UNIVERSITY OF TWENTE

FINAL PROJECT

Performance of program
verification with VerCors

Henk Mulder

supervised by
Prof.dr. M. HUISMAN
Dr.ir. S.J.C. JOOSTEN

July 2, 2019

Abstract

Program verification is only as useful as its ability to produce results in a timely
manner. In this research we investigate what performance bottlenecks are in
the VerCors verification tool for concurrent programs. The aim is to identify
the cause of a performance bottleneck, in order to optimize the tool.

We introduce a technique to identify what properties of a program are more
difficult to verify. Using those results, we present solutions to two performance
bottlenecks that were identified: 1. An alternative encoding of arrays is imple-
mented in the tool which allows the tool to reason up to 4 times faster about
programs that make use of arrays. 2. Our research in generating triggers for
quantified expressions show that speedups up to 30% are possible. Though fur-
ther research is required to investigate if this solution can be generalized and
optimized further.

Contents

|12 Background|
2.1 Separation logic|. Lo oo
2.2 Permission-based logic| oo

[2.3 _VerCors implementation|
P31 Viper backend|

[3__Analysis of performance bottlenecks|

3.1 Defining performance|.,
3.2 easuring results| oo
3.3 Learn verification times for AST node types|

4 Array encoding|
4.1 Old array encoding]o Lo
4.2 New array encoding|

4.4.1 Array difterences|

|5 Trigger generation

5.1 e structure of quantifiers| oL
5.2 ewriting complex subscripts|o
.3 Generating triggers|o oo
P-4 Implementation|. oL

7 Conclusion

10
11
11
13
15

17
17
20
22
23
25

27
27
30
31
32
32
33

36

37

A" VerCors repository history|
IA.1 Time learning framework|
A2 New array encoding|
A3 Trigger generation|o L Lo oo

IB Set of representable examples|

[C_Results|
|C.1 Normalized verification time per AST node|

Chapter 1

Introduction

Computer software takes an increasingly important role in our life. Think of
the software that is used to (help to) fly planes, that is used to control our
financial systems, but also that is starting to drive our cars. Therefore it is
more important than ever to make sure that the software works as intended.
However, the tasks that we can “give” to computers are getting more and more
complex. That is made possible by the leaps in processing power that are
made in the semi conductor industries that produce our computer chips. With
multi-core processing units it is possible for software to perform tasks in parallel,
where multiple processes are working on multiple (different) tasks. However, one
process might run faster than others, e.g., because of scheduling by an operating
system or other external factors. If multiple processes then also have to work
on data that is shared between the processes it becomes inherently harder to
show that the tasks are performed as intended, since all possible interleavings
of the processes have to be considered.

Fortunately, it is possible to use the same computing power to analyze and
mathematically verify the software. This is done by so-called deductive software
verification. From the program and specification, we derive verification condi-
tions. If the verification conditions hold, the program respects its specifications.
The verification conditions can be discharged (or checked) using automated the-
orem provers.

A specification language is used to specify what the “intended workings” of
the program are. This is done by adding annotations to the program that spec-
ify what conditions should hold for the state of the program at specific points.
These annotations can be pre conditions (conditions that should hold before a
method call), post conditions (conditions that will hold after the method call) or
invariants (conditions that hold before, during and after a method call). Addi-
tional assertions and loop invariants can be used to specify (required) properties
in intermediate points of the program.

Verification is based on Hoare logic [I0]. In this logic a Hoare triple { P}S{Q}
binds together a precondition P, a program statement S and a postcondition Q.
If the Hoare triple is valid this means that executing S in any state that satisfies

P, on completeness the result state will satisfy Q. Applying this technique by
enclosing program methods as statements with pre- and post conditions then
gives the means to reason modularly about correctness of programs.

In order to use program verification to improve the quality of the software
that is being developed, the verification techniques need to be integrated into a
development workflow. That means that first of all the technique needs to be
integrated in the (higher level) programming language in which the program is
developed. Next, the specification language needs to be expressive enough for
the developer to express the desired properties of the software with reasonable
effort. And finally it should produce results that are of use to the developer. In
the VerCors tool this is done by supporting Java and C (to work with OpenCL
and OpenMP). A specification language based on JML is used to specify the
desired properties. See (the left half of) figure Verification results are
translated to descriptive messages and when applicable mapped to the relevant
parts of the source code.

One of the key parts of making a verification tool usable is the speed with
which it manages to produce results. In this regard the VerCors tool seems
to perform somewhat unpredictably. For instance, writing the same property
over a (possibly unbounded) number of heap locations using recursive predicates
instead of using quantifiers (or visa versa) can influence the verification time a
lot. In extreme cases, we have seen that a program that could be verified in
approximately 10 seconds with one technique could take more than 5 minutes
to verify using the other technique. With this research we will look into possible
causes for this unpredictable behavior, how we can identify root causes and how
to possibly reduce the problems.

The project focuses on two main questions:

e What are the performance bottlenecks in VerCors?

e How can we mitigate found performance bottlenecks, using the techniques
and tools that are available in VerCors?

To answer these questions we consulted users of the VerCors tool and experts
on the underlying verification tools. To help to answer the first question we in-
troduce a framework to identify which aspects of a program are slow to verify
with VerCors. With this framework we can identify specific syntactical struc-
tures in input programs, and monitor a normalized value of the time it takes to
verify programs that contain this structure. By comparing this value against the
normalized values for other structures we can determine if the structure is more
likely to cause a bottleneck in verification. In answer to the second question we
look at two bottle-necks that were identified: The encoding that is being used
to reason about arrays and the way VerCors treats universal quantifiers. For
the former we propose a new array encoding that allows us to reason up to four
times faster about arrays. For the latter we investigate if triggers can help to
boost the performance when universal quantification is used in specifications.
We show that triggers can have a significant positive effect on performance.

Java Silicon

{ COL } { COL transformed Viper

]
[PVL]

Figure 1.1: General VerCors architecture

However, we also see that transformations that are needed to be able to gen-
erate triggers can cause a negative effect. Therefore more research needs to be
done to investigate if we can prepare for, and generate triggers only when it has
a positive effect.

We continue with some background information on the VerCors tool in chap-
ter [2l Next we discus what performance is in the context of program verification
with VerCors, how we measure performance and how we have identified perfor-
mance bottlenecks in Chapter [3] In Chapter [d]and [5]we discuss two performance
bottlenecks that were identified; namely the encoding as used for arrays and the
use of quantifiers without triggers. In Chapter [f] and Chapter [7] we look at
related work and conclude with a summary of the results and we discuss future
work.

Chapter 2

Background

The VerCors tool [I] is a tool to verify concurrent and parallel programs. It
aims to make verification usable for developers that are not necessarily formal
method experts. VerCors uses a specification language based on the Java Mod-
eling Language (JML) [6] extended with notations for separation logic [I5]. The
tool currently verifies multiple concurrency paradigms, including heterogeneous
concurrency (C and Java), compiler directives as used in deterministic paral-
lelism (OpenMP) and GPU kernels with barriers and atomics (OpenCL) [4].

In this chapter we look at the theories as used in VerCors and how these are
implemented/ used in VerCors.

2.1 Separation logic

As mentioned before, VerCors uses a specification language based on JML ex-
tended with annotations for separation logic. Separation logic [I5], is an ex-
tension of Hoare logic to reason about low-level imperative programs that use
shared mutable data structures. In separation logic there is an explicit distinc-
tion between the heap and the store. This means that you can express that
you have a pointer to a location on the heap. The separating conjunction (%)
is used to combine formulas. A formula ¢; * ¢o is valid for heap H if we can
split the heap into two distinct heaps h; and hs in which ¢; holds for heap
hy and ¢9 holds for heap ho. This makes that separation logic is also suitable
to reason about multi-threaded programs. If threads operate on different parts
of the heap, they can be verified in isolation. However in classical separation
logic two threads are not permitted to read the same data. Something that is
allowed, and often necessary in multi-threaded programs. Therefore in VerCors
the separation logic is extended with access permissions.

ST W N

2.2 Permission-based logic

To reason about which thread can read and write to certain locations on the
heap, VerCors makes use of permission-based logic [5][9][I]. In permission-based
separation logic every location on the heap is associated with a permission.
Permissions to a heap location can be divided and combined, but can not be
duplicated. To write to a heap location, a thread needs 100% of the permissions
to that location. With a partial permission it is only possible to read a location.
This ensures that if a thread has a read permission for a location, the value
on that location will not change, since no other thread can have 100% of the
permissions. On the other hand, if a thread has write permission to a location it
will be the only thread that has permission to that location. Thus if all locations
on the heap are protected with permissions then the program is data race free
and reasoning can be done in a thread-modular way.

Listing 2.1: Example specification in C.

//@ requires Perm(z, read) #% Perm(y, read);
//@ ensures Perm(z, read) %% Perm(y, read);
//@ ensures \result == *x + xy;
int plus(intx x, intx y) {

return xx 4+ *xy;

}

To illustrate the concepts see Listing In this code fragment, we have
a method to add two integers that are stored on the heap (pointers = and y).
In line 1, we specify that we need permission to read location x and location
y. The permissions are separated by a double star, which is the symbol used
by VerCors to denote the separating conjunction. The double star is used to
distinguish it from the multiplication operator. In line 3, we specify a functional
property, namely that if the method terminates the result is the sum of both
integer values. In order to prove that the values at z and y are not changed by
other threads during the execution of the method, we must prove that we have
not lost the permissions on the heap locations. That is specified in line 2. The
requires and ensures clauses specify the pre- and postconditions of the method,
thereby making it possible to reason modularly about the code fragment just
as it is done with Hoare triples. With these ingredients, VerCors can deduce
that the implementation adheres to its specification. Of course, this is quite
trivial for this example, but with this specification this piece of code can now
be used in reasoning about other (more complex) programs that make use of
this code. Note that VerCors also allows us to write the pre- and postcondition
for the permissions in line 1 and 2 in one statement, using the context keyword.
However, for illustrative purposes we have specified them separately.

2.3 VerCors implementation

The VerCors tool is built as a compiler for specified code. Currently VerCors has
front-end parsers for (concurrent) Java and C, for programs with OpenMP com-
piler directives and OpenCL kernels. These parsers are extended with parsers
for the specification language as used in VerCors. Further, there is a parser for
the PVL language; a program/ prototype verification language.

For every front-end programming language, a parser parses the annotated
source program and produces an abstract syntax tree (AST) in the Common
Object Language (COL). The AST of the COL language consists of nodes that
represent the various concurrency abstractions that are supported by VerCors.
Transformations on the AST rewrite the syntax tree to a semantically equivalent
tree that consists of nodes that can easily be mapped to the language that is
used in the chosen back-end verifier.

Two techniques are used to transform the AST: With visitors parts of the
tree can be changed, by replacing a high level abstraction node by a semantic
equivalent structure of simpler nodes. Using a rewrite system, the AST can also
be refined according to rewrite rules. The rewrite system tries to match the
left-hand side of a rule, and if it matches it will be replaced by the right-hand
side of the rule. This continues until no more matches are found.

Every transformation is defined in its own “compiler pass”. The passes are
referenced by a name, thereby making it easy to reuse transformations, and
use them in new lists of transformations for back-ends with other (syntactical)
requirements.

