 , std : : f s t ream : : end ) ;
s i z e = f i l e S i z e = ( s i z e_t ) f . t e l l g ( ) ;
f . seekg (0 , std : : f s t ream : : beg ) ;

130 s t r = new char [ s i z e +1] ;
i f ( ! s t r )
{

f . c l o s e ( ) ;
std : : cout << "Memory␣ a l l o c a t i o n ␣ f a i l e d " ;

135 return NULL;
}

f . read ( s t r , f i l e S i z e ) ;
f . c l o s e ( ) ;

140 s t r [ s i z e ] = ’ \0 ’ ;

s = s t r ;
d e l e t e [ ] s t r ;
return s ;

145 }
else
{

std : : cout << "\ nFi l e ␣ conta ing ␣ the ␣ ke rne l ␣ code ( \ " . c l \ " ) ␣not␣ found
. ␣ Please ␣copy␣ the ␣ r equ i r ed ␣ f i l e ␣ in ␣ the ␣ f o l d e r ␣ conta ing ␣ the ␣
executab l e . \ n" ;

e x i t (1 ) ;
150 }

return NULL;
}

/∗
155 ∗ \ b r i e f OpenCL r e l a t e d i n i t i a l i z a t i o n

∗ Create Context , Device l i s t , Command Queue
∗ Create OpenCL memory b u f f e r o b j e c t s
∗ Load CL f i l e , compile , l i n k CL source
∗ Build program and k e r n e l o b j e c t s

160 ∗/
int
i n i t i a l i z eCL (void )
{

c l_ int s t a tu s = 0 ;
165 s i z e_t d ev i c eL i s t S i z e ;

////////////////////////////////////////////////////////////////////
// STEP 1 Getting Platform .
////////////////////////////////////////////////////////////////////

170
/∗
∗ Have a look at the a v a i l a b l e p lat forms and pick e i t h e r
∗ the NVIDIA one i f a v a i l a b l e or a reasonable d e f a u l t .
∗/

175
c l_uint numPlatforms ;
c l_platform_id plat form = NULL;
s t a tu s = clGetPlatformIDs (0 , NULL, &numPlatforms ) ;
i f ( s t a tu s != CL_SUCCESS)

180 {
std : : cout << " Error : ␣Gett ing ␣Plat forms . ␣ ( c lGetPlat formsIDs ) \n" ;
return SDK_FAILURE;

}

185 i f ( numPlatforms > 0)
{

cl_platform_id∗ plat fo rms = new cl_platform_id [ numPlatforms ] ;
s t a tu s = clGetPlatformIDs ( numPlatforms , plat forms , NULL) ;
i f ( s t a tu s != CL_SUCCESS)

190 {
std : : cout << " Error : ␣Gett ing ␣Platform␣ Ids . ␣ (

c lGetPlat formsIDs ) \n" ;
return SDK_FAILURE;

}
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for (unsigned int i =0; i < numPlatforms ; ++i )
195 {

char pbuf f [ 1 0 0 ] ;
s t a tu s = c lGetPlat fo rmIn fo (

p lat fo rms [ i ] ,
CL_PLATFORM_VENDOR,

200 s i z e o f ( pbuf f ) ,
pbuff ,
NULL) ;

i f ( s t a tu s != CL_SUCCESS)
{

205 std : : cout << " Error : ␣Gett ing ␣Platform␣ In fo . (
c lGetPlat fo rmInfo ) \n" ;

return SDK_FAILURE;
}
plat form = plat fo rms [ i ] ;

210 i f ( ! strcmp ( pbuff , "NVIDIA␣Corporat ion " ) )
{

break ;
}

}
215 de l e t e p lat fo rms ;

}

i f (NULL == plat form )
{

220 std : : cout << "NULL␣plat form␣ found␣ so ␣Exi t ing ␣Appl i cat ion . " <<
std : : endl ;

return SDK_FAILURE;
}

225 ////////////////////////////////////////////////////////////////////
// STEP 2 Creating context using the plat form s e l e c t e d
// Context created from type i n c l u d e s a l l a v a i l a b l e
// d e v i c e s of the s p e c i f i e d type from the s e l e c t e d plat form
////////////////////////////////////////////////////////////////////

