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All Rights Reserved
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This program is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Output of Kimwitu (and of works based on Kimwitu) can be used without restriction (even
though this output may contain fragments from the source code of Kimwitu (or of works based
on Kimwitu), with one notable exception (because Kimwitu is built using itself): The output
generated by Kimwitu (and by works based on Kimwitu) from the source code of Kimwitu (and
from the source code of works based on Kimwitu) is covered by the GNU General Public License.

The structure-file-io reading and writing code has been derived, in part, from The Synthesizer
Generatortm, a product of GrammaTech, Inc, copyright c©1991, GrammaTech, Inc. Used with
permission.
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Introduction

When all else fails, read the manual.
Anonymous.

In this document we describe a system that supports the construction of programs that use
trees or terms as their main data structure. This system is a ‘meta’-tool in the development
process of tools. Its input is an abstract description of terms, annotated with implementation
directives, plus a description of functions on these terms. The output consists of a number of
C-files that contain data structure definitions for the terms, a number of standard functions on
those terms, and a translation (in C) of the function definitions in the input (e.g. term rewriting).
The standard functions can be used to create terms, compare them for equality, read and write
them on files in various formats and do manipulations like list concatenation.

This document is organised as follows. In Section 1 we describe the input format of the term
processor1. In Section 2 we describe the output of the system: the C types and functions, the files,
etc. Section 3 goes into the details of running the system, and the relation with other software
development tools, such as the Unix tools make, yacc, lex, lint and the Synthesizer Generator
(SG)[TR84, TR89b, TR89a]. Section 4 discusses various techniques in which programs can
be written over terms, and thus gives examples of the concept of multi-paradigm programming.
Finally, Section 5 motivates some of the design decisions of our system.

Some reading knowledge of the C programming language and associated tools is assumed.

1 Input

This section gives the input structure of Kimwitu. We describe how terms are defined, how
attributes of terms are defined, how the storage strategy of terms can be specified, and how
functions and rewrite rules on terms can be written.

1.1 Defining Terms

The input structure of terms is borrowed from the Synthesizer’s Specification Language SSL. An
example is the following.

expr: Plus(expr expr)
| Minus(expr expr)
| Neg(expr)
| Zero()
;

exprlist: list expr;

This declares two phyla, or term types, or nonterminals, depending on your viewpoint. Each of
these denotes a set of terms. As shown, there are two ways of constructing a phylum. One is by
enumerating its variants, each of which is an operator applied to a list of phyla. It is possible to

1 There is no need to distinguish programming languages from their processors. Yet, calling our notation and
tool a ‘term language’ would allow unintended alternative interpretations. We see our notation and tool as only one
of a class of term processors, it therefore has its own name. Colloquially we refer to it either as ‘the term processor’
(being our only one) or as ‘Kimwitu’ (pronounced ‘kee-mweetu’, stress on the second syllable).
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declare nullary operators, but it is not possible to define phyla that do not have operators. The
other way is declaring it as a list phylum. This is effectively equivalent to declaring the following
right recursive phylum:

exprlist: Nilexprlist()
| Consexprlist(expr exprlist)
;

A list phylum therefore always has an empty list constructor, and a prefix operator. The
advantage of a list declaration, apart from its brevity, is that it instructs the system to generate
additional, list-specific, functions.

There are a number of predefined phyla, among them are casestring and nocasestring for case-
sensitive and case-insensitive character strings respectively. The full list of predefined phyla is in
Section 2.3.

Phyla can be defined more than once, and at each occurrence operators, attributes, and storage
options (see below) can be added.

For each phylum, the term processor generates a C data type (a record) with the same name.
This is discussed in more detail in Section 2.1.

1.2 Attributes of Terms

Phyla can be declared to have attributes of a predeclared type. This type can be any C type, e.g.
int, or float. Of course, it can also be a C type that is generated by Kimwitu. An example phylum
with attributes is:

expr: Plus(expr expr)
| Minus(expr expr)
| Neg(expr)
| Zero()
{ float value = 0;}
;

Here the attribute value of type float is defined, and initialised with 0. Multiple attributes can be
defined between the curly brackets. The initialisations are optional. The type of an attribute can
also be a type generated by the term processor (such as a phylum).

Attributes serve as a facility to decorate a tree with extra information. The decoration can be
done in arbitrary user code. The attribute becomes a component of the record that is generated
for the phylum. If x is a value of type expr, then the attribute can be referred to as x→value.

As the last item of the initialisation a piece of arbitrary C, enclosed in curly brackets, is allowed.
In this code the expression $0 denotes the term that is being created. The code is executed after the
term has been built completely, and the other initialisations have been performed. An alternative
way of expressing the above initialisation therefore is:

{ float value;
{ $0−>value=0;}}
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1.3 Storage Options

The system (currently) provides two storage options, selectable on a per phylum basis. For both
of them a C data type is generated for each phylum, together with a ‘create’ function for each
operator. In the default storage option each operator ‘application’ just yields a new ‘memory
cell’ containing pointers to the arguments of the operator, with initialised attributes. The second
storage option, called ‘uniq’, is more interesting. It will guarantee that if the operator is once
called with a certain set of arguments, each additional call with the same arguments will yield a
pointer to the cell that was created by the first call. The result is that common (sub)trees are
automatically shared. This technique is known as ‘hashed-consing’ (because consing is the LISP
function to create new cells, and hashing is used to implement this uniqueness of representation
property). In this storage option attributes will be initialised only at the first call. Obviously, side
effects on subterms can jeopardize this scheme: terms maintained under unique storage should
not be modified (though their attributes may be modified because they do not contribute to the
uniqueness). An example application is as follows.

ID {uniq}: Str(casestring)
{ short type = UNDEF;};

Suppose that for each defining occurrence of an identifier a term is created with the attribute
type appropriately set, then to check the type one merely has to ‘create’ it again, e.g. through
Str(yourstring) and look at the attribute. In the same way one can check if the identifier is already
defined at a defining occurrence. A sketch of this code is as follows. It checks that an identifier is
defined only once, and defined before its use.

/∗ defining occurrence ∗/
id = Str(mkcasestring("foo"));
if (id−>type != UNDEF) error("doubly defined");
id−>type = USED; /∗ set other attributes here as well ∗/

/∗ applied occurrence ∗/
id = Str(mkcasestring("foo"));
if (id−>type == UNDEF) error("undefined");

Of course, this is not the most sophisticated example of a symbol table, but serves as an example.

An essential condition on phyla definitions is that all constituent phyla of a ‘uniq’ phylum are
also ‘uniq’. The term processor warns at generation time about violations of this condition.

As will be explained in Section 4.3, in some cases a phylum that has inherited attributes should
not be stored ‘uniq’. The following example declares ID as explicitly ‘non-uniq’.

ID {! uniq}:;

Phyla may not be declared both {uniq} and {!uniq}.

1.4 Life Time of Terms

Terms maintained under non-unique storage can be freed using a free phylum call. Terms main-
tained under unique storage cannot be freed individually. They are stored via hashtables, and
their lifetime can only be controlled by manipulation of their hashtables. By default, Kimwitu
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stores all unique terms in the same hashtable. The following manipulations on hashtables are
defined: creation, assignment, deletion and reuse. New, initially empty, hashtables of arbitrary
size can be created and used instead of the default hashtable. A newly created hashtable is not
used directly after creation, but only after it has been ‘assigned’ - from that moment on it will
be used instead of the previously assigned hashtable, until another hashtable gets assigned. A
‘de-assigned’ hashtable is not freed; all its memory cells remain alive, so pointers to those cells
remain valid. However, they are invisible to the create routines, and thus the unique storage
guarantee no longer holds in the following sequence of events: an (uniquely maintained) operator
is created with a certain set of arguments, and a memory cell for it is created in the hashtable,
and the initialization code for its phylum is executed; a new hashtable is created and assigned;
the same operator is called with the same set of arguments, a new memory cell for it is created in
the new hashtable, and the initialization code for its phylum is executed again. A ‘de-assigned’
hashtable can be freed when its memory cells are no longer needed.

This can be used to control the lifetime of unique terms quite effectively, eg. to free interme-
diate results of a computation, as follows. First, a ‘temporary’ hashtable is created to hold the
intermediate results. Then, just before the computation is started, replace the default hashtable
with the temporary one. When the computation is finished, the intermediate results and the final
result are in the ‘temporary’ hashtable. Re-assign the ‘old’ hashtable, and copy the final result2,
to re-create the memory cells belonging to the final result in the ‘old’ hashtable. Finally, free the
‘temporary’ hashtable.

Often only a limited number of phyla appears in the intermediate results. To allow more precise
control, the phyla maintained under unique storage can be partitioned over multiple storage-
classes, that each can have its own hashtable assigned. The memory cells created for a phylum
are created in the hashtable assigned to the phylum’s storage-class. Usually, phyla with a different
‘lifetime’ will be in different storage classes. There is one predefined storage-class: uniq. Other
storage-classes can be defined and used as follows:

%storageclass intermediate wholeprogram; /∗ the ‘%’ is part of the keyword ∗/

ID2 { intermediate }: Operator1( . . . ) | Operator2( . . . ) | . . . ;
ID3 { wholeprogram }: Operator3( . . . );

Here ID2 and ID3 belong to different storage-classes; if different hashtables are assigned to inter-
mediate and wholeprogram, then the memory cells for Operator1 and Operator2 will be in another
hashtable than those for Operator3.

A phylum can be in only one storage class. The term processor reports an error if this condition
is violated. The %storageclass declaration is optional; if Kimwitu input does contain a storage class
declaration, errors will be reported for all storage classes that were not explicitly declared.

For each storage class, Kimwitu creates statically (at compile time) a hashtable. Dynamically,
hashtables can be created, (re)assigned to one or more storage classes, cleared and freed. The
hashtable functions are listed in Section 2.2.

If the default (statically allocated) hashtable is not used, ie. if all storage classes are reassigned
to dynamically created hashtables before they are used, it is useful to redefine LARGEPRIME :

%{ KC TYPES HEADER
#define LARGEPRIME 0
%}

2Special care has to be taken of attributed terms, because the copy phylum functions do at most copy the values
of the attributes - if this value is a pointer to a term, make sure that this term is copied as well, if it is needed...
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or use the -DLARGEPRIME=0 flag with cc during compilation of file k.c (see Section 2.5), to avoid
the creation of the statically allocated hashtable.

1.5 Function Definitions

The structure of the generated C data types (see Section 2.1) for the phyla is very regular. Nev-
ertheless it appears tedious to write C functions over these data types. Therefore there is a
mechanism that allows easier expression of functions over phyla. In this way case analysis and
subterm selection is simplified. For example:

int len(exprlist $el) {
Nilexprlist: { return 0; }
tt = Consexprlist(∗, t): { return len(t) + 1; }

}

Here an integer-valued function len is defined with one argument of type exprlist (for exprlist see
Section 1.1). The function does pattern matching on the argument that is prefixed with $. In
the case where more than one pattern matches, the most specific match is taken. The patterns
can be arbitrary terms with variables, string-literals (double-quoted) and int-literals. Non-leaf
variables can be denoted as variable=subpattern, as tt in the example above. The construct * can
be used to denote an ‘anonymous’ variable. As degenerate pattern an operator name not followed
by parentheses can be used when one is not interested in the (number of) subphyla. The Nilexprlist
pattern above is an example of such a pattern. The ‘pattern’ default can be used to indicate a
default case. In case there is no default, the default becomes to give a run time error message.

For each pattern a piece of C code is given between curly brackets. If several patterns share
the same piece of C code, the patterns can be grouped (with separating commas). In this C
code, pattern variables denote the various components of the term. The values $1 etc. denote the
subphyla of the term: in the example above len(t) could also be written as len($1). The value $0
denotes the term itself. Attributes can be referred to as e.g. variable→value.