In the back-end, verification is done on the transformed program. To map
possible errors back to the original source program, VerCors keeps track of
where each node in the AST originated from. A simple overview can be seen in
Figure This architecture aims to make it easier to create new (language)
front-ends, experiment with other transformations or to use other verification
back-ends.

2.3.1 Viper back-end

Initially VerCors translated the given verification problems to Chalice [12] and
Boogie [2]. Over time, the functionality of these back-ends were subsumed by
the Viper tool [14].

Viper is a verification infrastructure with strong support for permission-
based logics such as separation logic. It has support for two back-ends: one
using symbolic execution (named Silicon) and one using verification condition
generation via an encoding into Boogie (named Carbon). Both back-ends in
Viper make use of the SMT (satisfiability modulo theories) solver Z3 [7] to
discharge proof obligations.

The Viper intermediate language is a simple sequential language that in-
cludes a flexible permission model. This allows us to express the higher level
concurrency abstractions as a Viper program, and use the Viper program for

both the symbolic execution back-end and the verification constraint generator
back-end.

Versions of the tool

For the work in this thesis three versions of the VerCors tool play an important
role. Work on this thesis started when version Vetl was current (Jun 2018).
This version serves most as a reference for measurements and comparison to
other versions. In version Vct2 a (Sep 2018) start was made to address the first
performance bottleneck; the encoding of arrays. In this version an update to the
Viper back-end broke some of the functionality in VerCors. The work described
in this thesis not only mitigates some of the performance bottlenecks that were
present in version Vct1, it also fixes most of the problems that were present in
version Vet2. And version Vet3 is a more recent version of VerCors (Jan 2019),
that is used to illustrate how the work for this thesis contributes to the tool.
References to the actual sources of these versions can be found in Appendix [A]

Chapter 3

Analysis of performance
bottlenecks

In order to optimize performance of the VerCors tool, we must first establish
where the tool lacks performance. The most obvious way to identify performance
bottlenecks is to talk to users of the tool. In most cases the cause of a bottleneck
is not immediately clear. To understand this we have to look at the process of
writing the program specification. The user has an idea about the property
of the program that he or she wants to verify. However, often the user has
a choice in how to specify this property. For instance, let’s assume the user
wants to specify that all elements in an integer array have the value 0. The user
could specify this property by using a universal quantifier of the form forall int

i; 0<=i && i<a.length; ali] == 0;, but this property could also be specified
using a recursive function like boolean zero(int[] a, int i) = i<a.length? a[i
|==0 && zero(a, i+1): true;. In different contexts, one or the other could be
more suitable. When the specifications become more complicated, more choices
are possible. Further specifications for one method might be needed to prove
another property for a different method. Therefore a user might decide to change
the specification in order to be able to proof another property. During this
process, it is not always clear what effect the change to one specification has on
proving the other specifications. Furthermore, a slow-to-verify specification for
a program is undesirable, and is therefore either discarded or changed, leaving us
with nothing to analyze. Therefore the most concrete evidence for a bottleneck
in verification performance a user can give is an example with an annotated
program that is slow to verify (despite the efforts to improve it).

Another useful source to help identify performance bottlenecks are Viper-
experts. VerCors translates the input program to a Viper program, and the
actual verification is done in the Viper tool. People with an expertise in verifi-
cation with Viper could thus advise how to best encode certain constructs into
Viper code.

In order to objectively reason about performance in relation to program ver-

10

ification with VerCors, we looked at more then just expert opinions. Therefore,
in Section we first define what performance is in this context. Next we
explain how we measured performance in Section [3.2] Then, in Section [3.3] we
look at the framework that was developed to identify what parts of a program
are more or less slow to verify. In Section [3.4] we discuss the results and the
performance bottlenecks we identified.

3.1 Defining performance

In order to identify bottlenecks in performance, we must first define performance
in the context of program verification with VerCors. Since input languages, spec-
ification language and verification back-ends are already determined by what is
currently available, performance is not about what is and what is not supported.
What remains is the time it takes to verify a program. From a tools point of
view it is simple. The tool receives an input (program) from the user, does its
work and presents the results. From a user point of view it is more complicated.
Verifying a program implicitly means that the program is a given entity, and
is something we can not change. However using VerCors means that the user
is in the process of verifying the program. This means that specifications and
annotations change during this process. In this process, the tool can already
steer or suggest the user to create the specifications and annotations in a cer-
tain way. This means that the tool can have somewhat influence on its input.
In this research, we assume the input program to be a given entity. We want
to evaluate performance on a mechanical level. We want the tool to perform
optimally independent of the way how a specification is written, even if another
specification by the user might give better performance.

3.2 Measuring results

In order to measure the effect of changes in the tool on task performance, scripts
have been developeﬂ These scripts use the output of VerCors to determine the
time it takes to verify a given program. By default, VerCors already reports the
total verification time in milliseconds. By calling the tool with the —-progress
flag, VerCors will also report the time every intermediate pass in the tool takes.
This is used to distinguish between the total verification time and the time that
is spent in the back-end verification tool for the actual verification. Thereby we
can tell where most of the verification time is spent, and where we thus need to
focus our attention.

With the script to call the tool and process the outputs we compare verifi-
cation times of different versions of the tool, using different encodings, on the
same examples. Of course this makes it easy to do multiple runs and compute
mean times and deviations.

IThe VerCors scripts are located at |https://github.com/HenkMulder/vercors—scripts.
git

11

https://github.com/HenkMulder/vercors-scripts.git
https://github.com/HenkMulder/vercors-scripts.git

Representable examples

In order to determine how tool changes affect performance of the tool, a set of
examples has been selected from the VerCors example repository. First of all,
the selection was reduced by using the following criteria:

e Examples should work with the Silicon back-end.
e Each example consists of a single file.
e The examples have a Pass verdict.

Then we looked at the AST node types of these examples when they are first
translated to the internal COL language. These AST node types represent
the different concurrency abstractions that VerCors support, such as, parallel
blocks and barriers. We also look at the types that are used in the examples.
such as class types in Java or pointers in C or any other special type used for
specifications, like sets or bags. In our final set of examples, we want to cover
every type of COL AST node and all the types that are used in the examples.
In this way we are certain that if a translation for one of the abstractions or
types is changed, we can monitor the effect on all other types and abstractions
as well.

First we looked at the examples that took more than 10 seconds to verify.
This is because these examples are more likely to represent realistic verification
problems, rather than being a test for one or another feature. Then we collected
all node types, determined which type was most rare and added the example
that has most of these nodes to our representable set. For the nodes and types
that are not covered by the larger examples, we used the same procedure on the
set of smaller examples until all node types and data types are covered by the
set of representable examples. The resulting set is listed in Appendix [Bland has
16 examples in both Java, C and PVL.

Note that examples were selected from the VerCors repository at the time
that version Vct1 was current. In later versions of VerCors, a newer version of
Viper is used that caused some examples to break. This concerns examples that
make use of arrays and sequences. Some of these examples had to be updated,
where others could not be fixed. The updates were merged into the repository
at a later date. Therefore, all measurements are done on the representable
example set that is current at the commit as described in Appendix [Bl All the
examples in this version are backward-compatible with version Vct1 of VerCors.
The examples that could not be fixed for version Vct2 and Vct3 are there to
illustrate the results of the work that is done for this thesis.

Measurements

For the baseline measurements, version Vct1 of the tool was used. This version
was current in June 2018. In Table 3.1l we show the verification times of the
examples from the set of representable examples for version Vctl of VerCors.
In the second column, there are the number of runs that were done to compute

12

File # | Verdict Total time Back-end time

mean | stdev mean | stdev
case-studies/prefixsum-drf.pvl 5 | Pass 193286 | 6601 | 185645 | 6567
witnesses/ TreeWandSilver.java | 5 | Pass 33340 214 | 30495 276
carp/summation-kernel-1.pvl 5 | Pass 24320 210 16726 121
verifythis2018/challenge2.pvl 5 | Pass 21709 186 13346 59
floats/ TestHist.java 5 | Pass 21423 247 | 16021 261
carp/histogram-submatrix.c 5 | Pass 19579 252 | 11901 30
floats/ TestFloat.java 5 | Pass 15827 488 9195 143
openmp,/add-spec-simd.c 5 | Pass 14440 433 7694 82
layers/LFQHist.java 5 | Pass 13597 397 8482 175
openmp/addvec2.pvl 5 | Pass 12822 144 6612 73
arrays/DutchNationalFlag.pvl 5 | Pass 10799 98 5900 168
futures/TestFuture.pvl 5 | Pass 6824 202 3955 55
manual/option.pvl 5 | Pass 6798 226 2994 126
waitnotify /Queue.pvl 5 | Pass 5441 102 3366 102
type-casts/TypeExamplel.java | 5 | Pass 5261 182 3230 64
basic/CollectionTest.pvl 5 | Pass 5047 70 3200 40

Table 3.1: Verification times (in ms) for VerCors version Vct1.

the times. For each time the mean and the standard deviation is given. With
a deviation of the total time that is less than 4% of the total time for all
the examples, we argue that 5 runs are sufficient to get an accurate enough
indication of the verification times. As we can see, for examples that take more
time to verify relatively more time is spent in the back-end. This indicates that
the transformation process in VerCors itself does not cause the performance
bottlenecks for these examples.

Details about the system that was used for the measurements in this thesis
can be found in Appendix [C]

3.3 Learn verification times for AST node types

In order to get an idea of what kind of concurrency abstractions take the most
time to verify, a framework was developed to measure this. As explained in
Section VerCors translates the input program to the COL language. This
language is defined by an abstract syntax tree (AST) that contains nodes that
represent each type of abstraction. E.g. parallel regions, parallel blocks, bar-
riers, etc. The nodes that represent the high-level abstractions are then trans-
formed to equivalent AST constructs consisting of “simpler” node-types. This
way all high-level abstractions are reduced to an AST that can be expressed in
the Viper language. By visiting all nodes in the COL AST before it is trans-
formed, we can count how many nodes of a specific type there are in the program.
After verification we know how long the verification of the program took. We

13

can divide the time by the number of expressions we counted. This time we
call the 'unit time’. For all node types we store a value called the ’learned unit
time’. Every time a node-type occurs in a verification run, the value for this
node type is adjusted to the unit time. The node-types that represent abstrac-
tions that are slower to verify will thus end up with a higher learned unit time.
This gives an indication to which transformations might require our attention
for performance improvements. Since the unit times per node-type for all veri-
fication runs are reduced to one value, the latest verification run will have the
most impact on this value. To reduce the deviation the value is updated with
a fraction of the new unit time: newValue = (1—f)* oldValue + f % unitTime.
Where ’f’ is the fraction to update with. To get an idea about how much the
unit time for a specific node-type fluctuates, we also keep track of the absolute
difference between the new unit time and the old value of the learned unit time.
This absolute difference is stored and updated just as the unit times. If the
learned absolute difference of a unit time for a specific node-type is low, then
the learned unit time is a more accurate indicator of the time it takes to verify
the concurrency abstraction that this node-type represents.