230

/∗
∗ I f we could f i n d our platform , use i t . Otherwise use j u s t

a v a i l a b l e plat form .
∗/

235 c l_context_proper t i e s cps [ 3 ] = { CL_CONTEXT_PLATFORM, (
c l_context_proper t i e s ) platform , 0 } ;

context = clCreateContextFromType ( cps ,
CL_DEVICE_TYPE_GPU,
NULL,

240 NULL,
&s ta tu s ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣Creat ing ␣Context . ␣ ( clCreateContextFromType )
\n" ;

245 return SDK_FAILURE;
}

////////////////////////////////////////////////////////////////////
250 // STEP 3

// 3.1 Query context f o r the device l i s t s i z e ,
// 3.2 A l l o c a t e t h a t much memory using malloc or new
// 3.3 Again query context i n f o to g e t the array of device
// a v a i l a b l e in the created context

255 ////////////////////////////////////////////////////////////////////

// First , g e t the s i z e of device l i s t data
s t a tu s = clGetContextInfo ( context ,

CL_CONTEXT_DEVICES,
260 0 ,

NULL,
&dev i c eL i s t S i z e ) ;
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i f ( s t a tu s != CL_SUCCESS)
{

265 std : : cout <<
" Error : ␣Getting ␣Context␣ In fo ␣\

␣␣␣␣␣␣␣␣␣␣␣␣ ( dev i ce ␣ l i s t ␣ s i z e , ␣ c lGetContextInfo ) \n" ;
return SDK_FAILURE;

}
270

dev i c e s = ( cl_device_id ∗) mal loc ( d e v i c eL i s t S i z e ) ;
i f ( d ev i c e s == 0)
{

std : : cout << " Error : ␣No␣ dev i c e s ␣ found .\ n" ;
275 return SDK_FAILURE;

}

// Now, g e t the device l i s t data
s t a tu s = clGetContextInfo (

280 context ,
CL_CONTEXT_DEVICES,
d ev i c eL i s tS i z e ,
dev ices ,
NULL) ;

285 i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
" Error : ␣Getting ␣Context␣ In fo ␣\

␣␣␣␣␣␣␣␣␣␣␣␣ ( dev i ce ␣ l i s t , ␣ c lGetContextInfo ) \n" ;
290 return SDK_FAILURE;

}

////////////////////////////////////////////////////////////////////
// STEP 4 Creating command queue f o r a s i n g l e device

295 // Each device in the context can have a
// dedicated commandqueue o b j e c t f o r i t s e l f
////////////////////////////////////////////////////////////////////

commandQueue = clCreateCommandQueue (
300 context ,

d ev i c e s [ 0 ] ,
0 ,
&s ta tu s ) ;

i f ( s t a tu s != CL_SUCCESS)
305 {

std : : cout << " Creat ing ␣Command␣Queue . ␣ ( clCreateCommandQueue ) \n" ;
return SDK_FAILURE;

}

310 /////////////////////////////////////////////////////////////////
// STEP 5 Creating c l _ b u f f e r o b j e c t s from host b u f f e r
// These b u f f e r o b j e c t s can be passed to the k e r n e l
// as k e r n e l arguments
/////////////////////////////////////////////////////////////////

315 i nputBuf f e r = c lCrea t eBu f f e r (
context ,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
s i z e o f ( c l_uint ) ∗ s i z e ,
input ,

320 &sta tu s ) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ c lCr ea t eBu f f e r ␣ ( inputBuf f e r ) \n" ;
return SDK_FAILURE;

325 }

outputBuf fer = c lCrea t eBu f f e r (
context ,

CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
330 s i z e o f ( c l_uint ) ∗ s i z e ,

output ,
&s ta tu s ) ;

i f ( s t a tu s != CL_SUCCESS)
{

335 std : : cout << " Error : ␣ c lCr ea t eBu f f e r ␣ ( outputBuf fer ) \n" ;
return SDK_FAILURE;
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}

340 /////////////////////////////////////////////////////////////////
// STEP 6. Bui lding Kernel
// 6.1 Load CL f i l e , using b a s i c f i l e i /o
// 6.2 Build CL program o b j e c t
// 6.3 Create CL k e r n e l o b j e c t

