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Abstract

Graphical modeling has been part of the Computer Science world for quite some time now.
The standard graphical modeling language nowadays is the Unified Modeling Language (UML).
Before 1997 the UML class diagram had one big shortcoming, since there was no way to create
constraints over the values of attributes. That is why UML adopted the Object Constraint Lan-
guage (OCL): OCL enables developers to create textual constraints over the values of attributes.

At the University of Twente, we use GROOVE as a graph-based object oriented verification tool.
GROOVE makes use of a type graph that can be compared to a UML class diagram and so it has
the same shortcoming as the original UML class diagrams had before 1997. In this work, we have
used OCL to represent constraints for GROOVE models. So we have defined transformation
rules from OCL to nested graph constraints, which are then represented in GROOVE logic such
that we are able to define constraints in GROOVE based on OCL syntax. We have validated our
implementation by rebuilding two case studies in both, our implementation and Eclipse OCL.
Both systems accept and reject the same models for a given OCL constraint, and so we showed
that our implementation is in line with the implementation of Eclipse OCL.
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Chapter 1

Introduction

Graphical modeling has been part of the Computer Science world for quite some time now.
Peter Chen was one of the first who investigated ways to create a graphical model of a software
system. In 1976, Chen released his paper about the Entity-Relationship language in [1]. Several
other graphical modeling languages have been derived from the Entity-Relationship language,
one of these languages is the Unified Modeling Language (UML) [2]. Nowadays UML is the
standard object-oriented modeling language.

A graphical modeling language, like UML, enables a software engineer to create a visual model
of a software system. This makes it easier for engineers to have an overview of the system. One
kind of model especially, the class diagram, gives the engineer an overview of which classes exist
and the relations between these classes. The Unified Modeling Language contains many different
kind of diagrams, but in this report we will focus on class diagrams.

Before 1997, it was not possible to add constraints to class diagrams. To overcome this issue,
the Object Constraint Language (OCL) [3] was adopted and included into the UML standard.
OCL is a formal textual language that has been created for defining constraints. Due to the
limited expressiveness of graphical models, it is not possible to visualise a complex constraint
inside a class diagram. So besides the visual UML class diagram, developers also define a set of
textual OCL constraints, which valid instances of the class diagram have to satisfy.

A class diagram on its own can be seen as a graph, in which each node represents a class and
the edges represent associations between classes. An example of a class diagram can be found in
Figure 1.1. In this example, the Employee class is a node, and the association between Employee
and Project is an edge. If you take an instance of this class diagram, in which all the attributes
are initialized and therefore have values, then it is possible to check if the corresponding OCL
constraints are satisfied and therefore if the instance of the class diagram is valid. An example
of such an OCL constraint is: context Employee inv positiveSalary: self.salary >= 0,
which encodes that the salary of all employees has to be positive.

The previous paragraph states that it is possible to encode the state of a system in graphs. Then
it is possible to encode transitions between states of a system with graph transformations. This
is exactly the line of thought that has been used to develop GROOVE [5]. GROOVE stands for
GRaph-based Object-Oriented VErification and is a tool that uses graphs and graph transfor-
mations as a basis for model verification. GROOVE applies a defined graph transformation to
a start graph from where the complete state space of a system is generated and can be verified.
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Figure 1.1: An example of a UML class diagram [4].

1.1 Problem Statement

Currently GROOVE only uses type graphs to enforce constraints throughout the state space. In a
type graph, developers can define types and their attributes (and the types of these attributes).
Such a type graph can be compared with a UML class diagram, and has therefore the same
shortcomings concerning constraints. To overcome these shortcomings, UML has been extended
with OCL; we expect that we can combine GROOVE and OCL.

In [6], Radke et al. transformed OCL constraints to nested graph constraints, similarly we aim
to adopt OCL in GROOVE to represent constraints in GROOVE models.

1.2 Illustration

This section gives an illustration how we have implemented the transformation of OCL to nested
graph constraints in GROOVE.

First of all we start with a type graph in GROOVE, in which we define the types, its attributes
and the associations. For this example we use the type graph defined in Figure 1.2. This type
graph defines four graph types: Employee, Project, Department and the common supertype
Object. Each of the classes has its own attributes and allowed edges, the so-called associations.
For example, class Employee has two attributes (salary and name), and two allowed outgoing
edges (department and project).
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Employee
salary: int

name: string

Department
budget: int

location: string
name: string

Project
budget: int
name: string

Object

WorksOn

WorksIn

Controls ControlsWorksOn

WorksIn

Figure 1.2: GROOVE type graph corresponding to the UML class diagram in Figure 2.3.

Now we can define an constraint. For example, we want to make sure that the salary of all
employees is positive, because a negative salary makes no sense. This can be defined in the fol-
lowing OCL constraint: context Employee inv positiveSalary: self.salary >= 0. This
OCL constraint is defined with the input window that is shown in Figure 1.3.

Figure 1.3: The way to create a new OCL constraint in GROOVE.

After creating the OCL constraint, this constraint is transformed to a nested graph constraint
such that GROOVE is able to check it. The resulting graph is given in Figure 1.4. The layout
of the graph has to be created by hand and is not generated.
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Employee

∀

int π1 = 0
ge = true
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salary π0

@ @
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@

Figure 1.4: The positiveSalary invariant in GROOVE.

1.3 Research Goals

The main goal of our research is the following: evaluate the use of OCL in GROOVE to represent
constraints in GROOVE models, such that constraints are enforced throughout the state space
of a software system.

This should make GROOVE a better verifier because we will be able to ensure that some
behaviour never occurs in the complete state space. Because OCL is way too expressive we will
focus on the OCL fragment that has the same expressive power as first-order logic, this fragment
is called OCLFO. To achieve this we have split up our goal into the following steps:

1. Define transformation rules from OCLFO to nested graph constraints
We have defined transformation rules from OCL to the language used in GROOVE, graph
based semantics. This includes an overview of transformation rules for each OCL operation.

2. Represent graph constraints in GROOVE
We have defined how to represent nested graph constraints in GROOVE, where a nested
graph constraint can consist of multiple graphs, consists a graph in GROOVE always of a
single graph. So we have defined how to represent the multiple graphs of a nested graph
constraint in a single graph in GROOVE.

3. Implement the transformation rules in GROOVE
We have implemented the defined transformation rules in GROOVE, such that we could
use OCL constraints in GROOVE.

1.4 Validation

One of the important aspects research is validation. How are we going to demonstrate that
what we implement accepts the intended valid models? To validate our implementation, the
models including the OCL constraints of two case studies have been rebuilt in both Eclipse OCL
and in our implementation of GROOVE. In this way, we checked if our implementation accepts
and rejects the same models as the existing Eclipse OCL, and validated if our implementation
enforces the constraints correctly. If the implementation works as desired, there should be no
difference between the accepted and rejected models of Eclipse OCL and our implementation.
The following two case studies have been used for validation:

1. USE case study [4], Richters et al. have defined seven basic OCL constraints. Because it
are basic constraints this could be a good starting point for the research.

2. DBLP case study [7], Planas et al. have created a well elaborated case study with 26
unique OCL constraints ranging from basic constraints to more complex constraints.
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Besides these two case studies we have compared the results of some additional OCL constraints.
In this way we have validated the supported OCL operations that were not part of one of the
case studies.

In this thesis we have not looked into the real performance of our implementation. The only
thing we can say about it is that the constraints are transformed almost immediately. After the
transformation we have the same performance as the common graph constraints in GROOVE.

1.5 Report Outline

This document is further structured as follows. Chapter 2 gives the necessary background infor-
mation to understand the transformation rules from OCL to nested graph constraints. Chapter 3
discusses related work regarding transformations of OCL. Chapter 4 defines the OCL fragment
and transformation rules from OCL to nested graph constraints with corresponding equivalence
rules. Chapter 5 explains how a nested graph constraint is represented in GROOVE. Chapter 6
discusses the actual implementation. Chapter 7 validates our GROOVE implementation on the
basis of two selected case studies. Chapter 8 concludes our research.
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Chapter 2

Background

In Section 2.1 propositional logic is explained and in Section 2.2 first order logic, an extension
of propositional logic, is explained. In Section 2.3 the Unified Modeling Language is introduced
and in Section 2.4 extended with the Object Constraint Language. In Section 2.5 the concept of
decidability is explained. In Section 2.6 an introduction to graph theory is given. In Section 2.7
the graph transformation tool GROOVE is introduced and lastly in Section 2.8 the concept of
parsing is explained.

2.1 Propositional Logic

Propositional logic is the simplest logic and provides a way to start reasoning about logic. A
propositional formula consists of propositions that capture a global fact such as, Snow is white.
Such a proposition can be either true or false, but never both. The assignment of true or false
is called the truth value of the proposition. The relations between truth values of propositions
can be found in Table 2.1 and a small example of how to use propositional logic can be found
in Example 1. The symbol ≡ is used to show that two things are equivalent.

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⊕ S2 is true iff S1 ∨ S2 is true and S1 ∧ S2 is false
S1 =⇒ S2 is true iff S1 is false or S2 is true
S1 ⇐⇒ S2 is true iff S1 =⇒ S2 is true and S2 =⇒ S1 is true

Table 2.1: The relations between truth values of propositions.
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Example 1. A propositional logic example where the relations of Table 2.1 are used.

p = it rains
q = it snows

Q = It rains or it snows = p ∨ q
R = It does not rain = ¬p

By combining the propositions Q and R:
R ∧Q ≡ ¬p ∧ (p ∨ q) ≡ (¬p ∧ p) ∨ (¬p ∧ q) ≡ false ∨ (¬p ∧ q) ≡ ¬p ∧ q

Therefore it snows

2.2 First Order Logic

Propositional logic is only able to reason about global facts and not about individuals. First
Order Logic (FOL) extends propositional logic and is able to overcome this shortcoming by
defining a syntax with constants, variables, predicates and quantifiers.

• Constants are values that will not change and so will not contain another value than
defined. For example, the constant True will always evaluate to True.

• Variables are values that can have different values. For example, a boolean variable can
evaluate to True or False.

• Predicates are functions, given one or more input arguments a predicate will evaluate to
True or False. For example, even(x) takes as input a number x and will return True iff x
is an even number.

• Quantifiers, there are two quantifiers:
– Universal, a universal quantifier should be read as "for all" and is denoted as ∀.
– Existential, an existential quantifier should be read as "exists" and is denoted as ∃.

Given a set A of constants, V of variables and P of predicates the FOL syntax is defined as:

t ::= a(∈ A) | x(∈ V )

φ ::= p(t1, ..., tnp) (atomic formula)
φ ::= φ op φ | ¬φ
φ ::= ∀xφ | ∃xφ
op ::= ∧ | ∨ | ⊕ | =⇒ | ⇐⇒

Example 2. A few FOL examples can be found below, given that the domain is natural
numbers, N, and the available predicates on this domain are even, odd and geq (greater than or
equal).

All numbers are even or odd: ∀x(even(x) ∨ odd(x))
If a number is not even then it is odd: ∀x(¬even(x) =⇒ odd(x))

There exists an odd number: ∃x(odd(x))
For every number, there exists a number that is
greater than or equal to this number:

∀x(∃y(geq(y, x))
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2.3 Unified Modeling Language

The Unified Modeling Language (UML) [2] is the standard object-oriented modeling language
and provides a way to create a visualization of the design of a system. The different kinds of
visualizations, called diagrams, can be found in Figure 2.1. In this thesis, we will focus on one
kind of diagram, the class diagram, which is a diagram that shows the structure of a system in
terms of its classes and their relations.

Figure 2.1: An overview of all UML 2.5 diagrams [2].

A class diagram consists of classes and associations between classes. Every class is depicted
as a rectangular box with inside the information of its attributes and methods. An example
of a class that could be found in a class diagram is given in Figure 2.2. This class is called
Employee and contains two attributes: name (which is of type String) and salary (which is of
type Integer). The class contains two methods: getSalary, with no parameters and returns an
Integer and setSalary, which has to be called with one parameter salary, which is an integer, and
returns nothing (void).

Employee
name : String
salary : Integer
getSalary() : Integer
setSalary(salary : Integer) : void

Figure 2.2: A class in a class diagram

An example of a class diagram consisting of both classes and the relations between classes can
be found in Figure 2.3. The relations are depicted as lines between classes. All the relations
in this example are association relations, which include the name of the association and the
multiplicity. For example, the worksIn association between Employee and Department is an
association that goes to both sides. The worksOn association from Employee to Project has a
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multiplicity *, which means that an employee works on 0 or more projects. If the multiplicity
is higher than 1 then we are talking about collections. UML defines four types of collections;
bags, sets, ordered sets and sequences, each with their own characteristics.

Another important relation is the inheritance relation, which is denoted with an arrow head
that points to the most general class. An example of an inheritance relation can be found in
Figure 2.1 where the component diagram inherits from the structure diagram.

Figure 2.3: An example of a UML class diagram [4].

2.4 Object Constraint Language

In the past, UML class diagrams had a shortcoming since it was impossible to add constraints
to variables; for example, there was no way to add a constraint that for every instance of
Employee, the employee should have a positive salary. The Object Constraint Language (OCL)
[3] is a declarative language that describes constraints in the form or rules that apply to UML
models. A few examples of OCL constraints can be found in Example 3.

Example 3. A few OCL examples that add constraints to the class diagram in Figure 2.3. The
comment above the constraint explains what the constraint does.

1 // every department must have a budget of at least 0
2 context Department inv: self.budget >= 0
3

4 // all employees that a project includes must also be included in the
5 // department of this project
6 context Project inv: self.department.employee->includesAll(self.employee)

OCL has a type system that uses seven predefined types and the types that are defined in the
UML class diagram. The seven predefined types, with examples, are:

• OclInvalid, such as, invalid .
• OclVoid, such as null and invalid .
• Boolean, such as true and false.
• Integer, such as −5, 0, 7, etc.
• Real, such as −2.1, 1.5, etc.
• String, such as ”Just a string”.
• UnlimitedNatural, such as, 0, 1, 42, etc.

From the seven predefined types, the null and invalid are interesting values. null occurs if a
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value is not instantiated and therefore still null. invalid occurs if the OCL constraint contains
an operation call on a value that is not instantiated, so an operation call on the null value.

A machine readable definition of OCL 2.0 and upwards is not given in the OCL version speci-
fication. The last machine readable OCL grammar definition is of OCL 1.5 and can be found
in Appendix A (taken from [8]). As it can be seen in the appendix, the grammar definition
does not define the methods that can be used on OCL objects or sets. For example, given the
grammar definition, it is not possible to know if isEmpty() is a method that is part of the OCL
syntax.

2.5 Decidability

The property of decidability means there exists an algorithm that gives the correct answer given
a question. This algorithm has to be executable in a finite amount of time. For example,
decidability can say something whether an OCL constraint is satisfied given an instance of a
UML class diagram. Whether this is decidable or not will be discussed in Section 3.2.

In logic, decidability of a problem tells us if it is possible to determine the correct answer. If
a theory is decidable then there exists an effective method to determine whether an arbitrary
formula is included in or excluded from the theory.

Besides decidable, a theory can also be semidecidable, which is a weaker statement than de-
cidability. A theory θ is semidecidable if there exists an effective method, given an arbitrary
formula φ, that always gives the correct answer if φ is included in θ, but the algorithm may give
no answer at all if φ is not included in θ.

2.6 Graph Theory Introduction

In [9], König et al. have given an introduction about graph transformation, which is used in the
definitions of this chapter, except for the definitions involving (nested) graph conditions, con-
straints and clans. For these definitions, the work of Habel et al. [10] is used. These definitions
are necessary to understand the transformations from OCL to nested graph constraints that will
be explained in Section 3.3.

Graph A graph G is a tuple G = (V,E, s, t, l) where

• V is a set of nodes (or vertices),
• E is a set of edges,
• s: E → V is the source function,
• t: E → V is the target function,
• l: E → L is the labelling function and

L is the fixed set of labels, such that l ∈ L.

Graph morphism Let G, H be two graphs. A morphism ϕ : G→ H is a mapping that maps
a graph to another graph. This mapping uses two functions: one that maps nodes to nodes
(ϕV : VG → VH) and one that maps edges to edges (ϕE : EG → EH). If ϕE maps an edge to an
edge, then there must be a mapping between the source and target nodes of the two edges. A
mapping between the labels is not necessary, because the labels of the graph must be preserved.
This means that for all e ∈ EG the following conditions must hold:

• sH(ϕE(e)) = ϕV (sG(e))
• tH(ϕE(e)) = ϕV (tG(e))
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• lH(ϕE(e)) = lG(e)

Injective morphism A morphism ϕ : G→ H is injective (or one-to-one) if each element in H
is the image of at most one element in G. If ϕ is an injective morphism, it can be denoted as
ϕ = G ↪→ H

Graph gluing consists of combining two graphs (G1, G2) with an intermediate graph I that
has overlap with both G1 and G2. The resulting graph is denoted as G1+I G2. In the literature
graph gluing is also called pushout. An example of graph gluing can be found in Example 4.

Example 4. The following graph gluing example is given in [9], where you can see that the
graphs G1 and G2 are glued to I, which results in G1 +I G2.

Graph transformation rule transforms a graph in two steps, with a morphism for every step.
The first step only removes nodes and edges with morphism ϕL, this morphism is from the
intermediate graph I to the left-hand side graph L. The second step only adds nodes and edges
with morphism ϕR, this morphism is from I to the right-hand side graph R. The two steps
together are denoted as L ϕL←−− I

ϕR−−→ R. The two step technique prevents dangling edges. A
dangling edge is an edge from which the source or the target node has been removed.