Alternatively, function bodies can be an arbitrary piece of C code. This code can contain with-
statements, in which the same pattern matching can be expressed. For example, an alternative
description of the function len is:

int len(exprlist el) {
with(el) {

Nilexprlist: { return 0; }
tt = Consexprlist(∗, t): { return len(t) + 1; }

} }

Another construct in function bodies and C code is the foreach-statement, which expresses the
iteration over a list. Its components are the loop variable, which automatically gets the type of
the list element, the list to loop over, and a body. Yet another example of the len function:

int len(exprlist el) {
int length = 0;
foreach( l; exprlist el ) {

length++;
}
return length;

}
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The foreach-with-statement is useful if the body of the foreach loop consists of only a with-
statement for the loop variable. Then the same syntactical shorthand as for the function definitions
can be used:

expr sum(exprlist el) {
expr sub total = Zero();
foreach( $e; exprlist el ) {

Add( x ): { sub total = Plus( sub total, x ); }
Subtract( x ): { sub total = Minus( sub total, x ); }

}
return sub total;

}

The following foreach-pattern-statement is useful if there is only one interesting pattern. Instead
of a loop variable it takes a pattern. The body is only executed for those list elements that match
the pattern.

expr add Adds(exprlist el) {
expr all Adds = Zero();
foreach( Add( x ); exprlist el ) {

all Adds = Plus( all Adds, x );
}
return all Adds;

}

It is also possible to do pattern matching over multiple expressions in one with-statement and
loop over several lists in a foreach-statement. The syntax for it is a straightforward extension of
the ’singular’ case. For example:

boolean equiv(expr $a, expr $b) {
Add( asub ) & Add( bsub ), Subtract( asub ) & Subtract( bsub ), Const( ∗ ) & Const( ∗ ):

{ return equiv( asub, bsub ); }
Plus( asub1, asub2 ) & Plus( bsub1, bsub2 ), Minus( asub1, asub2 ) & Minus( bsub1, bsub2 ):

{ return equiv( asub1, bsub1 ) && equiv( asub2, bsub2 ); }
default: { return False; }

}

Here we compare two expr trees: if they have the same tree structure (form) we say that they are
equivalent (and we don’t care about the constant values in the leaves). For each dollar-prefixed
argument we have a pattern; the patterns are grouped together with separating ampersand (&).
Pattern groups that share the same piece of C code are grouped together with separating commas.

Pattern-variables may appear multiple times in the patterns of an ampersand-linked pattern
group, to indicate that subtrees have to be (structurally) equivalent. We can even use that to
’parameterize’ a pattern:

boolean has sub(expr $a, expr $b) {
Add( asub ) & asub = ∗ : {

/∗ code here will be executed if ’a’ has top-operator ’Add’, and asub == b ∗/
}
default: { return False; }

}
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If comma-separated pattern groups share a common pattern or ampersand-linked pattern
group, it can be factored out. For example, the two pattern groups below are equivalent:

Add( asub ) & Add ( bsub ) , Add( asub ) & Subtract ( bsub ) : { /∗ C-code ∗/ }

Add( asub ) & ( Add ( bsub ) , Subtract ( bsub ) ) : { /∗ C-code ∗/ }

The foreach-statement over multiple lists is actually a combination of the foreach-statement, the
foreach-with-statement and the foreach-pattern-statement. It loops over all lists at the same time,
as long as each list still contains elements. For example:

boolean equiv lists(exprlist el1, exprlist el2) {
boolean result = True;
foreach( e1 & e2; exprlist el1, explist el2 ) {

/∗ this body is executed as long as both lists have elements ∗/
result = result && equiv( e1, e2 );

}
/∗ we don’t know if one list is longer than the other; we only ∗/
/∗ know the ’result’ for the elements that we compared with ’equiv’ ∗/
return result;

}

Here we have a function in which we check that the elements of two lists are pairwise equivalent.
At the right of the semicolon two list expressions appear (separated by commas, and each prefixed
with its type). At the left of the semicolon a corresponding number of foreach-items appears
(seperated by ampersands), where each foreach-item is either a variable (as in a foreach-statement),
a variable prefixed with a dollar (as in a foreach-with-statement) or a pattern (as in a foreach-
pattern-statement). The body contains either C-code, or patterns with C-code (if one or more
foreach-items was a dollar-prefixed variable).

Our equiv lists function has one disadvantage: the body of the foreach is executed for each pair
of elements, as long as all (both) lists are non-empty, so, to know whether the two lists have the
same length, we would have to test explicitly for the length. There is an experimental feature to
get around this: it is possible to specify a clause that will be executed after the end of the foreach
body, in which variables are bound to (or patterns are matched with) the remaining sub-lists:

boolean equiv lists(exprlist el1, exprlist el2) {
boolean result = True;
foreach( e1 & e2; exprlist el1, explist el2 ) {

/∗ this body is executed as long as both lists have elements ∗/
result = result && equiv( e1, e2 );

} afterforeach( $re1 & $re2 /∗ same number of items here as in foreach ∗/ ) {
Nilexprlist() & Nilexprlist() : { /∗ both lists same length: result unchanged ∗/ }
default: { /∗ lists have different length: result changed ∗/ result = False; }

}
return result;

}

The argument of the afterforeach has the same number of items as the corresponding foreach. The
items can be patterns (over the listtype, not the listelement type), dollar-prefixed variables and
ordinary variables. The body, which can contain C-code, or patterns (if there are dollar-prefixed
variables), is exectuted exactely one time.
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Actually, the use of patterns and dollar-prefixed variables are just syntactical sugar for a foreach
statement with only variables, but with nested with-statements in its body. For example, the two
foreach-statements below are equivalent:

/∗ here we combine all kinds of items: patterns, dollar-prefixed variables
∗ and ordinary variables. Of course, the items can appear in arbitrary order.
∗/

foreach( pattern1 & . . . & patternk & $dvar1 & . . . & $dvarn & var1 & . . . & varm ; . . . ) {
/∗ body, in which we can refer to
∗ pattern variables, dollar-prefixed variables (dvar∗)
∗ and ordinary variables (var∗)
∗ but (most often) not to dollar-variables ($i, i >= 0)
∗/

}

/∗ here we have the same statement, in which we only use ordinary variables,
∗ (and we introduced ’anonymous’ variables for the patterns pat∗ ),
∗ together with nested with statements.
∗/

foreach( var pat1 & . . . & var patk & dvar1 & . . . & dvarn & var1 & . . . & varm ; . . . ) {
with( var pat1, . . ., var patk ) {

pattern1 & . . . & patternk : {
with( dvar1, . . ., dvarn ) {

/∗ body, in which we can refer to
∗ pattern variables, dollar-prefixed variables (dvar∗)
∗ and ordinary variables (var∗)
∗ but (most often) not to dollar-variables ($i, i >= 0)
∗/

} } } }

Most C code can contain so-called dollar-variables: expressions of the form $i where i is 0, 1, 2,
.... The context in which the dollar-variables are used defines whether dollar-variables may be used,
and to which values they are bound. The dollar-variables may not be used in a with-statement
over more than one expression, or in a foreach-statements that induce such a with-statement:
foreach-statements with more than one dollar-prefixed variable, and foreach-statements without
dollar-prefixed variables but with more than one pattern. The dollar-variable $0 is bound to one of
the following: the C-expression that is the argument of a with-statement, the function- or foreach-
parameter that is preceded by a $, the pattern of a foreach-pattern-statement, or the phylum that
is being created, when used in phylum-initialisation code. A dollar-variable $i, i > 0 is bound to
the i-th subterm of the enclosing with-, foreach-with- or foreach-pattern-statement. Note that a
foreach-statement does not introduce dollar-variables. In case of multiple candidates for bindings,
the one from the smallest enclosing scope is chosen.

It is seldom necessary to use dollar-variables, in most cases pattern variables can be used; the
only exception is $0 used in phylum-initialisation code. We strongly advise the use of patterns and
pattern-variables, instead of degenerate patterns and dollar-variables, if only because it allows the
term processor to warn against inconsistencies in its input. For example, if the number of subphyla
of an operator is changed, the term processor will report an error if a pattern was not updated
accordingly; however, it will not notice it when a dollar-variable was not updated to reflect the
same change (lint may catch this, but there are cases that lint cannot catch).

There is one use of dollar-variables that cannot be achieved in another way: in-place modifi-
cation of terms. Try to avoid it, because it is quite easy to mess things up. Do not try to in-place
modify terms maintained under unique storage. If you really need to in-place modify a term, you
have the following options: In phylum initialization code (see Section 1.2), an assignment to $0
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will modify the term under construction. In all other C texts an assignment to $0 is equivalent
to a no-op. In those contexts, it is possible to assign to $i (i > 0), or to do something like: ...
replacement term = ...; *$0 = *replacement term; ... , but this last solution may not be completely
portable (it assigns a struct to a dereferenced (*) struct pointer).

1.6 Rewrite Definitions

Functional languages are a convenient formalism for expressing functions over trees. Another con-
venient formalism is formed by rewrite rules[EM85]. For instance, if we have a certain equivalence
over terms, then rewrite rules expressing this equivalence might define a procedure for computing
a normal form of a term. Another use for term rewriting is as an alternative way of defining
functions. For example to implement the function ‘plus’ on natural numbers one can define ‘plus’
as an operator and specify the rewrite rules such that the normal form does not contain a plus.
The result of normalising (term rewriting) then is that the function is ‘evaluated’. (This is all
abstract data type theory.) The notation for term rewrite rules is very simple. For example:

Neg(x) −> <: Minus(Zero(), x) >;

In this example x is a variable, used in the term in the right-hand side. The meaning of this
example is that every occurrence of the operator Neg is replaced by an equivalent construct.

In general both sides are terms with variables, where all variables of the right-hand side also
appear on the left-hand side. Actually, the left-hand side can be the same kind of pattern that is
allowed in function definitions. To allow ‘greater control’ (a euphemism for hacking...) we allow
arbitrary C functions and string- and int-denotations in the right-hand side (see below). For the
collection of rewrite rules, the system generates a function rewrite phylum for each phylum, which
has the normalised form as its result. This function can be called in the same way as any other
function.

The rewrite functions have an additional argument of type rview. Rewrite views can be used
to group rewrite rules in separate rewrite systems. Rewrite rules can be made specific for a set
of rewrite views (or, added to one or more rewrite systems) by naming these views between the
angle open bracket and the colon of a rewrite rule. For example:

Neg(x) −> < view1 view2: Minus(Zero(), x) >;

An omitted view list defaults to all rewrite views. If no views are specified, the angle brackets and
colon may be omitted (as we usually do), as we show below for the rewrite rule for Neg(x) that
we gave above.

Neg(x) −> Minus(Zero(), x);

This is equivalent to a view list that only contains the view name base rview. The type rview is
an enumeration type of all view names occurring in the rewrite rules. It always contains the view
name base rview.

Rewrite views can be declared as in the following example:

%rview view1 view2; /∗ the ‘%’ is part of the keyword ∗/

Rewrite views should be declared. If the termprocessor input contains one or more rewrite view
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declarations it will report errors for all rewrite views that are used and not declared. The use of
view declarations may help to find typing errors in view names – in term processor input that
does not contain view declarations, the misspelling of a view name may just introduce a new view
(with the misspelled name).

If several rewrite rules share the same left-hand side, they may be combined by grouping the
right-hand sides (with seperating commas), provided that all the angle brackets haven’t been
omitted from the right-hand sides. If several rewrite rules share the same right-hand side, they
may be combined by grouping the left-hand sides (with seperating commas). The general form of
a rewrite rule is shown below:

pattern1, pattern2, . . . −> < v1 v2 . . . : . . . >, . . ., < vn . . . : . . . > ;

How we can prove that a rewrite system always yields a normal form is beyond the scope of
this manual, but informally stated, each rule should bring the term ‘closer’ to its normal form,
and the order in which the rules are applied (the rewrite strategy) should not matter. Two simple
warnings: never ever use a rule in which the right-hand side is equal to the left-hand side, or a
rule that directly expresses a commutative property.