345 /////////////////////////////////////////////////////////////////
const char ∗ f i l ename = " Kernel . c l " ;
s td : : s t r i n g sourceSt r = convertToStr ing ( f i l ename ) ;
const char ∗ source = sourceSt r . c_str ( ) ;
s i z e_t sou r c eS i z e [ ] = { s t r l e n ( source ) } ;

350
program = clCreateProgramWithSource (

context ,
1 ,
&source ,

355 sourceS i ze ,
&s ta tu s ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
360 " Error : ␣Loading␣Binary␣ in to ␣cl_program␣\

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( clCreateProgramWithBinary ) \n" ;
return SDK_FAILURE;

}

365 // create a c l program e x e c u t a b l e f o r a l l the d e v i c e s s p e c i f i e d
s t a tu s = clBuildProgram ( program , 1 , dev ices , NULL, NULL, NULL) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ Bui ld ing ␣Program␣ ( clBuildProgram )\n" ;
370

// Determine the s i z e of the l o g
s i z e_t l og_s i z e ;
c lGetProgramBuildInfo ( program , dev i c e s [ 0 ] , CL_PROGRAM_BUILD_LOG,

0 , NULL, &log_s i z e ) ;

375 // A l l o c a t e memory f o r the l o g
char ∗ l og = ( char ∗) mal loc ( l og_s i z e ) ;

// Get the l o g
clGetProgramBuildInfo ( program , dev i c e s [ 0 ] , CL_PROGRAM_BUILD_LOG,

log_s ize , log , NULL) ;
380

// Print the l o g
p r i n t f ( "%s\n" , l og ) ;

return SDK_FAILURE;
385 }

// g e t a k e r n e l o b j e c t handle f o r a k e r n e l with the given name
390 kernel = clCreateKerne l ( program , " Kernel " , &s ta tu s ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣Creat ing ␣Kernel ␣ from␣program . ␣ (
c lCreateKerne l ) \n" ;

return SDK_FAILURE;
395 }

return SDK_SUCCESS;
}

400
/∗
∗ \ b r i e f Run OpenCL program
∗
∗ Bind host v a r i a b l e s to k e r n e l arguments

405 ∗ Run the CL k e r n e l
∗/

int

64



runCLKernels (void )
{

410 c l_ int s t a tu s ;
c l_uint maxDims ;
c l_event events [ 2 ] ;
s i z e_t globalThreads [ 1 ] ;
s i z e_t loca lThreads [ 1 ] ;

415 s i z e_t maxWorkGroupSize ;
s i z e_t maxWorkItemSizes [ 3 ] ;

////////////////////////////////////////////////////////////////////
// STEP 7 Analyzing proper workgroup s i z e f o r the k e r n e l

420 // by querying device information
// 7.1 Device Info CL_DEVICE_MAX_WORK_GROUP_SIZE
// 7.2 Device Info CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS
// 7.3 Device Info CL_DEVICE_MAX_WORK_ITEM_SIZES
////////////////////////////////////////////////////////////////////

425

/∗∗
∗ Query device c a p a b i l i t i e s . Maximum

430 ∗ work item dimensions and the maximmum
∗ work item s i z e s
∗/
s t a tu s = c lGetDev ice In fo (

dev i c e s [ 0 ] ,
435 CL_DEVICE_MAX_WORK_GROUP_SIZE,

s i z e o f ( s i z e_t ) ,
(void ∗)&maxWorkGroupSize ,
NULL) ;

i f ( s t a tu s != CL_SUCCESS)
440 {

std : : cout << " Error : ␣Gett ing ␣Device ␣ In f o . ␣ ( c lGetDev ice In fo ) \n" ;
return SDK_FAILURE;

}

445 s t a tu s = c lGetDev ice In fo (
dev i c e s [ 0 ] ,
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
s i z e o f ( c l_uint ) ,
(void ∗)&maxDims ,

450 NULL) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣Gett ing ␣Device ␣ In f o . ␣ ( c lGetDev ice In fo ) \n" ;
return SDK_FAILURE;

455 }

s t a tu s = c lGetDev ice In fo (
dev i c e s [ 0 ] ,
CL_DEVICE_MAX_WORK_ITEM_SIZES,