Example 5. The following graph transformation example is given in [9]. On the first row the
graph transformation is defined and it is applied on the second row. As you can see on the first
row, ϕL removes an A edge between two nodes and ϕR adds a B edge between those two nodes.
On the second row this transformation rule is applied to graph G. In graph C the A edge is
removed and in graph H the B edge is added.
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Nested graph condition Given a graph G, a (nested) graph condition over G is defined to
be of the form true or ∃(a, c), where a : G → C is a morphism and c is a condition over C.
This means that a nested graph condition is defined recursively. An example of a nested graph
condition is given in Example 6. If the graph condition is built by injective morphisms, then
the graph condition is injective. Graph conditions can be denoted in a more compact form:
∃a abbreviates ∃(a, true) and ∀(a, c) abbreviates ¬∃(a,¬c). Nested graph conditions over the
empty graph ∅ are called nested graph constraints.

Definition 1. To be able to denote nested graph conditions, you need a way to denote the
graph part. Nodes are depicted as rectangles: v:T , in which v is the node name and T is its
type. If we are talking about a set of nodes, for example {u, v}, then the node is depicted as
u=v:T which says that the node of type T has both the names u and v. Edges are drawn
by arrows from the source node to the target node and their labels are put on top of the edge,
such as v:T l−→ u:T . If a node contains an attribute, this is depicted as an additional node with
the name of the attribute as the label of the edge. For example, if an instance of type T has
an attribute budget with the value 1, this is depicted as: v:T budget−−−−→ 1:int . Operations are
depicted as a relation between two nodes, the symmetrical equality operations, eq ∈ {=, <>}
are depicted as: v:T eq v’:T’ . The asymmetrical compare operations, op ∈ {<,≤,≥, >} are
depicted as: v:T

op
−−→ v’:T’ . For example: v:T ≥−→ v’:T’ means that v:T is greater or equal

than v’:T’ .

Example 6. Below we will give an example of a nested graph constraint and with an example
we show when the condition is satisfied and when it is not satisfied. The following nested graph
condition, which can be applied on the class diagram, given in Figure 2.3, checks if all budgets
are positive integers.

∀(∅ → self:Department , ∃( self:Department → ( self:Department budget−−−−→ v:int ≥ 0:int )))

An instance of the class diagram is given in Figure 2.4. For this instance there exists a morphism
from every morphism that is part of the nested graph condition to the instance graph, therefore
the instance graph matches the condition. So the condition is satisfied, because every node of
the type Department contains a budget that is greater or equal to 0. If one of the department
instances had a negative budget then there would not exist a morphism from the nested graph
constraint to the instance graph, therefore there would be no matching and the condition would
not be satisfied.

Department
budget = 500

Employee
name = ’Patrick’

salary = 1

Department
budget = 10

Project
budget = -2

employee

department

employee

Figure 2.4: An instance of the class diagram in Figure 2.3.

Lax Condition Lax conditions are introduced by Radke et al. in [11]. Lax conditions are
based on nested graph conditions. The big difference is that the morphisms are replaced with
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graphs. This is allowed because the morphisms of the nested graph constraints do only extend
the source morphism graph.To achieve this, the domain of the morphisms is removed and only
the resulting graphs of a morphism are used. Therefore a lax condition is of the form true or
∃(C, c), where C is a graph and c is true or another lax condition. For a more compact notation
∃(C) abbreviates ∃(C, true).

Lax conditions are based on nested graph constraints. To make the connection between those
two more clear we will give a small example. Let C1, C2 and C3 be graphs for which C2 ⊆ C1

holds. On the left side the nested graph constraint is given and on the right side the lax condition
is given:

∀(∅ → C1,∃(C2 → C3, true)) ≡ ∀(C1,∃(C3))

Clan Given a node v, clan(v) is the set of all supertypes of v, including the type of v itself.

Example 7. The class diagram in Figure 2.3 does not contain inheritance. So for this
example we will use the class diagram in Figure 2.5. In this example clan( v:B ) = {B,A} and
clan( v:A ) = {A}.

A

B

Figure 2.5: A small class diagram that contains inheritance to support Example 7.

clan-disjoint (union) Two graphs C1 and C2 are clan-disjoint if the clans of the types of C1

and C2 are disjoint, so if clan(C1) ∩ clan(C2) = ∅. The union of two clan-disjoint graphs is
denoted as C1 + C2.

Example 8. To give an example of a clan-disjoint union we will use the class diagram given in
Figure 2.3.

Let C1 = e:Employee and C2 = d:Department

Then clan(C1) = {Employee} and clan(C2) = {Department}
clan(C1) ∩ clan(C2) ≡ {Employee} ∩ {Department} = ∅
So C1 and C2 are clan-disjoint and thus the clan-disjoint union is allowed

C1 + C2 = e:Employee d:Department

C1 + C2 is one graph consisting of two nodes.

2.7 GROOVE

GROOVE [5] is one of the many existing graph transformation tools, other existing tools are
Henshin [12], GReAT [13] and even more can be found in [14]. GROOVE stands for GRaph-
based Object-Oriented VErification and is developed at the Formal Methods and Tools research
group at the University of Twente. As the name suggests, the main goal of the tool is to support
model checking of object-oriented systems by using graph transformations. States are encoded
in graphs and transitions between states are encoded with graph transformations. GROOVE
is able to use graph transformations to generate the state space that can be used for model
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checking. This combination makes GROOVE an interesting tool that combines the areas of
model checking and graph transformations.

GROOVE does not follow all the predefined definitions completely. First the edges in GROOVE
are defined as a tuple of its source, label and target function. This has as a result that if two
edges have the same source, label and target then GROOVE treats it as one edge and thus
duplicate edges cannot exist. Second in the definition of morphisms we stated that morphisms
have to preserve all the labels. This is true in GROOVE with the exception of type labels, in the
case of type labels it is allowed to have a label that is of a subtype, as defined in the type graph.
If this is not the desired behaviour, then you can use sharp typing. This is done by prepending
a hashtag (#) to the type label and this label has to be preserved by any morphism.

Within GROOVE it is possible to define operations on values of primary attributes with the so
called product nodes, these are depicted as diamonds in graphs. The rule graph in Figure 2.7
contains such a product node. In this example we make use of the ge product, that stands for
greater than or equal, π0 and π1 are the two input parameters and thus the operation should be
read as: π0 ≥ π1 which should evaluate to true. Besides basic compare operations, GROOVE
has support for more complex operations such as calculating the minimum or maximum value,
given a set of numbers. These operations are called bigmin and bigmax.

The quantifiers in GROOVE have an additional role, these quantifiers are also used to encode
logical and (∧) and or (∨) operations. Two incoming in edges at an existential quantifier encode
the ∧ operator and two incoming in edges at a universal quantifier encode the ∨ operator.
Figure 2.6 gives an example of two incoming in edges at a universal quantifier and so it encodes
the logical or operation.

In [15], Rensink describes with formal definitions how it is possible to represent first-order logic
with graphs. This theory is applied within GROOVE.

∃ ∀

∃

∃

A

B

C

in

in
in

@ @

@

Figure 2.6: The way to encode ∃( A ,∃( B ) ∨ ∃( C )) in GROOVE.

Example 9. At the moment we have not shown how to rewrite an OCL constraint to a nested
graph constraint. For now we assume that context Department inv: self.budget >= 0 cor-
responds to ∀( self:Department , ∃( self:Department budget−−−−→ v:int ≥ 0:int )). Now we can
apply the next step, converting the nested graph constraint to GROOVE, resulting in the graph
given in Figure 2.7, this constraint will only apply if all departments have a budget that is
greater than or equal to 0. Figure 2.8 gives an instance model, this model does satisfy the given
constraint because there exists a morphism from the given nested graph condition to this model.
If one of the departments had a negative budget, then the morphism would not exist and thus
the model would not satisfy the condition.
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Department

∀

int
π1 = 0

ge = true

∃

budget

@@

π0

in

@

Figure 2.7: The rule graph that corresponds to: context Department inv: self.budget >= 0.

Department
budget = 500

Employee
name = ’Patrick’

salary = 1

Department
budget = 10

Project
budget = -2

employee

department

employee

Figure 2.8: An instance model where every department has a positive budget.

2.8 Parsing

Parsing is the process that takes text as input and builds a data structure, which is often some
kind of parse tree, Concrete Syntax Tree (CST) or Abstract Syntax Tree (AST). A CST is an
ordered, rooted tree that represents the syntactic structure of the textual input according to
some grammar. An AST is a more compact form of the CST, since in most cases parsing results
in a CST and then users are able to create their own AST. In our case, the OCL constraints
will be the textual input and the syntax tree should represent the syntactic structure according
to the OCL definition, which can be found in Appendix A.

A parser for a given language does not always exist. If the parser does not exist yet then there
are two ways to create it: by developing it by hand or by generating it with a parser generator.

Given a defined grammar, a parser generator is able to generate the source code of a parser that
can parse the input that satisfies the defined grammar. In most cases, using a parser generator
takes less effort than developing a complete parser by hand. So using a parser generator is the
recommended way to obtain a parser.

A few examples of parser generators are: ANTLR [16], YACC [17] and SableCC [18], but there
are many more. In this thesis we will use SableCC because the OCL grammar already exists for
SableCC [19], which is not the case for the other parser generators.
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Chapter 3

Related Work

In the past there has been some research about transforming OCL constraints to a different
logic such that it is easier to reason about these constraints. In this related work section, the
different approaches to transform OCL constraints are discussed.

3.1 OCL to FOL

In [20], Beckert et al. present a way to transform a UML class diagram with corresponding OCL
constraints into FOL. The transformation of the OCL constraints depends on the transformation
of the UML class diagram. The transformation of a class diagram consists of three parts, where
each part creates its own axioms. Additional axioms may be added during the OCL constraint
transformations, but this depends on the OCL constraints. The three parts that create axioms
are:

1. A part independent of the class diagram that contains the abstract data types and abstract
data collection types. Examples are Integers, Booleans, Sets and Bags.

2. The inter-dependencies among the function and relation symbols that can be extracted
from the class diagram, for instance, the symmetrical aspects of associations in the class
diagram. If we apply this to the association WorksIn of our class diagram in Figure 2.3,
this will result in the following three axioms:
∀e : Employee ∀d : Department(d ∈ department(e) ⇐⇒ e ∈ employees(d))
∀e : Employee ∀d : Department(d ∈ department(e) ⇐⇒ worksIn(e, d))
∀e : Employee ∀d : Department(e ∈ employees(d) ⇐⇒ worksIn(e, d))

3. The axioms that represent the restrictions on system states in the class diagram, such as
the multiplicity constraints and subtyping restrictions.

In the last section of [20], a start is given to get rid of the additional axioms at the OCL
transformation part. This topic is not explained in the paper and only a reference to another
paper is given, but sadly this paper cannot be found anymore and we were not able to make
contact with the author, therefore this explanation is missing.

3.2 OCL to Relational Algebra

In [21], Franconi et al. have proved that in full OCL, checking whether an OCL constraint is
satisfied in an arbitrary UML diagram is not decidable, and not even semidecidable. This means
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that it is possible to have an arbitrary model of which we do not know if it satisfies the OCL
constraint.

The proof that OCL is not semidecidable is based on the problem of word acceptance in a type-0
grammar. In this problem, it is checked whether a word is produced by a type-0 grammar or not,
and exactly this is undecidable. Since it is possible to define the problem of word acceptance
in an OCL constraint, it is possible to create an undecidable OCL constraint, therefore OCL is
undecidable. Thereafter to prove non semidecidability the type-0 acceptance problem is reduced
to checking whether some word is not produced by the type-0 grammar. This can be defined by
negating the undecidable OCL constraint and therefore OCL is even non-semidecidable. The
full proof can be found in [21].

Given this knowledge, we know that it is not possible to transform an arbitrary OCL constraint
to a nested graph constraint. In [21], Franconi et al. have identified an OCL fragment that has
the same expressiveness as FOL. This fragment is called OCLFO and its syntax can be found in
Appendix B. The OCLFO fragment has the following limitations:

1. Operations that are not FOL are not part of the OCLFO syntax, such as, (i) operation
closure, or (ii) aggregation functions as count. With respect to (i) Closure, or better
known as transitive closure has the transitivity property, to encode this in FOL you will
need an infinite formula to be able to encode all possible options of transitivity, which
makes it impossible. With respect to (ii), it is possible to use the function Size and
compare the size of a set with a fixed integer. Because of the fixed integer you know
exactly the size of the FOL formula. However it is not possible to compare the size of two
sets because this will result, again, in a possible infinite formula.

2. The following operations are kept out of the syntax of OCLFO, even though these oper-
ations can be transformed to FOL. The reason Franconi et al. gave is that their OCLFO

fragment is based on two case studies, DBLP[7], and osCommerce [22], in neither of them
there exists an OCL constraint that uses one of the following operations:

• let ... in
• if ... then ... else ... endif
• including
• excluding

Besides giving a proof that full OCL is not semidecidable and defining the OCLFO fragment,
[21] gives a transformation from OCLFO to relational algebra. However, the paper does not give
a full description of how to transform OCLFO to relational algebra, since the transformation is
only given in short pieces of pseudocode.

3.3 OCL to Nested Graph Constraints

In [23], Arendt et al. have made a beginning of transforming core OCL constraints to nested
graph constraints. Although the definition of the core OCL fragment is not given in the paper,
we can deduce the definition from the rewrite rules and determine in this way which operations
are considered to be part of the core OCL fragment. One of the limitations is that of all the
available collection types within OCL, only the set collections are considered, and only the
following boolean-typed set operations are allowed: isEmpty, notEmpty, exists and forAll.

In [6], Radke et al. have extended the work in [23] in which they have focused on set operations
like select, collect, union and size. The complete list of transformation rules can be found
in Appendix C. Besides the transformation rules, Radke et al. have defined some equivalence
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rules to make the nested graph constraint more compact, which results in a constraint that is
easier to read and understand. Radke’s equivalences rules can be found in Appendix C.1.

In our research, a broader fragment of OCL will be addressed. To be more specific, we have
tried to create transformation rules for the OCLFO fragment, including the operations that [21]
kept out of the fragment, so that it results in a more complete set of transformation rules that
can handle all OCL constraints that are FOL compatible.
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Chapter 4

Transforming OCL constraints to
graphs

In this chapter, we explain our proposal for transforming OCL constraints to nested graph
constraints. First in Section 4.1 the OCL fragment supported by our transformation is given
and in Section 4.2 we focus on the collection type. In Section 4.3 we explain why we match
non-injectively. Finally, in Section 4.4, our transformation and equivalence rules are given, and
in Section 4.5 we focus on our contribution and changes relative to the transformation rules of
Radke et al. given in Appendix C.

4.1 OCL fragment

It is known that full OCL is non-semidecidable, as discussed in Section 3.2. We decided to select
a fragment of OCL that is decidable because our transformation should be consistent with the
existing first-order logic semantics.

In [24], Noten et al. have performed an empirical research based on 9188 OCL constraints gath-
ered from 504 EMF (Eclipse modeling Framework) metamodels in 245 systematically selected
GitHub repositories. Based on all the gathered data, two figures are created, which can be found
in Figure 4.1. By analysing these figures, we can conclude that there are 3 most common OCL
constructs and the others appear much less often. One of these constructs is an operation call,
which is split in the top 25 operation calls in Figure 4.1b.
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(a) Frequency of OCL constructs.
(b) Frequency of top 25 operations.

Figure 4.1: Empirical research results of [24].

OCLFO is defined in Appendix B and contains the part of OCL that can be transformed to
relational algebra, which in turn is known to be equivalent to (domain-independent) first-order
logic [21]. Through the empirical research in [24], we know which syntax types and operation
calls of OCL have been used most often in the considered case studies. By comparing the OCLFO

fragment with the results of the empirical research, it is possible to conclude that 21 of the top
25 operations are part of the OCLFO fragment. The following four operations are not part of
the OCLFO fragment:

• oclAsSet: converts a non-collection value to a collection value.
• at: has the following two implementations:

– Returns the i-th element of the sorted list.
– Returns the character of the string at position i.

• oclIsUndefined: returns true if self is equal to invalid or equal to null.
• conformsTo: is a double type check, it checks both the collection and the elements in that

collection. For example, Set(Bicycle) conforms to Collection(Transport), is true if
set is a subtype of Collection and Bicycle is a subtype of Transport.

It would be useful to extend the OCLFO fragment with these four operations, such that the
fragment contains the top 25 most used OCL operations, according to the empirical research.
We will indicate for each operation if it is possible to extend the OCLFO fragment with the
operation or why it is not possible.

• oclAsSet will be included in the OCLFO fragment.
• at has two implementations but the OCLFO fragment will not be extended with either of

them because:
– The collections we will focus on in graphs do not have any kind of ordering, so there

is no i-th element. The restriction on collection types will be explained in Section 4.2.
– Within GROOVE it is not possible to do a substring or character selection operation

on a string and therefore we will not be able to implement it.
• oclIsUndefined is not possible to include because it is not possible to encode the invalid

part since it is unknown which part of the expression is invalid. Therefore we will not
include this operation in the OCLFO fragment.

• conformsTo is not possible to include because it type checks on two levels: the type of
the elements within the set and the type of the collection itself. Since we do not have a
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type hierarchy of collection types it is not possible to implement this operation.

4.2 Collection types

UML defines four types of collections; bags, sets, ordered sets and sequences, each with their
own characteristics. In graphs, it is much more difficult to differentiate these collection types.
For example, ordered sets and sequences encode some sort of ordering in their collections, but
since graphs do not represent any sort of ordering, it is not straightforward to encode these
collections in graphs.

The difference between bags and sets is that all elements in a set are unique and thus that bags
may have duplicate elements. The difficulty lies in creating a collection in a GROOVE graph
with duplicate elements because creating two edges with the same names between two nodes has
the same effect as creating one edge. This behaviour of a GROOVE graph is different from the
behaviour of a graph defined in Section 2.6. To be able to encode bags you will need additional
nodes in between types to represent the ’slots’ of a bag, which would result in something like
Figure 4.2. Creating a bag collection is more difficult than creating a set collection, so bags are
not often represented in graphs. So in this thesis we will focus on the set collection type.

Bag Element

Slot1

Slot2

item

item

value

value

Figure 4.2: Representing a bag in a graph.