The default rewrite strategy is leftmost innermost. In the case of overlapping patterns, where
more than one left-hand side matches, the most specific match is taken.

Rewrite rules with functional right-hand sides are a bit harder to prove correct. The first
requirement of course is that the arguments and the results of those functions should have the
correct types, which lint can check. The second requirement is that the rule is meaningful, but that
is hard to check automatically. The writer of such rules should convince herself of the correctness
of the rewrite rules. Here we give some considerations that can be used in doing so. The ‘purpose’
of a rewrite system is to convert a term to its normal form. Now let us look closer at a rule with
a function in it:

Operator(x) −> Function(x);

The rewrite system uses this rule when it has a subterm that matches the left-hand side, and
‘assumes’ that substituting it by the right-hand side brings it closer to the normal form. It
then continues applying rules on the new term. The function Function should therefore bring
the expression closer to the normal form. Now what about the argument x of Function? It is
not known whether or not it is in normal form already (although the default strategy, which is
leftmost innermost, does guarantee this). Therefore, Function cannot assume that its argument
is in normal form. This is not usually a problem, but if it is, the function rewrite phylum can be
used in the function definition to guarantee this. The other side of the picture is that the result
of Function does not have to be in normal form, which is convenient for the writer of Function.

1.7 Unparsing Definitions

Unparsing definitions describe textual representations of terms. The definitions describe a tree
walk over terms by associating unparsing rules with patterns. For the collection of unparsing
definitions Kimwitu generates a function unparse phylum for each phylum. The patterns are the
same patterns as can occur in rewrite definitions and with-statements. An unparsing rule contains
a list of unparse views and a list of unparse items. We’ll discuss the views later. An unparse item
defines an action for an unparse phylum function and can be any of the following.

"a string" Each string denotation will be printed as such.
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{ . . . } Between curly brackets, arbitrary C code can be used, in which the pattern variables and
$0 (which is a reference to the entire left hand term) can be used. This C text is inserted in
the unparse function. The C text can contain curly brackets, nested in matching pairs. If a
non matching bracket needs to be included it can be escaped with a $, e.g. ${ and $}.

variable An occurrence of a pattern variable is translated into an invocation of the unparse
function for the phylum of the pattern variable.

variable→attribute An occurrence of an attribute is translated into an invocation of the unparse
function for the phylum or type of the attribute. An attribute of an attribute is denoted by
variable→attribute→attribute etc. The unparsing function for a type that is not a phylum
has to be provided by the user in a separate piece of C code.

(typename)variable A prefixed cast has the effect that the unparse function for that type will
be called for the variable (or its attribute). This is useful for the unparsing of non-pattern
variables, eg. variables that are defined in C code.

variable:view An appended unparse view name (see below) has the effect that the unparse
function for the variable will be called with this view rather than the current view. This can
also be done with attributes, casted variables and their attributes, and even strings.

${ unparse items $} A list of unparse items enclosed by escaped bracket is translated into a curly
open-bracket followed by the translation of the unparse items followed by a curly close-
bracket.

How an unparse item is actually printed will be discussed later. First an example, containing
strings and pattern variables.

Plus(e1, e2) −> [ : e1 "+" e2 ];
Minus(e1, e2) −> [ : e1 "-" e2 ];
Neg(e1) −> [ : "-" e1 ];
Zero() −> [ : "0" ];

Nilexprlist() −> [ : ];
Consexprlist(ex, Nilexprlist()) −> [ : ex ];
Consexprlist(ex, rest) −> [ : ex ", " rest ];

In the case of overlapping patterns, the most specific match is preferred. This is used in the
example for the introduction of list element separators, see the last line of the example. The
number of separators is one less than the number of list elements. For each operator there is
always a default pattern, in case none of the patterns match. The unparsing rule associated with
this default pattern unparses all its subphyla.

The use of the escaped brackets is illustrated in the example below.

Divideby(e1, e2) −> [ : { if (eq expr(e2, Zero()) } ${
e1 "/ /* <-- division by zero --> */" e2

$} { else } ${
e1 "/" e2

$}
];

The unparse functions have an additional argument of type uview. Unparsing rules can be
made specific for a set of unparse views by naming these views between the square open bracket
and the colon of an unparsing rule. For example:
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Plus(e1 e2) −> [ view1 view2: e1 "+" e2 ];

An omitted view list defaults to all unparse views. This is equivalent to a view list that only
contains the view name base uview. The type uview is an enumeration type of all view names
occurring in the unparsing rules. It always contains the view name base uview.

Views can be declared as in the following example:

%uview view1 view2; /∗ the ‘%’ is part of the keyword ∗/

Unparse views should be declared. If the termprocessor input contains one or more unparse view
declarations it will report errors for all unparse views that are used and not declared. The use
of view declarations may help to find typing errors in view names – in term processor input that
does not contain view declarations, the misspelling of a view name may just introduce a new view
(with the misspelled name).

If several unparse rules share the same left-hand side, they may be combined by grouping the
right-hand sides (with seperating commas). If several unparse rules share the same right-hand side,
they may be combined by grouping the left-hand sides (with seperating commas). The general
form of an unparse rule is shown below:

pattern1, pattern2, . . . −> [ v1 v2 . . . : . . . ], . . ., [ vn . . . : . . . ] ;

The unparse phylum functions that are generated have three arguments: the term to be un-
parsed, a (void) function, the printer, to be applied to each string (including string denotations
of the predefined phyla) and an argument of type uview, which is passed to the printer function.
The C code in the unparsing rules can refer to the latter two arguments directly by the names
kc printer and kc current view respectively. The user provides the printer function. The simplest
example of such a function and its use is as follows.

void printer(char ∗s, uview v) {
printf("%s", s);

}

{ /∗ example of usage ∗/
unparse exprlist(expression, printer, base uview);

}

There are two features that are notably missing from unparsing rules. A feature for handling
list element separators is not necessary, as is shown above. A feature for specifying indentation in
the output can be emulated in the printer function. How to do that is explained in Section 4.2.

1.8 Including Other Definitions

As will be presented later, Kimwitu generates a number of .h files, and a number of .c files that
include those .h files. It may be necessary to include in those files additional C code or definitions,
for instance because a type is defined that is used in the attribute declarations, or a function from
a system library, such as math.h, is used in C code. The mechanism for this is similar to that of
yacc, and the syntax for it is illustrated in the following example.
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%{ /∗ these brackets should be at the beginning of a line ∗/
#include <math.h>
%}

Inclusions like these can appear anywhere between declarations. They go to the beginning of
the .c file that is being generated from the .k file in which this construct appears.

In case it is necessary to make an inclusion in another file, the distinguished symbol of that file
can be used to redirect the inclusion, as in the following example. To make the same inclusion in
several files, the redirection symbols of those files, separated by whitespace, can be given on the
same line as the %{.

%{ KC TYPES HEADER
/∗ Include this in k.h, and thus in every generated file. ∗/

%}

For further information consult Section 2.4.

2 Output

Kimwitu generates a number of C files. They contain data types and functions on those data
types. In this section we present the details of the term processor output.

2.1 Generated Data Types

For each phylum a C data type is generated. Its name is the same as the phylum so it can be
arbitrarily used in a C program. Technically, it is a structure containing the attributes, a variant
selector (cf. the operator) and a union of the alternatives. Note that this scheme allows type
checking over C programs to check if a term is constructed from the correct phyla. An additional
data type is YYSTYPE, which can be used in yacc-generated parsers to construct terms. The
generated C for the example in Section 1.1 and Section 1.2 is given below. Note, it is rarely
necessary to directly refer to these C structures, as function definitions are much more convenient.

typedef enum { . . ., sel Neg = 4, sel Minus = 5, sel Plus = 6, sel Zero = 7,
sel Nilexprlist = 8, sel Consexprlist = 9, . . . } kc enum operators;

typedef struct kc tag expr ∗expr; /∗ note that a ‘expr’ is a pointer to a ‘struct kc tag expr’∗/
typedef struct kc tag exprlist ∗exprlist;

struct kc tag expr {
kc enum operators prod sel;
union {

struct {
expr expr 1;

} Neg;
struct {

expr expr 1;
expr expr 2;

} Minus;
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struct {
expr expr 1;
expr expr 2;

} Plus;
} u;
float value; /∗ an attribute ∗/

};

struct kc tag exprlist {
kc enum operators prod sel;
union {

struct {
expr expr 1;
exprlist exprlist 1;

} Consexprlist;
} u;

};

The term processor generates a C type definition boolean with constants True and False that
have the usual C interpretation (namely int, 1, and 0).

The names of all the rewrite and unparse views are collected in enumeration types rview
respectively uview. Whether or not the user has used it, these types contains a value base riew
respectively base uview.

2.2 Generated Functions

In this section we describe the various functions that are generated. Every function can be used
like any other C function. In the names, the following ‘meta’ notation is used:

• phylum is a phylum name (user-defined or predefined), in the list functions phylum corre-
sponds to the list elements.

• list is the name of a list phylum.

• Operator is an operator name.

• result function(); is the definition of a function found in the term processor input.

phylum Operator( phylum sub1 sub1, ..., phylum subn subn );

For each operator a C function is declared, with the same name. This function implements the
storage option and returns (a pointer to) the term constructed from its arguments.

void *emalloc( kc size t n );
void *ecalloc( kc size t n, kc size t m );
void *erealloc( void *r, kc size t s );

The emalloc and friends functions are used for allocating memory, they call the system memory
allocation routines and check the return status. The emalloc and friends functions’ interfaces use
the void* type3, and hide the fact that some malloc libraries use the char* type from the user.

3actually, for ease of portability to systems that don’t have the void* type it uses kc voidptr t, which is typedef’ed
to void*.
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The uniqmalloc and friends routines are used to implement the hashtables’ storage. They
claim large chunks from the system and pass out small blocks. These blocks cannot be freed by
themselves, it is only possible to free a complete collection of chunks as a whole. Each collection
of chunks can be identified by its kc memory info t*.

kc memory info t *uniqmallocinit( kc size t n );

Initialize the allocation information of a new set-of-chunks and return a pointer to it.

void *uniqmalloc( kc size t n, kc memory info t *mi );

Returns a pointer to a block of size n from the chunks administrated in mi.

boolean isinuniqmalloccedblock( void *p, kc memory info t *mi );

Report whether or not p was allocated via mi.

void uniqfreeall( kc memory info t *mi );

Free all chunks allocated (managed) via mi .

void uniqfreeelement( void *, kc memory info t *mi );

Free one block allocated by uniqmalloc. However, its current implementation is a no-op.

In the generated code these allocation routines are used via the following macros: MALLOC
and friends are used for all allocation, except for the allocation of memory by the Operator func-
tions. UNIQMALLOC2 is used to allocate memory for the phyla that have the ‘uniq’ storage
option. NONUNIQMALLOC is used for the remaining phyla. If you want different ones, redefine
MALLOC and friends, in your included code. For example, the default definition of MALLOC and
NONUNIQMALLOC is emalloc, the default definition of UNIQMALLOC2 is uniqmalloc.

kc size t is by default typedef’ed to unsigned.