460 s i z e o f ( s i z e_t )∗maxDims ,
(void ∗)maxWorkItemSizes ,
NULL) ;

i f ( s t a tu s != CL_SUCCESS)
{

465 std : : cout << " Error : ␣Gett ing ␣Device ␣ In f o . ␣ ( c lGetDev ice In fo ) \n" ;
return SDK_FAILURE;

}

c l_uint s i z e_t ;
470

s t a tu s = c lGetDev ice In fo (
dev i c e s [ 0 ] ,
CL_DEVICE_ADDRESS_BITS,
s i z e o f ( c l_uint ) ,

475 (void ∗)&size_t ,
NULL) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣Gett ing ␣Device ␣ In f o . ␣ (
CL_DEVICE_ADDRESS_BITS)\n" ;

480 return SDK_FAILURE;
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}

i f ( work_size>pow(2 , s i z e_t ) )
{

485 std : : cout << " Error : ␣ array ␣ to ␣ big ␣ f o r ␣ t h i s ␣ implementation\n" ;
return SDK_FAILURE;

} else
globalThreads [ 0 ] = work_size ;

490
i f ( s i z e >maxWorkGroupSize ) {

g lobalThreads [ 0 ] = maxWorkGroupSize ;
std : : cout << std : : endl << " Implementation␣ runs ␣on␣maxWorkGroupSize

␣ ( "<<maxWorkGroupSize<<" )\n" ;
}

495 l oca lThreads [ 0 ] = globalThreads [ 0 ] ;

i f ( loca lThreads [ 0 ] > maxWorkGroupSize | |
l oca lThreads [ 0 ] > maxWorkItemSizes [ 0 ] )

{
500 std : : cout << "Unsupported : ␣Device ␣does ␣not␣ support ␣ requested ␣

number␣ o f ␣work␣ items . " ;
return SDK_FAILURE;

}

// Print i n f o
505 pr intDev ice ( ) ;

////////////////////////////////////////////////////////////////////
// STEP 8 Set appropriate arguments to the k e r n e l
// 8.1 Kernel Arg outputBuffer ( cl_mem o b j e c t )

510 // 8.2 Kernel Arg inputBuf fer (cl_mem o b j e c t )
// 8.3 Kernel Arg h e i g h t ( c l_uint )
// 8.4 Kernel Arg width ( cl_uint )
// 8.5 Kernel Arg i t e r a t i o n s ( c l_uint )
////////////////////////////////////////////////////////////////////

515
// the output array to the k e r n e l
s t a tu s = clSetKerne lArg (

kernel ,
0 ,

520 s i z e o f (cl_mem) ,
(void ∗)&outputBuf fer ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ Se t t ing ␣ ke rne l ␣argument . ␣ ( output ) \n" ;
525 return SDK_FAILURE;

}

// the input array to the k e r n e l
s t a tu s = clSetKerne lArg (

530 kernel ,
1 ,
s i z e o f (cl_mem) ,
(void ∗)&inputBuf f e r ) ;

i f ( s t a tu s != CL_SUCCESS)
535 {

std : : cout << " Error : ␣ Se t t ing ␣ ke rne l ␣argument . ␣ ( input ) \n" ;
return SDK_FAILURE;

}

540 // h e i g h t
s t a tu s = clSetKerne lArg (

kernel ,
2 ,
s i z e o f ( c l_uint ) ,

545 (void ∗)&he ight ) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ Se t t ing ␣ ke rne l ␣argument . ␣ ( he ight ) \n" ;
return SDK_FAILURE;

550 }
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// width
s t a tu s = clSetKerne lArg (

555 kernel ,
3 ,
s i z e o f ( c l_uint ) ,
(void ∗)&width ) ;

i f ( s t a tu s != CL_SUCCESS)
560 {

std : : cout << " Error : ␣ Se t t ing ␣ ke rne l ␣argument . ␣ ( width ) \n" ;
return SDK_FAILURE;

}

565 // NOTE: i t e r a t i o n s i s not passed to the MAIN IMPLEMENTATION
// i t e r a t i o n s
s t a tu s = clSetKerne lArg (

kernel ,
4 ,

570 s i z e o f ( c l_uint ) ,
(void ∗)&i t e r a t i o n s ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ Se t t ing ␣ ke rne l ␣argument . ␣ ( i t e r a t i o n s ) \n" ;
575 return SDK_FAILURE;

}
// NOTE: i t e r a t i o n s i s not passed to the MAIN IMPLEMENTATION

////////////////////////////////////////////////////////////////////
580 // STEP 9 Enqueue a k e r n e l run c a l l .