For illustration let’s consider the following expression, that specifies that all
elements in the array named input are zero:

(\ forall int i; 0<=i && i<input.length; input[i] == 0);

In this example we count the following expressions:

e vct.col.ast.expr.BindingExpression:Forall (1)

e vct.col.ast.expr.constant. ConstantExpression (2)
e vct.col.ast.expr.NameExpression (4)

e vct.col.ast.expr.OperatorExpression:LT (1)

e vct.col.ast.expr.OperatorExpression:LTE (1)

e vct.col.ast.expr.OperatorExpression: And (1)

e vct.col.ast.expr.OperatorExpression:Length (1)

e vct.col.ast.expr.OperatorExpression:Subscript (1)
e vct.col.ast.expr.OperatorExpression:EQ (1)

Thus we count 13 expressions in total. If we assume that verifying this expres-
sion would take 2600 ms, we get the unit time of 2600/13 = 200 ms for all the 9
node types in this example. Now the learned unit times for these 9 node types
are adjusted to this new unit time. Note that the number of expressions is only
used to determine the unit time. A larger program, with more expressions, that
would take longer to verify, would thus not per see have a greater unit time for
the specific node types. Thereby the unit time is a normalized value for a type
of AST node.

There might also be special AST constructs of which we want to find out if
they take more time to verify. For this purpose, a generic SpecialCountVisitor

14

has been implemented, that walks the syntax tree. By overriding visit methods,
and increasing a counter if a node matches the AST construct, we can keep
track on how many times these constructs occur in the AST. The counts of
these special constructs will not add to the count that determines the unit time
for a given verification run, since they are made up of nodes that are already
counted. However the entries in the ’learned unit times’ file for these special
constructs are adjusted to the unit time of the verification run. Again, this
allows us to see if these constructs are slower to verify in general. For instance,
the TypesCountVisitor is such a visitor. This visitor keeps track of which data
types are used in the input program. This allows us to determine if the encoding
of certain data types cause poor performance in verification.

The results with the learned unit times are stored in the hidden folder
.learn/. All the files are in JSON format. Therefore they can be read with
a regular text editor. The entries in the files are sorted by descending values,
thereby making it easier to spot which entries need our attention. Since there
are multiple results we want to distinguish, we adopted the following naming
schema:

e The filename starts with the name of the back-end that is being used
followed by an underscore.

e Next in the filename is the name that the developer gave to the count-
ing pass. For now this is only the “before_rewrite” name, since that is
where the pass takes place. In case developers want to monitor unit times
at different points in the transformation process of VerCors, additional
counting passes with a different name can be added to the list of compiler
passes. These counting passes will then be stored in a separate file with
the given name.

e The values that monitor how much the unit times differ are stored in a
separate file. For this file the name is appended with “_diff”. Thus if a
developer adds an additional counting pass, an additional file in which the
unit time differences are monitored is automatically generated.

Learning unit times for AST nodes is an analysis tool, and is not required to
perform program verification. Therefore this feature is not enabled by default.
In order to use this feature VerCors must be called with the --learn command-
line option.

If we run the test suite of VerCors on the entire example directory we get
the learned unit times from Appendix

3.4 Discussion

One of the most prevalent examples that was slow to verify, suggested by users, is
the parallel prefixsum example in the VerCors example repository [16]. Analyz-
ing verification times for the other examples in the VerCors example repository
also showed that the prefixsum example is the slowest to verify. This example

15

has thus been used to identify bottlenecks. Other indications that users gave
were not very specific, but have been investigated: The use of quantifiers seem
to make verification slow, and specifications with (quantified) permissions also
seem to take more time. In Chapter [5} we look more closely at quantifiers.

Looking at the Viper translation that VerCors generated for the prefixsum
example, one of the experts identified the way VerCors encodes arrays as being
a potential bottleneck. Therefore, the array encoding is investigated in more
detail in section [l

The results in Section [3.2] show that, for examples that take longer to verify,
most of the time is spent in the back-end verifier. This indicates that the
transformation process in VerCors is not the cause of a performance bottleneck
for these examples.

The unit times in Appendix shows that the encoding of Strings and
Options seem to be slow. For the Option type, we can also see that the learned
difference in unit time is 0.0. This is because there is only one example that uses
Options (before rewriting). Further we see that the operations ValidMatrix
and ValidArray have high unit times, just as the BindingExpression with the
Star binder, which represents a universal quantifier to specify permissions on
(un)bounded heap structures. We know that these AST structures are frequent
in the parallel prefixsum example. This corresponds to the information given
by the users and Viper experts.

Running a limited set of examples gives us only a minimal indication of what
is going on. Since the AST does not change between runs, and verification times
will also be similar each time. Therefore learning is best done in an environment
that is used for many different verification problems, such as an online demo
environment where lots of different programs are verified.

The framework can be extended by adding AST visitors to recognize and
count other program constructs. This makes it possible to adapt the imple-
mentation to monitor other program constructs, if suspicions arise that those
constructs may cause poor performance.

16

Chapter 4

Array encoding

In this chapter, we elaborate on how array structures are treated in VerCors.
As discussed in Chapter [3] the encoding of arrays, and more specifically the
encoding of injectivity of arrays, was identified as being a potential bottleneck
in verification. In this chapter, we look at an alternative encoding of arrays.
First, in Section[4.1], we look at how arrays were encoded in the past, the reasons
why it was encoded this way and the shortcomings of this encoding. Next we
look at a new encoding in Section In Section we compare verification
results for versions of the tool with the old and the new array encoding. Finally
we discuss the results in Section L4l

4.1 Old array encoding

In the parsing phase, all Java, C and PVL arrays are transformed to COL
arrays. During the COL transformations, the Array type is wrapped in an
Option type. In this way we can reason about initialized and uninitialized
arrays. An OptionNone models an uninitialized array (a C array pointing to
NULL or a Java or PVL array being null), while an OptionSome contains the
initialized array. In order to reason about permissions to elements in the array,
the inner type of the array is wrapped in a Cell type. This Cell type is in a later
transformation transformed to a reference to a field in Viper, which allows us to
reason about permissions on this field. This transformation is implemented in
the “rewrite_arrays” compiler pass. Thus the transformation chain for the old
array encoding looks as follows:

Input type Type after | rewrite arrays
parsing

int [] Array< Option<Seq< Cell<Integer>>>
Integer>

17

— =

— O © 00O Uik Wi

Multi-dimensional arrays (arrays of arrays) were flattened to a one-dimensional
array. An additional function was generated by VerCors to calculate the index
of the element in the flattened array that corresponds to the element of the
multi-dimensional array. This was done because previous versions of Viper
did not allow nested quantification, or quantification with multiple variables,
for permissions. This made it hard to reason about permissions on elements
in multi-dimensional arrays. This additional transformation is done in the
“recognize_multidim” compiler pass.

To illustrate what changes in the “recognize_multidim” transformation we
use the code in Listing In this example, the type of the multi-dimensional
array “matrix” would change from Array<Array<Integer>> with the dimen-
sions M and N, to an Array<Integer> with length M % N. The assignment to
matrix[i][j] would then change to an assignment to matrix[multidim_index_2(
M, N, i, j)]. In the later “rewrite_arrays” transformation, the types would then
change as if it is a one-dimensional array. Note that it is necessary to specify the
dimensions of the arrays, since these are needed to calculate the corresponding
index for the flattened array.

Listing 4.1: Multi-dimensional array access.
void setVal(int [M][N] matrix, int i, int j, int val) {
matrix[1][j] = val;

}

For completeness, the Viper code for the multidim_2 function is given below.
The additional postconditions of the function are needed to specify that every
tuple of indices (in this case the 2-tuple (i0, il)) is an injective mapping to the
new index as calculated by the function (provided that the indices are within
the bounds as specified in the preconditions). The function to calculate the
new index is a non-linear function. Since non-linear theories in general are
undecidable, the contract of this function can not always be proven. Therefore
we need to assume the post conditions of the function. In Viper this can be
done by omitting the body of the function. Without a body of the function to
verify, Viper will assume the postconditions after the preconditions have been
checked.

function multidim_index_2(NO: Int, N1: Int, i0: Int, il:
Int): Int
requires 0 <= i0
requires i0 < NO
requires 0 <= NO
requires 0 <= il
requires il < N1
requires 0 <= N1
ensures 0 <= result
ensures result < NO % NI
ensures result = i0 % N1 + il
ensures result % N1 = il

18

In older versions of Viper, there was no check on bounds in sequences. How-
ever later versions of Viper (the versions of Viper as used from Vct2 onwards in
VerCors)also require that all accesses to a sequence are within bounds. This is
where the non-linear calculation as used for multi-dimensional arrays becomes a
problem. In Viper all integer arithmetic is passed to Z3. Unfortunately Z3 can
not reliably discharge proof obligations about non-linear arithmetic. Therefore
Viper can not reliably prove that an access to a sequence using the multidim_X
function (where X is the number of dimensions of the array) is within bounds,
and will therefore fail on this point.

By construction, arrays in Java and C are injective. That means that ev-
ery element in the array is different from all other elements in the array (ev-
ery slot is a distinct block of memory). With the encoding as a sequence
of references, this was not necessarily the case in VerCors, since a sequence
could look like xs = 0X4, 0X4, 0X8, ..., in which the first two elements are ref-
erences to the same block of memory. Therefore in VerCors there was the
possibility to specify so-called valid arrays and valid matrices, with the key-
words \array(<name>, <dim>) and \matrix(<name>, <diml>, <dim2>). Be-
ing valid means that the array or matrix is not null, has the specified dimensions
and that all slots are different. Since the encoding of this property was identified
as being a possible bottleneck in verification, we will look at this encoding more
closely. The specification \array (input, N) is translated to the Viper code as
shown in Listing

Listing 4.2: Viper encoding of \array(input, N).
input != VCTNone() && (|getVCTOptionl (input)| = N
&& (forall i: Int, j: Int :: true

& (0 <=1 & i < |getVCTOptionl(input)|
&& 0 <= j & j < |getVCTOptionl (input)|
&& getVCTOptionl (input)[i] =

getVCTOptionl (input)[j])

= i =1j))

For a matrix the result would look similar, since the matrix is flattened to a
one-dimensional array. Only the upper bounds on ¢ and j would change to the
product of the dimensions. In order to reason about actual values in the array
that is quantified over, the prover would need to put actual values in place of the
1 and the j in the example from Listing[4.2] To consider possible values for these
variables the prover has to know how the variables are used. This way the prover
can match statements in the program with appropriate instances of the body
of the quantified expression. Directives to the prover to match instances for
quantified expressions to actual values are called triggers. In Viper there is the
option to supply triggers for quantified expressions. If no triggers are specified,
Viper will try to infer suitable triggers. However, VerCors does not support
triggers in the input languages, since additional transformations on the AST
may render the triggers unsuitable. Unsuitable triggers can cause the prover to
fail to create the right instances to proof or disproof a verification condition.

19

Therefore, VerCors relies entirely on the triggers that are inferred by Viper. We
refer to the article about Simplify by Detlefs et al [§], for an in depth explanation
on how triggers can help the back-end provers to guide quantifier instantiations
to establish a proof. This is the technique as used in Z3 [7], on which the Viper
tool builds. In the body of the quantified expression are two array accesses.
One for the element at index i and one for the element at index j. To prove this
predicate, Viper would infer two triggers for the expression, namely a trigger
to match on the access to element i and one to match the access of element
j. This means that for every element of the array two instances are created,
thereby creating a possible quadratic blowup of relations that the prover has to
maintain.