The generated code contains the definition of the enumerated type kc storageclass t , which
contains all storage classes, including the predefined storage class uniq.

kc hashtable t kc ht assign( kc hashtable t ht, kc storageclass t sc );

Makes ht the hashtable for storage class sc, and return the previously assigned hashtable.

kc hashtable t kc ht assigned( kc storageclass t sc );

Return the hashtable assigned to storage class sc.

kc hashtable t kc ht create simple( kc size t n );

Creates a hashtable of size n, using the kc ht create bucketmanagement routine with default
allocation routines (uniqmalloc and friends). For the bucket alloc routines ecalloc and friends are
used.
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kc hashtable t kc ht create(
kc size t n,
void *(*uniq malloc init)(),
void *(*uniq malloc)(kc size t n, void *mi),
void (*uniq free element)(void *p, void *mi),
void (*uniq free all)(void *p, void *mi),
boolean (*in block)(void *p, void *mi) );

Creates a hashtable of size n with the given allocation routines. A 0 argument can be given
for uniq free all, uniq free element and/or for in block, if those routines are not implemented. This
routine uses the kc ht create bucketmanagement routine with default bucket allocation routines
(ecalloc and friends).

kc hashtable t kc ht create bucketmanagement(
kc size t n,
void *(*uniq malloc init)(),
void *(*uniq malloc)(kc size t n, void *mi),
void (*uniq free element)(void *p, void *mi),
void (*uniq free all)(void *p, void *mi),
boolean (*in block)(void *p, void *mi),
void (*uniq info)(void *mi),
void *(*bucket alloc init)(),
void *(*bucket calloc)(kc size t n, kc size t s, void *bi),
void *(*bucket realloc)(void *b, kc size t old, kc size t new, void *bi),
void (*bucket free)(void *b, kc size t s, void *bi),
void (*bucket free all)(void *bi),
int bucket increment,
void (*bucket info)(void *mi) );

Creates a hashtable of size n with the given allocation routines. A 0 argument can be given for
uniq free all, uniq free element and/or for in block, if those routines are not implemented, as well
as for the info routines, and either the bucket free or the bucket free all routines.

void kc ht clear( kc hashtable t ht);

Clears hashtable ht, ie. frees its elements (either using uniq free elements or, preferably,
uniq free all), and its buckets. The result of this routine should be equivalent with calling kc ht delete
followed by kc ht create.

void kc ht delete( kc hashtable t ht);

First kc ht clears the hashtable, and then frees the hashtable itself.

void kc ht reuse( kc hashtable t ht);

Prepares hashtable ht for reuse, ie. frees its elements, but not its buckets.

casestring mkcasestring( char *s );
nocasestring mknocasestring( char *s );

The basic phylum constructors. They convert a value of a C string into the corresponding
phylum value. From a casestring or nocasestring value the string can be referenced as cs->name.
In the case of case insensitive strings, this field will contain the string as it is capitalized at its
first occurrence.
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result function( args );

The template of user-provided functions.

boolean eq phylum( phylum p1, phylum p2 );

The function that tests for structural equality of terms. Attribute values do not influence the
comparison. If the phylum is uniquely represented, the test always takes constant time. Note that
the comparison of a casestring with a nocasestring is not type correct.

void free phylum( phylum p, boolean recursive);

The node p is zeroed and freed. If recursive is True, the subterms are freed as well. The body
of a free function for a phylum with storage class uniq is empty.

void freelist list( list p );

Free the list, but not the elements of the list. In other words, free the spine.

list concat list( list l1, list l2);

Produce a new list that is the concatenation of the two arguments. If the second argument is
the empty list, and the list phylum is not uniquely represented, this is equivalent to a copy of the
list nodes (the ‘spine’). The list elements are never copied.

phylum copy phylum( phylum p, boolean copy attributes );

Return a copy of p. If copy attributes is False attribute values are initialised as defined in the
definition of phylum. If copy attributes is True the values of the attributes are copied. Please note
that this does not imply that the attributes themselves are copied. This function is ineffective on
uniquely represented phyla.

list reverse list( list l);

Produce a list that is the reverse of the argument list.

int length list( list l);

Yield the number of elements in a list, a nil list has zero elements.

phylum last list( list l);

Yield the last element of a list, or an error if there isn’t one.

list map list( list l, phylum(*f)(phylum));

Yield the list constructed from the element-wise application of f. It ‘lifts’ f to a function on
lists.

list filter list( list l, boolean(*f)(phylum));

Yield the list of elements of which f is True.

void fprint phylum( FILE *f, phylum p );
void print phylum( phylum p );
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Print the argument term on a given file (f = 0 means standard output – print phylum( p ) is
identical to fprint phylum( 0, p )) in a canonical format. In this format each operator appears on
a separate line. It is mainly intended for debugging.

void fprintdot phylum(
FILE *f,
phylum p,
char *root label prefix,
char *edge label prefix,
char *edge attributes,
boolean print node labels,
boolean use context when sharing leaves,
boolean print prologue and epilogue );

void fprintdotprologue( FILE *f );
void fprintdotepilogue( FILE *f );

Print the argument term p, with its attributes, on a given file (f = 0 means standard output) in
dot input format. Dot is a program that draws directed acyclic graphs in various output formats,
among which are postscript and gif. It is available as part of the GraphViz graph visualisation
package[EKN]. If print node labels is True, the nodes are labeled with the names of the operators,
the types of the subtrees, and the attribute names and types (or values, for boolean attributes),
and the root node is labeled with root label prefix followed by phylum. The edges are numbered;
the edge numbers show a depth-first left-to-right treewalk. The numbers are prefixed with the
contents of edge label prefix, which can make it easier to see to which tree an edge belongs when
several trees are combined in the same picture, as discussed below. Attributes of the edges (colors,
fonts, etc.) can be given with edge attributes. Shared non-leaf tree nodes appear as such in the
drawing. For leaf nodes (like integers, (no)casestrings) the amount of sharing can be influenced
with the use context when sharing leaves argument: if it is False leaf nodes with the same value
will be shared (which resembles the internal program structure, but may give pictures that are
a bit confusing, especially if no non-leaf nodes are shared), if it is True then the ancestor of the
leaf node is taken into account for the sharing, i.e. leaf nodes with the same value but different
ancestors will not be shared. Finally, it is possible to combine several trees in one drawing. To do
so, start by invoking fprintdotprologue. Next, invoke fprintdot phylum for each tree, with argument
print prologue and epilogue set to False. You likely want to use a different edge label prefix for
each tree. Finally, invoke fprintdotepilogue. If only one tree is to be drawn, then it is sufficient
to invoke fprintdot phylum with print prologue and epilogue set to True (and fprintdotprologue and
fprintdotepilogue need not be invoked ’by hand’).

int kc set fprintdot hashtablesize( int s );

Set the size of the hashtable that the fprintdot phylum routines use to detect node-sharing.
Return the previous value.

phylum rewrite phylum( phylum p, rview v );

Yield the normal form of the first argument with respect to the rewrite system and view.

void unparse phylum( phylum p, void(*kc printer)(char *s, uview v), uview kc current view );

Unparses the argument p and its descendants, with view and printer as given.

char *CSGIOread phylum( FILE *f, phylum *ptr );
char *CSGIOwrite phylum( FILE *f, phylum p );
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To read and write a term from a structure file (see Section 3.5). FILE is the standard file i/o
type defined in <stdio.h>. The functions return a null pointer if all went well. If not, they return
a pointer to a string containing an error message.

int kc set csgio hashtablesize( int s );

Set the size of the hashtable that the CSGIOwrite phylum routines use to detect node-sharing.
Return the previous value.

boolean kc set csgio sharing( boolean b );

Disable (b = False) or re-enable the use of node-sharing while writing structure files. This does
not affect the ability to read structure files that contain node-sharing! By default (if this routine
is not called) node-sharing in structure files is enabled. Return the previous value.

void kc print operator statistics( FILE *f );

Print for each operator its size in bytes, the number of create calls, the number of actually
created elements (usually much lower if its phylum has the uniq storage option), the number of
free calls (recursive and non-recursive), the number of freed elements, the number of remaining
nodes and the amount of space that these take, in bytes. The routine is equivalent to a no-op,
unless the preprocessor symbol KC STATISTICS is defined.

void kc print hash statistics( FILE *f );

Print the number of hashtable buckets that contain zero, one, two, three, four, five, six, seven,
eight or more elements.

void kc print hashtable memory statistics( FILE *f, kc hashtable t h );

Print information about the memory management of h. (This will only be possible if node-
and bucket memory-management routines have been specified.)

2.3 Predefined Phyla and Operators

The following phyla and operators are predefined. They cannot be redefined by the user’s input.
These predefined phyla have the property of unique representation. The predefined operators are
only used in conjunction with the Synthesizer Generator, see Section 3.5.

Phyla Operators
int Int mapped directly to C
casestring Str
nocasestring NoCaseStr

The operators mentioned here should not be used. Instead see the description of the functions
mkcasestring, and mknocasestring in Section 2.2, which create values of these phyla.

2.4 File Names, Preprocessor Symbols and Redirection

The system generates at least 5 .c files and 5 .h files from its input. In particular, for each input
file.k, a file.c and a file.h is generated that contain the functions defined in that input file. If there
is no file argument, Kimwitu reads from standard input and file then takes the value stdin. The
names of the generated files, and their include structure are given in the following table. Each .c
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file also defines a distinguished symbol.

File Includes Distinguished Symbol
k.h KC TYPES HEADER
k.c k.h KC TYPES
file.h KC FUNCTIONS file HEADER
file.c k.h file.h KC FUNCTIONS file
rk.c k.h rk.h KC REWRITE
unpk.c k.h unpk.h KC UNPARSE
csgiok.c k.h csgiok.h KC CSGIO

The distinguished symbols can also be used as redirection symbols, as in:

%{ KC REWRITE
#include "my_fns.h"

%}

Additionally one can use the shorthands from the following table.

Redirection Symbol File
HEADER file.h
CODE file.c
/*empty*/ file.c

The use of distinguished symbols is further illustrated in Section 1.8.

2.5 Overview of Generated Names

This section contains an limited overview of the generated names. In the names, the ‘meta’
notation of Section 2.2 is used, with the following extension:

• file is the basename of the input file that corresponds to the generated thing (e.g. function).

As is indicated in the table, some of the macros can be redefined, to cater for specific applica-
tions.
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Name File Type See also Section

KC TYPES HEADER k.h macro 2.4
KC TYPES k.c macro 2.4
LARGEPRIME k.c redefinable macro 1.3
UNIQMALLOC2 k.c redefinable macro 2.2
NONUNIQMALLOC k.c redefinable macro 2.2
MALLOC k.c, csgiok.c redefinable macro 2.2
CALLOC k.c, csgiok.c redefinable macro 2.2
REALLOC k.c, csgiok.c redefinable macro 2.2
UNIQFREE k.c redefinable macro 2.2
NONUNIQFREE k.c redefinable macro 2.2
FREE k.c, csgiok.c redefinable macro 2.2
uniqmalloc k.[ch] void * function 2.2
emalloc k.[ch] void * function 2.2
ecalloc k.[ch] void * function 2.2
erealloc k.[ch] void * function 2.2
kc ht create bucketmanagement k.[ch] kc hashtable t function 2.2
kc ht create k.[ch] kc hashtable t function 2.2
kc ht create simple k.[ch] kc hashtable t function 2.2
kc ht assign k.[ch] kc hashtable t function 2.2
kc ht assigned k.[ch] kc hashtable t function 2.2
kc ht clear k.[ch] void function 2.2
kc ht delete k.[ch] void function 2.2
kc ht reuse k.[ch] void function 2.2

mkcasestring k.[ch] casestring function 2.2
mknocasestring k.[ch] nocasestring function 2.2
Operator k.[ch] phylum function 2.2
eq phylum k.[ch] boolean function 2.2
fprint phylum k.[ch] void function 2.2
print phylum k.[ch] void function 2.2
fprintdot phylum k.[ch] void function 2.2
fprintdotprologue k.[ch] void function 2.2
fprintdotepilogue k.[ch] void function 2.2
kc set fprintdot hashtablesize k.[ch] int function 2.2
free phylum k.[ch] void function 2.2
copy phylum k.[ch] phylum function 2.2
concat list k.[ch] list function 2.2
reverse list k.[ch] list function 2.2
length list k.[ch] int function 2.2
last list k.[ch] phylum function 2.2
map list k.[ch] list function 2.2
filter list k.[ch] list function 2.2

phylum k.h datatype 2.1
Conslist k.h Operator 1.1
Nillist k.h Operator 1.1
sel Operator k.h enumeration constant 2.1
YYSTYPE k.h datatype 2.1, 3.4
yt phylum k.h union selector for Yacc 2.1, 3.4
kc size t k.h datatype 2.2

KC FUNCTIONS file file.c macro 2.4
function file.[ch] result function
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Name File Type See also Section

KC REWRITE rk.c macro 2.4
rewrite phylum rk.[ch] phylum function 2.2
rview rk.h datatype 2.1

KC UNPARSE unpk.c macro 2.4
unparse phylum unpk.[ch] void function 2.2, 1.7
uview unpk.h datatype 2.1

KC CSGIO csgiok.c macro 2.4
CSGIOread phylum csgiok.[ch] char* function 2.2, 3.5
CSGIOwrite phylum csgiok.[ch] char* function 2.2, 3.5
kc set csgio hashtablesize csgiok.[ch] int function 2.2
kc set csgio sharing csgiok.[ch] boolean function 2.2

2.6 Debugging Support

The generated code is organised in such a way that a symbolic debugger will be a useful tool for
exploring data structures. Furthermore, by default the code is instrumented with assert statements
that check e.g. for references through nil pointers. In the same way as the Unix assert, compiling
with -DNDEBUG effectively deletes the asserts from the code. (There are other macros whose
redefinition can influence the behaviour of assert.)