// Wait t i l l the event completes and r e l e a s e the event
////////////////////////////////////////////////////////////////////

std : : cout << std : : endl << "Running␣ f o r ␣ " << i t e r a t i o n s << " ␣
i t e r a t i o n s \n" ;

585
// NOTE: a for−loop i s used in the MAIN IMPLEMENTATION
//

////// f o r ( i n t i =1; i <= i t e r a t i o n s ; ++i ) {
//

590

s t a tu s = clEnqueueNDRangeKernel (
commandQueue ,
kernel ,

595 1 ,
NULL,
globalThreads ,
loca lThreads ,
0 ,

600 NULL,
&events [ 0 ] ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
605 " Error : ␣Enqueueing␣ ke rne l ␣onto␣command␣queue . ␣\

␣␣␣␣␣␣ ( clEnqueueNDRangeKernel ) \n" ;
return SDK_FAILURE;

}

610
// wait f o r the k e r n e l c a l l to f i n i s h execut ion

s t a tu s = c lRe leaseEvent ( events [ 0 ] ) ;
i f ( s t a tu s != CL_SUCCESS)

615 {
std : : cout <<

" Error : ␣Release ␣ event ␣ ob j e c t . ␣\
␣␣␣␣␣␣ ( c lRe leaseEvent ) \n" ;

return SDK_FAILURE;
620 }

////////////////////////////////////////////////////////////////////
// STEP 10 Enqueue readBuffer to read the output back
// Wait f o r the event and r e l e a s e the event

625 ////////////////////////////////////////////////////////////////////
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s t a tu s = clEnqueueReadBuffer (
commandQueue ,
outputBuffer ,
CL_TRUE,

630 0 ,
s i z e ∗ s i z e o f ( c l_uint ) ,
output ,
0 ,
NULL,

635 &events [ 1 ] ) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
640 " Error : ␣ clEnqueueReadBuffer ␣ f a i l e d . ␣\

␣␣␣␣␣␣␣␣␣␣␣␣␣ ( clEnqueueReadBuffer ) \n" ;
return SDK_FAILURE;

}

645 // Wait f o r the read b u f f e r to f i n i s h execut ion
s t a tu s = clWaitForEvents (1 , &events [ 1 ] ) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
650 " Error : ␣Waiting␣ f o r ␣ read␣ bu f f e r ␣ c a l l ␣ to ␣ f i n i s h . ␣\

␣␣␣␣␣␣␣␣␣␣␣␣ ( clWaitForEvents ) \n" ;
return SDK_FAILURE;

}

655 s t a tu s = c lRe leaseEvent ( events [ 1 ] ) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout <<
" Error : ␣Release ␣ event ␣ ob j e c t . ␣\

660 ␣␣␣␣␣␣␣␣␣␣␣␣ ( c lRe leaseEvent ) \n" ;
return SDK_FAILURE;

}

// NOTE: a b u f f e r swap i s used in MAIN IMPLEMENTATION
665

////// i n t error ;
////// error = clEnqueueCopyBuffer (commandQueue , outputBuffer ,

inputBuffer , 0 , 0 , s i z e ∗ s i z e o f ( c l_uint ) , 0 , NULL, NULL ) ;
////// i f ( error != CL_SUCCESS)
//////{

670 ////// s t d : : cout <<
////// " Error : Waiting f o r b u f f e r s to copy . \
////// ( clEnqueueCopyBuffer ) \n " ;
////// return SDK_FAILURE;
//////}

675
// NOTE: a for−loop i s used in the MAIN IMPLEMENTATION

////// } \\ end of the for−loop

680 return SDK_SUCCESS;
}

/∗
685 ∗ \ b r i e f Release OpenCL resources ( Context , Memory e t c . )

∗/
int
cleanupCL (void )
{

690 c l_ int s t a tu s ;