Note however, that it is often unnecessary to specify array injectivity ex-
plicitly. If the specification already requires more than a half permission on
every element in the array, this implicitly means that every element is different.
Since if two elements would have the same memory location we would require a
permission larger than 1 on that location (two times a permission greater than
half), which is not possible. Only when we require read permissions smaller or
equal to 1/2 on the elements in the array, it might thus be necessary to specify
injectivity explicitly.

In order to address the problem that VerCors can no longer reliably reason
about multi-dimensional arrays using the newer versions of Viper, and to reason
more efficiently about array injectivity, we will look at an alternative encoding
of arrays in the next section.

4.2 New array encoding

In recent versions of Viper it is possible to use universal quantifiers for expres-
sions with multiple quantified variables. Therefore, it is no longer required to
flatten multi-dimensional arrays. This also means that the non-linear arithmetic
to calculate the index into the flattened array is no longer required, giving us a
possibility to reinstate the support for multi-dimensional arrays.

We created the domain encoding in Listing to model the injectivity of
arrays. In this domain every element of an array is modeled by the loc function,
which combines a VCTArray object with an index. The domain is parameterized
with the “CT” type as the type for the elements in the array. In the cases where
we want to reason about permissions on elements in the array this can be a Ref
type, but it can also be any other type as defined in the (resulting) Viper
program. The functions first and second are used to retrieve the VCTArray
object and the index from an array element. These functions are only used
internally by the axiom all_diff , which encodes injectivity. Note that the axiom

all_diff has only one trigger (loc(a, 1)), compared to the two triggers that
were inferred in the old array encoding to specify injectivity. Further there is
the function alen, to model the length of the array.

20

13
14
15
16

Listing 4.3: Viper domain to encode arrays.

domain VCTArray [CT] {
function loc(a: VCTArray[CT], i: Int): CT
function alen(a: VCTArray[CT]): Int
function first(r: CT): VCTArray [CT]
function second(r: CT): Int

axiom all_diff {
forall a: VCTArray [CT Int :: { loc(

], i: a,i) }
first (loc(a,i)) = a && second(loc(a,i)) =

i

}

axiom len_nonneg {
forall a: VCTArray [CT] :: { alen(a) }
alen(a) >= 0

}

Because multi-dimensional arrays are no longer flattened we must now also
consider the inner arrays within the multi-dimensional array. For clarity we will
use a 2-dimensional matrix to talk about the multi-dimensional array, and we
will use a row to refer to an inner array within the matrix. Just as in the old
encoding we wrap the outer array (matrix) in an Option type. In this way we
can reason about Java arrays being null or C arrays pointing to NULL. For the
inner arrays (rows) there is a choice to be made. For Java the rows could also
be null. In C there are variants where rows can be NULL, and variants where
rows can not be NULL. It is clear that these semantics are opposite, and we can
not support them all in the way they are transformed currently. In Section [1.4.1]
we will look more closely at these variants and their support that is currently
under development in VerCors. For now, the choice was made to also wrap the
rows in Option types, because this gives a more consistent type transformation
within the COL language. Since it has never been possible to reason about
permissions or values of entire rows in a matrix by VerCors, the rows are not
wrapped in a Cell type. The inner types of the rows are being wrapped in a Cell
type, because we do want to be able to reason about permissions to the elements
of the matrix. This gives us the following transformations for a 2-dimensional
matrix:

Input type Type after parsing rewrite_arrays
int [|[] matrix | Array<Array<Integer>> Option<Array<Option
matrix <Array<Cell<Integer
>>>>> matrix
matrix[i][j] matrix([i][j] OptionGet(OptionGet(
matrix)[i])[j].item

21

Note that in a later transformation VerCors will generate the not-null re-
quirements from the OptionGet operation, and a dereference to a field of type
Integer from the .item dereference.

With this new encoding, it is no longer required to explicitly specify injec-
tivity for valid arrays and matrices. Injectivity for arrays is implicitly encoded
by the all_diff axiom in the VCTArray domain, and for a matrix like the one
in the example, Viper can also deduce that every row in the matrix is a different
row. Therefore the specifications that are generated for a valid array now only
contain a not-null condition and that the array has the specified length. For a
valid matrix a not-null condition is generated for the outer array, and that the
matrix has the specified number of rows. Additionally for every row in the ma-
trix it will also generate a not-null constraint and that the row has the specified
number of cells (columns). If we would have wrapped the rows in Cell types as
well, then Viper could no longer deduce that all rows are different, since each
row would now be encoded as a reference to a field with an Option<Array<Cell
<Integer>>> type, so that two elements of the outer array of the matrix could
point to the same Ref. In the implementation we have already anticipated on
the possibility that VerCors will have to support multiple variants of the valid
matrix annotation, for the cases where rows might be objects (like in Java) or
when rows are consecutive blocks of memory (like in some variants in C). The
appropriate constraints are generated based on the types, which for now are de-
termined by the rewrite_arrays transformation, but which will in the future be
determined by the front-end based on the type of program that is being verified.

4.3 Results

To compare the performance of verification in Vercors with the old and the
new encoding of arrays, we made use of the scripts and the set of representable
examples as described in section As noted before, the examples with multi-
dimensional arrays are broken in the current version of Vercors, due to changes
in the Viper back-end. Therefore we have compared results for three versions
of the tool.

e Vctl, where examples with multi-dimensional arrays were still working.

e Vct2. At this point in time development of the new encoding of arrays was
started. In this version part of the support for multi-dimensional arrays
in VerCors was already broken, due to changes to the Viper back-end.

e Vct3, which is a more recent version of VerCors. This version again has a
newer version of the Viper back-end.

Then we have two versions with the new array encoding: Vct2-a, which is
the new array encoding as developed on top of the Vct2 version and Vct3-a,
which is the Vct2-a version updated to the Vct3 version of VerCors. Figure
shows a schematic overview of the source tree. References to the exact points
in the Git history can be found in Appendix [A]

22

’ Vct3 }—{ Vct3-a ‘

[Vet2|—— vet2-a|

Vctil

Figure 4.1: VerCors project source tree (array encoding)

To get accurate results we used the scripts from section to verify each
example from the set of representable examples 5 times, for each version of the
tool. Since a number of examples were broken in the Vct2 and Vet3 version of
the tool, we first compare the results for the Vet1 and Vct2 version of the tool
to the Vct2-a version. Then we also compare the Vct2 and Vct3 version to the
Vct3-a version. Note that failing examples are marked with a “-”.

In the set of representable examples, the following examples make use of
arrays:

e case-studies/prefixsum-drf.pvl
o verifythis2018/challenge2.pvl
e arrays/DutchNationalFlag.pvl

e openmp/addvec2.pvl

e carp/summation-kernel-1.pvl

Of which the case-studies/prefixsum-drf.pvl is the only example that
makes use of a multi-dimensional array.

4.4 Discussion

As we can see in Table[£.T] the carp/histogram-submatrix.c example and the
case-studies/prefixsum-drf.pvl fail to verify in version Vct2. This is due
to the changes in Viper, which cause examples with multi-dimensional arrays
to break. We also see that the verifythis2018/Challenge2.pvl example fails
for version Vct2 and Vct2-a. On closer inspection we found that this is not
due to the array encoding. This example sometimes gets a Pass verdict, and
sometimes a Fail verdict. When the example fails VerCors reports “(No loca-
tion)”. However on further investigation it seems that the failure is in a loop
invariant, which has nothing to do with arrays. Therefore we believe that this
inconsistent behavior is caused by something else. In the list with representable
examples, the case-studies/prefixsum-drf.pvl example has three invariants
with the \array and \matrix annotations. Table shows that this example

23

File Vetl | Vct2 | Vet2-a
case-studies/prefixsum-drf.pvl 193286 - 50141
carp/histogram-submatrix.c 19579 - 17664
verifythis2018/challenge2.pvl 21709 - -
carp/summation-kernel-1.pvl 24320 | 18896 16817
manual/option.pvl 6798 | 8876 8364
waitnotify/Queue.pvl 0441 7518 7116
type-casts/TypeExamplel. java 5261 7151 6776
basic/CollectionTest.pvl o047 | 7570 7308
witnesses/TreeWandSilver. java 33340 | 32210 31800
layers/LFQHist. java 13597 | 15113 15111
arrays/DutchNationalFlag.pvl 10799 | 13019 13024
futures/TestFuture.pvl 6824 | 8401 8656
floats/TestFloat. java 15827 | 15542 16393
openmp/add-spec-simd.c 14440 | 14127 16136
openmp/addvec?2.pvl 12822 | 13312 16037
floats/TestHist. java 21423 | 17862 22361

Table 4.1: Comparing total verification times (in ms) of Vct1, Vct2 and Vet2-a.
Sorted by relative speedup from Vct2 to Vct2-a.

File Vct2 | Vct3 | Vet3-a
case-studies/prefixsum-drf.pvl - - 98715
carp/histogram-submatrix.c - - 18095
floats/TestFloat. java 15542 - -
carp/summation-kernel-1.pvl 18896 | 19694 18934
manual/option.pvl 8876 | 10275 10103
basic/CollectionTest.pvl 7570 | 8483 8391
waitnotify/Queue.pvl 7518 | 8283 8197
type-casts/TypeExamplel. java 7151 8022 8068
witnesses/TreeWandSilver. java 32210 | 29072 29334
arrays/DutchNationalFlag.pvl 13019 | 13887 14036
futures/TestFuture.pvl 8401 9568 9741
layers/LFQHist. java 15113 | 16130 16481
openmp/add-spec-simd.c 14127 | 15514 18842
openmp/addvec?2.pvl 13312 | 14673 18530
floats/TestHist. java 17862 | 20226 34278

Table 4.2: Comparing total verification times (in ms) of Vct2, Vet3 and Vet3-a.
Sorted by relative speedup from Vct3 to Vct3-a.

24

is nearly four times faster to verify in the Vct2-a version compared to the Vct1
version. We also see that some examples are slower to verify in the Vct2-a
version compared to the Vct2 version. We believe this might be because the
sequences that are used in the old encoding (Vct2) are a primitive type in Viper.
Therefore, optimizations in Viper might allow Viper to reason more efficiently
about elements in sequences, whereas in the new encoding (Vct2-a) Viper has
to maintain the additional relation between the VCTArray object and the index
that define an element in the array.

Table[d:2)shows the effect of the new encoding in relation to the newer version
of VerCors with the old encoding. We see that in the Vct3 and the Vct3-a
version the floats/TestFloat.java example fails. This verification example
does not terminate due to a matching loop in a universal quantifier. Matchings
for quantifier instantiations in general influence verification performance. We
will look at this in detail in chapter
As we can see the Vct3 version of VerCors overall performs worse than the Vet2
version. This negative effect seems to be reinforced by the new array encoding
in the Vct3-a version.

In the new encoding injectivity of an array no longer has to be specified
explicitly. Being able to infer this property automatically significantly improved
performance in cases where this property is required. This is mostly the case
when only read permissions are required on the elements of an array. Also, it is
no longer required to flatten multi-dimensional arrays to one-dimensional arrays.
This eliminates the need for the non-linear arithmetic required to determine
the (injective) relation between indices in the multi-dimensional array and the
(calculated) corresponding index in the flattened array.