4.3 Injective matching

In [11], Radke et al. have defined that the matching should always happen injectively. This
means that the found morphism from a nested graph constraint to an instance graph, as discussed
as the matching in Example 6 in Section 2.6, should be an injective morphism.

Matching injectively makes some transformation rules easier and others more complex. For
example transformation rule xviii (expr1.attr1 op expr2.attr2) in Appendix C will become
easier. The part before the ∨ is necessary because Radke et al. match injectively. If you match
non-injectively the part before the ∨ can be removed and the rule embodies the same constraint.
On the other side if we take a look at transformation rule xiv (expr->size()) in Appendix C.
This transformation rule will become more complex because this rule works based on the concept
that the matching is injective. If you stop matching injectively, you have to add the constraint
that every node has to be different from each other. Otherwise every vi could be matched to
one and the same node, which is not the intention.

We are going to change from matching injectively to matching non-injectively, this reduces the
complexity of multiple transformation rules and only increases the complexity of one transfor-
mation rule, the transformation of the size() operation. This will result in some changes in
transformation rules, as will be discussed in Section 4.5.
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4.4 Transforming OCL to Lax Conditions

In [11], Radke et al. have defined transformation rules to transform OCL constraints to nested
graph constraints in the format of lax conditions. We have used their definitions as a starting
point and have continued by improving and extending their definitions. The complete overview
with all our transformation rules is given in Section 4.4.1 and our equivalences are given in
Section 4.4.2. The transformation rules are categorized in the following four types of transfor-
mations:

1. Invariant transformation trI , this category is the starting point of a transformation and
transforms the complete OCL invariant.

2. Expression transformation trE , this category transforms boolean expressions, such as com-
parisons.

3. Navigation transformation trN , this category is responsible for creating the path to the
variable that is created in a previous transformation. To be able to create this connection
to an existing variable, this category has as input the remaining OCL expression and the
existing variable.

4. Set transformation trS , this category is responsible for navigation expressions of sets, so
this category has the same input parameters as the previous category.

4.4.1 Transformation Rules

Let expr, expr1 and expr2 be OCL expressions, v, v‘ names of nodes (i.e. variables), T = t(v)
denotes the type of v and likewise T‘=t(v‘), attr1 and attr2 be attribute names, eq ∈ {=, <>},
op ∈ {<,≤,≥, >} a comparison operator, attr be an attribute of a class and N a constant value.

Group # OCL Nested Graph

trI
1 context C inv: expr ∀( self:C , trE(expr))
2 context var:C inv: expr ∀( var:C , trE(expr))

trE

3 True True
4 not expr ¬trE(expr)
5 expr1 and expr2 trE(expr1) ∧ trE(expr2)
6 expr1 or expr2 trE(expr1) ∨ trE(expr2)
7 expr1 xor expr2 (trE(expr1) ∨ trE(expr2)) ∧ ¬(trE(expr1) ∧ trE(expr2))
8 expr1 implies expr2 trE(expr1) =⇒ trE(expr)
9 if cond then expr1 else expr2

endif
(trE(cond) ∧ trE(expr1)) ∨ (¬trE(cond) ∧ trE(expr2))

10 expr = null trE(expr->isEmpty())
11 expr <> null trE(expr->notEmpty())
12 expr1 eq expr2

t(expr1)=t(expr2)=Set(T)

∀( v1:T ,∃( v1:T op v2:T ,

trS(expr2, v2:T )) ∧ trS(expr1, v1:T )) ∧
∀( v3:T ,∃( v3:T op v4:T ,

trS(expr1, v4:T )) ∧ trS(expr2, v3:T ))

13 expr1 eq expr2 ∃( v:T eq v‘:T‘ , trN (expr1, v:T ) ∧ trN (expr2, v‘:T‘ ))

14 expr1 op expr2 ∃( v:T
op
−−→ v‘:T‘ , trN (expr1, v:T ) ∧ trN (expr2, v‘:T‘ ))

15 expr1->exists(v:T|expr2) ∃( v:T , trS(expr1, v:T ) ∧ trE(expr2))
16 expr1->forAll(v:T|expr2) ∀( v:T , trS(expr1, v:T ) =⇒ trE(expr2))
17 expr1->forAll(v1,...,vn:T|expr2) ∀( v1:T ... vn:T ,

(trS(expr1, v1:T ) ∧ ... ∧ trS(expr1, vn:T )) =⇒ trE(expr2))
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18 expr1->includesAll(expr2) ∀( v:T , trS(expr2, v:T ) =⇒ trS(expr1, v:T ))

19 expr1->excludesAll(expr2) ∀( v:T , trS(expr2, v:T ) =⇒ ¬trS(expr1, v:T ))
20 expr1->includes(expr2) trE(expr1->includesAll(Set{expr2}))
21 expr1->excludes(expr2) trE(expr1->excludesAll(Set{expr2}))
22 expr->notEmpty() ∃( v:T , trS(expr, v:T ))
23 expr->isEmpty() ¬trE(expr->notEmpty())
24 expr->size() >= N ∃( v1:T ... vN :T ,

∧
i∈{1..N} trS(expr, vi:T )∧i 6=j

j={1..N} vi:T 6= vj :T )

25 expr->size() > N trE(expr->size() >= N+1)
26 expr->size() = N trE(expr->size() >= N) ∧ ¬trE(expr->size() >= N+1)
27 expr->size() <= N ¬trE(expr->size() >= N+1)
28 expr->size() < N ¬trE(expr->size() >= N)
29 expr->size() <> N ¬trE(expr->size() = N)
30 expr1->one(v:T|expr2) trE(expr1->select(v:T|expr2)->size() = 1)
31 expr->isUnique(attr) trE(expr->forAll(v1,v2:T|v1 <> v2

=⇒ v1.attr <> v2.attr))
32 expr.oclIsKindOf(T`) ∃( v:T ↪→ v:T‘ , trN (expr, v:T ))

33 expr.oclIsTypeOf(T`) ∃( v:T ↪→ v:T‘ ,
∧T“6=T ‘

T“∈clan(T ‘) ¬∃( v:T‘ ↪→ v:T“ )

∧ trN (expr, v:T ))

trN
34 (v, v‘:T ) ∃( v=v‘:T )

35 (N, v:T ) ∃( N=v:T )

36 (expr.oclAsType(T`), v:T‘ ) ∃( v:T ↪→ v:T‘ , trN (expr, v:T ))

37 (expr.attr, v:T ) ∃( v‘:T‘ attr−−→ v:T , trN (expr, v‘:T‘ ))
38 (expr.attr->min(), x:T ) ∃( v1:T‘ attr−−→ x:T , trN (expr, v1:T‘ ) ∧ ∀( v2:T‘ attr−−→ v3:T ,

trN (expr, v2:T‘ ) =⇒ ∃( x:T ≤−→ v3:T )))

39 (expr.attr->max(), x:T ) ∃( v1:T‘ attr−−→ x:T , trN (expr, v1:T‘ ) ∧ ∀( v2:T‘ attr−−→ v3:T ,

trN (expr, v2:T‘ ) =⇒ ∃( x:T ≥−→ v3:T )))

trS
40 (expr.attr, v:T ) ∃( v‘:T‘ attr−−→ v:T , trN (expr, v‘:T‘ ))
41 (T.allInstances(), v:T ) ∃( v:T )

42 (Set{expr1,...,exprn}, v:T ) trN (expr1, v:T ) ∨ ... ∨ trN (exprn, v:T )

43 (expr1->union(expr2), v:T ) ∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))
∨ ∃( v“:T“ = v:T , trS(expr2, v“:T“ ))

44 (expr1->intersection(expr2),
v:T )

∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))
∧ ∃( v“:T“ = v:T , trS(expr2, v“:T“ ))

45 (expr1 - expr2, v:T ) ∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))
∧ ¬∃( v“:T“ = v:T , trS(expr2, v“:T“ ))

46 (expr1->symmetricDifference(
expr2), v:T )

trS((expr1->union(expr2))
− (expr1->intersection( expr2)), v:T )

47 (expr1->including(expr2), v:T ) trS(expr1->union(Set{expr2}), v:T )

48 (expr1->excluding(expr2), v:T ) trS(expr1 - Set{expr2}, v:T )

49 (expr1->select(v:T|expr2), v‘:T ) trS(expr1, v‘:T ) ∧ trE(expr2){v‘/v}
50 (expr1->reject(v:T|expr2), v‘:T ) trS(expr1, v‘:T ) ∧ ¬trE(expr2){v‘/v}
51 (expr->selectByKind(T), v:T‘ ) ∃( v:T‘ ↪→ v:T ) ∧ trS(expr, v:T‘ )
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52 (expr->selectByType(T), v:T‘ ) ∃( v:T‘ ↪→ v:T ,
∧T“6=T

T“∈clan(T ) ¬∃( v:T ↪→ v:T“ ))

∧ trS(expr, v:T‘ )
53 (expr->oclAsSet(), v:T ) trN (expr, v:T )

4.4.2 Lax Condition Equivalences

After creating the lax condition it is important to simplify the condition. In [11] Radke et al.
have also created a starting point for these equivalences and we have improved and extended
these equivalences. We will explain these improvement and extensions in Section 4.5. Our
equivalence rules are defined in Definition 2.

Definition 2. Let C1 ⊕P C2 denote the gluing or pushout of C1 and C2 along P and let P
denote the set of all intersections of C1 and C2:
(E1) Given two nested lax conditions that are existentially quantified, we are able to resolve

these conditions into one single lax condition with the following two equivalence rules:
(a) ∃(C1,∃(C2)) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint.
(b) ∃(C1, ∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

(E2) The implies operation can be rewritten with the following equivalence rule:
(∃(a) =⇒ ∃(b)) ≡ ∀(a,∃(b))

(E3) Given a lax condition that includes a logical and (∧) operation, we are able to merge the
conditions such that we can rewrite the ∧ with the following two equivalence rules:
(a) ∃(C1,∃(C2) ∧ ∃(C3)) ≡ ∃(C1,∨P∈P∃(C2 ⊕P C3)), if for all node names occurring in

both C2 and C3, a node with that name already exists in C1.
(b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have disjoint sets of

node names.
(E4) Given a node with multiple names, such as v=u:T , we are able to rename all the existing

u nodes to v, with the following two equivalence rules:
(a) ∃( u:T , ∃(C)∧∃( v=u:T )) ≡ ∃( v:T ,∃(C{v/u})) provided that v does not exist in C

and C{v/u} is the graph obtained from C by renaming u to v.
(b) ∃( u:T , ∃( v=u:T )) ≡ ∃( v:T )

4.5 Contribution

Our transformation extends the defined transformation rules of Radke et al. which have been
introduced in Section 3.3 and can be found in Appendix C. In this section we look into our
contribution to the changes and improvements we have made relative to the implementation of
Radke et al.

The definitions of Radke et al. in [11] contain mistakes and in the included examples were
intermediate steps missing. We have fixed the mistakes and recreated the missing intermediate
steps such that we could implement the transformation from OCL to graph theory in GROOVE.
The reason why the transformation rules did not work, how we have fixed it and an example to
show that the new definition works, is given in Appendix D. Due to the limited time, we have
chosen not to create a complete formal proof for the new definitions. Below we will give a short
summary of the mistake that the transformation rule contained.

• The renaming Equivalence rule (E4), the problem with the definition in [11] was that
variable was not renamed everywhere. The desired result is that the old variable does not
occur in the condition anymore. We have changed the definition such that the equivalence
rule has the desired result.
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• expr1 op expr2 transformation rule(s) had several problems with the given definition in
[11], such as variables did disappear by applying equivalence rules and it was difficult to
extend with additional operators. To overcome these problems we have created a com-
plete new definition. The new transformation rules are 12, 13 and 14 (and additional
corresponding navigation rules).

• The implication transformation rule vii that is defined in [11] did not correspond with
the given examples. We have analysed the examples and determined that the examples
had the desired result. We have changed the implication transformation rule such that
it gives a logical implication ( =⇒ ) and added a new equivalence rule (E2) that has the
corresponding result to the given examples.

• Radke et al. have defined two variants of transformation rule (xxiii and xxiv): trN (expr.attr, v:T ).
Since we have decided to match non-injectively, as discussed in Section 4.3, the variant
with a self loop is not necessary anymore and is thus removed.

• The transformation of size had to be extended ad previously indicated in Section 4.3.
Because we mathc non-injectively the restriction that every node is different is added to
the transformation rule. This resulted in the new transformation rule 24.

Below we will give a short summary of the new transformation rules defined that are and
extension of the work of Radke et al.

• The transformation of forAll is extended such that multiple variables are allowed, result-
ing in the new transformation rule 17. Since we could use the definition of forall with
one variable it was easy to extend the transformation rule for multiple variables.

• And lastly the following additional operations that we support relative to the work of
Radke et al. in [11]:
– xor; transformation rule 7. The definition was straightforward and is based on the

logical equivalent of the xor.
– isUnique; transformation rule 31. The definition was straightforward because we

have used the isUnique definition that is found in [21].
– min; transformation rule 38. The definition of this transformation rule was not

straightforward and is based on the idea that there exists a number for which we
know that all the other numbers are smaller or equal to that given number. With
this in mind the definition took shape.

– max; transformation rule 39. After the definition of min this transformation rule was
straightforward.

– selectByKind; transformation rule 51. The definition is based on the oclIsKindOf
transformation rule, except that it has to be connected to the given context node.
Given that transformation rule the definition was straightforward.

– selectByType; transformation rule 52. The definition is based on the oclIsTypeOf
transformation rule, except that it has to be connected to the given context node.
Given that transformation rule the definition was straightforward.

– oclAsSet; transformation rule 53. This definition mostly syntactic sugar and thus
the definition was straightforward.
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Chapter 5

Graph constraints to GROOVE

In the previous chapter we have defined our transformation rules from OCL to lax conditions.
This chapter explains how the lax conditions are represented in GROOVE. First of all Section 5.1
explains why a type graph is mandatory. Section 5.2 explains how it is possible to encode
conjunctions, disjunctions, negations and type checking in GROOVE. Section 5.3 explains in
which steps a lax condition is transformed into a GROOVE graph.

5.1 Type graphs

To be able to use the OCL functionality in GROOVE it is mandatory to have an enabled type
graph. The type graph is necessary to determine the type of expressions. For example consider
the OCL expression context Employee inv: self.department.notEmpty(), that is applicable
to the given UML class diagram in Figure 2.3. From the expression self.department, it is not
possible to know the type, you only know that there exists an association from Employee that
is called department. If we take a look in the class diagram, we can see that the type is
Department. This information is also available in the GROOVE type graphs and therefore it
is mandatory to have an enabled type graph. The corresponding type graph of the UML class
diagram in Figure 2.3 is given in Figure 5.1.

In Appendix D.8 we explain how and why we have changed the definition of the operations
union, intersection and minus(−). The new implementation is based on the fact that all
classes have one common supertype, the Object type. So when you want to use one of these
three set based operations then it is mandatory to have the supertype Object defined in your
type graph. That is why we have defined the Object class also in Figure 5.1.
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Employee
salary: int

name: string

Department
budget: int

location: string
name: string

Project
budget: int
name: string

Object

project

department

project departmentemployee

employee

Figure 5.1: GROOVE type graph corresponding to the UML class diagram in Figure 2.3.

5.2 Logic in GROOVE

It is not completely trivial how to encode all expressions in GROOVE. That is why we explain
in Section 5.2.1 how to encode the logical operators ∧ and ∨ in GROOVE. Section 5.2.2 explains
how to encode negations of a lax condition in GROOVE and in Section 5.2.3 we explain how
we make use of the type checking functionality in GROOVE. Lastly in Section 5.2.4 we explain
why we do not make use of the of the GROOVE definitions of the min and max operations, but
instead we follow the transformation definitions as given in Section 4.4.

5.2.1 AND and OR in GROOVE

As discussed in Section 2.7, GROOVE has a unique way to encode the logical and (∧) and or
(∨) operators. So it is important to make sure that we get this form also in our lax condition
before we transform the lax condition to a GROOVE graph. Figure 5.2 shows how to encode
a logical or operation, which needs an additional universal quantifier. Without the additional
universal quantifier the double existential quantifiers are treated as an ∧ instead of an ∨. The
same line of thought applies to the ∧, although most ∧ constraints are merged together through
the three E1 equivalence rules.

∃ ∀

∃

∃

A

B

C

in

in
in

@ @

@

Figure 5.2: The way to encode ∃( A ,∃( B ) ∨ ∃( C )) in GROOVE.
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5.2.2 Negations in GROOVE

Negating a lax condition starts with negating the logical dual operators. For these negations we
can use the following default negation rules in which a and b are lax conditions:

¬(a ∧ b) ≡ ¬a ∨ ¬b
¬(a ∨ b) ≡ ¬a ∧ ¬b
¬(a =⇒ b) ≡ a ∧ ¬b

The remaining lax condition is either of the form ¬∃(a) or ¬∀(a). The negation of such a lax
condition is defined by Radke et al. as:

¬∃(a) ≡ ∀(a, false) ¬∀(a) ≡ ∃(a, false)

The problem with this definition is that it is impossible in GROOVE to implement the false
part. So we have to find a way to mimic this behaviour. First of all we identify the different
kind of graphs within a lax condition. Graphs within a lax condition can have the following four
forms:

1. It can be a node: v:T .
2. It can be two nodes with an edge in between : v:T attr−−→ u:T‘ .
3. It can be two nodes with a comparison operator in between: v:T op v‘:T .
4. It can be a combination of the above, nodes with an edge (2) and nodes with a comparison

operator (3).

To be able to negate a lax condition, it is necessary to be able to negate these four options.
Since the fourth option is a combination of two other types we do not have to look into the
fourth option. In GROOVE it is pretty easy to negate a node or an edge, just add not: and it’s
negated. In the definitions of negations we will use the GROOVE syntax.