////////////////////////////////////////////////////////////////////
// STEP 11 CLean up the opencl resources used
////////////////////////////////////////////////////////////////////

695
s t a tu s = c lRe l ea s eKerne l ( kernel ) ;
i f ( s t a tu s != CL_SUCCESS)
{
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std : : cout << " Error : ␣ In␣ c lRe l ea s eKerne l ␣\n" ;
700 return SDK_FAILURE;

}
s t a tu s = clReleaseProgram ( program ) ;
i f ( s t a tu s != CL_SUCCESS)
{

705 std : : cout << " Error : ␣ In␣ clReleaseProgram\n" ;
return SDK_FAILURE;

}
s t a tu s = clReleaseMemObject ( inputBuf f e r ) ;
i f ( s t a tu s != CL_SUCCESS)

710 {
std : : cout << " Error : ␣ In␣ clReleaseMemObject ␣ ( inputBuf f e r ) \n" ;
return SDK_FAILURE;

}
s t a tu s = clReleaseMemObject ( outputBuf fer ) ;

715 i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ In␣ clReleaseMemObject ␣ ( outputBuf fer ) \n" ;
return SDK_FAILURE;

}
720 s t a tu s = clReleaseCommandQueue (commandQueue) ;

i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ In␣clReleaseCommandQueue\n" ;
return SDK_FAILURE;

725 }
s t a tu s = c lRe leaseContext ( context ) ;
i f ( s t a tu s != CL_SUCCESS)
{

std : : cout << " Error : ␣ In␣ c lRe leaseContext \n" ;
730 return SDK_FAILURE;

}
return SDK_SUCCESS;

}

735
/∗
∗ \ b r i e f Releases program ’ s resources
∗/

void
740 cleanupHost (void )

{
i f ( input != NULL)
{

f r e e ( input ) ;
745 input = NULL;

}
i f ( output != NULL)
{

f r e e ( output ) ;
750 output = NULL;

}
i f ( d ev i c e s != NULL)
{

f r e e ( dev i c e s ) ;
755 dev i c e s = NULL;

}
}

760 /∗
∗ \ b r i e f Print no more than 256 elements of the given array .
∗
∗ Print Array name f o l l o w e d by elements .
∗/

765 void print1DArray (
const std : : s t r i n g arrayName ,
const unsigned int ∗ arrayData ,
const unsigned int l ength )

{
770 c l_uint i ;

c l_uint numElementsToPrint = (256 < length ) ? 256 : l ength ;
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std : : cout << std : : endl ;
std : : cout << arrayName << " : " << std : : endl ;

775 for ( i = 0 ; i < numElementsToPrint ; ++i )
{

std : : cout << arrayData [ i ] << " ␣ " ;
}
std : : cout << std : : endl ;

780
}

/∗
785 ∗ \ b r i e f Print no more than 256 elements of the given array .

∗
∗ Print Array name f o l l o w e d by elements .
∗/

void print2DArray (
790 const std : : s t r i n g arrayName ,

const c l_uint ∗ arrayData ,
const unsigned int height ,

const unsigned int width )
{

795 i f ( ! p r i n ta r r ay )
return ;

c l_uint x , y ;
c l_uint numElementsToPrint = (256 < length ) ? 256 : l ength ;

800
std : : cout << std : : endl ;
std : : cout << arrayName << " : " << std : : endl ;
for ( y = 0 ; y < he ight ; ++y)
{

805 for ( x = 0 ; x < width ; ++x)
{

std : : cout << ( arrayData [ ( y∗width )+x ] ? "X" : "−" ) ; // << " " ;
}

std : : cout << std : : endl ;
810 }

std : : cout << std : : endl ;

}

815 void printTime ( std : : s t r i n g text ) {
struct t imeval cur ;
gett imeofday(&cur , NULL) ;

long long t1 = ( ( cur . tv_sec ∗1000) + ( cur . tv_usec /1000) + 0 . 5 ) − ( (
de l t a . tv_sec ∗1000) + ( de l t a . tv_usec /1000) + 0 . 5 ) ;