A typical run time error message is ‘no default action defined’. This occurs when a with- or
foreach-with-statement does not cover all cases, as explained in Section 1.5. One of the situations
in which this can occur is when such a statement is applied to an argument of the wrong phylum.
Running lint should have uncovered this, see Section 3.3.

3 Running It

In the previous sections we presented the input and output of the term processor. This section
discusses some aspects of using the system in a software-development process. In particular, we
discuss the relation with other tools (such as yacc) that are useful for this kind of software.

3.1 The Program and the Files

Kimwitu is invoked by, for example, the command kc file.k. It then generates a number of files.
Multiple file.k arguments are permitted. To avoid superfluous recompilations when using make,
kc will not overwrite a file with an identical file. See the discussion below (Section 3.2) for an
example makefile. The program kc can give some error messages and warnings. Depending on the
user-provided code, cc and lint can give additional error messages. In particular, lint will typecheck
all expressions involving phyla and operators.

3.2 A Makefile

For the sake of convenience, we give here a typical makefile for use with the term processor, yacc
and lex. This example illustrates a naming convention: the input files are called file1.k and file2.k,
all user-provided C code is in the file examplemain.c, the yacc input is in exampley.y, and the lex
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input is in examplel.l. Note that the makefile makes extensive use of make’s defaults, and that it
attempts to avoid superfluous recompilations.

# /∗ Makefile for the term processor ∗/
# /∗ 2 input .k-files plus yacc and lex usage. ∗/
IT = example
KFILES = file1.k file2.k
YOURFILES = ${KFILES} ${IT}y.y ${IT}l.l ${IT}main.c
ALLOBJS = k.o rk.o csgiok.o unpk.o\

${KFILES:k=o} ${IT}y.o ${IT}l.o ${IT}main.o
GENERATED BY KC = k.c rk.c csgiok.c unpk.c ${KFILES:k=c}\

k.h rk.h csgiok.h unpk.h ${KFILES:k=h}
YFLAGS = −d

${IT}: ${ALLOBJS}
${CC} ${CFLAGS} ${ALLOBJS} −ll −o $@

${GENERATED BY KC}: kctimestamp

kctimestamp: ${KFILES}
kc ${KFILES}; touch kctimestamp

${ALLOBJS}: k.h
${IT}main.o ${IT}l.o: x.tab.h
${IT}main.o ${KFILES:k=o}: ${KFILES:k=h}
${IT}main.o rk.o: rk.h
${IT}main.o csgiok.o: csgiok.h
${IT}main.o unpk.o: unpk.h

# /∗ making copies to prevent unnecessary recompilation after yacc run ∗/
x.tab.h: y.tab.h

−cmp −s x.tab.h y.tab.h | | cp y.tab.h x.tab.h

# /∗ if you clean up, don’t forget to remove the file kctimestamp ∗/

This makefile is rather complicated, for the following reason. The target (${IT}) depends on a
number of object files, which depend on a number of .c and .h files, some of which depend on the
.k files. However, if example.k is changed the term processor does not always change all .c and
.h files, and we want to avoid recompilations of unchanged files. For this reason, an intermediate
target kctimestamp is introduced that ‘remembers’ when kc was last executed successfully.

The last rule (for x.tab.h) helps to avoid recompilations when yacc overwrites the file y.tab.h
but doesn’t change it.

There is still a problem with this makefile. It assumes that if kctimestamp is up to date the
generated files are also accurate. The user can mess this up.

How to adapt this to your situation? If you have a different number of .k files, you will have
to adapt the definition of the KFILES macro. If you do not use yacc you can remove the lines
containing x.tab.h (2 lines) and the filenames ${IT}y.[yo]. If you do not use lex you can remove the
filenames ${IT}l.[lo] and the loader option -ll. In either case it is sufficient to remove the object
file names from the definition of the macro ALLOBJS. This is also true for other files that need not
be included in the final program. For example, if no rewriting functions are used you can delete
rk.o from ALLOBJS and it will not be compiled.
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3.3 Using lint

Some static errors can be discovered by running lint on the C files, whether they are written by
the user or generated by Kimwitu. Most notably this will catch argument type mismatches and
such. The most convenient way is to use the option -u to suppress messages on functions not used.

3.4 Interfacing with Yacc and Lex

The first piece of advice is: try to avoid it, because the SG (SSL) structure file format is much
more convenient. Notwithstanding that, it is fairly simple, and the term processor handles a lot
of the machinery involved, such as defining a data type for the yacc stack. The two important
considerations in using yacc are the difference between abstract syntax and concrete syntax, and
handling terminal symbols with values, such as identifiers. Abstract syntax should be the input
of the term processor and concrete syntax goes into yacc. First a simple abstract syntax.

/∗ Abstract syntax ∗/
funnytree: Str(casestring)
| Cons(funnytree funnytree)
;

In the yacc input file, concrete syntax is translated into abstract syntax using the operator
functions. Note also the type annotation of concrete symbols, as in %token <yt casestring> ID.
This type is a union selector of the generated YYSTYPE.

/∗ Concrete syntax ∗/
%{
#include "k.h"

funnytree thetree;
%}

%token <yt casestring> ID

%type <yt funnytree> tree
%%

theroot: tree { thetree = $1;};

tree: ID { $$ = Str($1);}
| '(' tree tree ')' { $$ = Cons($2, $3);}
;

The typical way of using lex is to have the lexical analyser generate tokens for the parser and
build values of the phylum casestring. The following is the complete lex input.

/∗ Lexemes ∗/
%{
#include "k.h"

#include "y.tab.h"

%}
%%
[a−zA−Z0−9]+ { yylval.yt casestring = mkcasestring(yytext); return ID;}
[\t\n ] { ; } /∗ skip the white space ∗/
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. { return yytext[0]; }

3.5 Interfacing with Structure Files and the Synthesizer Generator

The functions CSGIOread phylum and CSGIOwrite phylum read and write structure files that are
fully compatible with the structure files produced by Synthesizer Generator editors4. The corre-
spondence between the primitive phyla is indicated in the following table.

SSL primitive phylum Kimwitu primitive phylum
INT int
STR casestring

To convert an SSL abstract syntax to a Kimwitu abstract syntax, one has to replace the
occurrences of primitive phyla. It is convenient, but not essential, to also change SSL list phyla
into Kimwitu list phyla, which can involve a renaming of SSL operators.

Since structure files encode a term directly on a file, a concrete syntax is not necessary. They
have a number of properties that make them particularly suitable for interfacing separate programs,
generated by either the SG or Kimwitu. These programs do not have to be generated from exactly
the same term description in order to be able to communicate through structure files. In the
following we call the structure file format (format for short) insensitive for such differences in the
term description if this is the case. The format is insensitive for attributes because attribute values
do not appear in the file. The format is insensitive for renaming of phyla, but not for renaming of
operators. It is also sensitive for changes in the definition of operators such as adding or deleting
component phyla. The format is insensitive for the definition or existence of operators that do not
appear in the term to be written. This is essential because a tool would want to have ‘local’ phyla
definitions. The format is also insensitive for storage options. Whether or not a term is shared
internally is dependent only on the definition of the phyla at the reader program.

Below we give an example of usage of structure files. The abstract syntax is as follows:

/∗ Abstract syntax ∗/
funnytree: Str(casestring)
| Cons(funnytree funnytree)
;

A structure file on this phylum could be written with the following code.

/∗ an example of structure file i/o ∗/
#include <stdio.h>
#include "csgiok.h"

#include "k.h"

void main() {
char ∗io;
funnytree ft;

ft = Str(mkcasestring("foo"));
ft = Cons(ft, ft);
ft = Cons(ft, ft);
io = CSGIOwrite funnytree(stdout, ft);
if (io != (char ∗)0) printf("%s\n", io);

4This is the, unattributed, ASCII SSL V3 format, which is the structure file format from SG version 2 onwards.
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}

The reading of such a structure file then looks like this.

/∗ an example of structure file i/o ∗/
#include <stdio.h>
#include "csgiok.h"

#include "k.h"

void main() {
char ∗io;
funnytree ft;

io = CSGIOread funnytree(stdin, &ft);
if (io== (char ∗)0) print funnytree(ft);
else printf("%s\n", io);

}

4 Cookbook

The term processor Kimwitu supports a number of styles of programming functions over trees.
Such styles are sometimes called paradigms, and we can therefore say that the term processor sup-
ports multi-paradigm programming. In this section we try to substantiate this claim by presenting
some examples. Each of these examples highlights a particular paradigm, some also show how
paradigms can be mixed.

The most fundamental paradigm of course is that of trees, and in particular trees in which
nodes of various types appear. This structure appears in a number of ways in computer science.
Parse tree nodes correspond to the terminal and non-terminal symbols of a context-free language,
or more precisely, production instances of those symbols. Normally an abstraction of parse trees
is used, in which irrelevant terminal symbols and non-terminal symbols are eliminated. Such trees
are usually called abstract syntax trees. In abstract data type theory, trees denote expressions and
a normal form of an expression denotes its value in a certain sense. Trees can also represent a
prescription of the computation of a value, or more general, a program.

The reason for mixing paradigms is that we want to exploit the strong points of each paradigm,
while at the same time avoiding their weak points. Examples of such weak points are the following.
Attribute grammars allow only attributes to be computed over trees, where the computation can
not have a circular dependency. Functional programming languages do not allow side effects to
be expressed. Abstract data type rewrite systems can only rewrite terms to their normal form.
Conventional programming languages, such as C, usually force the programmer to be fairly aware
of the representation of data types.

4.1 Structural Induction

Perhaps the most straightforward style of computing a value over a tree is by structural induction.
The result of a tree is computed as a function of the results of its subtrees. The simplest example of
such a function is equality of trees. Two trees are equal if the top nodes have the same structure and
all the corresponding subtrees are equal. This function is so common that it is always generated
by the term processor. Only one click less trivial is the function to compute the number of leaves
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of a tree. An example of that functions follows. The base case of nroftips simply returns 1, and
the structural induction case just adds the results of the components.

/∗ A very simple tree structure ∗/
funnytree: Str(casestring)
| Cons(funnytree funnytree)
;

int nroftips(funnytree $f)
{

Str: { return 1; }
Cons(l, r): { return nroftips(l) + nroftips(r); }

}

In general one writes a function for every phylum that occurs in the tree.