1. ¬( type:T ) ≡ type:T
not:

2. ¬( type:T attr−−−−→ type:T‘ ) ≡ type:T not:attr−−−−−−−→ type:T‘
3. This one is a bit different because depending on the type T this one has two implementations

within GROOVE.
(a) T ∈ {bool, int, real, string}, in this case it is implemented with a production rule in

which we can negate the result, this results in the following equality in which we
have added one intermediate step in which GROOVE checks the comparison with an
boolean:
¬( v:T op v‘:T ) ≡ ¬( v:T op v‘:T = true) ≡ ( v:T op v‘:T = false)

(b) T 6∈ {bool, int, real, string} in this case op is an equality or an inequality and we can
negate the edge, this results in the following equality:
¬( v:T op v‘:T ) ≡ v:T !op v‘:T

5.2.3 Type checking in GROOVE

In Section 4.4 we have defined quite some transformation rules from OCL to graph theory, 3
of the rules are about type checking or type casting. This are the following three operations:
oclIsKindOf, oclIsTypeOf and oclAsType.
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By default type checking within GROOVE is implemented as checking whether there exists
an injective morphism between the current type and the desired type. This corresponds to
the defined transformation rules of oclIsKindOf and oclAsType. The rule for oclIsTypeOf
does an additional check to make sure that the type is exactly the type we want and not some
kind of subtype. In GROOVE this can be implemented more easily with a sharp type check.
In Figure 5.3 an example is given of a sharp type check, to be more specific this is the way
to encode context Person inv: self.authoredPublication.oclIsTypeOf(BookChapter) in
GROOVE. This checks whether the AuthoredPublication of a Person is a BookChapter and
not some kind of super or sub-type of BookChapter.

Person

∀

AuthoredPublication #BookChapter

∃

@

=authoredPublication

in

@ @

Figure 5.3: An example of a sharp type check in GROOVE.

5.2.4 Min and Max constructs in GROOVE

The min and max definitions are quite complex, especially since GROOVE has the possibility
to use operators like the bigmin and bigmax. These operators are optimised in frequently used
constructs that are beyond first order logic and are introduced by Rensink in [25]. The usage
of the big operations within lax conditions is however even more troublesome because of all the
restrictions on the usage. An example of a bigmin is given in Figure 5.4 the following restrictions
are weighed in the decision and can be found in the given example:

• The resulting int node has to be defined within a universal quantifier.
• The bigmin (bigmax) production rule is not allowed to be within this universal quantifier.
• The bigmin (bigmax) production rule has to be defined in a special universal quantifier

( ∀>0 ), which is not discussed in this paper.
• Between these two universal quantifiers it is not allowed to have an additional existential

quantifier.

∀ ∀>0

∃

Person Publication int int
π1 = 0

eq = true

in in

publication year π0 bigmin π0

@ @ @ @@
@

Figure 5.4: The way to encode the min operation with a bigmin in GROOVE.

5.3 Lax Condition to Graph

To convert a lax condition to a graph in GROOVE, the multiple sub graphs inside each lax
condition, have to be merged into one graph including their quantifications. This happens
in three steps; first two steps that will transform the lax condition to some kind of normal
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form such that the final transformation, transforming the lax condition to one single GROOVE
graph, becomes easier. Section 5.3.1 explains the first transformation: renaming node names to
prevent node name collisions, this process is called α-conversion in logic. Section 5.3.2 explains
the second transformation: adding additional quantifiers to encode ∧ and ∨ as discussed in
Section 5.2.1. Section 5.3.3 explained the final transformation from the formatted lax condition
to a single GROOVE graph.

5.3.1 Node names

This process began to become tricky with implementing if cond then expr1 else expr2 endif.
As you can see in Section 4.4, this is transformed to (cond∧ expr1)∨ (¬cond∧ expr2). So cond
happens to be there twice, once if it applies and once if the negation applies. The best way
of creating the negated condition is cloning the condition and then negating it. Because of the
clone step, the node names in the condition and in the negated condition are the same, which is
no problem until the lax conditions are merged into one graph. So we have to validate if there
are nodes in our lax condition that exist both in the left and in the right side of an operation
condition but do not exist in the parents yet. In that case the nodes in the negated condition
have to be renamed. This process is known as α-conversion in logic. For example we have the
following OCL constraint:

context EditedBook inv ifthenelseNotEmpty: if self.conferenceEdition->notEmpty()
then self.year > 0 else self.publicationYear > 0 endif

≡ ∀( self:EB , (∃( v:CE , ∃( self:EB cE−→ v:CE )) ∧ ∃( self:EB year−−−→ v1:int >−→ 0:int ))

∨ (¬∃( v:CE ,∃( self:EB cE−→ v:CE )) ∧ ∃( self:EB publicationY ear−−−−−−−−−−→ v1:int >−→ 0:int )))

As you can see in both the if as the else branch there is an ∃( v:CE ), with in both cases
the node name v, which is not declared in its parent yet. Therefore the nodes in the negated
condition should be renamed such that both initiated nodes are not mapped to the same node
after merging the lax conditions. So after using the validate method this example becomes:

≡ ∀( self:EB , (∃( v:CE , ∃( self:EB cE−→ v:CE )) ∧ ∃( self:EB year−−−→ v1:int >−→ 0:int ))

∨ (¬∃( v2:CE , ∃( self:EB cE−→ v2:CE )) ∧ ∃( self:EB publicationY ear−−−−−−−−−−→ v3:int >−→ 0:int )))

5.3.2 Quantification

As discussed in Section 5.2.1 the quantification is important in the way to encode the logical
operators and (∧) and or (∨). To make sure that the right quantification is present we validate
the lax condition and insert, if necessary, an additional lax condition. For example if we have
a lax condition that contains an OR statement inside an existential quantification, we insert an
additional universal quantified lax condition such that GROOVE will interpret the lax condition
in the right way. This results in the following insertion:

∃( A ,∃( B ) ∨ ∃( C )) = ∃( A , ∀(∅, ∃( B ) ∨ ∃( C )))

5.3.3 GROOVE graph

In this step we create, from the lax condition, the nested graph condition in GROOVE, which
happens in one single graph. Therefore each level of the lax condition has to be merged with its
parent and be connected with the already existing nodes. If we take the OCL constraint and
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GROOVE graph from Example 9 we see that the lax condition ∀( self:Department , ∃( self:Department
budget−−−−→ v:int ≥ 0:int )) is equal to the GROOVE graph below.

Department

∀

int

π1 = 0
ge = true

∃

budget

@@

π0

in

@

This GROOVE graph is created by merging lax conditions with their parent. So we start at the
most outer lax condition: ∀( self:Department ). We add the universal quantifier to the graph and
connect the node self with the quantifier. In GROOVE this connection is done by an -edge. The
next lax condition is ∃( self:Department budget−−−−→ v:int ≥ 0:int ). The node self:Department
already exists in the universal quantifier, so this node is not created again but the current graph
is connected with the already existing graph. Therefore only the budget attribute is created,
and connected with the already existing node and the production rule is created. These two are
created within an existential quantifier and are connected. Since the node self:Department is
already created within a higher level quantifier, this node is not connected with the existential
quantifier. Because the existential quantifier exists within the universal quantifier these two
quantifiers are also connected, which is done in GROOVE with an in-edge. In this way more
complex and bigger lax conditions are also transformed to a single GROOVE graph.

Pseudocode 5.1 gives an idea how the transformation from the formatted lax condition to the
single GROOVE graph works. The transformation starts with an empty graph in which the
GROOVE graph is built. With OperatorCondition we mean conditions that are concatenated
with an operation such as ∧ and ∨.

function laxToGraph(Graph G, LaxCondition L) {
GNodes = G.nodes
G = G ∪ L.graph
quantifier = G.addNode(L.quantifier)

for (node : L.graph.nodes) {
if(node 6∈ GNodes) {

G.addEdge(node, "@", quantifier)
}

}
G.addEdge(quantifier, "in", prevQuantifier)

laxToGraph(L.condition)
}

function laxToGraph(Graph G, OperatorCondition L) {
laxToGraph(G, L.expr1)
laxToGraph(G, L.expr2)

}

Pseudocode 5.1: The way that a lax condition is transformed to a single GROOVE graph.
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Chapter 6

Implementation

This chapter explains the current implementation. Section 6.1 explains how and why SableCC is
used to create a Concrete Syntax Tree given an OCL constraint based on the OCL 1.5 grammar
definition. Section 6.2 discusses limitations of our implementation. Section 6.3 shows how many
lines of code GROOVE had at the start of the graduation project and how many lines were
added during the project. Section 6.4 shows how we have integrated the OCL transformation
rules with the existing GROOVE interface

6.1 OCL To Syntax Tree

There are several OCL parsers around that are able to parse OCL. There are two requirements
for our OCL parser. 1) The concrete syntax tree (CST) or abstract syntax tree (AST) has to be
accessible so that the transformation rules can be applied. 2) The parser is able to parse OCL
constraints based only on the OCL grammar and without requiring a UML class diagram, we
are going to use the GROOVE type graph for this purpose, this is explained in Section 5.1.

First we take a look at three different tools that can parse OCL; the famous Dresden OCL
Toolkit in Section 6.1.1, Octopus in Section 6.1.2 and the Eclipse OCL Toolkit in Section 6.1.3.
Because these tools do not meet the defined requirements we look into SableCC in Section 6.1.4.
Section 6.1.5 explains how the OCL parser is generated. Lastly, Section 6.1.6 discusses the new
features of OCL 2.0 that we do not support because our parser supports OCL 1.5.

6.1.1 Dresden OCL Toolkit

The Dresden University of Technology has developed multiple tools for OCL, which they bundled
into the Dresden OCL Toolkit [26]. One tool in particular is interesting, the OCL 2.0 parser.
In [27], Demuth et al. describe that OCL 2.0 is an L-attribute grammar. Which means that
attribute evaluation is performed by letting a tree walker perform a single-sweep, depth-first, left-
to-right tree walk on the syntax tree of an OCL constraint. In the paper they also describe how
they have built their OCL 2.0 parser with an extended version of the SableCC parser generator.
Sadly we did not manage to get the Dresden OCL toolkit working in Eclipse by following their
tutorial. Neither was the extended version of the SableCC parser generator available.
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6.1.2 Octopus

Another OCL tool that is able to parse OCL is Octopus [28]. Octopus is one of the tools that
is able to transform a UML + OCL model into platform dependent source code, for example
Java code. The syntax tree is not accessible in Octopus, therefore we did not look further into
Octopus.

6.1.3 Eclipse OCL Toolkit

Eclipse also delivers their own OCL toolkit such that you can parse OCL expressions given the
context. This will only work if you use an ecore file in which you can define the class diagram and
generate the corresponding Java code. The ecore file has the same function as our type graph
has, as discussed in Section 5.1. In this way the context can be found within the generated Java
code and Eclipse can parse the OCL constraint. Therefore the Eclipse OCL toolkit [29] is not
able to generate a syntax tree from only the OCL constraint given the OCL grammar.

6.1.4 Parser generator - SableCC

Given the three tools, we were not able to generate a syntax tree of an OCL constraint without
a complete class diagram. Besides these three tools we did not manage to find other OCL tools
that are able to parse OCL. The alternative to using an existing tool is using a parser generator,
which is able to generate the source code of a parser, given a defined grammar. More information
about parsing is given in Section 2.8.

In Appendix A of [19], Fadi Chabarek has defined the OCL 1.5 grammar for SableCC, one of
the parser generators, which is able to create a parser in Java such that the CST of any OCL
constraint is accessible without the need of the corresponding class diagram. An example of
the result of parsing OCL constraints with the given OCL grammar for SableCC is given in
Example 10.

The OCL 1.5 grammar definition in SableCC is used for our graduation project. Example 10
shows how the CST looks like and is therefore accessible. Besides the parser that SableCC
generates, it generates also a tree walker that can be extended. By extending the tree walker
we have been able to apply our transformation rules and create nested graph constraints.
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Example 10. An example in which the OCL constraint: context Deparment inv: self.budget
>= 0 gets parsed by the given OCL 1.5 grammar for SableCC. This results in the following CST:

Figure 6.1: The CST of the OCL constraint: context Department inv: self.budget >= 0.

6.1.5 Generate OCL parser

In Appendix A of [19], Fadi Chabarek has defined the OCL 1.5 grammar for SableCC. To generate
the Java code you have to run the following command: java -jar sablecc.jar ocl15.grammar,
in which sablecc.jar is part of the downloadable SableCC tool and ocl15.grammar is the name
of the defined OCL grammar. The OCL grammar can be downloaded from [30]. We prefer to
refer to Appendix A of [19], because this grammar definition is easier to read.

We have made a small change to the OCL1.5 grammar definition for SableCC. In this definition
an OCL constraint is obligated to start with package ... endpackage. We have removed this
part because it had no value for us and in GROOVE you want to use OCL constraint of the
format: context C inv: expr as defined in the transformation rules in Section 4.4.

By default SableCC generates a concrete syntax tree (CST) and not an abstract syntax tree
(AST). It is possible to create an AST by walking through the CST, but since you are walking
through the CST already we have chosen to start the transformation process immediately from
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the CST. Otherwise you need to walk through the CST once to create the AST and then walk
through the AST to apply the transformation. Now you only walk once through the CST and
the transformation is applied immediately.

SableCC generates next to a parser also a tree walker, which makes use of a variant of the well
known visitor design pattern. You can compare this with the well known switch statement, but
more efficient. By walking the tree you have to check at every node what type of node it is, with
a switch statement you have to compare the type with every existing node type which is in the
worst case of O(n). With the visitor design pattern this can be reduced to O(1). The visitor
mechanism is explained thoroughly in chapter 6 of the SableCC documentation [18].

6.1.6 OCL 2.0 features

We are using the available OCL 1.5 grammar for SableCC, as discussed in the previous section.
Nowadays we are at OCL 2.4, so what features do we miss in our parser? First of all it is
worth noting that the parser did not lack any features to parse the OCLFO fragment. In [31],
Hussmann et al. discuss the four major features of OCL 2.0.

1. Metamodel
The concepts and the relationships have been expressed in a MOF metamodel, UML is
also expressed in a MOF metamodel. This results in a better integration between OCL
and UML. Older versions of OCL do not have this MOF metamodel.

2. Query language
OCL 1.5 is a constraint language, from OCL 2.0 and onwards OCL has become a query
language. To facilitate as a query language OCL 2.0 has introduced the tuple type to
combine multiple values into one tuple value.

3. Formal semantics
OCL 2.0 has defined and standardized semantics, which is necessary to create formal
constraints for UML.

4. OclMessages
OCL 2.0 introduces the concept of message expressions. These can be used to state that
a certain message has been sent from a classifier during a certain period of time.

6.2 Limitations

Our implementation has some limitations, this section gives a summary of each limitation. In
this way it is clear why these limitations exists and if it may be possible to remove the limitation
in the future.

6.2.1 Mandatory type definition

Since it is difficult to determine the type of a variable inside a exists or forall operation, we
have added the limitation that the type of the variable has to be given. For example if we have the
following OCL constraint: self.publication->exists(p:Publication | p.title = 'test').
The :Publication part is mandatory, because this is the way to define the type of the variable.
This syntax is part of the official OCL syntax, although the type definition is not mandatory
within this syntax [3]. It is possible to remove this limitation with an additional parsing such
that the type is known within these operations.
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6.2.2 Negation limitations

The negation implementation, as discussed in Section 5.2.2, has some limitations. For example
building further on a negated node is not possible. So for example the OCL constraint below
is not possible, although this can be achieved by writing down the constraint differently, but
simplifying OCL constraints is another research area. Building further on a negated node is not
possible in GROOVE because it is not possible to encode the false in a lax condition.

context Person inv selectIsEmpty: self.editedBook->select(e:EditedBook |
e.bookSection->notEmpty())->isEmpty().

6.3 Statistics

The source code of GROOVE consisted of 231.911 lines of code at the beginning of the graduation
project. At the end this was increased to 234.555 lines of code, this is an increase of 2654 lines
of code. These lines of code are measured in the Java files with the IntelliJ plugin Statistic [32].

We have also the statistics available about the generated OCL parser and the newly created
test package. The generated OCL parser consists of 29.691 lines of code and the test package
consists of 1.862 lines of code.

6.4 Integration in GROOVE

The class groove.gui.action.NewAction is responsible for creating and executing different kind
of actions within GROOVE. So in this class the connection between our OCL transformation
and the already existing GROOVE implementation is created. This resulted in the action "New
OCL" under edit, as shown in Figure 6.2. This button results in a window where you can insert
your OCL constraint, as shown in Figure 6.3. If you click on the OK button this will transform
the OCL invariant and generate the corresponding graph invariant. The corresponding graph
invariant can be found in Figure 6.4.

Given the graph invariant we can create models to verify. Figure 6.5 shows a model that does
not satisfy the positiveSalary constraint with the corresponding indication of GROOVE that
the graph fails to satisfy the graph invariant. Figure 6.6 shows a model that does satisfy the
positiveSalary constraint with the corresponding indication of GROOVE that the graph matches
the positiveSalary constraint, and thus the graph satisfies the constraint.
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Figure 6.2: The location to create a new
OCL constraint in GROOVE.

Figure 6.3: The way to create a new OCL
constraint in GROOVE.

Employee

∀

int π1 = 0
ge = true

∃

salary π0

@ @

in

@

Figure 6.4: The positiveSalary invariant in GROOVE.

Figure 6.5: The location to create a new
OCL constraint in GROOVE.

Figure 6.6: The way to create a new OCL
constraint in GROOVE.
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Chapter 7

Validation

In this chapter we describe the validation of our implementation in GROOVE. We show that
our implementation does what it should do by using case studies. Two case studies have been
rebuilt in both Eclipse OCL and in our implementation of GROOVE. In this way, we can check
if our implementation accepts and rejects the same models as the existing Eclipse OCL and
validate if our implementation enforces the constraints correctly. If the implementation works
as desired, there should be no difference between the accepted and rejected models of Eclipse
OCL and our implementation.