820 long long t2 = ( ( cur . tv_sec ∗1000) + ( cur . tv_usec /1000) + 0 . 5 ) − ( (
s t a r t . tv_sec ∗1000) + ( s t a r t . tv_usec /1000) + 0 . 5 ) ; ;

gett imeofday(&delta , NULL) ;

std : : cout << std : : endl << text << " : ␣ " << std : : endl ;
std : : cout << " ␣␣ de l t a : ␣ " << t1 << " ␣ms" << std : : endl ;

825 std : : cout << " ␣␣ t o t a l : ␣ " << t2 << " ␣ms" << std : : endl ;
}

void pr intDev ice ( ) {
830 char∗ value ;

s i z e_t va lueS i z e ;
c l_uint maxComputeUnits ;

std : : cout << std : : endl ;
835

// p r i n t device name
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_NAME, 0 , NULL, &

va lueS i z e ) ;
va lue = ( char∗) mal loc ( va lueS i z e ) ;
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_NAME, va lueS ize , value

, NULL) ;
840 p r i n t f ( " Device : ␣%s\n" , va lue ) ;

f r e e ( value ) ;
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// p r i n t hardware device vers ion
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_VERSION, 0 , NULL, &

va lueS i z e ) ;
845 value = ( char∗) mal loc ( va lueS i z e ) ;

c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_VERSION, va lueS ize ,
value , NULL) ;

p r i n t f ( " ␣␣Hardware␣ ve r s i on : ␣%s\n" , va lue ) ;
f r e e ( value ) ;

850 // p r i n t sof tware d r i v e r vers ion
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DRIVER_VERSION, 0 , NULL, &

va lueS i z e ) ;
va lue = ( char∗) mal loc ( va lueS i z e ) ;
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DRIVER_VERSION, va lueS ize ,

value , NULL) ;
p r i n t f ( " ␣␣ Software ␣ ve r s i on : ␣%s\n" , va lue ) ;

855 f r e e ( value ) ;

// p r i n t c vers ion supported by compiler f o r device
c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_OPENCL_C_VERSION, 0 ,

NULL, &va lueS i z e ) ;
va lue = ( char∗) mal loc ( va lueS i z e ) ;

860 c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_OPENCL_C_VERSION,
va lueS ize , value , NULL) ;

p r i n t f ( " ␣␣OpenCL␣C␣ ve r s i on : ␣%s\n" , va lue ) ;
f r e e ( value ) ;

// p r i n t p a r a l l e l compute u n i t s
865 c lGetDev ice In fo ( dev i c e s [ 0 ] , CL_DEVICE_MAX_COMPUTE_UNITS,

s i z e o f (maxComputeUnits ) , &maxComputeUnits , NULL) ;
p r i n t f ( " ␣␣ Pa r a l l e l ␣compute␣ un i t s : ␣%d\n" , maxComputeUnits ) ;

}
870

int
main ( int argc , char ∗ argv [ ] )

875 {
// i n i t c l o c k
gett imeofday(&delta , NULL) ;
gett imeofday(&sta r t , NULL) ;

880
// I n i t i a l i z e Host a p p l i c a t i o n

i f ( i n i t i a l i z e H o s t ( ) != SDK_SUCCESS)
return SDK_FAILURE;

885 // Load the f i e l d
i f ( l oadF i e ld ( ) != SDK_SUCCESS)

return SDK_FAILURE;

printTime ( " Hosts ide " ) ;
890

// I n i t i a l i z e OpenCL resources
i f ( i n i t i a l i z eCL ( ) != SDK_SUCCESS)

return SDK_FAILURE;
895

printTime ( " I n i t i a l i z e d ␣CL" ) ;

// Run the CL program
i f ( runCLKernels ( ) != SDK_SUCCESS)

900 return SDK_FAILURE;

printTime ( "Ran␣Kernels , ␣ loaded ␣ r e s u l t " ) ;

905
// Print output array

print2DArray ( "Output : ␣ " , output , height , width ) ;
printTime ( " Pr in t ing " ) ;

910
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// Save the f i e l d
i f ( saveF i e ld ( ) != SDK_SUCCESS)

return SDK_FAILURE;

915
// Releases OpenCL resources
i f ( cleanupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE;

920 // Release host resources
cleanupHost ( ) ;

printTime ( "Done " ) ;

925 return SDK_SUCCESS;
}
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