4.2 Unparsing

Unparsing is in some ways a special case of structural induction. An example of an unparsing
definition has been given in Section 1.7. In this subsection we show how a printer function can
look that implements indentation. The idea is to define special control sequences to indicate the
increment or decrement of indentation. We have chosen these control sequences in accordance
with the SSL style. For example, the string

"start%t%nlevel1%nlevel1%b%nend"

should be printed as follows.

start
level1
level1

end

An example of a printer function to do that is the following:

#include <stdio.h>
#include "unpk.h"

static indent=0;

void printer(char ∗s, uview v) {
char c; int j;

while(c=∗s++) {
if (c!='%') putchar(c);
else switch(c=∗s++) {
case 'b': indent−−; break;
case 't': indent++; break;
case 'n': putchar('\n');

for (j=indent; j>0; j−−) putchar('\t');
break;

case '\0': return;
default: putchar(c);
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}}}

The approach above has an advantage that is at the same time a disadvantage. The printer
function also prints casestring and nocasestring terms, which has the advantage that it is possible
to dynamically adapt the indentation, simply by assigning an unparsing control sequence to a
casestring and nocasestring variable before it will be unparsed. The disadvantage is that one has
to be careful that casestring and nocasestring terms do not contain unexpected unparsing control
sequences - it may be necessary to quote the ‘escape character’ (the character % in the example
above) in casestring and nocasestring terms, unless the ‘escape character’ does not normally appear
in the casestring and nocasestring terms.

The following alternative does not have this problem - but neither has it the advantage of
‘dynamic’ control sequences. The idea is to use unparse views instead of control sequences -
remember that the printer function was passed both a string and a view argument. Instead of a
single string, a number of strings are unparsed, some of which have :view postfix - these strings are
only meant to invoke the printer function with a ‘control view’. To reduce the number of printer
calls, the ‘control views’ can be combined with the ‘normal’ strings. This is left as an exercise for
the reader. In the following example the printer function recognizes newline characters (’\n’):

"start" "":v right "\nlevel1\nlevel1" "":v left "\nend"

The printer function:

#include <stdio.h>
#include "unpk.h"

void printer(char ∗s, uview v) {
char c; int j;
static indent=0; /∗ static here, or static at file level ∗/

switch(v) {
case v left: indent−−; break;
case v right: indent++; break;
default: while(c=∗s++) {

switch(c){
case '\n': putchar(c);

for (j=indent; j>0; j−−) putchar('\t');
break;

default: putchar(c); break;
}}}}

If instead of newline characters a newline view would be used (eg. ””:v nl) the printer function
could be simplified even more: the case ’\n’: code in the switch(c) can then be placed as case v nl:
in the switch(v), and the code for the default: case in that switch(v) can be replaced by a simple
printf(”%s”,s); .

4.3 Attribute Grammars

Structural induction is a special case of attribute grammars, where there is only one pass, comput-
ing only synthesized attributes. This is not the place to give an overview of attribute grammars.
Suffice it to say that each node, or term, is decorated with a number of attributes, of which the
value is computed from the values of the subterms of the node (synthesized attributes) or from
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the encompassing node (inherited attributes). An evaluation scheme walks a tree a number of
times to compute all the attributes. Two schemes are demonstrated here. The example is from
the original paper on attribute grammars[Knu68], and computes the value of a fractional binary
number, e.g 1101.01. First the abstract syntax.

/∗ From D. Knuth, Semantics of Context Free Languages ∗/
/∗ The abstract syntax tree of fractional binary numbers, attributed ∗/
number: Nonfraction(bitstring)
| Fraction(bitstring bitstring)
{ float value; /∗ synthesized ∗/}
;

bitstring: Oneb(bit)
| Moreb(bitstring bit)
{ float value; /∗ synthesized ∗/

int length; /∗ synthesized ∗/
int scale; /∗ inherited ∗/

}
;

bit: One()
| Zero()
{ float value; /∗ synthesized ∗/

int scale; /∗ inherited ∗/
}
;

The first example of an evaluation scheme derives from the observation that each phylum
occurrence can be viewed as a set of functions, each of which computes a synthesized attribute
from the inherited attributes. So, there is a set of functions eval phylum synthesized attr. Each
rule for a synthesized attribute corresponds to a case in one of these functions, and each rule for
an inherited attribute appears as a parameter of one of the calls to these functions. The function
invocation structure is isomorphic to the attribute dependency graph. This scheme can also be
characterised as a demand-driven scheme.

There are at least two problems with this approach. First, an inherited attribute of a phylum
can be dependent on a synthesized attribute of that phylum. For example bitstring scale depends
on bitstring length, and the computation of bitstring length can therefore not have the scale as an
argument. An analysis of the attribute dependencies is necessary to prune the argument lists of
the functions. Second, as each used occurrence of a synthesized attribute is represented as a call
to the corresponding function, attributes may be evaluated more than once. This is of course the
other side of not storing results in the tree.

/∗ illustrating attribute evaluation without storing the attributes ∗/
float eval number value(number $n) {

Nonfraction(b): { return eval bitstring value(b,0); }
Fraction(b1, b2): { return eval bitstring value(b1,0) +

eval bitstring value(b2, −eval bitstring length(b2));}
}

float eval bitstring value(bitstring $bs, int scale) {
Oneb(b): { return eval bit value(b, scale); }
Moreb(bs bs, bs b): { return eval bitstring value(bs bs,scale+1)+ eval bit value(bs b, scale); }

}

int eval bitstring length(bitstring $bs) {
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Oneb: { return 1; }
Moreb(bs bs, ∗): { return eval bitstring length(bs bs)+1; }

}

%{
#include <math.h>
%}

float eval bit value(bit $b, int scale) {
One: { return exp2((float)scale); }
Zero: { return 0.0; }

}

The second example of an evaluation scheme visits the tree a number of times and computes
at each visit of a node all the attributes that can be computed. In the implementation there are
procedures called passnumber phylum. In our example there are two passes. In the first pass the
attribute length is computed, and in the second pass the other attributes.

Again, this scheme has its disadvantages. The allocation of attributes to passes has to be
derived from an analysis of the attribute dependencies. Second, in comparison with the previous
scheme, this one represents the opposite time/space trade-off. No attribute is evaluated more
than once, but at the expense of storing all intermediate results. Finally, this scheme does not
coexist very well with unique storage of phyla that have inherited attributes. Two occurrences of
a phylum cannot be shared if they have different inherited attributes.

/∗ illustrating a multi-pass evaluation ∗/
void pass1 number(number $n) {

Nonfraction(b): { pass1 bitstring(b); }
Fraction(b1, b2): { pass1 bitstring(b1);

pass1 bitstring(b2); }
}

void pass1 bitstring(bitstring $b) {
Oneb: { b−>length=1;}
Moreb(bs, ∗): { pass1 bitstring(bs);

b−>length=bs−>length+1; }
}

/∗ pass1 bit omitted, it does nothing ∗/

void pass2 number(number $n) {
Nonfraction(b): { b−>scale=0;

pass2 bitstring(b);
n−>value= b−>value; }

Fraction(b1, b2): { b1−>scale=0;
b2−>scale= −b2−>length;
pass2 bitstring(b1);
pass2 bitstring(b2);
n−>value= b1−>value+b2−>value; }

}

void pass2 bitstring(bitstring $bs) {
Oneb(b): { b−>scale= bs−>scale;

pass2 bit(b);
bs−>value= b−>value; }

Moreb(b1, b2): { b2−>scale= bs−>scale;
b1−>scale= bs−>scale+1;
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pass2 bitstring(b1);
pass2 bit(b2);
bs−>value= b1−>value + b2−>value; }

}

void pass2 bit(bit $b) {
One: { b−>value= exp2((float)b−>scale); }
Zero: { b−>value= 0.0; }

}

Here follows for the sake of completeness the main program to call the attribute evaluations.

/∗ the main program to call the evaluations ∗/
void main() {

number n;
n = Fraction(Moreb(Moreb(Moreb(Oneb(One()), One()), Zero()), One()),

Moreb(Oneb(Zero()), One())); /∗ 1101.01 ∗/
printf(" %f \n", eval number value(n));
pass1 number(n); pass2 number(n);
printf(" %f \n", n−>value);

n = Nonfraction(Moreb(Moreb(Moreb(Oneb(One()), One()), Zero()), One()));
printf(" %f \n", eval number value(n)); /∗ 1101 ∗/
pass1 number(n); pass2 number(n);
printf(" %f \n", n−>value);

}

The examples illustrate that the term processor does not prescribe a particular evaluation
scheme. The advantage is that schemes can be mixed at liberty, and can even be combined with
non-attribute grammar paradigms. The disadvantage is of course that evaluation order, e.g. in
pass allocation, has to be determined manually, or by using some other tool. Conceivably a system
can be made to generate term processor input from an attribute grammar.

4.4 Abstract Data Types and Rewrite Systems

The following example illustrates an abstract data type (ADT) style of programming functions.
The data type defined here is the type of natural numbers. In ADT theory there is usually no
difference between constructors, which make up a term in normal form, and functions, which can
be applied to terms. The difference between these two is only a property of the rewrite system.
In the phylum, both of them are operators.

/∗ the abstract data type of natural numbers ∗/
nat: zero()
| s(nat)
| plus(nat nat)
| mul(nat nat)
| ack(nat nat)
;

/∗ rewrite rules for addition, multiplication, and Ackermann’s function ∗/
plus(x, zero()) −> x; ack(zero(), x) −> s(x);
plus(x, s(y)) −> s(plus(x, y)); ack(s(x), zero()) −> ack(x, s(zero()));
mul(x, zero()) −> zero(); ack(s(x), s(y)) −> ack(x, ack(s(x),y));
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mul(x, s(y)) −> plus(mul(x, y), x);

Here is the program to call the function. We build a term corresponding to the application of
ack, and then rewrite this into normal form.

#include "k.h"

#include "rk.h"

nat n2, n3;

void main() {
n2 = s(s(zero())); n3 = s(n2);
print nat(rewrite nat(ack(n3, s(n3)), base rview));

}

4.5 Rewrite Systems and Functions

Combinators are a technique for implementing functional languages. This example, combinator
reduction, illustrates the use of function calls in the right-hand side of an equation, as well as a
few small yacc and lex techniques. The abstract syntax and the rewrite rules are as follows.

/∗ SKI combinator reduction ∗/
%{ KC REWRITE
int cplus();
%}

exp: S()
| K()
| I()
| ap(exp exp)
| num(int)
| plus()
;

ap(I(), x) −> x;
ap(ap(K(), x), y) −> x;
ap(ap(ap(S(), x), y), z) −> ap(ap(x, z), ap(y, z));
ap(ap(plus(), num(x)), num(y)) −> num(cplus(x, y));

Note that the operator num refers to a built-in type int, which the term processor maps to C.
In the last rewrite rule, a C function cplus is called on values of this type. This function is defined
in the main program, as follows.

/∗ SKI expression reduction, main ∗/
#include "k.h"

#include "rk.h"

extern exp x;

void main() {
yyparse();
print exp(x);
print exp(rewrite exp(x), base rview);

}

int cplus(int i, int j) {
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return i+j;
}

In the yacc input some of the more mundane details of forcing the ‘right’ associativity are
illustrated, watch the lines that start with %left.

/∗ yacc input SKI expression ∗/
%{
#include "k.h"

exp x;

yyerror(char ∗s) {
printf("%s\n", s); exit(1);

}
%}

%token <yt int> NUM
/∗ the next 2 lines force left associativity ∗/
%left '(' 'i' 's' 'k' '+' NUM
%left LEFT

%type <yt exp> exp
%%

theroot: exp { x = $1;};

exp: '(' exp ')' { $$ = $2;}
| exp exp %prec LEFT { $$ = ap($1, $2);}
| 'i' { $$ = I();}
| 's' { $$ = S();}
| 'k' { $$ = K();}
| NUM { $$ = num($1);}
| '+' { $$ = plus();}
;

Finally, the minimal lex input, which shows how to read and convert an integer properly, and
how to make the keywords case insensitive.