In the old situation there was no explicit check on the bounds of an array.
This is also the case for the new encoding. Since every heap location, thus every
element in the array, is protected by permissions this does not have to be an
issue. If the permissions on the elements of the array are specified correctly, it
is not possible to read or write out of bounds, since the thread would not have
permission to read or write to that location. It might, however, be desirable to
add explicit bound checks, to protect users from inadvertently writing erroneous
specifications. This could be done by generating a wrapper function for loc(a:
VCTArray, i: Integer) with the precondition that 0<=i && i<alen(a) (in other
words, ¢ is within bounds of the array).

4.4.1 Array differences

As noted before VerCors translates both Java and C arrays the same way. They
are initially parsed to the Array type in COL. In a later transformation they are
wrapped in an Option type and the inner elements are wrapped in a Cell type.
However different sorts of arrays have different semantics in Java and C. Table
shows the various types of arrays in Java and C, their semantics, and if they
are supported in VerCors. The column “Nullable” indicates whether a matrix
(or array) can be null or NULL. The column “Row assignable” indicates whether
or not another array can be assigned to a row of the matrix. In this list we also

25

Lang | Decl Nullable | Row assignable | VerCors support
Java | int [][] matrix; Yes Yes No
int | matrix []; Yes Yes Yes
int matrix [][]; Yes Yes No
C int matrix[M][N]; | No No Yesﬂ
int* matrix[N]; No No No
int **x matrix; Yes Yes No
PVL | int [J[] matrix; Yes Yes Yes

Table 4.3: Valid array types

look at pointers in C, since for many concurrent programs this mechanism is
also used to work with subsequent blocks of memory. For PVL we only included
the notation that is supported by VerCors, since there is no exact specification
of the language.

As it can be seen, not all array declaration notations are supported by Ver-
Cors. Further we see that the semantics differ between Java arrays and C arrays,
and that C pointers have different semantics than C arrays. To better support
the differences between the different types of arrays, the transformation should
not be done in the COL language, since we would like the COL language to be
consistent independent of the input language. Therefore the transformations
whether or not arrays should be wrapped in an Option type, and whether the
elements within the array should be wrapped in a Cell type, should be taken
care of by the pre-COL transformation phase. This is mostly an engineering
task, that is outside of the scope of this thesis. Currently work has started to
integrate these improvements, however they are not yet merged into the tool.
The transformations that generate the correct code for the \array and \matrix
annotations, as well as the code that is generated to model array constructors,
is prepared so that it will generate the correct code based on the types that are
provided.

1 Assigning to rows is wrongfully accepted by VerCors

26

Chapter 5

Trigger generation

In this chapter we look at another program structure that was identified as
being slow to verify. This concerns universal quantifiers that are used to specify
properties over possibly unbounded data structures. First we describe how
quantified expressions are treated in VerCors and how they are passed to the
Viper back-end verifier in Section We describe how triggers can help the
solver to discharge a proposition with universal quantifiers more quickly. Then
we discuss the transformations that are needed to be able to generate valid
triggers in Section [5.2] In Section [5.3] and [5.4] we describe how triggers are
generated and how this is implemented in the tool. We compare performance of
verification for versions with and without triggers in Section [5.5] and we discuss
the results in Section [.6

5.1 The structure of quantifiers

One of the ways VerCors supports reasoning over unbounded data structures
is by the use of quantifiers. The notation of the quantifiers is similar to the
JML syntax, with an additional forall* to specify universal quantification over
permissions. In the COL language the four main components of a quantified
expression are structured as follows:

e Binder: to specify the type of quantifier.

e Declarations: to declare the variables that are quantified over.

e Selection: to specify the domain of the quantification.

e Main: the the body to which all elements in the domain have to adhere.

For illustration let’s consider the following JML statement:

(\ forall int i; 0<=i && i<input.length; input[i] == 0);

This statement specifies that all elements of the array called “input” have
the value 0. In this statement the binder type is Forall. The single declaration

27

is int i, and the selection is 0<=i && i<input.length. The main is the equality
input[i] == 0. In the Viper language there is no distinction between the selec-
tion and the main part of the quantifier. Therefore the selection and main are
rewritten into an implication. This looks as follows: \ forall int i; 0<=i &&
i<input.length; input[i] == 0; — forall i: Int :: 0<=i && i<|input| ==>

input[i].Integer__item == 0.

Triggers

In order for an SMT solver to reason about these propositions it has to instan-
tiate the body of the quantifier with actual values in place of the quantified
variables. But since this can be any value, it is important that the solver only
uses instantiations that are relevant for the problem. This means that it should
make the right instantiation to discharge a proof, but preferably not more, since
adding irrelevant knowledge makes solving unnecessary slower. The SMT solver
that is used in Viper, namely Z3, can be guided to trigger the right quantifier
instantiations. This is done by supplying so-called triggers, which are patterns
that the SMT solver can use to match against. If the solver encounters a state-
ment with the given pattern(s), it will instantiate the quantifiers body with
values for the current context. In the Viper language a user can also specify
sets of triggers for the universal quantifier expressions, which are then used to
guide Z3 into making the right quantifier instantiations. There are a couple of
restrictions that Viper imposes on triggers, namely:

e Each quantified variable must occur at least once in a set of triggers.

Each trigger must contain at least one quantified variable.

Each trigger must have some sort of structure, e.g. a function application.
A quantified variable itself is not a valid trigger.

e Triggers may not contain arithmetic or boolean operators.

Accessibility predicates (permissions) are not allowed in trigger expres-
sions.

In short these restrictions stem from the way relations are canonicalized in the
SMT solver. For an in depth explanation we refer to the article on Simplify, by
Detlefs et al [§].

If the user does not supply triggers, Viper will try to infer them from the
body of the quantified expression. A downside of letting Viper infer the triggers
is that it will most likely infer too many triggers. For instance let’s consider
the Viper program in Listing from the Viper tutoriaﬂ For the quantified
expression in the axiom axsum, Viper can infer the following trigger sets:

e {sum(a, b)}

IThe Viper tutorial is located at http://viper.ethz.ch/tutorial

28

http://viper.ethz.ch/tutorial

00 O Uik W N

1

e { get_value(a), get_value(b) }
e { sum(a,b) }{ get_value(a), get_value(b) }
o { get_value(a), get_value(b) }{ sum(a,b)}

Thus for every state in which a match for all the triggers in one of the trigger
sets is found, an instance of the quantified expression is generated. However,
intuitively it is clear that we only need the axiom axsum to be applied when
the pattern sum(a, b) is encountered. All other trigger combinations will lead
to unnecessary quantifier instantiations, making verification slower. Therefore
it is beneficial to supply the right triggers.

Listing 5.1: Viper specification for an Integer domain.

domain MyInteger {
function create_int (x: Int): Mylnteger
function get_value(a: Mylnteger): Int
function sum(a: MylInteger, b: MylInteger): Mylnteger

axiom axCreate {
forall i: Int :: get_value(create_int(i)) = i

}

axiom axSum {
forall a: Mylnteger, b: Mylnteger
sum(a,b) = create_int(get_value(a) + get_value(b))

Matching loops

An extreme effect of poorly chosen triggers (or poorly inferred triggers) is a
matching loop. Listing shows a specification of a factorial function. One of
the candidate expressions to become a trigger for the quantifier at line 8 is the
fact (i) term. However, if the solver would instantiate the body of the quantifier
for this pattern, it would encounter another match for the term fact(i—1). If
the solver would not be able to prove that i eventually is smaller than 1, then
the solver would continue generating instances indefinitely. When specifications
become more complex, and are composed of multiple functions, it becomes
less trivial to deduce where a matching loop could occur. As we have seen in
Section there is also an example in our set of representable examples that
is plagued by this effect. Using the axiom profiler of Becker et al [3], we were
able to determine that this example does not terminate because of a matching
loop.

Listing 5.2: Specification of a factorial function.

class Factorial {

29

[t

O © 00O Uk W

w

ensures \result = (n>1 ? nxfact(n—1): 1);
pure int fact(int n) {

return n<=1 ? 1 : nxfact(n—1);
}

void main() {
assert (\forall int i; 0<i; fact(i) = 1 % fact(i—1));
}

}

In VerCors there is no support for triggers in the input language. First
because the VerCors specification language is based on JML, which does not
use triggers. Second because VerCors rewrites the AST, and could thereby
invalidate triggers. For instance, if new quantifiers are generated by VerCors to
encode parallel blocks, this could add quantifier variables, which are not covered
by the triggers that were in the input program. Therefore VerCors relies on
Vipers capability of inferring triggers. Because quantifiers were identified as
being a possible bottleneck in verification with VerCors, we have investigated if
we could generate triggers for Viper and if that would improve performance.

5.2 Rewriting complex subscripts

Data structures that are often used in combination with quantified expressions
are arrays or sequences. For these data structures quantifiers are often used to
specify properties for all elements in the array or sequence. In the COL language
that is used internally in VerCors, accessing a specific element in an array or
sequence is modeled by the Subscript operator. A statement like input[2],
where “input” is an array, would be represented as an OperatorExpression
with the operator Subscript and the arguments input and 2. If we encounter
such an expression in the body of a quantified expression, and we want to
generate a trigger for it, we must adhere to the restrictions that Viper imposes
on triggers. For instance, we can not use a trigger of the form input[i+1], since
the subscript part of the expression uses the + operator. One possibility is to try
to rewrite these kinds of subscripts to a form that is a valid trigger expression.
To illustrate this procedure, let’s consider the example in Listing [5.3

Listing 5.3: Function specification with complex subscript.
class Subscripts {
invariant (\forall int i; O<=i && i<|s|/2; s[i] = s[2x

i]);

void fun(seq<int> s);
¥

In this example the forall quantifier specifies that for all elements in the first
half of the sequence, the element at the position twice as far from the start
should have the same value. In this expression there are two candidates for

30

trigger expressions: s[i] and s[2«i]. However, this is not a valid trigger set,
since the second expression has the arithmetic operator *. What we can do to
eliminate this multiplication is to introduce a fresh quantifier variable. Then
we can replace the 2 x ¢ expression in the body of the expression with the new
variable, and we add an equality to the selection of the expression that the new
variable should be equal to 2 xi. That gives us the following expression:

(\ forall int i,int unit_var.l; 0<=i && i<|s|/2 && unit_var_.1 == 2xi; s]i
] == s[unit_var_1]).

This gives us the candidate triggers s[i] and s[unit_var_1]. As a set, these
triggers do adhere to the restrictions that Viper imposes on triggers:

e Both quantified variables occur in the set of triggers.

Each trigger contains a quantified variable.

Each trigger has a structure (in this case a subscript operation).
e There is no longer an arithmetic operator in (one of the) triggers.
e There are no accessibility predicates in the triggers.

One aspect that we do need to consider, is the effect of the complexity that
we add to the quantifier expression by adding a quantified variable. The extra
variable adds a dimension to the domain of the quantifier. That could make
it even harder for the SMT solver to find the right instances to discharge a
proof. Our hypothesis, however, is that the SMT solver can easily discharge the
added equality in the selection of the quantifier (in our example the equality
unit_var_.1 == 2xi), and that the positive effect of being able to generate an
appropriate trigger will outweigh the costs of the added complexity.