In Section 7.1, we validate our implementation based on the USE case study [4]. This case study
contains a small class diagram and some basic OCL constraints. In Section 7.2, we validate our
implementation based on the DBLP case study [7]. This case study is based on a bigger class
diagram and also contains some set operations. In Section 7.3, we show that we support many
more operations that are not part of one of these case studies. Lastly in Section 7.4, we give a
summary of the two case studies and the coverage section.

7.1 USE case study

The USE case study is based on a small class diagram with three classes. This class diagram
can be found in Figure 7.1.

Figure 7.1: The USE case study class diagram [4].

In the table below we show for every OCL constraint documented in the case study, our input
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model, the result of Eclipse and the result of our GROOVE implementation. There are, in total,
four results that do not match. This are test cases 5, 6, 7 and 8, that are based on two OCL
constraints. Both these constraints compare the size of a set with the size of another set. This
is one of the limitations of the transformation to graph theory, it is only possible to compare
the size with a constant and so these OCL constraints are not supported and thus it is not
possible to validate these constraints with our GROOVE implementation. The other test cases
did succeed and so we could handle 5 out of the 7 OCL constraints defined by the USE case
study.

OCL constraint # input Eclipse GROOVE

context Department inv i1a:
self.budget >= 0

1
Department
budget: 1

True True

2
Department
budget: -1

False False

context Employee inv i1b:
self.salary >= 0

3
Employee
salary: 1

True True

4
Employee
salary: -1

False False

context Project inv i1c:
self.budget >= 0

5
Project
budget: 1

True True

6
Project
budget: -1

False False

context Department inv i2:
self.employee->size() >=
self.project->size()

7 Department Project False -

8 Department
Project

Employee
True -

context Employee inv i3:
Employee.allInstances()->forAll(e1, e2 |
e1.project->size() > e2.project->size()
implies e1.salary > e2.salary)

9

Employee

salary: 2

Employee

salary:1

Project

True -

10

Employee

salary: 2

Employee

salary:3

Project

False -

context Project inv i4:
self.budget <= self.department.budget

11
Project
budget: 1

→ Department
budget: 2

True True

12
Project
budget: 3

→ Department
budget: 2

False False
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context Project inv i5:
self.department.employee
->includesAll(self.employee)

13

Project Employee

Department
True True

14

Project Employee

Department
False False

7.2 DBLP case study

The DBLP case study is based on an extensive class diagram that can be found in Appendix E.
In the table below we show for every OCL constraint documented in the case study, our input
model, the result of Eclipse and the result of our GROOVE implementation. We had to make a
small change in one of the OCL constraints, because of the limitation defined in Section 6.2.1.
So we have added the type of the variables and have replaced the OCL constraint:

context EditedBook inv correctPagination: self.bookChapter->forAll(c1, c2
| c1 <> c2 implies c1.iniPage > c2.endPage or c2.iniPage > c1.endPage)

with the following OCL constraint:

context EditedBook inv correctPagination: self.bookChapter->forAll(c1, c2:BookChapter
| c1 <> c2 implies c1.iniPage > c2.endPage or c2.iniPage > c1.endPage)

There are, in total, four results that do not match. This are test cases 24 and 25, that are
based on one OCL constraint. This constraint is based on the operation sortedBy. In our
implementation we do not have some kind of order, as explained in Section 4.2, therefore it
is not possible to sort elements and thus it is not possible to validate this constraint with our
GROOVE implementation. The other test cases did succeed and so we could handle 7 out of
the 8 unique OCL constraints defined by the DBLP case study.

OCL constraint # input Eclipse GROOVE

context Person inv nameIsKey:
Person.allInstances()->isUnique(name)

15
Person
name: "a"

Person
name: "a"

False False

16
Person
name: "a"

Person
name: "b"

True True

context BookSeries inv BookSeries
AndNumberIdentifyBookSeriesIssue:
self.bookSeriesIssue->isUnique(number)

17 BookSeries

BookSeriesIssue

number: 1

BookSeriesIssue

number: 1

False False
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18 BookSeries

BookSeriesIssue

number: 1

BookSeriesIssue

number: 2

True True

19

BookSeries BookSeriesIssue

number: 1

BookSeries BookSeriesIssue

number: 1

True True

context BookChapter inv correctPage:
self.iniPage <= self.endPage 20

BookChapter
iniPage: 1
endPage: 2

True True

21
BookChapter
iniPage: 2
endPage: 1

False False

context EditedBook inv correctPagination:
self.bookChapter->forAll(
c1, c2:BookChapter | c1 <> c2
implies c1.iniPage > c2.endPage
or c2.iniPage > c1.endPage)

22 EditedBook

BookChapter

iniPage: 1
endPage: 2

BookChapter

iniPage: 3
endPage: 4

True True

23 EditedBook

BookChapter

iniPage: 1
endPage: 3

BookChapter

iniPage: 2
endPage: 4

False False

context Journal inv consecutiveVolumes:
self.journalVolume->sortedBy(volume)
.volume =
Sequence{1..self.journalVolume->size()}

24 Journal

JournalVolume

volume: 1

JournalVolume

volume: 2

True -

25 Journal

JournalVolume

volume: 1

JournalVolume

volume: 3

False -

context EditedBook inv compatibleYear:
self.conferenceEdition->notEmpty()
implies self.year
>= self.conferenceEdition.year

26
EditedBook
year: 2010

→ ConferenceEdition
year: 2009

True True

27
EditedBook
year: 2010

→ ConferenceEdition
year: 2011

False False
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28
EditedBook
year: 2010

True True

context ConferenceEdition inv published:
self.editedBook->notEmpty()
or self.bookSeriesIssue->notEmpty()
or self.journalIssue->notEmpty()

29 ConferenceEdition False False
30 ConferenceEdition → EditedBook True True
31 ConferenceEdition → BookSeriesIssue True True
32 ConferenceEdition → JournalIssue True True

context Book inv theSamePublisher:
if self.oclIsTypeOf(BookSeriesIssue)
then self.publisher =
self.oclAsType(BookSeriesIssue)
.bookSeries.publisher

else true endif

33
BookSeriesIssue
publisher: "a"

→ BookSeries
publisher:"a"

True True

34
BookSeriesIssue
publisher: "a"

→ BookSeries
publisher:"b"

False False

35
BookSeriesIssue
publisher: "a"

False False

36
EditedBook
publisher: "a"

True True

7.3 Coverage

In this section we give an overview of additional supported OCL constraints to give a broader
coverage. These OCL constraints are based on the DBLP case study class diagram, which can
be found in Appendix E.

There are, in total, two results that do not match. This are test cases 61 and 73. Test case 61
is a special case of including and test case 73 is a special case of excluding. If we take test

case 61 for example, the input of this case is
Person

and the OCL constraint is:

context Person inv including:
self.editedBook->including(self.authoredPublication)->notEmpty()

Eclipse said this was true and our implementation of GROOVE said this was false. Since the
person does not have either an editedbook nor an authoredpublication, we believe that the result
is an empty set and thus false. Given this reasoning we have accepted the difference in result
between Eclipse and our implementation.

The same line of thought can be applied to test case 73, but then the opposite.

OCL constraint # input Eclipse GROOVE

context ConferenceEdition inv xor:
self.editedBook->notEmpty()
xor self.journalIssue->notEmpty()

37
ConferenceEdition

False False

38
ConferenceEdition −→ EditedBook

True True

39
ConferenceEdition −→ JournalIssue

True True

40 ConferenceEdition

EditedBook

JournalIssue
False False
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context Person inv exists:
self.publication->exists(p:Publication |
p.title = 'test')

41
Person −→ Publication

title: ’title’
False False

42
Person −→ Publication

title: ’test’
True True

context Person inv forAll:
self.publication->forAll(
p1,p2:Publication | p1.year = p2.year)

43 Person

Publication

year: 2020

Publication

year: 2020

True True

44 Person

Publication

year: 2019

Publication

year: 2020

False False

context Person inv size:
self.publication->size() >= 2

45 Person Publication False False

46 Person

Publication

Publication
True True

context Person inv oclIsKindOf:
self.publication.oclIsKindOf(Book)

47
Person publication−−−−−−−→ Publication

False False

48
Person publication−−−−−−−→ Book

True True

49
Person publication−−−−−−−→ EditedBook

True True

context Person inv oclIsTypeOf:
self.publication.oclIsTypeOf(Book)

50
Person publication−−−−−−−→ Publication

False False

51
Person publication−−−−−−−→ Book

True True

52
Person publication−−−−−−−→ EditedBook

False False

context Person inv max:
self.publication.year->max() <= 2020

53 Person

Publication

year: 2020

Publication

year: 2020

True True
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54 Person

Publication

year: 2020

Publication

year: 2021

False False

context Person inv min:
self.publication.year->min() >= 1900

55 Person

Publication

year: 2020

Publication

year: 2020

True True

56 Person

Publication

year: 2020

Publication

year: 1899

False False

context Person inv union:
self.editedBook->union(
self.authoredPublication)->notEmpty()

57 Person False False

58 Person EditedBook True True

59 Person AuthoredPublication True True

60 Person

EditedBook

AuthoredPublication
True True

context Person inv including:
self.editedBook->including(
self.authoredPublication)->notEmpty()

61 Person True False

62 Person EditedBook True True

63 Person AuthoredPublication True True

64 Person

EditedBook

AuthoredPublication
True True

context Person inv intersection:
self.editedBook->intersection(
self.publication)->notEmpty()

65
Person editedBook−−−−−−−→ EditedBook

False False

66
Person publication−−−−−−−→ EditedBook

False False

67
Person

editedBook

−−−−−−−→
publication

EditedBook
True True
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context Person inv minus:
(self.editedBook - self.publication)
->notEmpty()

68
Person editedBook−−−−−−−→ EditedBook

True True

69
Person publication−−−−−−−→ EditedBook

False False

70
Person

editedBook

−−−−−−−→
publication

EditedBook
False False

context Person inv excluding:
self.editedBook->excluding(
self.publication)->notEmpty()

71
Person editedBook−−−−−−−→ EditedBook

True True

72
Person publication−−−−−−−→ EditedBook

False False

73
Person

editedBook

−−−−−−−→
publication

EditedBook
True False

context Person inv symmetricDifference:
self.editedBook->symmetricDifference(
self.publication)->notEmpty()

74
Person editedBook−−−−−−−→ EditedBook

True True

75
Person publication−−−−−−−→ EditedBook

True True

76
Person

editedBook

−−−−−−−→
publication

EditedBook
False False

context Person inv select:
self.publication->select(p:Publication |
p.year > 0)->notEmpty()

77
Person −→ Publication

year: 0
False False

78
Person −→ Publication

year: 2020
True True

79 Person

Publication

year: 0

Publication

year: 2020

True True

context Person inv reject:
self.publication->reject(p:Publication |
p.year > 0)->notEmpty()

80
Person −→ Publication

year: 0
True True

81
Person −→ Publication

year: 2020
False False

82 Person

Publication

year: 0

Publication

year: 2020

True True

context Person inv selectByKind:
self.publication->selectByKind(Book)
->notEmpty()

83
Person −→ Publication

False False

84
Person −→ Book

True True

85
Person −→ EditedBook

True True
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context Person inv selectByType:
self.publication->selectByType(Book)
->notEmpty()

86
Person −→ Publication

False False

87
Person −→ Book

True True

88
Person −→ EditedBook

False False

7.4 Summary

In this chapter we have described the validation of our implementation in GROOVE on the basis
of two case studies and a coverage section. Table 7.4 gives the summary of our validation in
the sense of amount of constraints we could parse and the amount of test cases in which Eclipse
OCL and our implementation had the same result.

Section OCL constraints Parsed Test cases Same result as Eclipse
USE case study 7 5 10 10
DBLP case study 8 7 20 20
Coverage 18 18 52 50

Table 7.4: Summary of the two case studies and the coverage section.

As we can see in Table 7.4, we could not parse three OCL constraints. These constraints were not
part of OCLFO as defined in Section 4.1, and thus this was expected given the OCL constraints.
We have two test cases of which our result was different than the result of Eclipse OCL. We
have accepted these differences and have explained this in Section 7.3.

We have not dived into the performance of our implementation. But we know that the trans-
formation of OCL constraints to a graph constraint is almost instantly for the constraints we
have used in our validation process. After the transformation we have a graph constraint that
has the same performance as GROOVE had before our implementation. In [33], Zambon et al.
have documented the performance of GROOVE on the N-queens problem, with N ranging from
2 to 9. We can assume that our graph invariants have the same performance. The performance
of the N-queens problem in GROOVE can be found in Figure 7.2.

Figure 7.2: The performance of GROOVE for the N-queens problem [33].
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Chapter 8

Final Remarks

Our goal was to represent OCL constraints in GROOVE models, such that OCL constraints are
enforced throughout the state space of a software system. In order to do this, we have defined
53 transformation rules that transform OCL to nested graph constraints and 8 equivalence rules
to simplify the transformed nested graph constraint.

We have used the work of Radke et al. in [11] as starting point. From this point, we have
improved and extended their definitions and added new transformation rules. Therefore our
implementation supports a broader set of OCL operations. We have shown that our definitions
have the desired result with examples in which we rewrite OCL constraints to nested graph
constraints with the new transformation rules.

Our transformation rules result in nested graph constraints, which consist of multiple nested
graphs. This is not the format that GROOVE supports. GROOVE has its own way to define
a nested graph constraint, namely in a single graph. So we had to transform a nested graph
constraint, with multiple graphs, to a single graph such that GROOVE can handle the nested
graph constraint. We have explained this transformation in Chapter 5.

Given the transformation and equivalence rules and the knowledge of how to represent a nested
graph constraint in GROOVE, we have implemented OCL support in GROOVE. The current
implementation has two limitations and sadly we did not manage to implement all the defined
transformation rules. The limitations are described in Section 8.1 and the missing implementa-
tions in Section 8.2.

In Chapter 7 we have demonstrated that our implementation accept the intended valid models.
We have rebuilt two case studies in both Eclipse OCL and in our implementation of GROOVE.
In both systems, we have created the same instance models to determine if the instance models
do satisfy the OCL constraints. Those instance models are created manually, but it may be
better to be able to transform instance models from Eclipse OCL to GROOVE. In this way it is
ensured that the same instance model is used in both Eclipse OCL and in our implementation
of GROOVE.

8.1 Limitations

Our current implementation has the following limitations:

• Currently it is obligated that the type of a variable in, for example, forall is given. It
is currently too difficult to determine its type during the transformation of the parse tree.
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It is possible to solve this issue by adding a round of parsing in which the type of every
expression is added to the nodes.

• In GROOVE it is impossible to create a nested graph constraint in which only a part of
the constraint is negated. Therefore it is not possible to build further on a negated part of
a condition. The best way to solve this is making it possible in GROOVE to encode that
a nested graph constraint can be false.

8.2 Missing Implementations

We did not manage to implement all the transformation rules that are defined in Section 4.4,
the missing transformation rules are:

• Transformation rule 12: expr1 eq expr2, where the type of expr1 and expr2 is a Set.
The difficulty of implementing this operation lays in the fact to know whether you have
to apply the set equality (rule 12) or a value equality (rule 13). This is possible by using
multiplicities, but to take multiplicities into account of determining the type means that
we have to change one of the fundamental parts of our implementation, which is being
able to determine the type of an expression.

• Transformation rule 30: expr1->one(v:T | expr2).
The difficulty of implementing this operation lays in the fact how negations work in
GROOVE. It is common with this operation to build further on a negated part of a nested
graph constraint, which is not possible in GROOVE. So to be able to implement this
operation, it has to be possible to build further upon a negated nested graph constraint.

8.3 Future Work

This thesis has defined a way to represent OCL constraints in GROOVE models. Due to the
limited time we had the following remains for future work:

• We have improved and extended the definitions of Radke et al. in [11]. We have shown
that our definitions have the desired result, but a formal proof is missing, so creating
formal proofs to show that our definitions are completely correct remains for future work.

• We have added the limitation that it is obligated to define the type of variables in, for
example, forall. It is possible to remove this limitation by addin a round of parsing
where you add the types to the syntax tree. In that case you know the types of every
variable and sub expression at the moment you apply the transformation rules. In the
current implementation you have to determine the type at the current point in the syntax
tree. And thus this will make the application of the transformation rules easier. Adding
the round of parsing to determine the types remains for future work.

• We have explained the limitation of our current implementation about negations, since we
had no way to encode that a nested graph constraint is false. We have found two solution
directions; 1) implement a way to let a nested graph constraint be false in GROOVE, or
2) we may have found a way to encode a false nested graph constraint in GROOVE by
applying the following rule in which False is a type defined in the type graph that will
not appear in any instance graph. Therefore the existential part will always evaluate to
false. The False type is specifically defined to be able to encode the false nested graph
constraint.

∃(C, false) ?≡ ∀(C,∃( False ))
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Section 6.2.2 gives an OCL constraint that could not be encoded in GROOVE due to the
negation limitation, this is the selectIsEmpty constraint that can also be found below.
Figure 8.1 seems to give the way to encode the false nested graph constraint by applying
the rule above. This may be a solution direction to solve the negation limitation, due to
the limited time this remains for future work.
context Person inv selectIsEmpty: self.editedBook->select(e:EditedBook |
e.bookSection->notEmpty())->isEmpty().

Person

∀

EditedBook BookSection

∀

False

∃

bookSection

@@@ @

in

editedBook

in

Figure 8.1: A way to encode a false nested graph constraint.

• We did not manage to implement all the defined transformation rules, as discussed in
Section 8.2. The two missing transformation rules remain for future work.

• We have created the instance models in both Eclipse OCL and GROOVE manually for
the validation. It may be better to be able to translate instance models from Eclipse OCL
to GROOVE, such that it is ensured that the same instance model is used in both Eclipse
OCL and in GROOVE. Since this translation is not available yet, this is potential future
work.