/∗ lex input for numbers ∗/
%{
#include "k.h"

#include "y.tab.h"

#include <stdio.h>
#include <ctype.h>
%}
%%
[0−9]+ { sscanf(yytext, "%d", &yylval.yt int); return NUM;}
[\t\n ] { ; } /∗ skip the white space ∗/
. { return (isupper(yytext[0])?tolower(yytext[0]):yytext[0]); }

The program that is generated from this, reads and reduces combinator expressions. For
example, the input s k i 1, which is really the identity operation applied to 1, yields num(1). The
input s(s(k+)i)(k1)8, which illustrates the increment operation, yields num(9).
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4.6 Memo Functions

Memo functions remember (‘memorize’) their results. If called again with the same arguments,
they will return the remembered value. Memo functions are functional in their behaviour: a
subsequent call with the same argument will yield the same result. In their performance they
are not functional: the subsequent call will not need recomputation. Memo functions of course
constitute a time/space trade off. Their performance comes at the expense of memory to store
the results (and, in some schemes, memory to store the operands).

Using the term processor, memo-functions of one argument can be implemented as an attribute
of the phylum of the argument term. Memo-functions of more than one argument can be imple-
mented as an attribute of a uniquely represented term that represents the function call. E.g. for
a function F of two arguments one introduces a term F memo(x,y) of which the function result is
an attribute. In both approaches it is essential that the arguments of the function are represented
uniquely.

An example to illustrate memo functions is the Fibonacci function. This is a good example
because the standard recursive definition recomputes the same result over and over again. For
example, fib(5) uses fib(4) and fib(3), but for fib(4), fib(3) is also computed. It is also a silly
example, because the best solution is a simple iteration. Furthermore we use abstract data type
natural numbers, and the cost of the rewrite functions outweighs the costs of Fibonacci. The
non-memo solution looks as follows, the phylum and rewrite definitions are from the previously
discussed natural numbers example.

/∗ Fibonacci ∗/
%{
#include "rk.h"

%}

nat fib(nat $n) {
zero(): { return s(zero()); }
s(zero()): { return s(zero()); }
s(s(x)): { return rewrite nat( plus(fib(x), fib(s(x)))); }

}

The memo version looks as follows, the natural number phylum is made unique and has an
attribute fib to store the result.

/∗ Fibonacci with memo function ∗/
nat{uniq}: zero()
| s(nat)
| plus(nat nat)
{ nat fib = (nat)0; }
;

/∗ rewrite rules omitted ∗/

%{
#include "rk.h"

%}

nat fibm(nat n) {
nat result;
if (n−>fib != (nat)0) return n−>fib;
with(n){

zero(): { result = s(zero()); }
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s(zero()): { result = s(zero()); }
s(s(x)): { result = rewrite nat( plus(fibm(x), fibm(s(x)))); }

}
n−>fib = result;
return result;

}

Note the initialisation of the attribute fib. We take the nil pointer to mean ‘no value known
yet’. In the second line of the function body the test is made for this, and in the second last line
the result is stored. Measurements show that computing fib(15) (which is 987) takes 1973 calls
on fib. In fibm the with-statement is entered only 16 times. However, as stated, using rewriting
to compute addition makes this hardly noticeable on total run time. Both functions compute
plus(377, 610) exactly once, and this takes most of the time.

4.7 Beyond Symbol Tables

Attributes of uniquely stored terms can be used to implement symbol tables, or more exactly, the
contents of symbol tables. Looking up translates to newly creating a term (which is represented
uniquely) and then inspecting its attributes. One can view this as making the look up function a
memo function.

The nice thing is that entire terms can be used as the key in the ‘symbol table’. This is useful
for e.g. nested scopes. A key can then be a term composed of an identifier and a scope indication.
This tuple should be unique.

As an example, we consider the detection of common subexpressions. Every subexpression is
a key in the symbol table, and one pass over the expression computes the attribute ocs, which
represents the number of occurrences of each subexpression.

/∗ A very simple tree structure ∗/
funnytree {uniq}: Str(casestring)
| Cons(funnytree funnytree)
{ int ocs = 0;

funnytree next ;
{ $0−>next = alltrees;

alltrees = $0; }
}
;

void occurs(funnytree $f) {
Str: { f−>ocs++; }
Cons(f1, f2): { f−>ocs++; occurs(f1); occurs(f2); }

}

%{ KC TYPES HEADER
funnytree alltrees;
%}

void main() {
funnytree ft, it;

alltrees = (funnytree)0;
ft = Str(mkcasestring("foo"));
ft = Cons(ft, ft);
ft = Cons(ft, Str(mkcasestring("bar")));
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ft = Cons(ft, ft);
it = alltrees;
occurs(it);
for(; it!= (funnytree)0; it= it−>next) {

if (it−>ocs>1) {
printf("occurs %d times:\n", it−>ocs);
print funnytree(it);

} } }

The example also illustrates a technique through which all values of a particular phylum in the
symbol table can be accessed. The idea is that they are strung together using an attribute (here
next) and a global variable (here alltrees), which are manipulated in the initialisation part of a
term. The other essential components of this technique are the initialisation of the global variable,
and the inclusion of its definition in all the files through KC TYPES HEADER. This technique also
works for non unique phyla. Unique phyla should not be used when some of the attributes depend
on the context of their nodes.

5 Design Considerations for Kimwitu

In this section we discuss some of the considerations that have shaped the design of Kimwitu. This
should provide the reader with some background information on the ‘philosophy’ of the system.

5.1 Why a Type per Phylum?

A fundamental choice is between a node type per phylum, as is done in Kimwitu, or a generic
node type (the term structure to describe all term structures). This difference is comparable to
that between compiled code and interpreted code. The first representation option is more efficient
to use, it seems, but results in much more C-code (it might be different if assembly is generated
directly). The second option is more suitable for language independent or polymorphic operations
(as is used in the kernel of the Synthesizer Generator). An additional benefit of the first option is
that it allows compile-time type checking of user-added code, as each phylum will correspond to
a different type.

5.2 What is in a Name?

How are the various objects generated by the system named? The problem is that for each input
name (e.g. of a phylum or operator) a number of identifiers in the output are generated (e.g. for
an operator a name is generated to distinguish it from other operators, and a name for creating
a term with that operator etc.). The basic idea is that related concepts have related names. In
natural languages a comparable situation exists. For example, in English the words norm, normal,
normalcy, normality, normalization, normalize, normalized, normalizes, normalizeth, normalizing,
normally, and normalness, denote different but related forms of one word. These other words are
called inflections, and are constructed, in most western languages, by changing suffixes. In other
languages, e.g. Swahili, prefix changing is also used. In Swahili, the word witu means tree, its
plural, meaning forest or jungle, is mwitu . The prefix ki- indicates a likeness of being, so that the
name of our system reads as tree-s-ish. (This may not sound like English to you. Well, Swahili
speakers don’t count Kimwitu as a legal word either...)

The same scheme is employed in programming languages. For example, in Algol-68 and C,
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‘proc()’ denotes the result of calling a parameterless function and ‘proc’ denotes the function itself.
An example from the term processor: the function to rewrite a phylum foo is called rewrite foo.

5.3 What is the Place in Software Engineering?

In the engineering of language based software, there are two extreme approaches. One is to just use
a regular programming language (assembly language is not used very much any more these days),
the other is to use a very high-level formalism, such as attribute grammars. Kimwitu was designed
to fill a place in between these extremes, and to attempt to bridge the gap. The main theme is
that by supporting multi-paradigm programming one can avoid being locked in by one formalism.
In each formalism there are things that cannot be easily or efficiently expressed. Abstract data
types can allow easy expression of certain functions, but the implementations are not necessarily
efficient. In C every detail that can possibly influence performance is under the control of the
programmer, but that does not necessarily allow easy expression of conceptually simple functions.
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A Syntax of the Kimwitu input

In this section we present the syntax of the Kimwitu input. The notation is based on yacc, with
the following extensions. Single quotes are used for string denotations, ordinary parentheses ()
denote grouping, square brackets [] denote zero or one instance, curly brackets {} denote zero or
more instances.

Comments are in C style, e.g. enclosed between /* and */, but can be nested.

Some of the rules and conditions are expressed in prose, rather than by formal means. An
identifier (ID) is a sequence of letters digits and underscores, not starting with a digit.

specification: { phylumdeclaration | includedeclaration | functiondeclaration |
rwdeclaration | unparsedeclaration |
rviewdeclaration | uviewdeclaration | storageclassdeclaration } ;

phylumdeclaration: ID [storage option] ':' [productionblock] [Ccode] ';' ;

storage option: '{' ['!'] ID '}' ;

productionblock: 'list' ID | alternative list ;

alternative list: [alternative list '|'] ID '(' arguments ')' ;

arguments: {ID} ;

Ccode: '{' [Attributes] [Cbody] '}' ;
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Attributes: [Attributes] ID ID ['=' Cexpression] ';' ;

Cexpression: /∗ arbitrary C expression without ’;’ and ’,’ with ’$0’ ∗/

includedeclaration: '%{' {ID} includes '%}' ; /∗ the tokens are at the beginning of a line ∗/
/∗ ID’s in {ID} are at the same line as ’%{’ ∗/

includes: /∗ arbitrary text ∗/ ;

rwdeclaration: outmostpatterns '->' rwclauses or term ';' ;

rwclauses or term: {rewriteclause} | outmostterm ;

rewriteclause: '<' rviewnames ':' outmostterm '>' ;

rviewnames: {ID} ;

patternchains: patternchain [',' patternchains] ;

patternchain: patternchainitem ['&' patternchain] ;

patternchainitem: outmostpattern
| '(' patternchains ')'

| '$' ID /∗ this rule is to be used only in ’patternchain’ in foreach statement ∗/
;

outmostpatterns: outmostpattern [',' outmostpatterns] ;

outmostpattern: [ID '='] ID ['(' [patterns] ')'] | '*' | 'default' ;

patterns: pattern [',' patterns] ;

pattern: ID '=' pattern
| ID ['(' [patterns] ')']
| '"' /∗ any string of characters ∗/ '"'

| /∗ a number ∗/
| '*' | 'default'
;

outmostterm: ID '(' [terms] ')' ;

term: ID ['(' [terms] ')']
| '"' /∗ any string of characters ∗/ '"'

| /∗ a number ∗/
;

terms: term [',' terms] ;

functiondeclaration: decl specifiers fn declarator {declaration} MainCbody ;

decl specifiers: [stor class specifier] [type qualifier] ID ;

stor class specifier: 'auto' | 'register' | 'static' | 'extern' | 'typedef' ;

type qualifier: 'const' | 'volatile' ;

fn declarator: [pointer] direct fn declarator ;
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direct fn declarator: ID '(' [fnarguments] ')'

| ID '(' parameter type list ')'

;

fnarguments: [fnarguments ','] ['$'] ID ;

parameter type list: parameter list [',' '. . .'] ;

parameter list: [parameter list ','] parameter decl ;

parameter decl: decl specifiers declarator
| decl specifiers abstract declarator
;

declarator: [pointer] direct declarator ;

pointer: '*' {type qualifier} [pointer] ;

direct declarator: ['$'] ID
| '(' pointer direct declarator ')'

| direct declarator '[' [Cexpression] ']'

| direct declarator '(' param type list ')'

| direct declarator '(' [fnarguments] ')'

;

abstract declarator: pointer
| [pointer] direct abstract declarator
;

direct abstract declarator: '(' abstract declarator ')'

| [direct abstract declarator] '[' [Cexpression] ']'

| [direct abstract declarator] '(' [parameter type list] ')'

;

declaration: decl specifiers [declarator list] ;

declarator list: [declarator list ','] declarator ;

MainCbody: Cbody
| '{' with clause '}' /∗ a with clause if a fn argument has a $ prefix ∗/
;

Cbody: '{' Ctext '}' ;

Ctext: /∗ arbitrary C text, with $0 through $n,
with statement and foreach statement ∗/ ;

foreach statement: 'foreach' '(' patternchain ';' IDCexpressions ')' MainCbody
[ 'afterforeach' '(' patternchain ')' MainCbodyinC ]

;

IDCexpressions: ID Cexpression [',' IDCexpressions] ;

with statement: 'with' '(' Cexpressions ')' '{' with clause '}' ;

Cexpressions: Cexpression [',' Cexpressions] ;

with clause: patternchains ':' Cbody [with clause] ;
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unparsedeclaration: outmostpatterns '->' {unparseclause} ';' ;

unparseclause: '[' uviewnames ':' {unparseitem} ']' ;

uviewnames: {ID} ;

unparseitem: '"' /∗ any string of characters∗/ '"' [':' ID]
| ['(' ID ')'] ID {'->' ID} [':' ID]
| Cbody
| '${' {unparseitem} '$}'

;

rviewdeclaration: '%rview' rviewnames ';' ;

uviewdeclaration: '%uview' uviewnames ';' ;

storageclassdeclaration: '%storageclass' {ID} ';' ;

B Structure File Encoding

This is a description of the ASCII SSL V3 format as used by Grammatech’s Synthesizer Generator
and the term processor Kimwitu (University of Twente). (Actually, both of these are generators
of programs using this representation.)