5.3 Generating triggers

After eliminating complex subscripts we can try to generate trigger sets for
universal quantifiers, at the end of the rewriting phase. This ensures that the
generated triggers will not be invalidated by other transformations. Since the
selection and the main elements of a COL quantifier are rewritten to an implica-
tion in the body of the Viper quantifier, we have to look for trigger candidates in
the selection and the main of the COL quantifier. These trigger candidates have
to adhere to the restrictions that Viper imposes on triggers. A trigger candidate
is thus an expression that mentions at least one of the quantified variables, has
some sort of structure (thus is not the variable itself) and does not contain an
accessibility predicate. From this set of trigger candidates we compose valid
trigger sets. We do this by first generating the powerset of the set with triggers
(excluding the empty set, since the empty set is not a valid trigger set). From
this powerset we select all the sets that mention all quantified variables, and are
thereby valid trigger sets. We chose to consider all possible valid combinations
of trigger expressions, to make sure that we do not inadvertently block neces-
sary quantifier instantiations. The intuition is that these triggers still contain

31

more abstractions (e.g. domain encodings used by VerCors) than triggers that
would be inferred by Viper. Thereby our triggers are more specific and cause
less spurious quantifier instantiations in the SMT solver.

5.4 Implementation

To enable the rewriting of complex subscripts in quantifiers and adding trig-
gers, the optional command line flag --triggers has been introduced. This
command line flag should receive an integer value. Internally, the binary rep-
resentation of the value is used to switch on or off the rewriting of complex
subscripts and trigger generation. If the second least bit is set (value & 2), the
complex subscripts are rewritten. If the least significant bit is set (value & 1),
then triggers are generated. This gives us the following possible values:

0 No additional transformation will be made.
1 Will add triggers if possible, without any further transformations.

2 Will rewrite complex subscripts to a new quantified variable, and will not
add triggers.

3 Will rewrite complex subscripts and add triggers if possible.

5.5 Results

To check the effect of rewriting complex subscripts and adding triggers to quan-
tifiers, we compared verification times for the set of representable examples from
Section [3.2] We compare verification times for version Vet3 of the tool, for all
four options for the --trigger flag: No additional transformations (Vct3), only
add triggers (Vct3-t1), only rewrite complex subscripts in quantifiers (Vet3-t2)
and rewriting complex subscrips in quantifiers plus adding triggers (Vct3-t3).
For each version the example is verified 5 times, and the average is shown in
Table 5.1

However from Chapter [we know that examples using multi-dimensional ar-
rays could not be verified with version Vct3 of the tool. Therefore we have also
applied our changes to implement the triggers features to the Vct3-a version
of the tool. This gives us the versions Vct3-a-t1 (Vct3-a plus trigger genera-
tion), Vet3-a-t2 (Vct3-a plus rewriting complex subscripts in quantifiers) and
Vct3-a-t3 (Vet3-a plus rewriting complex subscripts and trigger generation).
In Table are the verification times for the examples using this version.

References to the exact points in the Git history for version Vct3-t and
Vct3-a-t can be found in Appendix [A]

32

File Vct3 | Vet3-tl | Vct3-t2 | Vct3-t3
floats/TestFloat. java - 17483 - 17516
openmp/add-spec-simd.c 15514 15646 - -
openmp/addvec?2.pvl 14673 14857 - -
basic/CollectionTest.pvl 8483 8429 8400 8395
futures/TestFuture.pvl 9568 9730 9558 9492
manual/option.pvl 10275 10352 10299 10202
floats/TestHist. java 20226 19997 20297 20212
arrays/DutchNationalFlag.pvl | 13887 13913 13870 13951
waitnotify/Queue.pvl 8283 8458 8504 8340
carp/summation-kernel-1.pvl | 19694 19770 19817 19865
type-casts/TypeExamplel. 8022 8161 8144 8152
java

layers/LFQHist.java 16130 16717 16398 16441
witnesses/TreeWandSilver. 29072 29841 30250 29682
java

Table 5.1: Comparing total verification times (in ms) for version Vct3, with and
without triggers. Sorted by relative speedup from Vct3 to Vct3-t3.

5.6 Discussion

From the results in Table we can note multiple things. First of all we see
that in the TestFloat. java example the added triggers eliminate the matching
loop that caused the verification to run indefinitely. In the next two examples
we see that the complexity that is introduced by rewriting complex subscripts
to additional quantified variables cause the verification to fail. Further we see
that generating triggers does not have a positive effect on verification times
for these examples. Next we see that the Challenge2.pvl only succeeds for
version Vct3. However in Section we already concluded that verification
of this example is inconsistent. Therefore we can not base conclusions on this
result. For the remaining examples we see that the added transformations are
of a minimal effect on the total verification times.

For the results with the new array encoding in combination with generating
triggers from Table we can note the same for the TestFloat. java example,
namely that the added triggers help break the matching loop that caused this
example to run indefinitely. Then there are the same two examples that fail to
verify when complex subscripts are rewritten to additional quantified variables.
But there also are two examples that benefit significantly from the added trans-
formations: The TestHist.java example takes only 67 % of the time to verify
if we rewrite complex subscripts and add triggers, And the prefixsum-drf.pvl
example is also 29 % faster when we rewrite complex subscripts and add triggers.
For the remaining examples we see that again the effect on total verification time
is minimal.

33

File Vct3-a | Vect3-a-tl | Vct3-a-t2 | Vet3-a-t3
floats/TestFloat. - 32693 - 34219
java

openmp/ 18842 19329 - -
add-spec-simd.c

openmp/addvec2.pvl 18530 19629 - -
floats/TestHist. java 34278 24412 31877 23122
case-studies/ 98715 96133 68190 69797
prefixsum-drf.pvl

arrays/ 14036 14153 14673 13975
DutchNationalFlag.

pvl

manual/option.pvl 10103 10266 11123 10072
type-casts/ 8068 7993 8002 8081
TypeExamplel. java

futures/TestFuture. 9741 9880 9708 9819
pvl

layers/LFQHist. java 16481 16457 16662 16657
carp/ 18095 18380 18058 18324
histogram-submatrix.

c

basic/ 8391 8289 8394 8500
CollectionTest.pvl

carp/ 18934 19517 21016 19222
summation-kernel-1.

pvl

waitnotify/Queue.pvl 8197 8190 8304 8351
witnesses/ 29334 29502 30290 30001
TreeWandSilver. java

Table 5.2: Comparing total verification times (in ms) for version Vct3-a, with
and without triggers. Sorted by relative speedup from Vct3-a to Vct3-a-t3.

34

Because the effect of rewriting complex subscripts in quantifiers and/ or
adding triggers can have a positive or negative effect depending on the context,
we chose to not enable this feature by default. Only the TestFloat.java ex-
ample does not verify in the Vct3 version, and can be verified when triggers
are generated. However we think that the matching loop is caused by a more
fundamental problem, that needs to be solved in the VCTFloat domain that
is used by VerCors to model floating point numbers. For the other examples,
rewriting complex subscripts and generating triggers does not necessarily have
a positive effect on the performance. Therefore we have kept the —--trigger
option with the integer value to specify what transformations the user wants to
apply. In this way expert users that think they can benefit of these features can
still use them, but for users unaware of these features the safest way is to not
use them by default.

35

Chapter 6

Related work

This research is focused very specifically at the performance of program veri-
fication with VerCors. In literature we can look more broadly at research and
comparison of performance between different verification techniques. Cassios
et al have published an experience report in which Symbolic Execution (SE) is
compared to Verification Condition Generation (VNG) [II]. However, to the
best of our knowledge, there is no report on the analysis of specifically which
parts of a program have the most influence on the performance of verification.
Leino et al identify matching loops in quantified expressions as a significant
contributor to instabilities in performance and user experience in program veri-
fication [13]. They propose to move trigger logic away from the SMT solver and
into the high level verifier. The paper presents three techniques for trigger se-
lection that are implemented in the Dafny verifier: Quantifier splitting, trigger
sharing and matching loop detection. First terms that could be part of a trigger
are collected. Then it enumerates subsets of these terms and rejects terms that
are not allowed. The trigger candidates are evaluated to see if they can cause
a matching loop. If this is the case, then the trigger is also removed from the
Pool. In practice users tend to collect related conditions under a single quan-
tifier. However, the technique to prevent matching loops may cause essential
triggers to be eliminated if the conditions in the quantifier are only weakly re-
lated. To mitigate this problem, the quantifier is split into multiple quantifiers.
Thereby preventing the case that a possible matching loop for one condition
eliminates an essential trigger for another condition. To recover the triggers
that were eliminated by the matching loop detection for the quantifier that is
split, the pool of triggers is enriched with the trigger candidates that derive
from the same split quantifier. This is what they call trigger sharing. The tech-
niques are implemented in the Dafny verification tool. They show significant
performance gains on Dafny’s test suite and larger verification problems.

36

Chapter 7

Conclusion

In this research we wanted to investigate what performance bottlenecks in pro-
gram verification with VerCors were, in order to optimize performance of the
tool. First we have identified two program constructs that could cause poor per-
formance in verification, namely the encoding of (injectivity of) arrays and the
use of universal quantifiers without triggers. We have also developed a frame-
work that can help identify which program constructs take relatively more time
to verify. First results have shown that the framework can identify the con-
structs that were also identified by experts as possibly being problematic. We
think this framework can help identify new problematic constructs as the tool
evolves. If the encoding of existing concurrency abstractions in VerCors changes,
the learned normalized verification times for the nodes that model this abstrac-
tion will automatically change accordingly. Thus if the change has a negative
effect on performance, this will show up in higher verification times. Further, if
new abstractions are added to the tool, for instance by adding new node types
in the COL AST, then they can easily be added to the framework. This makes
it possible to immediately monitor how the performance of verification of this
abstraction relates to verification of the rest of the programs.

Next we have developed a new encoding for arrays. Before this research the
support for multi-dimensional arrays was broken in VerCors, due to an update
in the back-end verifier. Therefore we had to compare results to an older version
of VerCors. We have seen a verification speedup of 4 times in cases where array
injectivity was a relevant property.

Finally we have investigated if we could benefit from generating trigger sets
for universal quantifiers in VerCors. We have seen that in specific cases adding
triggers can improve performance. However additional transformations that are
needed to be able to generate valid triggers can have a negative effect.

37

7.1 Future work

In order to improve the framework to monitor normalized verification times for
AST nodes, future work could focus on also considering the structure of the
syntax tree. For instance taking into account how deep (invariants for) loops
are nested, or if certain expressions are used in special contexts.

In the current situation, the learning of normalized verification times for
AST nodes is done before the AST is rewritten. This is at the highest level
of abstraction. To identify more specifically which part of the transformation
causes an abstraction to be slow to verify, it could also be interesting to add
counting passes further on in the transformation chain, in order to monitor unit
times at different abstraction levels.

With the new array encoding, multi-dimensional arrays no longer have to be
flattened to a one-dimensional array. This eliminates the need for a non-linear
calculation to map indices from the original array to the flattened array. In
VerCors there are rewrite rules that rewrite quantified expressions with sub-
scripts to help the back-end verifier to reason about the non-linear arithmetic.
It would be interesting to investigate if eliminating these rewrite rules would
have a positive effect on performance.

In transforming abstractions VerCors can generate various quantified ex-
pressions. In subsequent transformations these quantifiers might be split and
rewritten further. It could be interesting to investigate how these transforma-
tions influence the ability to generate valid trigger sets, and how this influences
performance.