8.4 Evaluation

At the beginning of my graduation project I had not much experience with parser generators
and their tree walkers. With the current knowledge it is possible to increase the efficiency of
my implementation. The most profit can be made by preprocessing the tree before applying
the transformation rules. In the current implementation the transformation rules are applied
immediately on the generated parse tree. In some cases additional tree walking is needed, for
example if we transform the following OCL constraint:

context Department inv: self.employee->size() > 2

The syntax tree of this constraint will look like the tree we showed earlier in Figure 6.1, and
thus at the node where the size operation is defined we do not have the compare operator and
the constant value available. So it is not possible to transform the size operation at that node.
Currently this is fixed by determining if we need to apply the size transformation rule at the
ACompareableExpression, because we do have all the necessary information available at that
node. With preprocessing we could add the necessary information to the size node such that
the size transformation rule can be applied at its node.
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Appendix A

OCL 1.5 grammar

1 oclFile := ("package" packageName
2 oclExpressions
3 "endpackage"
4 )+
5 packageName := pathName
6 oclExpressions := ( constraint )*
7 constraint := contextDeclaration
8 ( ( "def" name? ":" letExpression* )
9 |

10 ( stereotype name? ":" oclExpression)
11 )+
12 contextDeclaration := "context"
13 ( operationContext | classifierContext )
14 classifierContext := ( name ":" name )
15 | name
16 operationContext := name "::" operationName
17 "(" formalParameterList ")"
18 ( ":" returnType )?
19 stereotype := ( "pre" | "post" | "inv" )
20 operationName := name | "=" | "+" | "-" | "<" | "<=" |
21 ">=" | ">" | "/" | "*" | "<>" |
22 "implies" | "not" | "or" | "xor" | "and"
23 formalParameterList := ( name ":" typeSpecifier
24 ("," name ":" typeSpecifier )*
25 )?
26 typeSpecifier := simpleTypeSpecifier
27 | collectionType
28 collectionType := collectionKind
29 "(" simpleTypeSpecifier ")"
30 oclExpression := (letExpression* "in")? expression
31 returnType := typeSpecifier
32 expression := logicalExpression
33 letExpression := "let" name
34 ( "(" formalParameterList ")" )?
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35 ( ":" typeSpecifier )?
36 "=" expression
37 ifExpression := "if" expression
38 "then" expression
39 "else" expression
40 "endif"
41 logicalExpression := relationalExpression
42 ( logicalOperator
43 relationalExpression
44 )*
45 relationalExpression := additiveExpression
46 ( relationalOperator
47 additiveExpression
48 )?
49 additiveExpression := multiplicativeExpression
50 ( addOperator
51 multiplicativeExpression
52 )*
53 multiplicativeExpression:= unaryExpression
54 ( multiplyOperator
55 unaryExpression
56 )*
57 unaryExpression := ( unaryOperator
58 postfixExpression
59 )
60 | postfixExpression
61 postfixExpression := primaryExpression
62 ( ("." | "->")propertyCall )*
63 primaryExpression := literalCollection
64 | literal
65 | propertyCall
66 | "(" expression ")"
67 | ifExpression
68 propertyCallParameters := "(" ( declarator )?
69 ( actualParameterList )? ")"
70 literal := string
71 | number
72 | enumLiteral
73 enumLiteral := name "::" name ( "::" name )*
74 simpleTypeSpecifier := pathName
75 literalCollection := collectionKind "{"
76 ( collectionItem
77 ("," collectionItem )*
78 )?
79 "}"
80 collectionItem := expression (".." expression )?
81 propertyCall := pathName
82 ( timeExpression )?
83 ( qualifiers )?
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84 ( propertyCallParameters )?
85 qualifiers := "[" actualParameterList "]"
86 declarator := name ( "," name )*
87 ( ":" simpleTypeSpecifier )?
88 ( ";" name ":" typeSpecifier "="
89 expression
90 )?
91 "|"
92 pathName := name ( "::" name )*
93 timeExpression := "@" "pre"
94 actualParameterList := expression ("," expression)*
95 logicalOperator := "and" | "or" | "xor" | "implies"
96 collectionKind := "Set" | "Bag" | "Sequence" | "Collection"
97 relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"
98 addOperator := "+" | "-"
99 multiplyOperator := "*" | "/"

100 unaryOperator := "-" | "not"
101 typeName := charForNameTop charForName*
102 name := charForNameTop charForName*
103 charForNameTop := /* Characters except inhibitedChar
104 and ["0"-"9"]; the available
105 characters shall be determined by
106 the tool implementers ultimately.*/
107 charForName := /* Characters except inhibitedChar; the
108 available characters shall be determined
109 by the tool implementers ultimately.*/
110 inhibitedChar := " " | "\"" | "#" | "\'" | "(" | ")" |
111 "*" | "+" | "," | "-" | "." | "/" |
112 ":" | ";" | "<" | "=" | ">" | "@" |
113 "[" | "\\" | "]" | "{" | "|" | "}"
114 number := ["0"-"9"] (["0"-"9"])*
115 ( "." ["0"-"9"] (["0"-"9"])* )?
116 ( ("e" | "E") ( "+" | "-" )? ["0"-"9"]
117 (["0"-"9"])*
118 )?
119 string := "'"
120 (( ~["’","\\","\n","\r"] )
121 |("\\"
122 ( ["n","t","b","r","f","\\","’","\""]
123 | ["0"-"7"]
124 ( ["0"-"7"] ( ["0"-"7"] )? )?
125 )
126 )
127 )*
128 "'"
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Appendix B

Franconi’s OCLFO fragment

OCL-Bool ::= OCL-Bool BoolOp OCL-Bool | not OCL-Bool |
OCL-Set ->includesAll(OCL-Set) | OCL-Set ->excludesAll(OCL-Set) |
OCL-Set ->includes(OCL-Single) | OCL-Set ->excludes(OCL-Single) |
OCL-Set ->Forall(VarList | OCL-Bool) |
OCL-Set ->Exists(VarList | OCL-Bool) |
OCL-Set ->isEmpty() | OCL-Set ->notEmpty() |
OCL-Set ->size() CompOp Integer | OCL-Set ->one(Var | OCL-Bool) |
OCL-Set ->isUnique(attr) |
OCL-Object.oclIsKindOf(Class) | OCL-Object.oclIsTypeOf(Class) |
OCL-Object = null | OCL-Object <> null |
OCL-Navigation = OCL-Navigation | OCL-Navigation <> OCL-Navigation |
OCL-Value CompOp OCL-Value |
OCL-Object.bAttr | Var

OCL-Navigation ::= OCL-Set | OCL-Single
OCL-Set ::= OCL-Set ->union(OCL-Set) | OCL-Set ->intersection(OCL-Set) |

OCL-Set ->symmetricDifference(OCL-Set) | OCL-Set - OCL-Set |
OCL-Set ->select(Var | OCL-Bool) | OCL-Set ->reject(Var | OCL-Bool) |
OCL-Set ->selectByKind(Class) | OCL-Set ->selectByType(Class) |
OCL-Set.role[role] | OCL-Set.assoClass[role] |
OCL-Object.nfRole[role] | OCL-Object.nfAssoClass[role] |
OCL-Set.attr | OCL-Set.nfAttr |
Class.allInstances() | OCL-Single

OCL-Single ::= OCL-Object | OCL-Value
OCL-Object ::= OCL-Object.oclAsType(Class) |

OCL-Object.fRole | OCL-Object.fAssoClass |
Var | self

OCL-Value ::= Constant | Var |
OCL-Object.fAttr |
OCL-Set ->min() | OCL-Set ->max()

BoolOp ::= and | or | xor | implies
CompOp ::= < | <= | = | >= | > | <>
VarList ::= Var (,Var)*
Var ::= <a variable name>
Class ::= <a class name>
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assoClass ::= <an association class name>
fAssoClass ::= <an association class name of a functional role>
nfAssoClass ::= <an association class name of a non functional role>
role ::= <a role name>
fRole ::= <a functional role name>
nfRole ::= <a non functional role name>
attr ::= <an attribute name>
bAttr ::= <a boolean attribute name>
fAttr ::= <a functional attribute name>
nfAttr ::= <a non functional attribute name>
Integer ::= <an integer number>
Constant ::= <a constant name>
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Appendix C

Radke’s OCL to graph transformation

Radke et al. use a slightly different notation for a node with an attribute. So where we write

v1:T attr1−−−→ v2:int ≥−→ 0:int Radke et al. write
v1:T
attr1 ≥ 0

. The difference in notation was

necessary for our implementation of expr1 op expr2, which will be explained more thoroughly
in Appendix D.2.

Let expr, expr1 and expr2 be OCL expressions, u, x, v1, v2, v3, v4 names of nodes (i.e.
variables), T= t(v) denote the type of v and likewise T‘ = t(v‘), attr1 and attr2 be attribute
names, op ∈ {<,>,≤,≥,=, <>} a comparison operator, and role be a role of a class. Then

Gr # OCL Nested Graph

trI
i ‘context‘ C ‘inv:‘ expr ∀( self:C , trE(expr))
ii ‘context‘ var:C ‘inv:‘ expr ∀( var:C , trE(expr))

trE

iii true true
iv ‘not‘ expr ¬ trE(expr)
v expr1 ‘and‘ expr2 trE(expr1) ∧ trE(expr2)
vi expr1 ‘or‘ expr2 trE(expr1) ∨ trE(expr2)
vii expr1 ‘implies‘ expr2 ¬trE(expr1) ∧ trE(expr2)
viii ‘if‘ cond ‘then‘ expr1 ‘else‘ expr2 ‘en-

dif‘
(trE(cond) ∧ trE(expr1)) ∨ (¬ trE(cond) ∧ trE(expr2))

ix expr1‘->exists‘(v:T|expr2) ∃( v:T , trS(expr1, v:T ) ∧ trE(expr2))
x expr1‘->forall‘(v:T|expr2) ∀( v:T , trS(expr1, v:T ) =⇒ trE(expr2))
xi expr1‘->includesAll‘(v:T|expr2) ∀( v:T , trS(expr2, v:T ) =⇒ trS(expr1, v:T ))
xii expr1‘->excludesAll‘(v:T|expr2) ∀( v:T , trS(expr2, v:T ) =⇒ ¬ trS(expr1, v:T ))
xiii expr‘->notEmpty()‘ ∃( v:T , trS(expr, v:T ))
xiv expr‘->size() >=‘ n ∃( v1:T ... vn:T , ∧ni=1 trS(expr, vi:T ))
xv expr1 ‘=‘ expr2

t(expr1)=t(expr2)=T
∃( v:T , trN (expr1, v:T ) ∧ trN (expr2, v:T ))

xvi expr1 ‘=‘ expr2
t(expr1)=t(expr2)=Set(T)

∀( v:T , trS(expr1, v:T ) ⇐⇒ trS(expr2, v:T ))

xvii expr.attr1 op n
t(expr) = T

∃( v:T , trN (expr, v:T )∧∃( v:T
attr1 op n

))
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xviii expr1.attr1 op expr2.attr2 ∃( v1:T , trN (expr1,
v1:T1
attr1 op x

) ∧ trN (expr2,
v1:T1
attr2 = x

)) ∨∗ ∃( v1:T1 v2:T2 , trN (expr1,
v1:T1
attr1 op x

) ∧ trN (expr2,

v2:T2
attr2 = x

))

The part before ∨∗ is omitted if clan(t(expr1)) ∩ clan(t(expr2))
= ∅, and the part after ∨∗ is omitted if expr1=expr2

xix expr‘->oclIsKindOf‘(T)
T‘=t(expr) and T ∈clan(T‘)

∃( v:T‘ ↪→ v:T , trN (expr, v:T‘ ))

xx expr‘->oclIsTypeOf‘(T)
T‘=t(expr) and T ∈clan(T‘)

∃( v:T‘ ↪→ v:T ,
∧T“6=T

T“∈clan(T ) ¬∃( v:T ↪→ v:T“ )

∧trN (expr, v:T“ ))

trN
xxi (expr‘.oclAsType‘(T), v:T )

T‘=t(expr) and T ∈clan(T‘)
∃( v:T‘ ↪→ v:T , trN (expr, v:T‘ ))

xxii (v, v‘:T ) ∃( v=v‘:T )
xxiii (expr.role, v:T )

T‘=t(expr) ∧ T‘ 6∈ clan(T)
∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ ))

xxiv (expr.role, v:T )
T‘=t(expr) ∧ T‘ ∈ clan(T)

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ ))∨
∃( v:T role , trN (expr, v:T ))

trS

xxv (expr.role, v:T )
T‘=t(expr) ∧ T‘ 6∈ clan(T)

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ ))

xxvi (expr.role, v:T )
T‘=t(expr) ∧ T‘ ∈ clan(T)

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ ))∨
∃( v:T role , trN (expr, v:T ))

xxvii (expr1‘->select‘(v:T | expr2), v‘:T ) trS(expr1, v‘:T ) ∧ trE(expr2){v‘/v}
xxviii (expr1‘->reject‘(v:T| expr2), v‘:T ) trS(expr1, v‘:T ) ∧¬ trE(expr2){v‘/v}
xxix expr1‘->collect‘(v:T | expr2), v‘:T‘

if expr2 yields a set
∃( v:T , trS(expr1, v:T )∧trS(expr2, v‘:T‘ ))

xxx expr1‘->collect‘(v:T | expr2), v‘:T‘
if expr2 yields an object

∃( v:T , trS(expr1, v:T )∧trN (expr2, v‘:T‘ ))

xxxi (expr1‘->union‘(expr2), v:T ) trS(expr1, v:T ) ∨ trS(expr2, v:T )
xxxii (expr1‘->intersection‘(expr2),

v:T )
trS(expr1, v:T ) ∧ trS(expr2, v:T )

xxxiii (expr1‘-‘expr2, v:T ) trS(expr1, v:T ) ∧¬ trS(expr2, v:T )
xxxiv (expr1‘-> symmetricDiffer-

ence‘(expr2), v:T )
trS(expr1, v:T ) Y trS(expr2, v:T )

xxxv (T‘.allInstances()‘, v:T ) ∃( v:T )
xxxvi (Set{expr1,...,exprN}, v:T ) trN (expr1, v:T ) ∨...∨ trN (exprN, v:T )

C.1 Radke’s Equivalence Rules

The following equivalences are defined by Radke et al. in [6]. Let C1 ⊕P C2 denote the gluing
or pushout of C1 and C2 along P and let P denote the set of all intersections of C1 and C2:
(RE1)(a) ∃(C1,∃(C2)) ≡

∨
P∈P ∃(C1 ⊕P C2).

(b) ∃(C1,∃(C2)) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint.
(c) ∃(C1, ∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.
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(RE2)(a) ∃(C1,∃(C2) ∧ ∃(C3)) ≡ ∃(C1,∨P∈P∃(C2 ⊕P C3)), if for all node names occurring in
both C2 and C3, a node with that name already exists in C1.

(b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have disjoint sets of
node names.

(RE3) ∃( u:T ,∃(C) ∧ ∃( u=v:T )) ≡ ∃( u:T , ∃(C[u = v])) provided that either u or v does not
exist in C and C[u = v] is the graph obtained from C by renaming u by u = v.
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Appendix D

Improvements on Radke’s rules

This appendix explains our contributions and therefore our changes to the transformation rules
as defined by Radke et al. which can be found in Appendix C. To be able to show what goes
wrong and thus why we had to create new transformation rules we will use the transformation
rules defined by Radke et al. The transformation rule of Radke et al. can be recognized by the
Roman numbers and their equivalence rules start with an R. For example "RE1" is the first
equivalence rule defined by Radke et al.

D.1 Renaming Equivalence Rule

Radke et al. have defined the renaming equivalence rule RE3 as:

∃( u:T ,∃(C) ∧ ∃( u=v:T )) ≡ ∃( u:T ,∃(C[u = v]))

provided that either u or v does not exist in C and C[u = v] is the graph obtained from C by
renaming u by u = v.

At the moment we started implementing the equivalence rules we realised that if you follow the
defined equivalence rule strictly, the result is not the desired result. We show in Example 11
what happens if we follow the equivalence rule strictly.

Example 11. context Department inv: self.budget >= 0

=1 ∀( self:D , trE(self.budget>=0))

=xvii ∀( self:D , ∃( v:D , trN (self, v:D ) ∧ ∃( v:D
budget ≥ 0

))

=xxii ∀( self:D , ∃( v:D , ∃( self=v:D ) ∧ ∃( v:D
budget ≥ 0

)))

=RE3 ∀( self:D , ∃( v:D , ∃( v:D
budget ≥ 0

)))

At this moment we are stuck and the lax condition cannot be simplified further. If we read the
current lax condition it reads; for every node of type Department, there exists another node of
type Department that has an budget that is equal or greater than 0. What we want is that it
reads; every node of type Department has a budget that is equal or greater than 0. Therefore we
have to be able to do another simplification step such that we can combine the two existential
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quantifiers with equivalence rule RE1c. Currently this is not possible because the equivalence
∃( self=v:D ) is removed by applying the equivalence rule and now we are not sure we are allowed
to apply RE1c.

Before we give a new definition of the renaming equivalence rule a deeper understanding of lax
conditions is necessary. Within lax conditions a quantification goes over the graph and not over
the name that is given to a node, in this example ∃( self=v:D ) tells us that the node with the
name self and the node with the name v are one and the same node. The node names that
appear in self=v:D are always defined already defined just like in the example where they are
already defined with ∀( self:D ) and ∃( v:D ). To be able to keep simplifying you need to rename
the remaining v:D also to self:D , which is possible because ∃( self=v:D ) told us that self:D
and v:D are one and the same node.

Now that we know that we have to change the definition, we will also clarify the renaming part
of the equivalence rule. Currently C[u = v] could be read both ways and so you have no clue
if u is renamed to v or the other way around. In the new definition we will denote a rename in
the same way as they do in relational algebra. We write C{a/b} as we want to rename every
b in C to a. With these two changes in mind, the new renaming equivalence rule is defined in
Definition 3 and is called E4a in our equivalence rules in Section 4.4.2.

Definition 3. ∃( u:T ,∃(C) ∧ ∃( u=v:T )) ≡ ∃( v:T ,∃(C{v/u})) provided that v does not
exist in C and C{v/u} is the graph obtained from C by renaming u to v.