Not all features are described, e.g. other atomic phyla are possible in Synthesizers, but not in
combination with Kimwitu.

The structure file format is an ASCII encoding of a term. It is a prefix representation of
this term. A file representation has two major components. The first component is a table of
the operators that are used in the term, operators not appearing in the term do not have to be
contained in this table. The operators in this table are numbered, starting from 0. The second
component of the file is a representation of the term (or object as it is called). The begin markers
of these components, $operators and $object, must be followed by one space at the end of the line.

Each line in the operator table describes the properties of one operator, and has 4 fields. The
fields in the line are separated by one space. They are: the operator name, the number of its
operands, the number of attributes (in term processor generated files this is always 0), and an
indication of whether the operator belongs to an atomic phylum (1=yes, 0=no).

In the object section each line represents one node in the term. There are four types of these
nodes: operator applications, string constants, integer constants, and pointers to shared nodes.

A line beginning with a number denotes an operator application, it is an index in the operator
table. The rest of this line, if any, can be ignored (it contains an alternative unparsing indication
for some tools). An operator of an atomic phylum is followed, on the next line, by a representation
of a value.

A plus sign (+) denotes a string, and is followed by a number indicating the number of charac-
ters in the string, a separating space, and the string. In the string, all printable characters except
the backslash (\) are represented as such. A backslash is doubled, and a non printable character
is represented as a backslash followed by a hexadecimal representation of the ascii number, e.g.
newline is \oa. An integer is represented as the string encoding of its decimal representation.
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Pointers serve to share trees, and strings (but not integers). Such a pointer is encoded in
a base-64 representation, in which the character : represents the ‘digit’ 0, and the character y
represents the ‘digit’ 63. Intermediate ‘digits’ are represented by the intermediate ascii characters.
For example, the string ;= denotes the value 67. Conceptually at least, the result of each operator
application is stored in one table, and each string is stored in a second table. The two numbers on
the line below the begin marker $object give the size of the operator application resp. the string
table. The pointer value is then a reverse index (counting from the end back) in the appropriate
table of values. E.g. the last value of the appropriate kind in the file before the pointer has number
1.

The following two examples illustrates the structure file format. Both examples show the same
term; the first example contains no sharing, the second everything possible is shared. Also, in the
second example the operator table in the operators section has been sorted (decreasingly) on the
number of operator applications. As a result, the references to this table should be smaller (lower
numbers), taking less characters for their representation.
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A#S#C#S#S#L#V#3 ← magic word indicating file type
$operators ← begin marker operator table
CR Spec 12 0 0 ← operator 0
CR Label 1 0 0
Str 0 0 1 ← operator of an atomic phylum

Nilcr comment list 0 0 0
CR Specification id 1 0 0
CR Identifier 2 0 0
NoCaseStr 0 0 1
CR DefExtension 1 0 0
Nilcr gate identifier list 0 0 0
Nilcr identifier declaration list 0 0 0
CR Noexit part 0 0 0
Nilcr data type definition list 0 0 0
CR Definition block 3 0 0
CR Stop expression 2 0 0
Nilcr annotation list 0 0 0
Nilcr process definition list 0 0 0
CR Booleans NotChecked 0 0 0
CR IS8807 0 0 0
$object ← begin marker object
24 4 ← number of operator applications; number of strings
0 ← operator application, index in table above
1
2
+10 specname 1 ← string representation
3
4
5
6
+8 specname
7
6
+1 0
8
9
10
11
3
12
13
1
2
+6 stop 0
14
11
15
16
14
17
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A#S#C#S#S#L#V#3 ← magic word indicating file type
$operators ← begin marker operator table
CR Label 1 0 0
NoCaseStr 0 0 1 ← operator of an atomic phylum
Str 0 0 1 ← operator of an atomic phylum

Nilcr identifier declaration list 0 0 0
CR Spec 12 0 0
CR IS8807 0 0 0
Nilcr comment list 0 0 0
CR Booleans NotChecked 0 0 0
CR DefExtension 1 0 0
CR Specification id 1 0 0
CR Definition block 3 0 0
Nilcr process definition list 0 0 0
CR Identifier 2 0 0
Nilcr gate identifier list 0 0 0
Nilcr annotation list 0 0 0
CR Noexit part 0 0 0
Nilcr data type definition list 0 0 0
CR Stop expression 2 0 0
$object ← begin marker object
21 4 ← number of operator applications; number of strings
4 ← operator application, index in table above
0
2
+10 specname 1 ← string representation
6 ← shared node referenced below as label 1
9
12
1
+8 specname
8
1
+1 0
13
3
15
16 ← shared node referenced below as label 2
D ← reference to label 1 above
10
17
0
2
+6 stop 0
14 ← shared node referenced below as label 3
@ ← reference to label 2 above
11
7
= ← reference to label 3 above
5

C Compatibility with previous versions of Kimwitu

During the (ongoing) development of Kimwitu new ideas lead to changes in the software. Most of
those changes are invisible to the Kimwitu user, some of them are not. This section lists a number
of visible changes in Kimwitu.
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C.1 Define-before-use constraints

In older versions of Kimwitu, both phyla and operators had to be defined before their use in a
pattern such as appears in function definitions and rewrite rules. More recent versions of Kimwitu
no longer impose this constraint (version V3 0 or newer).

C.2 Node-sharing in Structure Files

From version V3 4 on the CSGIOwrite routines use node-sharing features. Older kc-generated
programs can not read files that use node-sharing; of course, new kc-generated programs can read
files without it. For compatibility with older programs, the use of node-sharing for writing files
can be turned off. The routine kc set csgio sharing can be called with a boolean argument False to
make the CSGIOwrite routines do not use the node-sharing. The routine returns the current csgio
node-sharing setting.

In addition, if the preprocessor symbol KC CSGIO NO SHARING is defined when the generated
csgiok.c file is compiled, the CSGIOwrite routines do not use the node-sharing. Defining this macro
does not turn off the ability to read files that contain node-sharing.

C.3 The UNIQMALLOC2 Macro

This macro is named UNIQMALLOC2 for backward compatibility with previous versions of kc that
defined and used a macro UNIQMALLOC that referred to a unary function. UNIQMALLOC2 refers
to a binary function.

C.4 The KIMW Redirection Symbols and Macros

In previous versions of Kimwitu the redirection symbols and macros had a KIMW prefix. Because
these names did not fit in the Kimwitu naming scheme, the redirection symbols and macros now
have a KC prefix. The ‘old’ redirection keywords are still recognized by Kimwitu, but a warning
is given.

C.5 The view Enumerated Type

In previous versions of Kimwitu only unparse rules had views, which were collected in a enumerated
type view. For backwards compatibility, view is now defined as a typedef for the enumerated type
uview.

D Future

This section contains some of the ideas for future changes, enhancements of Kimwitu. The purpose
of this section is twofold: it can be seen as a sort of ‘advance warning’ for potential future
incompatible changes, and, because it contains material that is not completely mature, it can be
seen as a ‘request for feedback’ from You, the Kimwitu users.
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D.1 CSGIO Structure File IO Routines

Possible future change: changing the names of the structure file functions (because the uppercase
CSGIO prefix doesn’t really fit in the naming scheme) and supporting more formats.

D.2 Conditional Rewrite Rules

In future versions, it will be possible to use conditional rewrite rules. The exact Kimwitu input
syntax has not yet been decided.

D.3 User Defined Atomic Phyla

In future versions of Kimwitu, it will be possibly to specify your own atomic phyla. The exact
Kimwitu input syntax has not yet been decided.

D.4 Generation of C++ code

Future versions of Kimwitu will be able to generate C++ code, and accept a more C++ like syntax
for function definitions. The move towards C++ will be gradually, with the following likely mile-
stones: generation of C code that can be compiled as C++ code, generation of overloaded C++
functions for the standard functions, generation of CSGIO routines that support the C++ file io
mechanisms,

D.5 Support for Sets, Queues, Stacks, Arrays, etc.

Once Kimwitu has the power of C++, it may be possible to support more ‘basic’ data types.

D.6 Polymorfism

Extend the Kimwitu input syntax with a mechanism to define some kind of template functions
over lists.

D.7 Hash Management

In addition to the routines described in 2.2 the routines kc ht static, kc ht dynamic, kc ht inc level,
kc ht dec level, and kc ht free level have been added as an experiment. Right now it is unclear
whether they are useful or not, or whether this sort of features should be offered in Kimwitu, or
are better left to the individual programmer. A compromise might be to supply such routines as
a kind of library in the form of a Kimwitu input (.k) file.

Controlling the lifetime of unique memory cells by the creation, freeing and (re-) assignment
of hashtables has one disadvantage: the uniqueness of storage property is no longer guaranteed.
The following alternative does not have this flaw, but may be slower in execution time. The idea
is to treat the hashtable as a stack of life-times, called segments, or memory-levels. New memory
cells will always be created in the memory segment at the top of the stack. A new segment can be
pushed onto the stack, eg. to store intermediate results of a computation. When the computation
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is finished, the segment can be popped from the stack; its memory cells remain alive. When now
the final result of the computation is copied, its memory cells in the popped segment are re-created
in the now topmost segment. Finally, the popped segment can be deleted. For each hashtable
such a stack of segments can be used, and pushing and popping the segments of one hashtable
does not influence the segments of another one.

In addition to the segments on the stack, there is one ‘heap’ segment, that is meant for memory
cells that never will be reclaimed. In Kimwitu, we call the heap segment ‘static’, and the stack
segments ‘dynamic’. Kimwitu offers two routines to switch between the use of the ‘static’ segment
and the ‘dynamic’ segments. By default, all unique memory cells are created in the ‘heap’ segments
of the hashtables, ie. by default the ‘static’ segments are used.

The routines that ‘manage’ the segments (pushing, popping, freeing, switching between ‘static’
(heap) and ‘dynamic’ (stack)), and the routines that manage the hashtables (creation, assignment,
freeing, deletion, reuse) can be freely intermixed, to use the best of both approaches.

Below follows a description of the memory level routines.

void kc ht static( kc storageclass t sc );

Allocate everything using the ‘static’ scheme, until kc ht dynamic is called for this storage class.
This is the default.

void kc ht dynamic( kc storageclass t sc );

Allocate everything using the ‘dynamic’ scheme, until kc ht dynamic is called for this storage
class, or until the hashtable is changed (by assignment, deletion, clearing or reuse).

void kc ht inc level( kc storageclass t sc );

Increment the memory level: everything allocated in hashtable ht using the ‘dynamic’ scheme
will be freed during subsequent kc ht dec level, kc ht free level calls.

void kc ht dec level( kc storageclass t sc );

Decrements the memory level: everything allocated using the ‘dynamic’ scheme in the previous,
higher, memory level is still available, but can no longer be found using the hashtable, ie. copying
a node that was created in the previous, higher, memory level will yield a new copy of that node
(and the initialization code of its phylum will be executed).

void kc ht free level( kc storageclass t sc );

Free all nodes/elements allocated during previous, higher, memory levels.
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