Currently, the only strategy to select trigger sets for quantified expressions
is to generate the powerset of all trigger candidates and filter the valid sets.
Future work could focus on how to reduce the set of triggers without eliminating
essential trigger expressions.

38

Bibliography

1]

Afshin Amighi, Stefan Blom, Saeed Darabi, Marieke Huisman, Wojciech
Mostowski, and Marina Zaharieva-Stojanovski. Verification of concurrent
systems with VerCors. In International School on Formal Methods for the
Design of Computer, Communication and Software Systems, pages 172—
216. Springer, 2014.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K Rustan M Leino. Boogie: A modular reusable verifier for object-oriented
programs. In International Symposium on Formal Methods for Components
and Objects, pages 364-387. Springer, 2005.

Nils Becker, Peter Miiller, and Alexander J. Summers. The axiom profiler:
Understanding and debugging smt quantifier instantiations. In Tom&s Vo-
jnar and Lijun Zhang, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 99-116, Cham, 2019. Springer International
Publishing.

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The
VerCors tool set: Verification of parallel and concurrent software. In Nadia
Polikarpova and Steve Schneider, editors, Integrated Formal Methods, pages
102-110, Cham, 2017. Springer International Publishing.

John Boyland. Checking interference with fractional permissions. In Inter-
national Static Analysis Symposium, pages 55—72. Springer, 2003.

Lilian Burdy, Yoonsik Cheon, David R Cok, Michael D Ernst, Joseph R
Kiniry, Gary T Leavens, K Rustan M Leino, and Erik Poll. An overview
of JML tools and applications. International journal on software tools for
technology transfer, 7(3):212-232, 2005.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337-340. Springer, 2008.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem
prover for program checking. J. ACM, 52(3):365-473, May 2005.

39

[9]

[10]

[11]

[15]

[16]

Christian Haack, Marieke Huisman, Clément Hurlin, and Afshin Amighi.
Permission-based separation logic for multithreaded java programs. arXiv
preprint arXiv:1411.0851, 2014.

Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576-580, 1969.

I. T. Kassios, P. Miiller, and M. Schwerhoff. Comparing verification condi-
tion generation with symbolic execution: an experience report. In R. Joshi,
P. Miiller, and A. Podelski, editors, Verified Software Theories Tools Ezx-
periments (VSTTE), volume 7152 of Lecture Notes in Computer Science,
pages 196—-208. Springer-Verlag, 2012.

K Rustan M Leino, Peter Miiller, and Jan Smans. Verification of concurrent
programs with Chalice. In Foundations of Security Analysis and Design V,
pages 195-222. Springer, 2009.

K Rustan M Leino and Clément Pit-Claudel. Trigger selection strategies
to stabilize program verifiers. In International Conference on Computer
Aided Verification, pages 361-381. Springer, 2016.

Peter Miiller, Malte Schwerhoff, and Alexander J Summers. Viper: A
verification infrastructure for permission-based reasoning. In International
Conference on Verification, Model Checking, and Abstract Interpretation,
pages 41-62. Springer, 2016.

John C Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55—74. IEEE, 2002.

UTwente-FMT. VerCors example repository. https://github.com/
utwente-fmt/vercors/tree/master/examples, 2018. [Ounline; accessed
24-October-2018].

40

https://github.com/utwente-fmt/vercors/tree/master/examples
https://github.com/utwente-fmt/vercors/tree/master/examples

Appendix A

VerCors repository history

Over time various versions of the VerCors tool have been key in the context of
this thesis. With regard to the encoding of arrays these were the points where
the old encoding was still working (Vct1), the version on which the new encoding
is build (Vct2) and a more recent version at the time of writing (Vet3). The
Git commit hashes that mark these points of time in the history of the VerCors
repositoryE] are the following:

Vet e6f0a2e198cadelccflid3e3baae3bb7421cbaec
Vet2 50262799fdef5ec65bd396e5d19cac76fd6c0715
Vet3 161266bacd9e2bb056eff0dddf0fc08tfdca22be8

A.1 Time learning framework

The implementation of the time learning framework as duscussed in Section [3.3
is based on the Vct1 version of the tool. The Git commit hash that marks this
point in the VerCors repository is:

e 7befcbef70fea0425t80092bfaadcc329b514cc0

A.2 New array encoding

The new array encoding, as discussed in Section that was based on Vct2,
can be found in Vct2-a. In Vct3-a the new array encoding is merged with the
later version ov VerCors. The Git commit hashes that mark these points in the
VerCors repository are the following:

Vct2-a 716ad6ad2ai3142601128 7adecldaeech90d4070
Vct3-a leed4c0530d1611269f05ed8dde0026bib2431d11

IThe VerCors repository is located at https://github.com/utwente-fmt/vercors

41

https://github.com/utwente-fmt/vercors/commit/e6f0a2e198ca4e0ccf1fd3e3baae3bb7421cbaec
https://github.com/utwente-fmt/vercors/commit/50262799fdef5ec65bd396e5d19cac76fd6c07f5
https://github.com/utwente-fmt/vercors/commit/6f266bacd9e2bb056eff0dddf0fc08ffdca22be8
https://github.com/utwente-fmt/vercors/commit/7befcbef70fea0425f80092bfaadcc329b514cc0
https://github.com/utwente-fmt/vercors/commit/716a46ad2af31426011287adec1daeecb90d4070
https://github.com/utwente-fmt/vercors/commit/eed4c0530d161f269f05ed8dde0026bfb2431d11
https://github.com/utwente-fmt/vercors

A.3 Trigger generation

The implementation for generating triggers, as discussed in Chapter [5] based
on version Vct3 of the VerCors tool, can be found in version Vct3-t. In version
Vct3-a-t the implementation of triggers is merged with the new array encoding
from Section[4.2] The Git commit hashes that mark these points in the VerCors
repository are:

Vet3-t 96922644acb6aa27ab8d419d94354134b159¢ccOe
Vet3-a-t 1280dd34aalae9ccTididd71ecee761e6d5a0c84

42

https://github.com/utwente-fmt/vercors/commit/96922644acb6aa27ab8d4f9d94354f34b159cc0e
https://github.com/utwente-fmt/vercors/commit/f280dd34aa0ae9cc7fdfdd71eeee761e6d5a0c84

Appendix B

Set of representable
examples

Below is the list of examples that is used to compare performance of different
versions of the VerCors tool. The examples used are as they were current at
commit 7h738ddb45483e43a96£34420c147555e7349f7cl

These examples are all compatible with version Vct1 of VerCors, and are fixed
where possible for the other versions of the tool.

e type-casts/TypeExamplel.java
e floats/TestHist.java

e basic/CollectionTest.pvl

e carp/summation-kernel-1.pvl

e floats/TestFloat.java

e openmp/addvec2.pvl

e carp/histogram-submatrix.c

e witnesses/TreeWandSilver.java
e futures/TestFuture.pvl

e case-studies/prefixsum-drf.pvl
e arrays/DutchNationalFlag.pvl
¢ manual/option.pvl

e waitnotify/Queue.pvl

e layers/LFQHist.java

43

https://github.com/utwente-fmt/vercors/commit/7b738ddb45483e43a96f34420c147555e7349f7c

e openmp/add-spec-simd.c

e verifythis2018/challenge2.pvl

44

Appendix C

Results

In this appendix are the results as presented in this thesis. Measurements are
done with a system with the following specifications:

e Dell Precision M2800

e Processor: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz, 2501 Mhz, 4
Core(s), 8 Logical Processor(s).

Memory: 8.00 GB

Operating system: Windows 10 Pro 1803 X64.

C.1 Normalized verification time per AST node

In this section are the learned unit times as discussed in Section [3.3] and [3.4]
In Listing are the learned unit times. In Listing is the learned absolute
difference for the unit times. The latter gives an indication of the accuracy of
the learned unit time.

Listing C.1: Learned unit times for COL AST nodes, before rewriting.

"vct.col.ast.PrimitiveType: String”: 436.3587529274005,
"vct.col.ast.BindingExpression: Star :non—linear”: 292.2344289092933,
"vet.col.ast.PrimitiveType: Option”: 279.75,
"vet.col.ast.OperatorExpression: OptionSome”: 279.75,
"vet.col.ast.OperatorExpression: TypeOf”: 225.95652173913044,
"vet.col.ast. TypeVariable”: 141.38095238095238,
"vct.col.ast.OperatorExpression: ValidArray”: 130.5266362060251
"vct.col.ast.OperatorExpression: ValidMatrix”: 127.89861824553546,
"vct.col.ast.ParallelBarrier”: 108.63452278058679,
"vet.col.ast.OperatorExpression: VectorCompare”: 106.82352941176471,
"vet.col.ast.OperatorExpression: VectorRepeat”: 106.82352941176471,

45

"vet .
vet .
"vet .
vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .

»

”

»

»

»

2

”

7vet

"vet .
"vet .
vet .
"vet .

”

»

”

”

»”

”

»

vet.
vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
vet .
"vet .

vet .
"vet .
"vet .
vet .
"vet .
vet .
"vet .
"vet .
vcet .
"vet .
vet .
"vet .
"vet .
vet .
"vet .

col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
.col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.

ast

ast .
ast .
.OperatorExpression
PrimitiveType: Float”:
77.12446150540876,
:Cast”:
:Postlncr”:

68.94030932345711,
:PointsTo”:

:Assign”:
’: 63.618200185251865,

ast

ast.
ast.
ast .
.OperatorExpression

ast

ast .
ast .
ast .
ast .
ast .

ast

ast

ast .
ast .
.OperatorExpression
ast .

ast

ast

ast .
ast .
ast .
ast .
.OperatorExpression
OperatorExpression:
:0ld” -
:RangeSeq”:
53.16108801103409,
ITE” :
:NEQ” :
50.94773776639646 ,

ast

ast .
ast .
ast .
ast .

ast

ast

ast .
ast .

ast

ast

.OperatorExpression
PrimitiveType: Set”:
PrimitiveType:Bag”:
:Member” :

VectorBlock”:
OperatorExpression

ClassType”:
OperatorExpression
OperatorExpression

ConstantExpression’
PrimitiveType: Fraction”:
.NameExpression”:
ast.
ast.

OperatorExpression
OperatorExpression

.PrimitiveType:Integer”:
:Length”:

OperatorExpression
MethodInvokation”:

OperatorExpression

.BindingExpression :Sum”:
:AddAssign”:
OperatorExpression:
:ReducibleSum”:
:EQ”:

:GTE” :

OperatorExpression

OperatorExpression
OperatorExpression

OperatorExpression
OperatorExpression
Dereference”:

.OperatorExpression
ast .
.ReturnStatement”:
PrimitiveType: Sequence”:
50.55429828890851,
:Div”:
: AbstractState”:
:Implies”:
49.582647102894775,
48.36705055979249,

OperatorExpression

LoopStatement”:

.OperatorExpression
ast .
ast .
ast .
ast.
ast .
ast .
ast .
ast .
.OperatorExpression

OperatorExpression
OperatorExpression
IfStatement ”:
StructValue”:

Parallellnvariant ”:
AssignmentStatement ”:
:Append” :
:Drop”:
:NewSilver”:

OperatorExpression
OperatorExpression

46

:Instance”:

:Perm” :
:Star”:

95.48913043478261,
94.63157894736842,
94.63157894736842,
81.92520363408521,
80.74688822959828,

73.5601661721987,
69.90066594039358,

65.97223823682876,
64.31244197832636,

60.83769836833337,

60.689803585714415,
: Unfolding”:
:Plus”:

60.37179255516689,
59.6403416284453,
59.48037163183229,
58.70862712081903,
58.59500398341991,
58.522818043582845,
57.77671580657753,
56.78206715611292,
56.78206715611292,
56.78206715611292,
56.78206715611292,
55.43729709091913,
55.334365677908636,
FoldPlus”: 54.59464113514258,
54.21488896255912,
53.20943305500338,

Contribution”:

51.22887005105985,
51.19657639001276,

50.630117784578324,

50.5023980570464 ,
50.46697590311244,
49.693318393967175,

47.49872322734983,
47.26844639936432,
46.05298013245033,
46.05298013245033,
46.05298013245033,

"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
7vet
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
"vet .
”

vet .
7vet.