Now if we replace RE3 with the new definition, E4a, we get the elaboration of Example 12 and
as we can see we can apply RE1c now to get the intended result.

Example 12. context Department inv: self.budget >= 0

=1 ∀( self:D , trE(self.budget>=0))

=xvii ∀( self:D , ∃( v:D , trN (self, v:D ) ∧ ∃( v:D
budget ≥ 0

))

=xxii ∀( self:D , ∃( v:D , ∃( self=v:D ) ∧ ∃( v:D
budget ≥ 0

)))

=E4a ∀( self:D , ∃( self:D , ∃( v:D
budget ≥ 0

)))

=RE1c ∀( self:D , ∃( v:D
budget ≥ 0

))

Renaming Equivalence Rule in Navigation

It is possible to get a u=v:T without an ∧. This happens when trN is called with a longer
path instead of directly a variable on the node self. Example 13 shows in what scenario this
happens.

Example 13. context Department inv: self.project.budget >= 0

=i ∀( self:D , trE(self.project.budget>=0))

=xvii ∀( self:D ,∃( v:P , trN (self.project, v:P ) ∧ ∃( v:P
budget ≥ 0

))

=xxiii ∀( self:D ,∃( v:P ,∃( v‘:D p−→ v:P , trN (self, v‘:D )) ∧ ∃( v:P
budget ≥ 0

))
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=xxii ∀( self:D ,∃( v:P ,∃( v‘:D p−→ v:P ,∃( v‘=self:D )) ∧ ∃( v:P
budget ≥ 0

))

As you can see, in the end we have ∃( u:T ,∃( u=v:T )), which does not correspond to the defined
renaming equivalence rule. To be able to simplify such a case we introduce a second renaming
equivalence rule which does not obligate the ∧, the new, additional, renaming equivalence rule
is defined in Definition 4 and is called E4b since it is a special case of our E4a equivalence rule
in Section 4.4.2.

Definition 4. ∃( u:T ,∃( u=v:T )) ≡ ∃( v:T )

D.2 Compare and equality operator

A lot has changed about the compare and equality operator transformation rules. To be more
specific, we are talking about the following transformation rules: xv, xvi, xvii and xviii. In the
upcoming paragraphs we will talk about what goes wrong with the current implementation and
in Appendix D.2.4 we will give the new implementation.

D.2.1 Losing attributes

With the current implementation of transformation rule xviii we will lose attributes in some
scenarios. transformation rule xviii is defined as:

∃( v:T , tr(expr1,
v:T
attr1 op x

) ∧ trN (expr2,
v:T
attr2 = x

))∨∗

∃( v:T v‘:T‘ , trN (expr1,
v:T
attr1 op x

) ∧ trN (expr2,
v‘:T‘
attr2 = x

))

The part before ∨∗ is omitted if clan(t(expr1)) ∩ clan(t(expr2)) = ∅, and the part after ∨∗ is
omitted if expr1=expr2.

Example 14 shows how we lose an attribute in the given scenario, after the example we will
explain why this is happening.

Example 14. context Project inv: self.budget <= self.department.budget

=i ∀( self:P , trE(self.budget <= self.department.budget))

=xviii ∀( self:P ,∃( v:P v‘:D , trN (self,
v:P
budget <= x

) ∧ trN (self.department,
v‘:D
budget = x

)))

=xxiii ∀( self:P ,∃( v:P v‘:D , trN (self,
v:P
budget <= x

) ∧ ∃( v“:P d−→ v‘:D
budget = x

, trN (self, v“:P ))))

=2×xxii ∀( self:P ,∃( v:P v‘:D ,∃( v=self:P
budget <= x

) ∧ ∃( v“:P d−→ v‘:D
budget = x

, ∃( v“=self:P ))))

=2×E3 ∀( self:P ,∃( self:P v‘:D ,∃( self:P d−→ v‘:D
budget = x

)))

=E1c ∀( self:P ,∃( self:P d−→ v‘:D
budget = x

))

As you can see in Example 14 we have lost the
v:P
budget <= x

. This happens because of how

transformation rule xviii works in combination with rule xxii and RE3.
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Currently rule xviii defines the existence of two nodes and inside of the trN the attributes are
defined. Important to know is that trN stands for navigation transformation. In this case the
navigation transformation is called with a new attribute that is not defined within a quantifier
yet. If you combine this with rule xviii, which creates an existence such that two nodes are the
same, and rule RE3 which assumes that the node already exists and renames accordingly. You
are going to lose the attribute, because RE3 only renames as you can see in the elaboration
above.

D.2.2 Overlap in the clans

With the current implementation of transformation rule xviii something strange happens if both
parts (before and after the ∨∗ are needed. This happens if expr1 6= expr2 and clan(t(expr1))∩
clan(t(expr2)) 6= ∅. An example where this happens can be found below, in which EB stands
for EditedBook and BC for BookChapter. This example can be applied to the class diagram of
the DBLP case study [7] and can be found in Appendix E.

context EditedBook inv: self.year >= self.bookSection.bookChapter.year

=i ∀( self:EB , trE(self.year >= self.bookSection.bookChapter.year))

=xviii ∀( self:EB , ∃( v:EB , trN (self,
v:EB
year >= x

) ∧ trN (self.bS.bC,
v:EB
year = x

))

∨ ∃( v:EB v‘:BC , trN (self,
v:EB
year >= x

) ∧ trN (self.bS.bC,
v‘:BC
year = x

)))

The problem is within the part before the ∨, where the existence of only one node v:EB is used
to check both attributes. In this case this is really strange because the type of self.bS.bC (self.bookSection.bookChapter)

is not of type EditedBook at all. Therefore trN (self.bS.bC,
v:EB
year = x

) cannot be resolved.

This issue is easily solved by the fact that we do not match injectively in constrast to Radke et
al. Therefore the part before the ∨∗ is abundant. The cases where both attributes are one and
the same node is also applied with the part after the ∨∗ because it is not matched injectively
and so v and v‘ are allowed to be the same node.

D.2.3 Extensibility

We have extended the OCL fragment with some additional operations, such as min() and max().
Here a problem arises with the fact that every combination is defined as a new transformation
rule. For example rule xvii expr.attr1 op n compares an expression with a constant, but this
rule cannot handle n op expr.attr1 where a constant is compared with an expression. At
first this is not a really big issue, but we want to extend the comparison with two operations.
Without a change this would have resulted in an exponential growth of transformation rules,
which would have been unnecessary. For example for only the min() operation the following
transformation rules were necessary, and the same line of thought would have applied to the
max() operation. In our final solution we have resolved this issue.

1. expr1.attr1->min() op n
2. expr1.attr1->min() op expr2.attr2
3. expr1.attr1->min() op expr1.attr1->max()
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D.2.4 Solution

In this section we will resolve the described problems one for one until we have the final solution,
then we will show that our final solution works. This also has been a process during the develop-
ment in which we have resolved these problems step by step, because without the intermediate
solution steps the final solution is quite a big step from the definitions of Radke et al.

The solution to prevent losing the attributes in some scenarios as described in Appendix D.2.1,
is to create the variables outside the navigation expression. Applying this to rule xviii results in
the following transformation rule:

expr1 op expr2 ≡

∃(
v:T
attr1 op x
attr2 = x

, tr(expr1,
v:T
attr1 op x

) ∧ trN (expr2,
v:T
attr2 = x

))∨∗

∃( v:T
attr1 op x

v‘:T‘
attr2 = x

, trN (expr1,
v:T
attr1 op x

) ∧ trN (expr2,
v‘:T‘
attr2 = x

))

The solution to prevent a node with the wrong type name, which happens when the clans overlap
and the expressions are not the same, as described in Appendix D.2.2, is to remove the part
before the ∨∗. This is possible because we do not match injectively. Applying this to rule xviii
results in the following transformation rule:

expr1 op expr2 ≡

∃( v:T
attr1 op x

v‘:T‘
attr2 = x

, trN (expr1,
v:T
attr1 op x

) ∧ trN (expr2,
v‘:T‘
attr2 = x

))

The last problem described is the extensibility in Appendix D.2.3. To resolve this problem
we have to be able to transform both expressions separate and connect them together with the
defined operation. To make this possible we had to unpack the notation of nodes with attributes
of Radke et al. because we need to access the attributes directly, such that we can create the
comparison of the variables and then create the path to these variables with the navigation
expressions. So the starting point of the new transformation step was:
expr1 op expr2 ≡ ∃( v:T op v‘:T‘ , trN (expr1, v:T ) ∧ trN (expr2, v‘:T‘ ))

Notation-wise this is not completely correct because only the equals (=) and not equals (<>)
are symmetrical operations and v:T op v‘:T‘ suggests that the operations are symmetrical.
Therefore we create two variants of this rule, one for the two symmetrical operators and one
for the remaining four comparison operators {<,≤,≥, >}. This is the following transformation
rule:
expr1 op expr2 ≡ ∃( v:T

op
−−→ v‘:T‘ , trN (expr1, v:T ) ∧ trN (expr2, v‘:T‘ ))

Of course we do need some additional navigation transformation rules to be able to connect all
the possible expressions with the variable. First of all the constant value, this one is almost
the same to transformation rule xxii except that v is a node name and not a constant, so we
add an additional variant in which v is replaced for a constant, this results in the following
transformation rule:
trN (N, v:T ) ≡ ∃( N=v:T )

To connect a variable with its class we can use transformation rule xxiii, since the name of the
variable is placed on the edge, as described in Definition 1, this transformation rule does apply
for this scenario too.

69



The way to determine if two sets are equal (transformation rule xvi) is different from the way
to determine if two values are equal. So far we have focused on comparing two values, but what
is the impact for comparing to sets? The new implementation is based on the value comparison
definition, so you can recognize the two nodes with the compare operator in between. In this
case, the node that is universally quantified is only connected to expr1, to solve this we have
duplicated the statement, once for expr1 and once for expr2. This results in the following
transformation rule:

expr1 eq expr2 ≡

∀( v1:T , ∃( v1:T op v2:T , trS(expr2, v2:T )) ∧ trS(expr1, v1:T ))∧

∀( v3:T , ∃( v3:T op v4:T , trS(expr1, v4:T )) ∧ trS(expr2, v3:T ))

Lastly the two additional operations, min() and max() can be added quite easy now because
we have changed the definitions in such a way that it is easier to extend with an additional
transformation rule within the navigation transformations. The following two transformation
rules are added to create support for the min() and max() operations.

trN (expr.attr->min(), x:T ) ≡∃( v1:T attr−−→ x:T , trN (expr, v1:T )∧

∀( v2:T attr−−→ v3:T , trN (expr, v2:T ) =⇒ ∃( x:T ≤−→ v3:T )))

trN (expr.attr->max(), x:T ) ≡∃( v1:T attr−−→ x:T , trN (expr, v1:T )∧

∀( v2:T attr−−→ v3:T , trN (expr, v2:T ) =⇒ ∃( x:T ≥−→ v3:T )))

Examples

Considering that this is a big change in definitions, we will give multiple examples in this
paragraph to show that this implementation is able to handle both comparisons with constants,
comparisons between variables but also comparisons with the minimal or maximal value. First
in Example 15 we give an example with a comparison with a constant. In Example 16 we give
an example where we compare two attributes. In Example 17 we give an example that compares
the minimal value with a constant and in Example 18 we give an example where we compare
the maximal value with an attribute. Lastly in Example 19, we give a set equality example.

Example 15. context Employee inv: self.salary >= 1000

=1 ∀( self:E , trE(self.salary >= 1000))

=14 ∀( self:E ,∃( v:int ≥−→ v‘:int , trN (self.salary, v:int ) ∧ trN (1000, v‘:int )))

=37,35 ∀( self:E ,∃( v:int ≥−→ v‘:int , ∃( v“:E salary−−−−→ v:int , trN (self, v“:E )) ∧ ∃( 1000=v‘:int )))

=34 ∀( self:E ,∃( v:int ≥−→ v‘:int , ∃( v“:E salary−−−−→ v:int , ∃( self=v“:E )) ∧ ∃( 1000=v‘:int )))

=E4 ∀( self:E ,∃( v:int ≥−→ 1000:int , ∃( self:E salary−−−−→ v:int )))

=E1 ∀( self:E ,∃( self:E salary−−−−→ v:int ≥−→ 1000:int ))
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Example 16. context Project inv: self.budget <= self.department.budget

=1 ∀( self:P , trE(self.budget <= self.department.budget))

=14 ∀( self:P , ∃( v:int ≤−→ v1:int , trN (self.budget, v:int ) ∧ trN (self.department.budget, v1:int ))

=2×37 ∀( self:P , ∃( v:int ≤−→ v1:int , ∃( v2:P b−→ v:int , trN (self, v2:P ))∧

∃( v3:D b−→ v1:int , trN (self.department, v3:D ))))

=37 ∀( self:P , ∃( v:int ≤−→ v1:int , ∃( v2:P b−→ v:int , trN (self, v2:P ))∧

∃( v3:D b−→ v1:int ,∃( v4:P d−→ v3:D , trN (self, v4:P )))))

=2×34 ∀( self:P , ∃( v:int ≤−→ v1:int , ∃( v2:P b−→ v:int , ∃( self=v2:P ))∧

∃( v3:D b−→ v1:int ,∃( v4:P d−→ v3:D ,∃( self=v4:P )))))

=2×E4b ∀( self:P , ∃( v:int ≤−→ v1:int , ∃( self:P b−→ v:int ) ∧ ∃( v3:D b−→ v1:int ,∃( self:P d−→ v3:D ))))

=E1 ∀( self:P , ∃( v:int ≤−→ v1:int , ∃( self:P b−→ v:int ) ∧ ∃( self:P d−→ v3:D b−→ v1:int )))

Example 17. context Project inv: self.employee.salary->min() = 1500

=1 ∀( self:P , trE(self.employee.salary->min() = 1500))

=13 ∀( self:P , ∃( v:int = v1:int , trN (self.employee.salary->min(), v:int ) ∧ trN (1500, v1:int )))

=38,35 ∀( self:P , ∃( v:int = v1:int , ∃( v2:E s−→ v:int , trN (self.employee, v2:E )∧

∀( v3:E s−→ v4:int , trN (self.employee, v3:E ) =⇒ ∃( v:int ≤−→ v4:int ))) ∧ ∃( 1500=v1:int )))

=2×37 ∀( self:P , ∃( v:int = v1:int , ∃( v2:E s−→ v:int , ∃( v5:P e−→ v2:E , trN (self, v5:P ))∧

∀( v3:E s−→ v4:int , ∃( v6:P e−→ v3:E , trN (self, v6:P )) =⇒ ∃( v:int ≤−→ v4:int )))∧

∃( 1500=v1:int )))

=2×34 ∀( self:P , ∃( v:int = v1:int , ∃( v2:E s−→ v:int , ∃( v5:P e−→ v2:E , ∃( self=v5:P ))∧

∀( v3:E s−→ v4:int , ∃( v6:P e−→ v3:E , ∃( self=v6:P )) =⇒ ∃( v:int ≤−→ v4:int )))∧

∃( 1500=v1:int )))

=2×E4b ∀( self:P , ∃( v:int = v1:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∃( self:P e−→ v3:E ) =⇒ ∃( v:int ≤−→ v4:int ))) ∧ ∃( 1500=v1:int )))

=E2 ∀( self:P , ∃( v:int = v1:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∀( self:P e−→ v3:E ,∃( v:int ≤−→ v4:int )))) ∧ ∃( 1500=v1:int )))

=E4a ∀( self:P , ∃( v:int = 1500:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∀( self:P e−→ v3:E ,∃( v:int ≤−→ v4:int ))))))

Example 18. context Project inv: self.employee.salary->max() < self.department.budget

=1 ∀( self:P , trE(self.employee.salary->max() < self.department.budget))

=14 ∀( self:P , ∃( v:int <−→ v1:int , trN (self.employee.salary->max(), v:int )∧

trN (self.department.budget, v1:int )))
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=39,37 ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , trN (self.employee, v2:E )∧

∀( v3:E s−→ v4:int , trN (self.employee, v3:E ) =⇒ ∃( v:int ≥−→ v4:int )))∧

∃( v5:D b−→ v1:int , trN (self.department, v5:D ))))

=3×37 ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , ∃( v6:P e−→ v2:E , trN (self, v6:P ))∧

∀( v3:E s−→ v4:int , ∃( v7:P e−→ v3:E , trN (self, v7:P )) =⇒ ∃( v:int ≥−→ v4:int )))∧

∃( v5:D b−→ v1:int ,∃( v8:P d−→ v5:D , trN (self, v8:P )))))

=3×34 ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , ∃( v6:P e−→ v2:E ,∃( self=v6:P ))∧

∀( v3:E s−→ v4:int , ∃( v7:P e−→ v3:E , ∃( self=v7:P )) =⇒ ∃( v:int ≥−→ v4:int )))∧

∃( v5:D b−→ v1:int ,∃( v8:P d−→ v5:D ,∃( self=v8:P )))))

=3×E4b ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∃( self:P e−→ v3:E ) =⇒ ∃( v:int ≥−→ v4:int )))∧

∃( v5:D b−→ v1:int ,∃( self:P d−→ v5:D ))))

=E1 ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∃( self:P e−→ v3:E ) =⇒ ∃( v:int ≥−→ v4:int )))∧

∃( self:P d−→ v5:D b−→ v1:int )))

=E2 ∀( self:P , ∃( v:int <−→ v1:int , ∃( v2:E s−→ v:int , ∃( self:P e−→ v2:E )∧

∀( v3:E s−→ v4:int , ∀( self:P e−→ v3:E ,∃( v:int ≥−→ v4:int ))))∧

∃( self:P d−→ v5:D b−→ v1:int )))

Example 19. context Project inv: self.employee = self.department.employee

=1 ∀( self:E , trE(self.employee = self.department.employee))

=12 ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , trS(self.employee, v1:E )

∧ trS(self.department.employee, v2:E )))∧

∀( v3:E ,∃( v3:E = v4:E , trS(self.department.employee, v3:E )