}

col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
.col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .

ast

ast
ast

ast

ast .
ast.
ast.
ast .
ast .
ast.
ast.
ast.
.OperatorExpression: Value”: 39.74618842614653,
ast .
ast .
.PrimitiveType: Array”: 37.35537178553868,
ast.
.BindingExpression: Star”: 36.990366990122,
ast .
ast .
ast.
ast.
.OperatorExpression:Or”: 35.12420144337109,
ast .
ast .
ast.
ast.
.OperatorExpression:Not”: 27.25068405572092,
ast.
.PrimitiveType:Process”: 25.431439166249206,

ast

ast

ast

ast

ast

ast

ast .
ast .
.OperatorExpression: Scale”: 14.542321206709117,
ast.

ast

.OperatorExpression:Take”: 46.05298013245033,
ast.
ast.
.BindingExpression: Forall”: 44.905261418594286,
.Lemma”: 44.29045550669653,

ast.
ast.
.OperatorExpression:LTE”: 43.391730315280036,

OperatorExpression: Subscript”: 45.08085645289825,
OperatorExpression: Minus”: 45.01716715079705,

OperatorExpression :Wand”: 44.29045550669653 ,
ActionBlock”: 43.888575150812656,

OperatorExpression:And”: 43.303196355395535,
OperatorExpression:GT”: 43.263177874969806,
PrimitiveType: Boolean”: 43.20991409337897,
OperatorExpression:LT”: 43.09841925678941,
OperatorExpression: Size”: 42.931257949568966,
ParallelBlock”: 41.61108981883007,
ParallelRegion”: 41.61108981883007,
OperatorExpression: Tail”: 41.48513329198524,

OperatorExpression: Mult”: 38.81302978718812,
ParallelAtomic”: 37.96684230639937,

OperatorExpression : MatrixSum”: 37.18501170960187,

PrimitiveType: Resource”: 36.990366990122,
OperatorExpression: UMinus”: 35.71410305028053,
OperatorExpression : NewArray”: 35.46007883724915,
OperatorExpression: Future”: 35.15452038888792,

OperatorExpression:Mod”: 30.228637518142236,
BindingExpression: Forall :non—linear”: 29.124944336324056,
OperatorExpression: HistoryPerm”: 29.05927276502691,
OperatorExpression:Held”: 28.557522123893804,
OperatorExpression: History”: 25.90576401264436,

OperatorExpression:Head”: 20.90362735911609,
BindingExpression: Exists”: 15.029005524861878,

PrimitiveType: Location”: 14.542321206709117

Listing C.2: Learned differences in unit times for COL AST nodes, before rewrit-

ing.

{

"vet.col.ast.PrimitiveType: String”: 133.05791373926618,
"vect.col.ast.ParallelBarrier”: 83.18063793071764,
"vct.col.ast.OperatorExpression: ValidArray”: 81.38488910804604,

47

"vet .
vet .
"vet .
vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .

»

”

»

»

»

2

”

7vet

"vet .
"vet .
vet .
"vet .

”

»

”

”

»”

”

»

vet.
vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
vet .
"vet .

vet .
"vet .
"vet .
vet .
"vet .
vet .
"vet .
"vet .
vcet .
"vet .
vet .
"vet .
"vet .
vet .
"vet .

col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
.col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.

ast

ast

ast .
ast .
ast .
.ParallelBlock ”:
ast .
ast .
ast .
ast .
ast .
ast .
ast .
ast .

ast

ast

ast .
ast .
.PrimitiveType: Resource”:
BindingExpression: Star”:
.OperatorExpression

ast

ast .

ast

ast .
ast .
.NameExpression”:
ast.
. AssignmentStatement ”:
26.05520968526931,
:Plus”:
:LTE” .

ast

ast

ast .
ast .
ast .
ast .

ast

ast .

ast

ast

ast

ast .
ast .

ast
ast

.OperatorExpression
ast .
ast .
.PrimitiveType: Fraction”:
:RangeSeq”:
:Instance”:
35.68690977334082,
32.978049904328046,
32.978049904328046,
:Minus”:
71 31.792495413512757,
30.927997123893483,

OperatorExpression

OperatorExpression
OperatorExpression
ReturnStatement ”:

ParallelRegion”:
OperatorExpression

ConstantExpression’

ClassType”:

PrimitiveType: Array”:

OperatorExpression
OperatorExpression
OperatorExpression

.BindingExpression: Forall”:
:Size”:

28.733911609473815,

OperatorExpression
ActionBlock”:

LoopStatement”:
Dereference”:

OperatorExpression

VectorBlock”:
OperatorExpression
OperatorExpression

PrimitiveType: Float”:
.PrimitiveType:Integer”:
PrimitiveType: Boolean”:
.OperatorExpression
ast.
ast .

OperatorExpression

OperatorExpression:
.OperatorExpression
ast.
ast .
ast .
ast.

OperatorExpression
OperatorExpression
MethodInvokation”:

48

:ValidMatrix”:
:GTE” :

BindingExpression: Star:non—linear”:

:PostIncr”:
27.580825756456694 ,
27.233676301581355,

27.13844299853828,
:Cast”:

LT :

:Perm?” :

81.20289476548282,
77.7256316322934,
72.64203185865331,
53.474205451386744,
51.04850093794277,
43.48913043478261,

32.76574944997405,

30.613146964031394,

:PointsTo”: 30.22668151457074,
:Subscript”: 29.294664627242106,
:EQ”: 29.022056120531673,

28.98793747818828,
28.977205097553295,

28.40931181239899,
28.40931181239899,
27.725963622212234,

26.434398433277792,
26.274336454063555,

25.81228478752888,
25.783569584554655,
25.663568501170964,
25.623230784808186,
25.557324285814573,

:And”: 25.52308144955759,

:0ld”: 25.305706713827508,
AbstractState”: 24.676600301239876,
:GT”: 24.189818628219495,

24.128451210754214,
22.89239652491117,
22.372184138028395,

OperatorExpression:Mult”: 22.265506715207977,
.OperatorExpression: Star”: 22.157972624387536,
OperatorExpression: Tail”: 22.1478887113556,
OperatorExpression:Length”: 21.487199634204508,
.Lemma”: 20.77125580954531,
.OperatorExpression :Wand”: 20.77125580954531,

"vet .
vet .
"vet .
vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .

»

”

»

»

»

2

”

7vet

"vet .
"vet .
vet .
"vet .

”

»

”

”

»

”

»”

vet.
vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
"vet .
"vet .
vet.
"vet .
"vet .
vet .
"vet .

vet .
"vet .
"vet .
vcet .
"vet .
vet .
"vet .
"vet .
vcet .
"vet .
vet .
"vet .
"vet .
vcet .
"vet .

col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
.col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col.
col .
col.
col.
col.
col.
col.
col.
col.
col.

ast

ast

ast

ast

ast .
ast .
.OperatorExpression:
ast .
ast .
ast .
ast .
ast.
ast .
.OperatorExpression:
BindingExpression: Forall :non—linear”:

ast

ast

ast .
ast .
ast .
ast .

ast

ast

ast

ast

ast

.OperatorExpression:
ast .
ast .
.PrimitiveType: Sequence”:
ast .
ast .
ast .
.OperatorExpression:
ast .
ast .
ast .
ast .
ast .
ast .
ast .
ast .

StructValue”: 20.28
OperatorExpression:

OperatorExpression:
IfStatement”: 18.99
OperatorExpression:

OperatorExpression
OperatorExpression:
OperatorExpression:
ParallelAtomic”:
OperatorExpression:
OperatorExpression:
OperatorExpression:
OperatorExpression:

.OperatorExpression:
BindingExpression :Sum”:

OperatorExpression:

OperatorExpression:
Parallellnvariant ”:
OperatorExpression:
OperatorExpression:

PrimitiveType: Process”:

OperatorExpression:

OperatorExpression:

PrimitiveType: Location”:

OperatorExpression:

.PrimitiveType: Option”:
ast.
.PrimitiveType:Bag”:
ast.
ast .

PrimitiveType: Set”:

OperatorExpression:
OperatorExpression:

.OperatorExpression:
ast.
ast .
ast .
ast .
.OperatorExpression:
ast.
ast.
ast .
.OperatorExpression:

OperatorExpression:
TypeVariable”: 0.0,
OperatorExpression:
OperatorExpression:

OperatorExpression:
OperatorExpression:

BindingExpression: Exists”:

49

Div”: 20.6645021339816,
1031100252264,

Assign”: 20.083947753268713,
19.946875767473053,

Implies”: 19.09527907137906,
798117719227,

Unfolding”: 18.69835423706349,
ITE”: 18.563576661590258,
'NEQ”: 18.012436445804454,
NewArray”: 17.885762908669058,
FoldPlus”: 17.409629425540707,

16.65651487459199,

Value”: 16.234891048201902,

Or”: 12.946168512603656,

Not”: 11.43985102676475,
HistoryPerm”: 11.064281335745033,
Member”: 10.164520676691728,

10.08634367606029,

AddAssign”: 10.08634367606029,
Contribution”: 10.08634367606029,
ReducibleSum”: 10.08634367606029,

9.526194355266465,

Future”: 9.00656354663275,

Head”: 7.815945680862345,
7.334332954372023,

Mod”: 6.632120827285922,

History”: 6.2134677553818225,
5.52842764546774 ,
UMinus”: 1.507739953132445,
0.5229270202412382,

Scale”: 0.5229270202412382,
0.0,

0.0,

0.0,

Append”: 0.0,

Drop”: 0.0,
NewSilver”:
Take”: 0.0,

0.0,

MatrixSum”: 0.0,
VectorCompare”: 0.0,
VectorRepeat”: 0.0,
OptionSome”: 0.0,
TypeOf”: 0.0,

0.0,

Held”: 0.0

50

	Introduction
	Background
	Separation logic
	Permission-based logic
	VerCors implementation
	Viper back-end

	Analysis of performance bottlenecks
	Defining performance
	Measuring results
	Learn verification times for AST node types
	Discussion

	Array encoding
	Old array encoding
	New array encoding
	Results
	Discussion
	Array differences

	Trigger generation
	The structure of quantifiers
	Rewriting complex subscripts
	Generating triggers
	Implementation
	Results
	Discussion

	Related work
	Conclusion
	Future work

	VerCors repository history
	Time learning framework
	New array encoding
	Trigger generation

	Set of representable examples
	Results
	Normalized verification time per AST node