∧ trS(self.employee, v4:E ))))

=4×40 ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , ∃( v5:P e−→ v1:E , trN (self, v5:P ))∧

∃( v6:D e−→ v2:E , trN (self.department, v6:D ))))∧

∀( v3:E ,∃( v3:E = v4:E , ∃( v7:D e−→ v3:E , trN (self.department, v7:D ))∧

∃( v8:P e−→ v4:E , trN (self, v8:P )))))

=2×37 ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , ∃( v5:P e−→ v1:E , trN (self, v5:P ))∧

∃( v6:D e−→ v2:E ,∃( v9:P d−→ v6:D , trN (self, v9:P )))))∧

∀( v3:E ,∃( v3:E = v4:E , ∃( v7:D e−→ v3:E ,∃( v10:P d−→ v7:D , trN (self, v10:P )))∧

∃( v8:P e−→ v4:E , trN (self, v8:P )))))

=4×34 ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , ∃( v5:P e−→ v1:E , ∃( self=v5:P ))∧
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∃( v6:D e−→ v2:E ,∃( v9:P d−→ v6:D ,∃( self=v9:P )))))∧

∀( v3:E ,∃( v3:E = v4:E , ∃( v7:D e−→ v3:E ,∃( v10:P d−→ v7:D ,∃( self=v10:P )))∧

∃( v8:P e−→ v4:E , ∃( self=v8:P )))))

=4×E4a ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , ∃( self:P e−→ v1:E )∧

∃( v6:D e−→ v2:E ,∃( self:P d−→ v6:D ))))∧

∀( v3:E ,∃( v3:E = v4:E , ∃( v7:D e−→ v3:E ,∃( self:P d−→ v7:D ))∧

∃( self:P e−→ v4:E ))))

=2×E1a ∀( self:E ,∀( v1:E , ∃( v1:E = v2:E , ∃( self:P e−→ v1:E )∧

∃( self:P d−→ v6:D e−→ v2:E )))∧

∀( v3:E ,∃( v3:E = v4:E , ∃( self:P d−→ v7:D e−→ v3:E )∧

∃( self:P e−→ v4:E ))))

=2×E3a ∀( self:E ,∀( v1:E , ∃( self:P e−→ v1:E = v2:E e←− v6:D d←− self:P ))∧

∀( v3:E ,∃( self:P d−→ v7:D e−→ v3:E = v4:E e←− self:P )))

D.3 Implication

Radke et al. have defined the implication transformation rule in transformation rule vii as:

trE(expr1 implies expr2) ≡ ¬trE(expr1) ∨ expr2

But if we take a look at, for example, transformation rule xi, which is defined as:

trE(expr1->includesAll(expr2)) ≡ ∀( v:T , trS(expr2, v:T ) =⇒ trS(expr1, v:T ))

You see that transformation rule xi creates a logical implication, which is an inconsistency,
therefore it would be more clear if transformation rule vii also creates a logical implication, this
will result in the following definition of the implication transformation rule:

trE(expr1 implies expr1) ≡ trE(expr1) =⇒ trE(expr2)

The next question is, is it possible to simplify such an implication and if so, how is this possible.
For this answer we take a look at the second elaboration of example 6 in [11]. We will give the
last simplification step below and omit the rest of the elaboration, because there is where the
magic happens.

∀( self:PN ,∀( t:Tr , ∃( u:PN ,∃( u=self:PN ) ∧ ∃( u:Pn tr−→ t:Tr )) =⇒

∃( v1:PTArc , ∃( w1:Tr ,∃( w1=t:Tr ) ∧ ∃( w1:Tr preArc−−−−→ v1:PTArc ))) ∨

∃( v2:TPArc , ∃( w2:Tr ,∃( w2=t:Tr ) ∧ ∃( w2:Tr postArc−−−−−→ v2:TPArc )))))

=RE3 ∀( self:PN tr−→ t:Tr , ∃( t:Tr preArc−−−−→ v1:PTArc ) ∨ ∃( t:Tr postArc−−−−−→ v2:TPArc ))

In this simplification step Radke et al. indicate to use only E3. It is easy to see that they have
omitted quite some intermediate steps, including the step where you could see what happens
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with the implication. Below we will recreate the intermediate steps such that we are only left
with the implication:

∀( self:PN , ∀( t:Tr , ∃( u:PN , ∃( u=self:PN ) ∧ ∃( u:PN tr−→ t:Tr )) =⇒

∃( v1:PTArc ,∃( w1:Tr ,∃( w1=t:Tr ) ∧ ∃( w1:Tr preArc−−−−→ v1:PTArc )))∨

∃( v2:TPArc ,∃( w2:Tr ,∃( w2=t:Tr ) ∧ ∃( w2:Tr postArc−−−−−→ v2:TPArc )))))

=RE3 ∀( self:PN , ∀( t:Tr , ∃( self:PN ,∃( self:PN tr−→ t:Tr )) =⇒

∃( v1:PTArc ,∃( t:Tr , ∃( t:Tr preArc−−−−→ v1:PTArc )))∨

∃( v2:TPArc ,∃( t:Tr , ∃( t:Tr postArc−−−−−→ v2:TPArc )))))

=RE1c ∀( self:PN t:Tr , ∃( self:PN tr−→ t:Tr ) =⇒ ∃( t:Tr preArc−−−−→ v1:PTArc )∨

∃( t:Tr postArc−−−−−→ v2:TPArc ))

If we compare the result of the above elaboration with the result in the paper of Radke et al.
we can only guess what is happening since the paper does not tell us at all. This comes down
to the following comparison:

∃( self:PN tr−→ t:Tr ) =⇒ ∃( t:Tr preArc−−−−→ v1:PTArc ) ∨ ∃( t:Tr postArc−−−−−→ v2:TPArc )

=? ∀( self:PN tr−→ t:Tr ,∃( t:Tr preArc−−−−→ v1:PTArc ) ∨ ∃( t:Tr postArc−−−−−→ v2:TPArc ))

If we generalise what we see that is happening we can make the following assumption; Let A
and B be graphs such that we are still talking about lax condition.

∃(A) =⇒ ∃(B) = ∀(A,∃(B))

We can read the left lax condition as; if there exists a graph A then there exists a graph B. The
right lax condition reads as; for all graph A’s there exist a graph B. If we look further into the
right lax condition you can also read it as; for all graph A’s, if they exist, there exists a graph
B, which can be read as; if there exists a graph A there exists a graph B. This sounds correct,
but we do not have the correctness proof. To make sure that this works also in other cases we
will try with another elaboration in Example 20. In this example we use EB for EditedBook,
CE for ConferenceEdition and py for publicationYear.

Example 20. context EB inv: self.CE->notEmpty() implies self.py >= self.CE.year

=i ∀( self:EB , trE(self.CE->notEmpty() implies self.py >= self.CE.year))

=vii ∀( self:EB , trE(self.CE->notEmpty()) =⇒ trE(self.py >= self.CE.year))

=xii ∀( self:EB ,∃( v:CE , trS(self.CE, v:CE )) =⇒ trE(self.py >= self.CE.year))

=xviii ∀( self:EB ,∃( v:CE , trS(self.CE, v:CE )) =⇒ ∃( v1:EB py−→ v2:int ≥−→ x:int
v2:CE
year = x

,

trN (self,
v1:EB
py ≥ x ) ∧ trN (self.CE,

v2:CE
year = x

)))

=2×xxiii ∀( self:EB ,∃( v:CE ,∃( v3:EB cE−→ v:CE , trN (self, v3:EB ))) =⇒

∃( v1:EB
py ≥ x

v2:CE
year = x

, trN (self,
v1:EB
py ≥ x ) ∧ ∃( v4:EB cE−→ v2:CE

year = x
, trN (self, v4:EB ))))
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=3×xxii ∀( self:EB ,∃( v:CE ,∃( v3:EB cE−→ v:CE , ∃( v3=self:EB ))) =⇒

∃( v1:EB
py ≥ x

v2:CE
year = x

, ∃(, v1=self:EB
py ≥ x ) ∧ ∃( v4:EB cE−→ v2:CE

year = x
,∃( v4=self:EB ))))

=3×E3 ∀( self:EB ,∃( v:CE ,∃( self:EB cE−→ v:CE )) =⇒

∃( self:EB
py ≥ x

v2:CE
year = x

, ∃( self:EB cE−→ v2:CE
year = x

)))

=RE1a ∀( self:EB ,∃( v:CE ,∃( self:EB cE−→ v:CE )) =⇒ ∃( self:EB
py ≥ x

cE−→ v2:CE
year = x

))

=RE1c ∀( self:EB ,∃( self:EB cE−→ v:CE ) =⇒ ∃( self:EB
py ≥ x

cE−→ v2:CE
year = x

))

=EImp ∀( self:EB ,∀( self:EB cE−→ v:CE , ∃( self:EB
py ≥ x

cE−→ v2:CE
year = x

)))

=RE1 ∀( self:EB cE−→ v:CE , ∃( self:EB
py ≥ x

cE−→ v2:CE
year = x

))

This reads as, for all EditedBook that have an ConferenceEdition, there exists an Conference
edition for which the publicationYear of the EditedBook is greater than or equal to the year
of ConferenceEdition. This is exactly what we want, because we do not match injectively. If
we did match injectively, the nodes v and v2 were not allowed to be the same node, in which
the rule would never apply with a model with one EditedBook and one ConferenceEdition. Not
matching injectively does fix this problem. So the definition of transformation rule vii will be
changed such that it will uses the logical implication and a new equivalence rule will be added
to be able to simplify an implication. This new equivalence rule can be found in Definition 5.

Definition 5. Let A and B be graphs, then the following equivalence applies:

∃(A) =⇒ ∃(B) ≡ ∀(A,∃(B))

D.4 Navigation transformations

Radke et al. have defined the navigation transformation rules xxiii up to xxvi (two rules for
both trN and trS) as:

trN (expr.role, v:T ) ≡

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ )) if T ‘ 6∈ clan(T )

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ )) ∨ ∃( v:T role , trN (expr, v:T )) else

Since we do not match injectively anymore, these rules can be simplified. The check whether T ‘
is in the clan of T is not necessary because the self loop option can be removed. If the self loop
is needed, then v‘ = v and the self loop is still possible. So the new definition of the navigation
transformation rule can be found in Definition 6.

Definition 6. trN (expr.role, v:T ) ≡

∃( v‘:T‘ role−−→ v:T , trN (expr, v‘:T‘ ))

75



D.5 Size

This is the one operation that increases in difficulty because of not matching injectively. Radke
et al. have defined the transformation rule of the size operation in rule xiv as:

trE(expr->size() >= n) ≡ ∃( v1:T ... vn:T ,
n∧

i=1

trS(expr, vi:T ))

This transformation rule did work because of the injective property, now that this property
drops out, we have to add the restriction that every node, vi:T is not equal to every other node
vj :T where i 6= j. This brings us to the new definition of this operation, which can be found
in Definition 7.

Definition 7. trE(expr->size() >= n) ≡

∃( v1:T ... vn:T ,
∧

i∈{1..n}

trS(expr, vi:T )

i 6=j∧
j={1..n}

vi:T 6= vj :T )

D.6 forAll

Radke et al. have defined one transformation rule for the forAll operation, in which they take
one variable into account. This is transformation rule x and is defined as:

trE(expr1->forAll(v:T|expr2)) ≡ ∀( v:T , trS(expr1, v:T ) =⇒ trE(expr2))

In Example 21 we have given two examples of OCL constraints based on the forAll operation.
The defined transformation rule is able to handle the first constraint, because this one uses only
one variable, but the second constraint is not possible. To be able to handle the second constraint
too, the defined transformation rule has to be extended and this results in Definition 8.

Example 21. In this example we give two OCL constraints in which we have a forAll opera-
tion. InforAll1 we have one variable and in forAll2 we have two variables.
context Person inv forAll1: self.publication->forAll(p:Publication | p.title = 'test')
context Person inv forAll2: self.publication->forAll(p1,p2:Publication | p1.year = p2.year)

Definition 8. trE(expr1->forAll(v:T|expr2)) ≡

∀( v1:T ... vn:T , (trS(expr1, v1:T ) ∧ ... ∧ trS(expr1, vn:T )) =⇒ trE(expr2))

D.7 isUnique

The operation isUnique is not defined by Radke et al. This is one of the operations we have
extended our OCL fragment with. In [21], Franconi et al. have defined the following equality
on logic level to the isUnique operation:

expr->isUnique(attr) ≡ expr->forall(v1, v2 | v1 <> v2 implies v1.attr <> v2.attr)

Within our definitions we included transformation definitions for the forAll, implies and the
not equal operator (<>), so based on this logical equality we can define our transformation rule
for isUnique as:

expr->isUnique(attr) ≡ trE(expr->forAll(v1,v2:T | v1 <> v2 =⇒ v1.attr <> v2.attr))
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D.8 Union, Intersection and Minus

The operations union, intersection and minus(−) are operations on sets that result in a new
set. In OCL it is possible to create sets where the elements of the set do not have one common
parent. For example, if we use the DBLP class diagram that is given in Appendix E, the follow-
ing OCL constraint is valid:
context ConferenceEdition inv: self.editedBook->union(self.JournalIssue)->notEmpty()

In this chapter we will elaborate this OCL constraint, first in Example 22 we show what happens
if we follow the transformation rules of Radke et al. if the types do not have one common parent.

Example 22. context CE inv: self.editedBook->union(self.journalIssue)->notEmpty()

=i ∀( self:CE , trE(self.editedBook->union(self.journalIssue)->notEmpty()))

=xiii ∀( self:CE ,∃( v:? , trS(self.editedBook->union(self.journalIssue), v:? )))

The problem starts when we try to apply transformation rule xiii, the notEmpty transformation
rule creates an existential lax condition with a node of the type of its expression. In this case that
expression is self.editedBook->union(self.JournalIssue) and its type should be a generic
type that is the parent of all types. If we look at Java there the class Object is the parent of
every class. This kind of construction is what we need. So we define the type of a set as the
most specific parent class of all elements of that set. If there is none, then the type is Object,
just like in Java. With this in mind we continue our elaboration in Example 23.

Example 23. context CE inv: self.editedBook->union(self.journalIssue)->notEmpty()

=i ∀( self:CE , trE(self.editedBook->union(self.journalIssue)->notEmpty()))

=xiii ∀( self:CE ,∃( v:Object , trS(self.editedBook->union(self.journalIssue))))

=xxxi ∀( self:CE ,∃( v:Object , trS(self.editedBook, v:Object ) ∨ trS(self.journalIssue, v:Object )))

=xxxvi ∀( self:CE ,∃( v:Object , trN (self.editedBook, v:Object ) ∨ trN (self.journalIssue, v:Object )))

=2×xxiii ∀( self:CE ,∃( v:Object ,∃( v1:CE conferenceEdition−−−−−−−−−−−−→ v:Object , trN (self, v1:CE ))∨

∃( v2:CE journalIssue−−−−−−−−→ v:Object , trN (self, v2:CE ))))

At this point we have an invalid solution again, since the associations conferenceEdition
and journalIssue from ConferenceEdition to Object do not exist. To solve this we have
to change the transformation definitions of union, intersection and minus such that they
create the actual type of the expression that is equal to the node v:Object . This action can be
compared to a type cast in Java. This brings us to the new definitions of the three operations
in Definition 9.

Definition 9. The new definitions of the operations union, intersection and minus(−) are:

trS(expr1->union(expr2), v:T ) ≡ ∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))∨

∃( v“:T“ = v:T , trS(expr1, v“:T“ ))

trS(expr1->intersection(expr2), v:T ) ≡ ∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))∧

∃( v“:T“ = v:T , trS(expr1, v“:T“ ))

trS(expr1 - expr2, v:T ) ≡ ∃( v‘:T‘ = v:T , trS(expr1, v‘:T‘ ))∧
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¬∃( v“:T“ = v:T , trS(expr1, v“:T“ ))

If we apply the new definition of the union transformation to the given example, instead of the
definition of Radke et al. we can continue and complete the elaboration in Example 24. In this
elaboration CE is used for ConferenceEdition, EB for EditedBook and JI for JournalIssue.

Example 24. context CE inv: self.editedBook->union(self.journalIssue)->notEmpty()

=i ∀( self:CE , trE(self.editedBook->union(self.journalIssue)->notEmpty()))

=xiii ∀( self:CE , ∃( v:Object , trS(self.editedBook->union(self.journalIssue))))

=union def. ∀( self:CE , ∃( v:Object , ∃( v1:EB = v:Object , trS(self.editedBook, v1:EB ))∨

∃( v2:JI = v:Object , trS(self.journalIssue, v2:JI ))))

=xxxvi ∀( self:CE , ∃( v:Object , ∃( v1:EB = v:Object , trN (self.editedBook, v1:EB ))∨

∃( v2:JI = v:Object , trN (self.journalIssue, v2:JI ))))

=2×xxiii ∀( self:CE , ∃( v:Object , ∃( v1:EB = v:Object , ∃( v3:CE eB−−→ v1:EB , trN (self, v3:CE )))∨

∃( v2:JI = v:Object , ∃( v4:CE jI−→ v2:JI , trN (self, v4:CE )))))

=2×xxii ∀( self:CE , ∃( v:Object , ∃( v1:EB = v:Object , ∃( v3:CE eB−−→ v1:EB ,∃( self=v3:CE )))∨

∃( v2:JI = v:Object , ∃( v4:CE jI−→ v2:JI , ∃( self=v4:CE )))))

=2×E4b ∀( self:CE , ∃( v:Object , ∃( v1:EB = v:Object , ∃( self:CE eB−−→ v1:EB ))∨

∃( v2:JI = v:Object , ∃( self:CE jI−→ v2:JI ))))

=2×E1 ∀( self:CE , ∃( v:Object , ∃( self:CE eB−−→ v1:EB = v:Object ))∨

∃( self:CE jI−→ v2:JI = v:Object ))))
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Appendix E

DBLP class diagram
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